
Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

LOCALLY CONSTRAINED REPRESENTATIONS IN REIN-
FORCEMENT LEARNING

Somjit Nath12 Samira Ebrahimi Kahou123

1ÉTS Montréal, 2Mila, Quebec AI Institute, 3CIFAR AI Chair,
Correspondence: somjit.nath.1@ens.etsmtl.ca

ABSTRACT

The success of Reinforcement Learning (RL) heavily relies on the ability to learn
robust representations from the observations of the environment. In most cases,
the representations learned purely by the reinforcement learning loss can differ
vastly across states depending on how the value functions change. However, the
representations learned need not be very specific to the task at hand. Relying
only on the RL objective may yield representations that vary greatly across suc-
cessive time steps. In addition, since the RL loss has a changing target, the rep-
resentations learned would depend on how good the current values/policies are.
Thus, disentangling the representations from the main task would allow them to
focus more on capturing transition dynamics which can improve generalization.
To this end, we propose locally constrained representations, where an auxiliary
loss forces the state representations to be predictable by the representations of the
neighbouring states. This encourages the representations to be driven not only
by the value/policy learning but also self-supervised learning, which constrains
the representations from over-fitting to the value loss. We evaluate the proposed
method on several known benchmarks and observe strong performance. Espe-
cially in continuous control tasks, our experiments show a significant advantage
over a strong baseline.

1 INTRODUCTION

Representation Learning is a crucial problem in machine learning, particularly in understanding how
complex inputs can be represented in a compact, well-defined manner, while retaining useful infor-
mation of the input. This has been studied extensively for vision and natural language processing
tasks but not as much for Reinforcement Learning (RL). RL has shown great success in games like
Atari Mnih et al. (2015), Go Silver et al. (2016; 2018) and Chess Silver et al. (2018). However, its
application in the real-world setting is limited. One main reason for this problem is the lack of an
appropriate input feature space. In games, the input space is rather well-defined, e.g. it can be the
state of the game for board games or it can be the image of the game screen in computer games
Mnih et al. (2015).

However, it has been shown that learning policies directly from high-dimensional inputs can be
sample inefficient Lake et al. (2017). Additionally, in real-world scenarios, we often have inputs
from different sensors that the agent needs to fuse into a compact representation, which can be
challenging. Therefore, representation learning is a key to enabling reinforcement learning agents
to solve real-world problems.

Most of the work on representation learning can be divided into the following categories depending
on the learning methods: supervised Watter et al. (2015) and self-supervised Srinivas et al. (2020)
learning, both of which can benefit from data augmentation Laskin et al. (2020); representation
learning with additional auxiliary tasks Jaderberg et al. (2016); and using state metrics Ferns et al.
(2011). Our approach falls into self-supervised learning category. The objective encourages state
representations to be predictable as a linear combination of the representations of nearby states.

In this paper, we first provide a brief background of the supervised and self-supervised methods
that exists in the literature2. We then explain the proposed method and how it fits into the general
landscape of representation learning methods for RL.3 Following that, we detail the implementation

1

mailto:somjit.nath.1@ens.etsmtl.ca

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

Figure 1: (a) Proposed Locally Constrained Representations Algorithm. (b) An example shown for
sequence length of 5, where the current processed state is shown in red and the neighbouring states
considered are in blue. The loss calculated is fed directly to the Loss in (a)

of the algorithm and evaluate its performance on several benchmarks4. Finally, we describe the key
benefits of this algorithm and the scope of future improvements5.

2 BACKGROUND & RELATED WORKS

In Reinforcement Learning (RL), the agent-environment interface is represented by Markov Deci-
sion Processes (MDPs), defined by < S,A,R,P >, where S ,A,R andP represent the state space,
the action space, the reward function and the transition function of the environment, respectively.
RL is a sequential decision making problem where the goal is to find an optimal policy (a mapping
from states to actions). An optimal policy is a policy that maximizes the total discounted return with
discount factor, γ ∈ [0, 1], obtained when starting from a particular state and following that policy.
Thus, mathematically, an optimal policy, π∗ is:

π∗ = argmax
π

Eπ[

∞∑
t=0

γtrt|St = s,At = a]

where St ∈ S, At ∈ A and Rt ∈ R are the states, actions and rewards at time t. The key problem
we intend to address here is how to find a good representation of the agent state in conjunction with
the main RL problem. In this section, we will discuss the current approaches for representation
learning using supervised and self-supervised methods and describe where our algorithm fits in the
literature space.

