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ABSTRACT

In long context scenarios, large language models (LLMs) face three main chal-
lenges: higher computational cost, performance reduction, and position bias. Re-
search indicates that LLM performance hinges on the density and position of key
information in the input prompt. Addressing this, we introduce LongLLMLingua,
a method for prompt compression that improves LLMs’ key information percep-
tion, effectively tackling these challenges. Our extensive evaluation across various
long context scenarios demonstrates that LongLLMLingua not only enhances per-
formance but also significantly reduces costs and latency. For instance, in the Nat-
uralQuestions benchmark, LongLLMLingua boosts performance by up to 21.4%
with around 4x fewer tokens in GPT-3.5-Turbo, leading to substantial cost savings.
It achieves a 94.0% cost reduction in the LooGLE benchmark. Moreover, when
compressing prompts of about 10k tokens at ratios of 2x-6x, LongLLMLingua
can accelerate end-to-end latency by 1.4x-2.6x.

1 INTRODUCTION
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Figure 1: (a) LLMs’ performance in downstream tasks tends to decline with the increase of noisy
information in the prompt. In this case, we keep k most relevant documents/paragraphs based on
the ground-truth or LongLLMLingua rk. A larger k implies more noise introduced into the prompt.
To improve the key information density in the prompt, we present question-aware coarse-to-fine
compression. (b) LLMs’ ability to capture the relevant information depends on their positions in the
prompt. To reduce information loss in the middle, we introduce a document reordering mechanism.

ChatGPT and other large language models (LLMs) are pivotal in advancing user-oriented language
technologies across various applications. Optimal prompt design is key for enhanced performance
in specific tasks. Technologies like In-Context Learning (ICL) (Dong et al., 2023), Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020), and Agent (Park et al., 2023) lead to increasingly
lengthy prompts, sometimes extending to thousands of tokens. Scenarios such as multi-document
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Figure 2: Framework of LongLLMLingua. Gray Italic content: As in LLMLingua.

question answering, code completion, and document summarization also necessitate the processing
of long contexts.

There are three main challenges when LLMs are used in long context scenarios: (1) Higher com-
putational costs, encompassing both financial and latency expenses. (2) Longer prompts introduce
irrelevant and redundant information, which can weaken LLMs’ performance (Shi et al., 2023), as
illustrated in Figure 1a. (3) LLMs exhibit position bias, also known as the ‘lost in the middle’ is-
sue (Liu et al., 2024; Kamradt, 2023), suggesting that the placement of key information within the
prompt significantly affects LLMs’ performance. This is demonstrated by the purple curve in Figure
1b.

Inspired by these observations, we propose LongLLMLingua to address the three challenges. Specif-
ically, we use LLMLingua (Jiang et al., 2023a) as our backbone framework for prompt compression
to address the first challenge, i.e., reduce cost and latency. However, in the case of long contexts, the
distribution of question-relevant key information in the prompt is generally dynamic and sparse. Ex-
isting prompt compression methods like LLMLingua (Jiang et al., 2023a) and Selective-Context (Li
et al., 2023c) that often fail to consider question during compression, resulting in retention of exces-
sive noise and decreased performance. LongLLMLingua aims to improve LLMs’ perception of key
information pertinent to the question, thereby overcoming the noise and position bias issues in long
contexts, shown in Figure 1b. The underlying principle of LongLLMLingua is that small language
models are inherently capable of capturing the distribution of key information relevant to a given
question.

Our main contributions include: (1) We propose a question-aware coarse-to-fine compression
method to improve the key information density in the prompt (Sec. 2.1); (2) We introduce a
document reordering strategy to minimize position bias in LLMs. (Sec. 2.2); (3) We establish
dynamic compression ratios for precise control between coarse and fine compression levels (Sec.
2.3); (4) We propose a post-compression subsequence recovery strategy to improve the integrity of
the key information (2.4). (5) We evaluate LongLLMLingua across five benchmarks, i.e., Natu-
ralQuestions (Liu et al., 2024), LongBench (Bai et al., 2023), ZeroSCROLLS (Shaham et al., 2023),
MuSicQue (Trivedi et al., 2022), and LooGLE (Li et al., 2023b), covering a variety of long con-
text scenarios. Experimental results reveal that LongLLMLingua’s compressed prompts outperform
original prompts in terms of performance, cost efficiency, and system latency.

2 LONGLLMLINGUA

LongLLMLingua is developed upon the framework of LLMLingua (Jiang et al., 2023a) towards
prompt compression in long context scenarios. To address the three challenges in long context
scenarios mentioned in Sec. 1, we propose LongLLMLingua. This method aims to enhance the
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Figure 3: (a) Comparison of recall on NaturalQuestions Multi-documemnt QA dataset, which in-
creases from top to bottom in terms of Recall@1. Different colors represent different types of
methods. Among them, yellow represents traditional relevance methods, green signifies embedding-
based methods, and red denotes rerank-based methods. (b) Comparison between perplexities and
contrastive perplexities of tokens in the prompt from Multi-documemnt QA dataset. The document
with the ground truth is located on the left side of the dashed line.

perception of LLMs of key information relevant to the question within the prompt. It encompasses
three perspectives and further incorporates a subsequence recovery strategy to enhance the accuracy
and reliability of the information provided to users. We elaborate on each component in this section.

2.1 HOW TO IMPROVE KEY INFORMATION DENSITY IN THE PROMPT?

Question-Aware Coarse-Grained Compression In coarse-grained compression, we aim to figure
out a metric rk to evaluate the importance of each document xdoc

k = {xdoc
k,i}

Nk
i=1, where Nk is the

number of tokens in xdoc
k . We only keep xdoc

k with higher rk as the intermediate compressed results.

We propose to use the perplexity of the question xque conditioned on different contexts xdoc
k to

represent the association between them. We also append a restrictive statement xrestrict 1 after xque

to strengthen the interconnection of xque and xdoc
k . It can be regarded as a regularization term that

mitigates the impact of hallucinations. This can be formulated as:

rk = − 1

Nc

Nc∑
i

log p(xque,restrict
i |xdoc

k ), k ∈ {1, 2, · · · ,K}, (1)

where xque,restrict
i is the i-th token in the sequence of xque and xrestrict and Nc in the number of tokens.

Figure 3a displays the recall distribution of different retrieval methods, including traditional rele-
vance methos (BM25, Gzip (Jiang et al., 2023b)), embedding-based methods(OpenAI-embedding,
Voyageai2, BGE-large-en v1.5 (Xiao et al., 2023), Sentence-BERT (Reimers & Gurevych, 2019),
Jina (Günther et al., 2023)), and reranker methods (Cohere-Rerank3, BGE-llmembeder, BGE-
Ranker-large). It can be observed that our methods achieve the best recall across various numbers
of retrieved documents.

LLMLingua uses document-level perplexity to represent the importance of documents:rk =

1/Nk

∑Nk

i p(xdoc
k,i) log p(x

doc
k,i), k ∈ {1, 2, · · · ,K}. Although the retained documents typically con-

tain a lot of information, they are irrelevant to the question xque and instead become noise, reducing
key information density in the compressed results and bringing difficulties for LLM to output cor-

1Specifically, “We can get the answer to this question in the given documents”.
2https://www.voyageai.com/
3https://cohere.com/rerank
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rect answers. As shown in Figure 3a, the recall@16 of LLMLingua only reaches 50%, indicating its
incompetence in retaining key information during compression.

Retrieval-based methods are also feasible here. We can use xque to retrieve the most relevant doc-
uments among (xdoc

1 , · · · ,xdoc
K ) as the compressed results. However, these methods struggle to

distinguish question-related fine-grained semantic information. Some documents with key informa-
tion may be discarded during retrieval. As shown in Figure 3a, embedding-based methods such as
Sentence BERT and OpenAI Embedding only achieve ∼75% accuracy in recall@5, which implies
that the final accuracy upper bound of LLMs with 4x compression is only 75%.