Reconstruction Loss and Learning Forward Models: The representation is learned by two losses,
the original RL loss, that is, the Mean Squared TD Error (MSTDE) and the Auxiliary Loss. The aux-
iliary target Ŷt depends on the representation learning algorithm used. For example, it can be trying
to predict the next reward or the next state Chung et al. (2018) or even reconstruct the current state.
Additionally, it can also be General Value Functions Sutton et al. (2011) that learn subtasks. The
most popular approach is to design a low-dimensional representation that is capable of reconstruct-
ing the current state. The commonly used method is Auto Encoders Hinton & Salakhutdinov (2006)
that can learn well from high-dimensional observations, such as images Mattner et al. (2012); van
Hoof et al. (2016); Watter et al. (2015). Recently, Gelada et al. (2019) and Schwarzer et al. (2021)
developed forward models that can predict the next state in the latent space without the need for
reconstruction. Additionally, these methods can predict multiple steps in the future instead of a
one-step prediction.

A large portion of the work on forward models was mainly developed for building world models Ha
& Schmidhuber (2018). These were used for learning the complete dynamics of the world, so that
the agent can perform model-based reinforcement learning without the need for interaction with the
world. Recently, Hafner et al. (2018), Hafner et al. (2019) and Hafner et al. (2020) have developed
model-based RL approaches using forward models in the latent space.

2

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

Data Augmentations & Contrastive Learning: Data augmentation methods are commonly used
for image input data. These methods randomly apply different transformations, such as cropping,
rotation, or jitter, to generate additional training data, which helps the agent to be robust to small
variations in the input space. Laskin et al. (2020) and Yarats et al. (2021b) showed that augmenting
the states with such modulations can improve the performance of RL without dedicated representa-
tion learning objectives.

Contrastive learning is a self-supervised learning algorithm that takes advantage of similarity con-
straints between data for representation learning van den Oord et al. (2018); Chen et al. (2020). The
most popular integration of contrastive learning comes with data augmentation, where positive pairs
are modulations of the same image, whereas positive and negative pairs are modulations from differ-
ent images. The main goal of the algorithm Srinivas et al. (2020) is to increase the similarity between
positive pairs while keeping negative pairs far apart. Other recent approaches include prototypical
representations Yarats et al. (2021a), predictive information Lee et al. (2020) and augmented tempo-
ral contrast Stooke et al. (2020), Sermanet et al. (2017) to associate pairs within a short time. These
methods attempt to make the representations of one state closer to the representations of neighboring
states.

Constraining State Representations by Prior Knowledge: Often, the agents can leverage prior
knowledge of the environment to constrain the representations. A very common method would
be to assume that the “interesting” features of the state vary slowly, and thus setting a constraint
on the state representation can be beneficial Kompella et al. (2011); Jonschkowski et al. (2017).
Jonschkowski et al. (2017) also used another prior that the positions of important objects (example,
the agent) would vary and this forces the representations to change. Using both slow and variable
features creates a trade-off and prevents the representations from becoming constant.

Jonschkowski & Brock (2015) introduced two priors for robotics which are proportionality and
repeatability. Proportionality introduces a constraint where the representations of two states would
vary by the same amount for the same actions taken in the two states. Repeatability adds a constraint
that forces representations of similar states to vary similarly when the same action is applied to them.

Our proposed Locally Constrained Representations (LCR) algorithm falls in this category. LCR
imposes the constraint that state representations should be linearly predictable by representations
of surrounding states. In the following section, we describe the intuition behind this approach,
formulate an algorithm and provide details on its implementation.

3 LOCALLY CONSTRAINED REPRESENTATIONS

3.1 INTUITION

Our main motivation for locally constraining state representations comes from the assumption that in
most Reinforcement Learning environments the main objects of interest rarely change rapidly with
each action and even if it does, it does so in a manner governed by the dynamics of the environment.
Under this assumption, the dynamics should be relatively simple in local policy space, where the
states are a few actions apart.

In order to exploit this for representation learning, we introduce the soft constraint that the repre-
sentation of a state should be closely approximated by a linear combination of neighboring state
representations. This constraint encourages the state representation to remain close to a manifold on
which local dynamics can be expressed in a simple function of linear form. Without this constraint,
the representations can change arbitrarily from one state to the next as the representations become
intertwined with the local reward signal from the environment. This might result in over-fitting as
the representation would fail to consider the dynamics of the environment.

Even predicting a single future step Chung et al. (2018) in a self-supervised learning loss can take
advantage of the smoothness of the state space. Predicting multiple steps Gelada et al. (2019);
Schwarzer et al. (2021) in the future can improve the learned representation by helping it capture
features that do not change much (example: slow-changing features, such as objects). Similarly in
LCR, since we use multiple neighboring states for prediction, it can help to capture such features.