Question-Aware Fine-Grained Compression In this paper, we propose contrastive perplexity,
i.e., the distribution shift caused by the condition of the question, to represent the association be-
tween the token and the question. The contrastive perplexity based importance metric si for each
token xi in {xdoc

k }K′

k=1 can be formulated follow. Additionally, we provide the derivation of its math-
ematical significance in the Appendix B, concluding that it is equivalent to conditional pointwise
mutual information (Church & Hanks, 1989).

si = perplexity(xi|x<i)− perplexity(xi|xque, x<i). (2)

Figure 3b illustrates the difference between perplexities and contrastive perplexities. We can see
that tokens of high perplexities are widely distributed in all documents. However, tokens with high
contrastive perplexities concentrate more on the left side of the dashed line, which corresponds to
the document that contains the answer to the question. This suggests that the proposed contrastive
perplexity can better distinguish tokens relevant to the question, thus improving the key information
density in the compressed results. Moreover, in the Appendix C, we present the sentence-level
empirical evidence of question-aware token-level prompt compression method, demonstrating its
effectiveness.

2.2 HOW TO REDUCE INFORMATION LOSS IN THE MIDDLE?

After the coarse-grained compression, we have obtained a set of documents {xdoc
k }K′

k=1 with their
corresponding importance scores {rk}K

′

k=1 indicating their association with the question xque. There-
fore, we reorder documents using their importance scores to better leverage LLMs’ information
perception difference in positions as demonstrated in Figure 1b:

(xins,xdoc
1 , · · · ,xdoc

K′ ,xque)
rk−→ (xins,xdoc

r1 , · · · ,xdoc
rK′ ,xque) (3)

2.3 HOW TO ACHIEVE ADAPTIVE GRANULAR CONTROL DURING COMPRESSION?

We bridge coarse-grained compression to fine-grained compression and use the importance scores
{rk}K

′

k=1 obtained from coarse-grained compression to guide the budget allocation in fine-grained
compression. In this way, we can achieve adaptive granular control on the whole. Specifically,
we first determine the initial budget for the retained documents τ doc 4 using the budget controller
of LLMLingua. During fine-grained compression, we follow the iterative token-level compression
algorithm in LLMLingua but dynamically assign the compression budget τ doc

k to each document
xdoc
k according to the ranking index I(rk) (e.g., 0, 1) of its importance score from the coarse-grained

compression. In this paper, we employ a linear scheduler for the adaptive allocation. Budget of each
token xi can be formulated as:

τi = τ doc
k , ∀xi ∈ xdoc

k ,

τ doc
k = max(min((1− 2I(rk)

K ′ )δτ + τ doc, 1), 0),
(4)

where i and k is the index of token and document, K ′ denotes the number of documents, and δτ is
a hyper-parameter that controls the overall budget for dynamic allocation.

4In LLMLingua, it is τ dems for demonstrations.
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Table 1: Performance of different methods with 4x compression ratio (raw size / compressed size
= 1/τ ) on NaturalQuestions (20 docs.) (Liu et al., 2024). Reorder: we reorder the documents with
relevance metrics of different baselines as our document reordering strategy described in Sec. 2.2.

Methods GPT3.5-Turbo LongChat-13b Length Latency
1st 5th 10th 15th 20th Reorder 1st 5th 10th 15th 20th Reorder Tokens 1/τ Latency Speedup

Retrieval-based Methods
BM25 40.6 38.6 38.2 37.4 36.6 36.3 39.5 37.5 36.8 36.4 35.5 37.7 798 3.7x 1.5 2.7x
Gzip 63.1 61.0 59.8 61.1 60.1 62.3 57.6 52.9 51.0 50.1 50.4 57.2 824 3.6x 1.5 2.7x
SBERT 66.9 61.1 59.0 61.2 60.3 64.4 62.6 56.6 55.1 53.9 55.0 59.1 808 3.6x 1.6 2.5x
OpenAI 63.8 64.6 65.4 64.1 63.7 63.7 61.2 56.0 55.1 54.4 55.0 58.8 804 3.7x 4.3 1.0x
LongLLMLingua rk 71.1 70.7 69.3 68.7 68.5 71.5 67.8 59.4 57.7 57.7 58.6 64.0 807 3.7x 1.7 2.4x

Compression-based Methods
Selective-Context 31.4 19.5 24.7 24.1 43.8 - 38.2 17.2 15.9 16.0 27.3 - 791 3.7x 6.8 0.6x
LLMLingua 25.5 27.5 23.5 26.5 30.0 27.0 32.1 30.8 29.9 28.9 32.4 30.5 775 3.8x 1.8 2.2x

LongLLMLingua 75.0 71.8 71.2 71.2 74.7 75.5 68.7 60.5 59.3 58.3 61.3 66.7 748 3.9x 2.1 2.0x

Original Prompt 75.7 57.3 54.1 55.4 63.1 - 68.6 57.4 55.3 52.5 55.0 - 2,946 - 4.1 -
Zero-shot 56.1 35.0 15 196x 1.1 3.7x

2.4 HOW TO IMPROVE THE INTEGRITY OF KEY INFORMATION?

We propose a subsequence recovery method to restore the original content from LLMs’ responses.
This method relies on the subsequence relationship among tokens in the original prompt, compressed
prompt, and LLMs’ response. The overall procedure includes: i) Iterate through tokens yl in LLMs’
response and select the longest substring ỹkey,l = {yl, yl+1, ..., yr} that appears in the compressed
prompt x̃. ii) Find the maximum common shortest subsequence xi,j = {xi, xi+1, ..., xj} in the
original prompt x, corresponding to the representation ỹkey,l in the original prompt (accelerated
using prefix trees or sequence automata). iii) Replace the matched tokens ỹkey,l in LLMs’ response
with the corresponding subsequence xi,j from the original prompt. Appendix A show more details.

3 EXPERIMENTS

Table 1 and Appendix E showcase the performance and latency of various methods under different
compression constraints across multiple tasks, including multi-document QA (Liu et al., 2024),
multi-hop QA (Trivedi et al., 2022), and long context benchmarks (LongBench (Bai et al., 2023),
ZeroScROLLS (Shaham et al., 2023), LooGLE (Li et al., 2023b)). Table 5 and 2 presents the
ablation results of our proposed module in LongLLMLingua. Additionally, we display some cases
to demonstrate the results of prompt compression by the modules designed in LongLLMLingua
across different scenarios in Appendix H and I.

There are multiple observations and conclusions: (1) LongLLMLingua consistently outperforms
across various tasks and compression ratios, enhancing performance while significantly reducing
costs. For instance, it boosts performance by 21.4% on NaturalQuestions using only a quarter of the
tokens. (2) Compression methods like Selective Context (Li et al., 2023c) and LLMLingua (Jiang
et al., 2023a) often underperform, particularly in tasks with excessive irrelevant information. Their
information entropy-based compression includes too much noise, sometimes leading to worse out-
comes than zero-shot settings. (3) Retrieval-based methods excel at low compression ratios but
decline with higher compression, due to reduced recall shown in Figure 3a. (4) LongLLMLingua
and our coarse-grained compression metric rk outperform all other baselines across various tasks
and compression ratios. Notably, as compression ratios rise, say from 2x to 4x, LongLLMLingua
even shows a slight increase in performance. This success is due to our question-aware coarse-to-fine
method that effectively pinpoints key information. (5) The proposed reordering method helps in not
only our approach but also other baselines as shown in Table 1, well demonstrating its effectiveness.