3

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

It is different from the contrastive learning approaches that attempt to pull together representations
of neighboring states, as LCR merely introduces a linear explainability constraint to the represen-
tations. Thus, two neighboring representations can be far apart from each other, even if they are
linearly related.

3.2 ALGORITHM

The core idea of this method is to impose a constraint on the representation of a state and to encour-
age it to be linearly predictable by the representations of nearby states. This learning formulation
is inspired by locally linear embeddings Roweis & Saul (2000), where the embeddings are con-
strained to be linearly representable by the nearest data points. Here we define the neighbourhood
to be a window of K states in the sequence of transitions that are chosen by the current behaviour
policy. In this way, the representation of a state takes into consideration neighboring states instead
of only focusing on the RL objective, which can improve generalization. However, we do not want
features that are completely unrelated to the main task, so we only impose a soft constraint on the
representation.

Algorithm 1: Locally Constrained Representations
Function LCR(sequence length, steps, batch):

t← 0
for update in 1,2,3 . . . updates do

Observe state s
Take Action a
Train policy/value network by base RL algorithm
if t% batch == 0 then // Run LCR on the last batch

All States = GetLastBatch(t, batch)
InitializeW ∼ Uniform(0,1)
N ← Set of all Neighbours in Sequence
for state in All States do

N [T] = GetSequence(sequence length, state)
end for
ϕnearest(T) = f(N)
Loss = (f(All States)−Wϕnearest(T))

2

for step in 1, 2, 3 . . . steps do
Run Gradient Descent on LCR Loss

end for
end if

end for

(a) (b)

Figure 2: Performance of DQN (red) and DQN with LCR (blue) on the MiniGrid Environments.
Both algorithms were trained for 10 runs with LCR using a sequence length of 11, 100 gradient
steps and batch size 5000. The detailed hyperparameters are mentioned in the appendix.

4

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

(a) (b)

Figure 3: tSNE plots of the state representations obtained by 20 random trajectories of the respective
environments.

We need to keep a batch of state transitions of size B, on the basis of which we constrain the
representations. Since RL is online, we need additional memory to keep track of the samples. If
the main RL algorithm already uses an experience replay buffer Lin (2004); Mnih et al. (2015),
we can directly take the last B samples from the buffer. More training samples mean better state-
space coverage and better generalization. So higher batch sizes are often better and this comes as a
trade-off with respect to compute and memory requirements.

Once we have a batch, B, of states, we obtain K neighbours of each sample from the trajectory,
assuming total sequence length is K + 1, including the sample itself. We then add a constraint to
encourage the representation of the sample to be predictable by the representations of the neighbors.

Let sT be a sample drawn from the buffer of length B. Also, let
sT−K/2, . . . , sT−1, sT+1, . . . , sT+K/2 be the nearest neighbors. Let

ϕT = f(sT)

be the D-dimensional representation of state sT , where f is a parameterized function. For all of our
experiments, we use a neural network to implement f . Also, we define

ϕnearest(T) = [ϕT−K/2, . . . , ϕT−1, ϕT+1, . . . , ϕT+K/2]
T,

where ϕnearest(T) ∈ RK×D is the matrix of neighbouring state representations stacked row-wise.
We define the loss

B∑
T=1

||Wϕnearest(T)− ϕT ||22,

where Wϕnearest(T) is the predicted representation of the state by linear combination of the neigh-
bours with coefficients W ∈ R1×K . We learn W and f by minimizing this loss using gradient de-
scent steps. After every new batch of samples of size B, this optimization is done in an interleaved
manner with the standard RL training. Since this is added as an auxiliary loss for representation
learning, it can be applied on top of any RL algorithm as an auxiliary loss.

We want a soft constraint on the representation and thus we do not solve this optimization completely
but take only a few gradient descent steps while keeping W positive (by clipping all negative weights
to 0) to limit the solution space. This is because we are only solving this on a limited batch size with
a short state-space coverage, so taking too many steps can overfit to the samples in the batch. Figure
1 (a) shows a diagram of the method.

4 RESULTS

In this section, we test our algorithm in 14 different environments (2 from MiniGrid environments
Chevalier-Boisvert et al. (2018) and 8 environments from Mujoco Todorov et al. (2012), and 4
environments from Arcade Learning Environment (Atari) Bellemare et al. (2013)). The reason for

5

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

0 1000 2000 3000 4000 5000

0

200

400

600

800

HalfCheetah-v2

SAC
SAC+LCR

0 1000 2000 3000 4000 5000

100

0

100

200

300

400

500
Ant-v2

SAC
SAC+LCR

0 1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400
Humanoid-v2

SAC
SAC+LCR

0 500 1000 1500 2000
100000

120000

140000

160000

180000

200000

HumanoidStandup-v2

SAC
SAC+LCR

0 1000 2000 3000 4000 5000220

200

180

160

140

120

100

80

60

Pusher-v2

SAC
SAC+LCR

0 1000 2000 3000 4000 5000

50

40

30

20

10

Reacher-v2

SAC
SAC+LCR

0 1000 2000 3000 4000 5000

500

450

400

350

300

250

200 Striker-v2

SAC
SAC+LCR

0 1000 2000 3000 4000 5000

500

400

300

200

100

Thrower-v2

SAC
SAC+LCR

Episodes

Re
wa

rd
s

Episodes

Re
wa

rd
s

Episodes

Re
wa

rd
s

Episodes

Re
wa

rd
s

Episodes

Re
wa

rd
s

Episodes

Re
wa

rd
s

Episodes

Re
wa

rd
s

Episodes

Re
wa

rd
s

Figure 4: Training curves on 8 Mujoco environments using SAC with and without LCR across 5
runs. For LCR, we used sequence length of 11, 100 gradient steps and batch size of 5000.

0 10 20 30 40
0

2500

5000

7500

10000

12500

15000

17500
asterix

Rainbow
Raibow+LCR

0 10 20 30 40
0

50

100

150

200

250

breakout
Rainbow
Raibow+LCR

0 10 20 30 40
0

10000

20000

30000

40000

gopher
Rainbow
Raibow+LCR

0 10 20 30 40

1000

1500

2000

2500

3000

ms_pacman
Rainbow
Raibow+LCR

Steps (x10^5)

Re
wa

rd
s

Steps (x10^5)

Re
wa

rd
s

Steps (x10^5)

Re
wa

rd
s

Steps (x10^5)

Re
wa

rd
s

Figure 5: Training curves on 4 Atari environments using Rainbow with and without LCR for 5
Million Frames across 5 runs. For LCR, we used sequence length of 11, 20 gradient steps and batch
size of 1000.

choosing most of these environments is that there are well-defined learnable dynamics and the states
change slowly in a given local policy space. For diversity, we also analyze the performance of LCR
in simpler environments such as CartPole and Acrobot.

4.1 IMPLEMENTATION DETAILS AND BASELINES

The description of the environments and the detailed hyper-parameters are mentioned in the supple-
mentary material along with the code for all the environments for reproducibility of our results. We
provide ablation studies of the respective hyper-parameters introduced by LCR, both in the main
paper and in the supplementary material, and discuss a suitable thumb rule so that extensive sweeps
are not required.

For our baselines, we intentionally avoided choosing other auxiliary representation learning meth-
ods. Our main aim in this paper is to highlight how this strategy of localizing representations can
actually help in generalization in representation learning and all our experiments henceforth high-
light that. Furthermore, the experiments that directly perform similar constraints on the environment
Jonschkowski et al. (2017), were mostly designed for robotics, while Locally Constrained Repre-
sentations (LCR) is a more general applicable method. Since this is an additional constraint that
is applied in the form of an auxiliary loss, it can be easily added on top of any aforementioned
representation learning approach.

6

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

4.2 MINIGRID ENVIRONMENTS

LCR helps in learning representations which prevents over-fitting in environments by constraining
the representations locally. So, given a stochastic environment, is the representation learned by LCR
more generizable? We try to answer this question by choosing two environments from the MiniGrid
suite Chevalier-Boisvert et al. (2018), where the goals change randomly after every episode. In both
environments, the agent has to navigate a grid and reach a goal. The agent receives a reward of
+1 on reaching the goal and −0.01 for each step that it takes. We designed the environment Ran-
domGoal, which is an extension of the EmptyRoom environment from MiniGrid Chevalier-Boisvert
et al. (2018) with the goal position changing randomly at the end of every episode. FourRooms
environment is the same as the generic one from MiniGrid Chevalier-Boisvert et al. (2018), but with
reduced size to alleviate the problem of exploration which we are not studying in this paper. We
run DQN Mnih et al. (2015) and DQN with LCR in both environments with fully observable in-
put. Since the output is a 2D matrix, both architectures have 3 convolutional layers, with the first
2 followed by a max-pooling layer. The output of the last convolutional layer is “flattened”, that
is, reshaped into a vector. This entire network corresponds to fθ in Fig. 1 (a). The output of this
network is then passed to a value network which consists of two dense layers and which outputs the
Q values. The entire of flatten layer is representation layer (ϕ in Fig. 1 (a)) on which LCR is applied.
Exploration is handled by the decaying ϵ-greedy strategy, which is shown by the dotted black line.