4 CONCLUSION

We propose LongLLMLingua to address the challenges of long contexts through question-aware
prompt compression and document reordering. The experimental results demonstrate the effective-
ness and efficiency of our method, which can enhance the information density within the prompt,
mitigate the ‘lost in the middle’ issue, and boost the performance of LLMs.
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A TOKEN-LEVEL SUBSQUENCE RECOVERY DETAILS

Certain tokens of key entities may be discarded during the fine-grained token-wise compression. For
example, the time entity “2009” in the original prompt might be compressed to “209” and the name
entity “Wilhelm Conrad Röntgen” might be compressed to “Wilhelmgen”. This can cause problems
for fact-based tasks like document QA, where language models tend to replicate information from
the prompt, as shown in Figure 4. The details of the recovery algorithm are shown in Algorithm 1.

Original Prompt

Document [1](Title: List of Nobel laureates in Physics) The first 
Nobel Prize in Physics was awarded in 1901 to {Wilhelm Conrad 
Röntgen}{Wilhelm Con rad Rö nt gen}, of Germany,…

Document [1](Title: List of Nobelates in 
Physics) The first Nobel1 
{Wilhelmgen}{Wilhelm gen}, of, who 
received, ….

{Wilhelmgen}
{Wilhelm gen}

Compressed Prompt LLMs’ Response

Figure 4: The example of Subsequence Recovery, the red text represents the original text, and the
blue text is the result after using the LLaMA 2-7B tokenizer.

Algorithm 1 Pseudo code of Token-level Subsquence Recovery.
Input: The original prompt x; the compressed prompt x̃; the generation response of LLMs y.
1: Set the final response list yrec = ϕ, the left token index of subsquence l to 0.
2: while l < y.len() do
3: if Substring yl ∈ x̃ then
4: Find the longer substring ỹkey,l = {yl, yl+1, ..., yr} ∈ x̃.
5: Find the maximum common shortest subsequence xi,j = {xi, xi+1, ..., xj} in the original prompt

x.
6: Add the subsequence xi,j = {xi, xi+1, ..., xj} to the response yrec.
7: Set the left index l to r + 1.
8: else
9: Add the token yl to the response yrec.

10: Set the left index l to l + 1.
11: end if
12: end while
Output: The final response list yrec.

B DERIVATION OF QUESTION-AWARE FINE-GRAINED COMPRESSION

Based on the definition of Eq. 2, we can derive that,

si = perplexity(xi|x<i)− perplexity(xi|xque, x<i)

= q(xi) log p(xi|xque, x<i)− q(xi) log p(xi|x<i)

= q(xi) log
p(xi|xque, x<i)

p(xi|x<i)

(5)

In the actual calculation of perplexity, a log operation is performed to avoid overflow, and q(xi)
represents the probability distribution of the ground-truth.

At the same time, we can derive the following expanded expression based on Bayes’ theorem.

p(xque|xi, x<i) =
p(xi|xque, x<i)p(x

que)

p(xi|x<i)
= p(xque)

p(xi|xque, x<i)

p(xi|x<i)
(6)

The probability distribution p(xque) of the question and the ground-truth distribution q(xi) of xi are
constants, hence si can be considered as the representation of Eq. 6.

si ∝ p(xque|xi, x<i) (7)

So we can utilize Eq. 2 to represent the probability distribution p(xque|xi, x<i), which represents
the condition likelihood of generating xque given the token xi. Therefore, we can represent the
token-level sensitive distribution for the question xque using just a single inference. For tokens that
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are unrelated to xque, such as the tokens on the right side of Figure 3b, their original amount of
information may be high, but the contrastive perplexity remains at a relatively low level. Finally,
we observe that the form of contrastive perplexity is equivalent to conditional pointwise mutual
information (Church & Hanks, 1989).

C EMPIRICAL STUDY OF QUESTION-AWARE FINE-GRAINED COMPRESSION
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Figure 5: The distribution of document-level average perplexity when the ground-truth document is
in different positions.

Figure 5 shows the distribution of the document’s average perplexity when the ground-truth is lo-
cated at different positions within the prompt. As can be observed, as the context length increases,
the original perplexity curve remains relatively stable. In unrelated documents, a higher perplexity
is still retained, making it easier to remove relevant tokens from the related documents in the prompt
compression process, thereby damaging the corresponding semantic information. Contrarily, con-
trastive perplexity shows an increase in perplexity in documents related to the question. According
to the theoretical derivation in Appendix B, it’s known that contrastive perplexity characterizes the
conditional probability of tokens corresponding to the question. The higher the relevance, the higher
the contrastive perplexity, thereby retaining key information in the prompt compression process.

D EXPERIMENT DETAILS

D.1 DATASET DETAILS

We use NaturalQuestions (Liu et al., 2024) for the multi-document QA task, MuSicQue (Trivedi
et al., 2022) for the multi-hop QA task, and use LongBench (Bai et al., 2023), ZeroSCROLLS (Sha-
ham et al., 2023), LooGLE (Li et al., 2023b) for general long context scenarios. The specific details
of the dataset are as follows:

NaturalQuestions multi-document QA A multi-document question-answering dataset, com-
prising 2,655 problems, was built by Liu et al. (2024) based on the NaturalQuestions
dataset (Kwiatkowski et al., 2019). This dataset provides a realistic retrieval-augmented gener-
ation setup that closely resembles commercial search and question-answering applications (e.g.,
Bing Chat). Each example in the dataset contains a question and k related documents, utilizing
the Contriever retrieval system (Izacard et al., 2022), one of which includes a document with the
correct answer. To perform this task, the model must access the document containing the answer
within its input context and use it to answer the question. The dataset’s data is sourced from the
NaturalQuestions dataset, which contains historical queries issued to the Google search engine and
human-annotated answers extracted from Wikipedia. The average prompt token length in this bench-
mark is 2,946. For our experiments, we used the version provided by Liu et al. (2024) that includes
20 documents5. The dataset comprises five different ground truth document position settings in the
prompt: 1st, 5th, 10th, 15th, and 20th.

5https://github.com/nelson-liu/lost-in-the-middle
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LongBench A multi-task long context benchmark consists of 3,750 problems in English and in-
cludes six categories with a total of 16 tasks. These tasks encompass key long-text application
scenarios, such as single-document QA, multi-document QA, summarization, few-shot learning,
synthetic tasks, and code completion. The average prompt token length in this benchmark is 10,289.
For our experiments, we used the English dataset and evaluation scripts provided by Bai et al. (2023)
for this benchmark6.

ZeroSCROLLS The multi-task long context benchmark consists of 4,378 problems, including
four categories with a total of 10 tasks. These tasks cover summarization, question answering,
aggregated sentiment classification, and information reordering. The average prompt token length
in this benchmark is 9,788. For our experiments, we used the validation set and evaluation scripts
provided by Shaham et al. (2023) for this dataset7.

MuSiQue The multi-hop question-answer dataset is composed of 39,876, 4,834, and 4,918 prob-
lems in the training, validation, and testing datasets, respectively. This dataset requires the language
model to conduct multiple inferences based on the content of several documents and provide cor-
responding answers, thereby necessitating a certain capability for global information processing.
The average token length for prompts in this dataset is 2,477. For our experiments, we utilized the
validation set and evaluation scripts provided by Trivedi et al. (2022) for this dataset8.

LooGLE The multi-task long context benchmark comprises 6,448 problems, divided into three
categories: summarization, short dependency question answering, and long dependency question
answering. The average prompt token length in this benchmark stands at 24,005. For our exper-
iments, we focused on the long dependency question answering subset, which includes four types
of tasks: information retrieval, timeline reordering, computation, and comprehension. This subset
contains 1,101 problems. We utilized the evaluation scripts provided by Li et al. (2023b) for this
dataset9.

D.2 BASELINES

We include two sets of baselines in following experiments:

Retrieval-based Methods We measure the association between the question and the documents
in the prompt using five SoTA retrieval methods: BM25, Gzip (Jiang et al., 2023b), Sentence-
BERT (Reimers & Gurevych, 2019), OpenAI Embedding, and the important metric rk used in
LongLLMLingua coarse-grained compression. We discard sentences or paragraphs with low associ-
ation until the compression constraint is met while keeping the original document order unchanged.

Compression-based Methods We compare our approach with two state-of-art methods for
prompt compression, i.e., Selective Context (Li et al., 2023c) and LLMLingua (Jiang et al., 2023a).
Both methods employ LLaMA-2-7B-Chat as the small language model for compression. In LLM-
Lingua, a coarse-to-fine approach is used to handle constraints of compression ratio: the original
prompt is first compressed to k times the constraint at a coarse level, where k is the granular control
coefficient; token-level is then performed to reach the overall constraint. Our method follows the
same coarse-to-fine logic to achieve the constraint.

D.3 IMPLEMENTATION DETAILS

In this paper, we use GPT-3.5-Turbo-061310 and LongChat-13B-16k as the target LLMs, both ac-
cessible via OpenAI11 and HuggingFace12. To ensure stable and reproducible results, we employ

6https://github.com/THUDM/LongBench
7https://www.zero.scrolls-benchmark.com/
8https://github.com/stonybrooknlp/musique
9https://github.com/bigai-nlco/LooGLE

10For experiments with original prompts exceeding 4k tokens, we utilize GPT-3.5-Turbo-16k-0613.
11https://platform.openai.com
12https://huggingface.co/lmsys/longchat-13b-16k
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greedy decoding and set the temperature to 0 in all experiments. For the small language models used
for compression, we apply LLaMA-2-7B-Chat13, which has been aligned by supervised fine-tuning
and RLHF. We implement our approach with PyTorch 1.13.1 and HuggingFace Transformers. We
set up hyperparameters following LLMLingua except for the segment size used in iterative token-
level compression set to 200 here.

All experiments were conducted using a Tesla V100 (32GB). We use tiktoken14 and GPT-3.5-Turbo
model to count all the tokens. We set the granular control coefficient k to 2. We use the pre-defined
compression rates τins = 0.85 and τque = 0.9 for instructions and questions. The segment size
used in the iterative token-level compression is set to 200. The δτ used in dynamic compression
ratio is set to 0.25. For a fair comparison, we only used reordering in the NaturalQuestions Multi-
document QA and noted this in Table 1. We use “We can get the answer to this question in the given
documents.” as the guideline sentence in Equation (2).

For the baselines experiment, we use the currently recommended strongest model, all-mpnet-
base-v215, as the dense representation model for SentenceBERT. We use the recommended “text-
embedding-ada-002” as the embedding model for OpenAI Embedding16. We use the GPT2-dolly17

as the small language model in w/ GPT2-small ablation experiments.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ABLATION IN LONGBENCH

Table 2: Ablation on LongBench (Bai et al., 2023) using GPT-3.5-Turbo.

Methods SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/τ

LongLLMLingua 39.0 42.2 27.4 69.3 53.8 56.6 48.0 1,809 6x

Question-aware Coarse-grained
- w/o Question-awareness 27.1 38.7 25.4 62.0 18.0 53.3 37.4 1,945 5x
- w/ SBERT 34.0 38.7 24.1 57.9 32.5 31.1 36.4 1,790 6x
- w/ p(xdoc

k |xque,restrict
i ) 22.5 28.9 23.2 53.0 22.5 33.3 30.6 1,794 6x

- w/o restrict 37.8 39.5 26.4 64.8 52.5 55.8 46.1 1,834 6x

- w/o Question-aware Fine-grained 35.7 41.1 26.4 62.9 44.5 54.8 44.2 1,807 6x
- w/o Dynamic Compression Ratio 36.1 40.6 26.9 67.2 48.0 55.8 45.7 1,851 6x
- w/o Subsequence Recovery 38.6 41.8 27.3 69.0 53.8 56.6 47.8 1,809 6x
- w/ Document Reordering 39.9 43.2 27.4 69.8 53.0 56.7 48.3 1,822 6x
- w/ GPT2-small 35.9 39.4 25.0 60.6 42.0 55.4 43.0 1,892 5x

Table 2 presents the results from the ablation experiment in the LongBench long context bench-
mark. It can be observed that in various long context tasks: 1) Removing the question-aware coarse-
grained, question-aware fine-grained, dynamic compression ratio, document reordering, and subse-
quence recovery proposed by LongLLMLingua all result in different degrees of performance drop.
2) Among these, question-aware coarse-grained is particularly important for document-based QA
and synthetic tasks, with the maximum drop being 35.8 points; its impact on summarization and
code tasks is relatively smaller. 3) The design of the conditional probability in the question-aware
coarse-grained module improves the results in all tasks, including code completion, single-document
question-answer, and synthetic tasks. Changing the order of conditional probabilities or removing
the restrict prompt both lead to varying degrees of performance decline. 4) Removing question-
aware fine-grained, dynamic compression ratio has a more significant impact on document-based
QA and synthetic tasks. 5) The subsequence recovery module can enhance reference-based tasks,
but its improvement on tasks like summarization, code, synthetic, etc., is relatively smaller. 6) Doc-
ument reordering is effective for all types of tasks. Reordering at the document level does not affect
LLMs’ understanding of context information, even for timeline-related tasks (see timeline reorder

13https://ai.meta.com/llama/
14https://github.com/openai/tiktoken
15https://www.sbert.net/docs/pretrained models.html
16https://platform.openai.com/docs/guides/embeddings/
17https://huggingface.co/lgaalves/gpt2-dolly
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Table 3: Performance of different methods with 2x compression ratio on NaturalQuestions (20 doc-
uments) (Liu et al., 2024). Reorder: we reorder the documents with relevance metrics of different
baselines as our document reordering strategy described in Sec. 2.2. In the case of OpenAI, it cor-
responds to LongContextReorder in the LangChain framework (Chase, 2022). For results reported
under 1st to 20th, we do not use the reordering strategy for all methods.

Methods GPT3.5-Turbo LongChat-13b Length Latency
1st 5th 10th 15th 20th Reorder 1st 5th 10th 15th 20th Reorder Tokens 1/τ Latency Speedup

Retrieval-based Methods
BM25 53.7 49.3 47.9 49.9 46.9 50.3 50.9 44.9 44.1 42.9 43.2 46.0 1,545 1.9x 2.1 1.9x
Gzip 64.6 63.8 60.5 58.3 57.3 64.4 61.9 55.7 52.7 50.8 50.9 59.3 1,567 1.9x 2.1 1.9x
SBERT 72.5 67.9 63.3 65.0 66.2 68.7 65.8 57.5 54.9 53.4 55.7 61.4 1,549 1.9x 2.2 1.9x
OpenAI 73.0 65.6 66.5 65.4 65.5 69.9 65.9 57.5 56.2 54.2 55.7 61.7 1,550 1.9x 4.9 0.8x
LongLLMLingua rk 73.9 67.7 68.7 66.0 65.6 74.3 68.5 59.1 56.8 55.3 56.9 65.2 1,548 1.9x 2.3 1.8x

Compression-based Methods
Selective-Context 45.4 39.0 33.8 33.5 41.5 - 53.2 26.3 25.4 24.2 33.3 - 1,478 2.0x 7.4 0.6x
LLMLingua 39.7 39.5 40.4 37.1 42.3 41.5 38.7 37.3 35.7 34.1 37.5 37.1 1,410 2.1x 2.8 1.5x

LongLLMLingua 77.2 72.9 70.8 70.5 70.6 76.2 68.7 59.4 57.3 55.9 58.4 66.1 1,429 2.1x 2.9 1.4x

Original Prompt 75.7 57.3 54.1 55.4 63.1 - 68.6 57.4 55.3 52.5 55.0 - 2,946 - 4.1 -
Zero-shot 56.1 35.0 15 196x 1.1 3.7x

Table 4: Performance of different methods under different compression ratios on LongBench (Bai
et al., 2023) and ZeroSCROLLS (Shaham et al., 2023) using GPT-3.5-Turbo. Considering the
dataset structure, we do not use the reordering strategy here.

Methods LongBench ZeroSCROLLS
SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/τ Latency AVG Tokens 1/τ Latency

3,000 tokens constraint

Retrieval-based Methods
BM25 32.3 34.3 25.3 57.9 45.1 48.9 40.6 3,417 3x 7.5(2.1x) 19.8 3,379 3x 5.5(2.2x)
SBERT 35.3 37.4 26.7 63.4 51.0 34.5 41.4 3,399 3x 7.7(2.0x) 24.0 3,340 3x 5.9(2.1x)
OpenAI 34.5 38.6 26.8 63.4 49.6 37.6 41.7 3,421 3x 13.3(1.2x) 22.4 3,362 3x 11.7(1.0x)
LongLLMLingua rk 37.6 42.9 26.9 68.2 49.9 53.4 46.5 3,424 3x 8.2(1.9x) 29.3 3,350 3x 6.2(2.0x)

Compression-based Methods
Selective-Context 23.3 39.2 25.0 23.8 27.5 53.1 32.0 3,328 3x 50.6(0.3x) 20.7 3,460 3x 54.2(0.2x)
LLMLingua 31.8 37.5 26.2 67.2 8.3 53.2 37.4 3,421 3x 9.2(1.7x) 30.7 3,366 3x 7.4(1.7x)

LongLLMLingua 40.7 46.2 27.2 70.6 53.0 55.2 48.8 3,283 3x 10.0(1.6x) 32.8 3,412 3x 8.2(1.5x)

2,000 tokens constraint

Retrieval-based Methods
BM25 30.1 29.4 21.2 19.5 12.4 29.1 23.6 1,985 5x 4.6(3.4x) 20.1 1,799 5x 3.8(3.2x)
SBERT 33.8 35.9 25.9 23.5 18.0 17.8 25.8 1,947 5x 4.8(3.4x) 20.5 1,773 6x 4.1(3.0x)
OpenAI 34.3 36.3 24.7 32.4 26.3 24.8 29.8 1,991 5x 10.4(1.5x) 20.6 1,784 5x 9.9(1.2x)
LongLLMLingua rk 37.8 41.7 26.9 66.3 53.0 52.4 46.3 1,960 5x 4.7(3.3x) 24.9 1,771 6x 4.7(2.6x)

Compression-based Methods
Selective-Context 16.2 34.8 24.4 15.7 8.4 49.2 24.8 1,925 5x 47.1(0.3x) 19.4 1,865 5x 47.5(0.3x)
LLMLingua 22.4 32.1 24.5 61.2 10.4 56.8 34.6 1,950 5x 5.9(2.6x) 27.2 1,862 5x 4.8(2.5x)

LongLLMLingua 39.0 42.2 27.4 69.3 53.8 56.6 48.0 1,809 6x 6.1(2.6x) 32.5 1,753 6x 5.2(2.3x)

Original Prompt 39.7 38.7 26.5 67.0 37.8 54.2 44.0 10,295 - 15.6 32.5 9,788 - 12.2

Zero-shot 15.6 31.3 15.6 40.7 1.6 36.2 23.5 214 48x 1.6(9.8x) 10.8 32 306x 1.0(12.2x)

in LooGLE, Table 8). On the contrary, reordering can effectively alleviate the “lost in the middle”
issue, thereby improving LLMs performance. 7) Using GPT2-small reduces the capture of effective
tokens, but it can still achieve results close to or even slightly better than the original prompt.

E.2 MULTI-DOCUMENT QA, LONGBENCH AND ZEROSCROLLS

Table 3 and 4 present the results of different methods under various compression ratios in Multi-
document QA, LongBench, and ZeroSCROLLS.

E.3 ABLATION STUDY IN MULTI-DOCUMENT QA

17https://python.langchain.com/docs/modules/data connection/document transformers/post retrieval/
long context reorder
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Table 5: Ablation study on NaturalQuestions
with 2x constraint using GPT-3.5-Turbo.

1st 5th 10th 15th 20th

LongLLMLingua 77.2 72.9 70.8 70.5 70.6
Question-aware Coarse-grained
- w/o Question-awareness 42.1 40.3 39.7 40.1 40.3
- w/ SBERT 73.2 68.5 65.7 66.1 66.7
- w/ p(xdoc

k |xque,restrict
i ) 56.0 52.6 53.4 51.6 51.1

- w/o restrict 75.1 72.2 70.3 70.3 70.2

- w/o Question-aware Fine-grained 75.8 71.0 68.9 68.4 69.3
- w/o Dynamic Compression Ratio 74.4 70.7 68.7 67.9 68.1
- w/o Subsequence Recovery 76.7 71.7 69.4 69.3 69.7
- w/ Document Reordering 76.2 76.2 76.2 76.2 76.2
- w/ GPT2-small 74.6 71.7 70.1 69.8 68.5

LLMLingua 39.7 39.5 40.4 37.1 42.3
- w/ Subsequence Recovery 43.8 44.1 43.5 43.3 44.4

To evaluate the contributions of different compo-
nents in LongLLMLingua, we introduce follow-
ing variants of it for ablation study. (1) Vari-
ants about Question-aware Coarse-grained Com-
pression, include: ours w/o Question-awareness,
which calculates question-text relevance rk using in-
formation entropy in LLMLingua, ours w/ SBERT,
which employs SBERT to compute rk, ours w/
p(xdoc

k |xque,restrict
i ), which replace p(xque,restrict

i |xdoc
k )

with p(xdoc
k |xque,restrict

i ) in Eq. 1, and ours w/o re-
strict, which only calculates the conditional proba-
bility corresponding to xque. (2) Ours w/o Question-
aware Fine-grained, which disregards Eq. (2) and
only applies Iterative Token-level Prompt Compres-
sion as LLMLingua. (3) Ours w/o Dynamic Com-
pression Ratio, where all documents share the same
compression ratio in fine-grained compression. (4) Ours w/o and (5) LLMLingua w/ Subsequence
Recovery, which either removes or adds the post-processing subsequence recovery strategy. (6) Ours
w/ GPT2-small, which uses the GPT2-small model as the small language model.

Table 5 shows the results of the ablation study. In summary, removing any component proposed for
LongLLMLingua will lead to a performance drop regardless of the position of the ground-truth an-
swer. This well validates the necessity and effectiveness of the proposed question-aware mechanism
during coarse-to-fine compression, the dynamic compression ratio, and the subsequence recovery
strategy. It also shows that applying SBERT for coarse-grained compression will result in inferior
performance, which implies the superiority of our question-aware importance metric in Eq. 1 over
SBERT. In addition, replacing p(xque,restrict

i |xdoc
k ) with p(xdoc

k |xque,restrict
i ) can greatly affect perfor-

mance due to the large noise in calculating p(xdoc
k ) since the perplexity of document depends on

many other information besides the question. Removing the restrictive statement can increase the
hallucination of small language models, leading to a decrease in performance. Moreover, our subse-
quence recovery strategy can also bring performance gains for LLMLingua. However, without our
question-aware mechanism, results from LLMLingua are still less satisfactory. For more detailed
cases, please go to Appendix H.

E.4 LONGBENCH USING LONGCHAT-13B-16K

Table 6: Performance of different methods under different compression ratios on LongBench (Bai
et al., 2023) using LongChat-13b. Considering the dataset structure, we do not use the reordering
strategy here.

Methods SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/τ

Original Prompt 27.4 30.3 20.3 49.9 12.5 42.5 30.5 10,295 -

Retrieval-based Methods
BM25 2.4 2.6 16.4 8.7 0.0 44.7 12.5 1,985 5x
SBERT 11.6 13.7 21.1 16.2 7.5 30.0 16.7 1,947 5x
LongLLMLingua rk 30.3 32.4 24.5 41.0 27.5 38.1 32.3 1,960 5x

Compression-based Methods
Selective-Context 16.1 23.5 21.8 21.4 2.5 35.9 20.2 1,925 5x
LLMLingua 20.6 22.3 22.4 35.6 0.0 35.4 22.7 1,950 5x

LongLLMLingua 31.1 34.1 24.5 45.7 28.0 48.6 35.3 1,809 6x

Table 6 presents the experiment results in the LongBench long context benchmark using LongChat-
13b-16k. It can be seen that the compressed prompt can also achieve good results on other LLMs,
such as LongChat-13b-16k. Specifically, 1) there is a maximum improvement of 15.5 points in
synthetic tasks. Except for a slight drop in few-shot Learning, there is an improvement of 3-5 points
in other tasks. 2) The performance trends of retrieval-based and compressed-based baselines are
similar to the results in GPT-3.5-Turbo.
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E.5 ZEROSCROLLS BREAKDOWNS

Table 7: Performance breakdown of different methods under different compression ratios on Zero-
SCROLLS (Shaham et al., 2023) using GPT-3.5-Turbo.

Methods GvRp SSFD QMsm SQAL QALT Nrtv Qspr MuSQ SpDg BkSS AVG Tokens 1/τ

3,000 tokens constraint

Retrieval-based Methods
BM25 9.7 3.4 11.7 14.3 57.1 5.9 25.7 11.2 29.6 29.6 19.8 3,379 3x
SBERT 16.5 9.8 12.3 15.2 60.0 14.6 23.4 12.1 39.4 36.4 24.0 3,340 3x
OpenAI 14.3 8.3 12.0 15.3 66.7 13.3 24.3 11.7 31.2 26.4 22.4 3,362 3x
LongLLMLingua rk 19.5 11.6 14.7 15.5 66.7 20.5 27.6 13.0 60.8 43.4 29.3 3,350 3x

Compression-based Methods
Selective-Context 20.8 9.1 11.7 13.4 50.0 9.8 26.1 11.0 46.0 9.5 20.7 3,460 3x
LLMLingua 18.7 10.0 14.9 16.8 61.9 26.9 27.2 23.4 62.9 44.5 30.7 3,366 3x

LongLLMLingua 21.9 12.7 15.5 17.0 66.9 27.6 31.1 23.8 65.6 46.4 32.8 3,412 3x

2,000 tokens constraint

Retrieval-based Methods
BM25 8.8 2.5 11.1 13.5 60.0 7.0 4.9 20.3 39.9 32.9 20.1 1,799 5x
SBERT 10.2 7.9 13.7 13.2 60.0 8.1 10.8 1.7 37.2 42.8 20.5 1,773 6x
OpenAI 11.1 8.0 11.8 13.6 60.0 7.1 13.2 4.0 33.6 43.6 20.6 1,784 5x
LongLLMLingua rk 18.2 9.8 12.3 15.9 57.1 10.1 17.8 7.3 57.7 42.3 24.9 1,771 6x

Compression-based Methods
Selective-Context 19.0 8.4 9.7 12.4 47.0 12.5 21.6 11.5 41.2 11.0 19.4 1,865 5x
LLMLingua 19.4 11.9 13.1 16.0 62.1 23.7 24.0 22.4 33.9 44.9 27.2 1,862 5x

LongLLMLingua 19.9 12.3 14.7 16.5 64.9 27.4 30.6 23.5 68.3 47.1 32.5 1,809 6x

Original Prompt 21.8 12.1 17.9 17.4 66.7 25.3 29.8 20.0 69.7 44.1 32.5 9,788 -

Zero-shot 9.4 3.0 8.6 11.4 42.9 10.6 12.4 5.5 4.2 0.0 12.8 32 306x

Table 7 presents a detailed performance breakdown on the ZeroSCROLLS benchmark. It can be ob-
served that in the four summarization tasks - GvRp, SSFD, QMsm, SQAL, LongLLMLingua closely
matches or slightly surpasses the original results under two compression constraints. Meanwhile, in
the four long context QA tasks - Qsqr, Nrtv, QALT, MuSQ, there is a significant improvement. No-
tably, in the MuSiQue task, which is based on a question-answering dataset from books and movie
scripts, there is a 2.1 point increase even under a 2,000 tokens constraint. It’s worth mentioning that
MuSiQue is a multi-hop question-answering dataset that requires LLMs to utilize global information
for long dependency QA. LongLLMLingua can also improve by 3.5 points under a 6x compression
ratio. In the two ordering tasks, SpDg and BkSS, LongLLMLingua can better retain globally sensi-
tive information, resulting in a 3.0 point improvement in BkSS after prompt compression.

It’s important to note that although the ZeroScrolls validation dataset is relatively small, it still
demonstrates conclusions similar to previous experimental observations across various methods and
tasks. Furthermore, this study conducted an in-depth analysis of the multi-hop QA task - MuSiQue,
and another long context benchmark - LooGLE. The results can be found in Appendix E.7 and
Appendix E.6.

E.6 LOOGLE

Table 8 presents the experiment results in the LooGLE long dependency benchmark, which features
longer prompts (∼30k) and more global dependencies. From the table, we can observe that: 1)
LongLLMLingua can effectively improve the performance of long context tasks by compressing
prompts, even for long dependency tasks. The results show that LongLLMLingua significantly im-
proves performance in tasks such as retrieval, timeline reorder, and computation, with the maximum
improvement reaching 15.9 points. 2) The document reorder in LongLLMLingua is effective in all
types of tasks, even in tasks highly related to the timeline, it can effectively improve performance
by alleviating the “lost in the middle” issue. 3) Retrieval-based methods tend to lose performance
in tasks that have longer dependencies, such as computation and reasoning. 4) For compression-
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Table 8: Performance of different methods on LooGLE (Li et al., 2023b) long dependency QA.

Methods Retrieval Timeline Reorder Computation Reasoning AVG Tokens 1/τ

Retrieval-based Methods
BM25 20.4 21.7 8.2 26.3 19.2 3,185 10x
SBERT 28.9 21.1 10.7 27.2 22.0 3,169 10x
LongLLMLingua rk 38.6 32.2 16.2 26.3 28.3 3,158 10x

Compression-based Methods
Selective-Context 16.7 5.0 2.3 17.6 10.4 3,710 8x
LLMLingua 10.0 25.0 13.3 21.1 17.3 3,404 9x

LongLLMLingua 40.0 35.0 19.7 33.6 32.1 3,121 10x
LongLLMLingua w/o Reorder 39.3 33.8 18.7 31.6 30.9 3,119 10x

Original Prompt 24.1 20.9 13.5 32.1 22.6 30,546 -

Zero-shot 8.7 6.3 1.2 14.5 7.7 43 710x

based methods, due to the difficulty in perceiving question information, there tends to be a larger
performance loss in retrieval tasks within long contexts.

E.7 MUSIQUE

Table 9: Performance of different methods
and ablation study on MuSicQue (Trivedi
et al., 2022) with 2x constraint using GPT-
3.5-Turbo.

Methods F1 Tokens 1/τ

Original Prompt 45.8 2,427 -
BM25 28.5 1,295 1.9x
SBERT 36.2 1,288 1.9x
LongLLMLingua rk 46.3 1,295 1.9x
Selective-Context 19.6 1,141 2.1x
LLMLingua 40.1 1,110 2.2x

LongLLMLingua 51.2 1,077 2.3x
Question-aware Coarse-grained
- w/o Question-awareness 43.2 1,076 2.3x
- w/ SBERT 47.3 1,070 2.3x
- w/ p(xdoc

k |xque,restrict
i ) 44.0 1,066 2.3x

- w/o restrict 49.2 1,078 2.3x

- w/o Question-aware Fine-grained 48.4 1,118 2.2x
- w/o Dynamic Compression Ratio 48.2 1,090 2.2x
- w/o Subsequence Recovery 50.7 1,077 2.3x
- w/o Document Reordering 49.2 1,077 2.3x
- w/ GPT2-small 48.4 1,095 2.2x

Table 9 presents the results from the MuSiQue multi-
hop question-answer dataset. From the table, it can
be observed that in the multi-hop QA task, requir-
ing global information: 1) LongLLMLingua can re-
duce noise in the prompt by eliminating irrelevant
information and putting more related information at
the beginning or end of the prompt, thereby im-
proving performance by 5.4 points. 2) The per-
formance drop is more pronounced for retrieval-
based methods, particularly for n-gram-based meth-
ods like BM25. Due to long dependencies, direct
matching information is lost, resulting in less rel-
evant information being recalled. 3) The perfor-
mance of compression-based methods is slightly dif-
ferent. Selective-Context does not distinguish be-
tween different modules’ sensitivity, resulting in a
loss of question and instruction-related information,
thereby leading to poorer performance. However,
LLMLingua can still retain relevant key informa-
tion at around a 2x compression ratio. 4) The abla-
tion experiments show that every module designed in
LongLLMLingua plays a role in the multi-hop task.
The removal of the question-aware coarse-grained
and w/ p(xdoc

k |xque,restrict
i ) modules, which have dif-

ficulty in perceiving the importance distribution of corresponding questions, can cause a drop of
up to 8 points. Removing the restrict prompt in the question-aware coarse module can also cause
a 2-point drop due to the hallucination issue of small LLM. In addition, removing question-aware
fine-grained, dynamic compression ratio, and document reordering can all cause a drop of 0.5-2.8
points. 5) Moreover, if the small language model in LongLLMLingua is replaced with GPT2-small,
it can further improve the acceleration ratio and still achieve a result that is 2.6 points better than the
original prompt.

E.8 LATENCY EVALUATION

We conducte end-to-end latency testing on a V100-32G, using the prompts from Multi-document
QA, LongBench, and ZeroSCROLLS in the API call, and results are shown in Table 1, 3and 4. The
latency includes the time cost for prompt compression and the request time for LLMs, with multi-
ple measurements taken and averaged over. Results demonstrate that LongLLMLingua does indeed
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speed up the overall inference under different compression ratios and scenarios. Moreover, with the
compression ratio increasing, the acceleration effect becomes more pronounced up to 2.6x. How-
ever, the OpenAI embedding and Selective-Context results in longer latency time, due to repeated
API calls and the sequential entropy calculation of semantic units, respectively.

F ECONOMIC COST

Table 10: The inference costs(per 1,000 samples $) for various datasets using GPT-3.5-Turbo.

Multi-document QA LongBench ZeroScolls MuSicQue LooGLE

Original 4.6 31.5 30.6 3.8 93.6
Ours 1.3 3.0 3.2 1.8 5.6

Table 10 presents the estimated per 1,000 samples inference costs for various datasets, encompassing
input prompts and generated output text, based on GPT-3.5-Turbo pricing18. Our approach demon-
strates substantial savings in computational resources and monetary expenses, particularly in long
context situations. Cost reductions of $3.3, $28.5, $27.4, $2.0, and $88.0 per 1,000 samples are
observed for Multi-document QA, LongBench, ZeroScrolls, MuSiQue, and LooGLE, respectively.

G RELATED WORKS

Long context for LLMs. Recent research has focused on expanding the window size of LLMs.
Main approaches include: (1) Staged pre-training (Nijkamp et al., 2023) which gradually increases
the context window; (2) Modifying (Press et al., 2022) or interpolating position embeddings (Chen
et al., 2023; Peng et al., 2024; Han et al., 2023); (3) Using linear or sparse attention mecha-
nisms (Ding et al., 2023; Sun et al., 2023); (4) Utilizing external memory modules for context
storage (Bertsch et al., 2023; Tworkowski et al., 2023). While these methods address context win-
dow expansion, their impact on downstream task performance has yet to be discussed.

Information distribution in prompt. Recent empirical experiments have shown that LLM per-
formance decreases with less effective information in a prompt (Bai et al., 2023; Li et al., 2023a;
Shi et al., 2023). Moreover, the position of relevant information in a prompt has a significant im-
pact on performance(Wu et al., 2023). Liu et al. (2024) suggests that LLMs have more difficulty
comprehending information located in the middle of a prompt compared to those at the edges.

Retrieval methods can be categorized as dense or sparse retrieval methods. Sparse retrieval meth-
ods, like BM25, determine the relevance between queries and documents based on n-gram informa-
tion. Conversely, dense retrieval methods assess the relevance between queries and documents in
latent space using dense vectors, such as SentenceBERT (Reimers & Gurevych, 2019) and OpenAI
Embedding. Recently, Jiang et al. (2023b)) proposed an unsupervised dense retrieval method that
leverages traditional compression algorithms, such as gzip, and k-nearest neighbors.

Prompt compression methods can be grouped into three main categories: (1) Token pruning (Goyal
et al., 2020; Kim & Cho, 2021; Modarressi et al., 2022) and token merging (Bolya et al., 2023),
which need model fine-tuning or intermediate results during inference and have been used with
BERT-scale models. (2) Soft prompt tuning methods like GIST (Mu et al., 2023), AutoCompres-
sor (Chevalier et al., 2023), and ICAE (Ge et al., 2024), which require LLMs’ parameter fine-tuning,
making them suitable for specific domains but not directly applicable to black-box LLMs. (3)
Information-entropy-based approaches such as Selective Context (Li et al., 2023c) and LLMLin-
gua (Jiang et al., 2023a), which use a small language model to calculate the self-information or
perplexity of each token in the original prompt and then remove tokens with lower perplexities.

H ABLATION ANALYSIS

Figure 6 illustrates the compressed prompts from the Multi-document QA dataset, comparing the
use of contrastive perplexity at a high compression ratio (30x). It shows that without question-aware

18https://openai.com/pricing
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token-level prompt compression, LongLLMLingua tends to compress key information, a tendency
that becomes more pronounced at higher compression ratios. Conversely, employing contrastive
perplexity allows for better detection of key information related to the question within the context,
thus preserving key information within the compressed prompt.

Ours w/o Token-level Question-aware:
Compressed Prompt:
Write a high-quality answer for the given question using only the provided search results
(some of which might be irrelevant).
Document [1](: Physics)gen,, who received2K, which is ,73,0 in0. Johnen only to twice6.
Mariaie won, for.g was, until1estate he. Two:Mayer (1963). As of 2017, the prize has been
awarded
Question: who got the first nobel prize in physics
Answer:
LLMs’ Response:
No answer found in the given search results.

Ours w/ Token-level Question-aware:
Compressed Prompt:
Write a high-quality answer for the given question using only the provided search results
(some of which might be irrelevant).
1Title: List of Nobelates in The first Nobel Prize was1 to Wilhelmrad , of who received
1582 which,70 in0 en the prize. Skska also won two Nobeles for physics3g01, theate he
women prize:ertMayer (1963). As of 2017, the prize has been awarded
Question: who got the first nobel prize in physics
Answer:
LLMs’ Response:
Wilhelmrad
LLMs’ Response after Subsquence Recovery:
Wilhelm Conrad Röntgen
Ground Truth:
Wilhelm Conrad Röntgen

Figure 6: Comparing the compressed prompt and LLMs’ response before and after using Question-
aware Fine-grained Compression and Subsequence Recovery(1/τ = 30x, high compression ratio
setting) from NaturalQuestions Multi-document QA (Liu et al., 2024) using GPT-3.5-Turbo.

I CASES STUDY

Figures 7, 8, and 9 display the outcomes before and after compression, as well as the LLMs’
responses in various scenarios.
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Original Prompt:
...
Document [1](Title: Dancing on Ice) It was confirmed on 25 January 2018, that Dancing on
Ice had been recommissioned for an eleventh series to air in 2019 .
...
Compressed Prompt:
Write a high-quality answer for the given question using only the provided search results
(some of which might be irrelevant).
1Title: Dancing on was confirmed on 2 January 2018 that Dancing on had been recommis-
sioned for an eleventh series air in 209 .
Document [2Title: Dan on) Dan on Ice Dancing on British presented by Phillip Schof along-
side Holly Willough from 26 to 2011, and Christine Bleakley from 2012 to 204 The show
consists of celebrit and professional partners figure skating in front of a panel of judges The,
broadcast on ITV, started on January 2006 and ended on 9 March 2014 after showćontract
not renewed by ITV On 4 September 2017, it was announced that rev series would on I 7
January 201 Sch and Willby returning as a
5(: on ( on () The third series of a from January to168TV. The from Saturdays, with Holby
present Kar,y Sliner Robin Cins returned to Panel”, with Ruth H joining the panel as replace-
ment for Natalia Bestova. The commission of the was confirmed by at the07 announcedova
depart the series Robinen Bar,ater and Jasoniner announced
7( on ( )) Dan 2 second of Dan on a from January to1207 ITV It presented Phillip Sch Holly
Willough, and judged the ”I P consisting Nicky Slater, Nataliaian Karenres Jason Gardiner
Karen Barber and Robin Cousins Jaynevill and Christopher Dean co and trained the contes-
tants In this series, cele to ten in first series. The series was won former Kyran Bracken, with
Mel Lambert the winner. It announced thatenresge
Document []( on Ice on 08 on TV edition started 8 TV2 The Russian version ”анду) being
on channel0, and renamed in8 to ” Ice” (). Its counterpart called ”Ice Age (, ”Stars on Ice on
Channel Oneak IceHviezdyľJ. The Turkish version” is called Dans” (”ance on
Document1 on Ice its, all,é () and Sje Chris de In series.2 edition
](: on Ice world) Dan Ice is a made competition world format, and been subsequently Italy
Chile where titled after series There have a, the show was broadcast on Channel 13 as a
Document [17](Title: Dancing on Ice) the insight to the training of the celebrities over the
last week. It was presented by television presenter Ben Shephard and former contestant and
”Loose Women” star Coleen Nolan. The show was broadcast from 8 pm to 8.30 pm on Fri-
day evenings on ITV throughout the duration of the main shows season. STV who broadcast
the main show did not broadcast this on the Friday evening but after repeating the previous
weekś main show on the following Saturday afternoon. Due to poor ratings, ”Dancing on
Ice Friday” was axed prior to the 2011 series. The show was based in the
Question: when is dancing on ice on the tv
Answer:
LLMs’ Response:
209
LLMs’ Response after Subsquence Recovery:
2019
Ground Truth:
2019

Figure 7: Cases study on NaturalQuestions Multi-document QA dataset (Liu et al., 2024) in 4x
constraint using GPT-3.5-Turbo.
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Compressed Prompt:
Please complete the code given below.

public class MessageArchiveManagement
private static final long MILLISECONDS_IN_DAY = 24 * 00 *0;
public static final long_CUP = MCON_DAY
/.../

.("",.getStart
add

ifget() >0
Node end("
end.("
endNode.Value("", Util.getTimestamp(query.getEnd

addNode
} if (.withid null && contact null && !isference

Node with(" .with
.Value("valuewith
.(

// queryMessageive(connection, nextQuery
final(connectionProtocol(), query
synchronized (eries)
// queries.add(nextQuery } }

public boolean queryInProgress( contact, OnLoaded
moreMessagesLoadedListener)

ized (eries)
(Query query : queries)

if(query.getWith().equals(contact.getUserId()))
if (query.onMoreMessagesLoaded == null &&MessagesListener
null) query.setOnMoreMessagesLoaded(Listener}

return true;}} return false;}}
private void finalizeQuery(Protocol protocol, Query query) {

synchronized (queries) {
.remove(query); }

Contact contact = null;
if (query.getWith() != null) {

contact = protocol.getItemByUID(query.getWith()); }
if (contact != null) {

Next line of code:
LLMs’ Response:

contact.setLastMessageTransmitted(query.getEnd());\n

Ground Truth:
if (contact.setLastMessageTransmitted(query.getEnd())) {

Zero-shot LLMs’ Response:
contact.removeQuery(query);\n

Figure 8: Cases study on lcc code completion task in LongBench benchmark (Bai et al., 2023) in
2,000 constraint using GPT-3.5-Turbo.
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Compressed Prompt:
Please determine the Type of the question below. Here are some examples of questions.
Question: How is energy created ? Type Manner of an action
Question: What is chocolate ? Type: Definition of something
Question: What is a bone marrow transplant ? Type: Definition of something
Question: What is fear of odors , body , ? Type Disease and medicine
Question: What was the Vietnam War ? Type: Definition of something
Question: was education system in 16s ? Type: Other entity
Question: What is IP address ? Type: Definition of something
Question: are the differences in Catholic Methodist religions ? Type of something
...
Question: When was San fire ? : Date
Question: CNN began broadcasting in what year ? Type: Date
Type: Manner of an action
Question: What the l behind the ir in the eye called ? Type Equ term
Type: Date
Question: What the former name of Zimbabwe ? Type: termType something
Question: What is troilism ? Type: Definition of something
: What is origin of the word , Type: of something
: do you name to social security number ? Type Manner of an action
: that of an employee Universal and Export ? Type Individual
: anesthetic did Queen Victoria allow to be for the birth of her seventh , in 183 ? Type:
Disease and medicine
: Where isyer ’s rock ? Type location
Question: What isymnophobia ? Type: Definition of something
...
Type burns the most calories ?
Type Sport
: In what book I find story of Aladdin ? Type In, book and piece an have sex ?
Type: Manner of an action: What is the acron for rating forer ?
Type Abbreviation
: are the Baltic States ? Type: Definition of something
: What is appearance , that violates the standards of sexual mor ? Type
: Where did the May people live ? : location
: What population Kansas ? Type number
: was the hurr ? Type: Event
: ’s a score aymnast exercise ? Type: number
: year become a state ? Type: Date
do go school ? Type Reason
...
Question: What is a fuel cell ?
Type:
LLMs’ Response:
Definition of something
LLMs’ Response after Subsquence Recovery:
Definition of something
Ground Truth:
Definition of something

Figure 9: Cases study on trec few-show learning in LongBench benchmark (Bai et al., 2023) in
2,000 constraint using GPT-3.5-Turbo.
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