Figure 2 demonstrates that LCR is able to perform better because it does not overfit to one goal
location. This problem can happen with learning representations with the RL loss only. As a result,
DQN (red) performs poorly in both settings, with complete failure in the FourRooms environment.
Adding LCR on top of DQN however, improves the performance significantly, reaching near-optimal
policies in both cases. Note, that the final rewards are noisy because the optimal reward changes
with the location of the goal.

Constrained Representations: Figure 3 additionally shows the tSNE van der Maaten & Hinton
(2008) plots in 2 dimensions for the representations learned by DQN and DQN with LCR after
training for 5000 episodes. The plots represent the representations of the states ϕ, in 20 trajectories
with the same random policy (so that they all visit the same states equally). It can be seen that the
spread of different state representations is much smaller for LCR even though both of the algorithms
visit the exact same states. This indeed confirms that LCR learns a much more constrained represen-
tation. This is especially true for the RandomGoal environment, where most of the states would be
easily represented by neighboring states because the grid is empty. On the other-hand, the represen-
tations learned by DQN without LCR would be biased because value estimation is the only learning
signal and as a result the representations are somewhat saturated which can lead to over-fitting.

4.3 MUJOCO

For our second set of experiments, we take Mujoco, a very popular suite Todorov et al. (2012);
Brockman et al. (2016) with well-defined physics, and observe the performance of LCR in easy and
difficult tasks. For the experiments on Mujoco, we used Soft Actor Critic (SAC) Haarnoja et al.
(2018) implementation of Ding et al. (2020), which is known to have good performance on these
tasks. For these experiments, we used the default architecture from Ding et al. (2020) with 2 hidden
layers followed by an output layer. The last hidden layer is used as the representation layer ϕ on
which LCR was implemented. For LCR, we used the exact set of hyper-parameters that as the
MiniGrid environment: a batch size B of 5000, 1/10th of the SAC learning rate, sequence length of
11 and gradient steps for LCR optimization as 100.

Figure 4 shows the learning curves on Mujoco. For relatively difficult tasks, such as HalfCheetah-
v2, Ant-v2, Humanoid-v2 and HumanoidStandup-v2, we can see that adding LCR on top of SAC
dramatically improves performance, and it actually learns a lot faster. This is probably due to the fact
that the dynamics of Mujoco is well defined, and, as such, LCR encourages the representations to
consider them better as opposed to learning representations with just the policy and value losses
in SAC. For the easier environments however, it is to be noted that adding LCR does not hurt
performance at all, rather in some cases like Pusher-v2 and Striker-v2 it is marginally better than
SAC.

7

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

(a) (b) (c)

Figure 6: Sensitivity to LCR hyper-parameters for the MiniGrid FourRooms environment over 10
runs. The constant hyper-parameters are sequence length of 11, 100 steps and learning rate of
0.0001.

Figure 7: Results on CartPole and Acrobot, with the sensitivity to the sequence length to demonstrate
how LCR affects low-dimensional states

4.4 ATARI

Although the Arcade Learning Environment does not have continuous dynamics like Mujoco, we
tested Rainbow Hessel et al. (2017) with and without LCR in 4 Atari environments. For Rainbow,
we used the original configuration of Hessel et al. (2017) with 3 convolutional layers followed by
NoisyLinear layers Fortunato et al. (2017). The flattened output of the convolutional layer is chosen
as the representation layer ϕ for LCR. We use a batch size of 1000 for LCR, because the state space
(images) is much more high dimensional, and to avoid overfitting, we reduced the gradient steps to
20 and the learning rate to 1/10th of the original RL learning rate.

Figure 5 shows the learning curves of LCR compared with the baseline. Adding LCR significantly
improves the performance and sample efficiency in 3 out of 4 environments. In MsPacman LCR
does not show improvement over the baseline but also does not seem to hurt.

4.5 ABLATION STUDIES

LCR introduces 4 new hyper-parameters: the size of the batches, B over which we apply LCR, the
number of steps of gradient descent, the learning rate, and the neighbourhood size K.

Figure 6 (a) illustrates the parameter sensitivity on the MiniGrid domains w.r.t. the number of steps
of gradient descent. In both environments, we find a similar plot. With very few steps, LCR does
not work as well, and the same is true for higher number of steps, where the representations are
constrained heavily to focus on the linear representations and thus collapses. Similarly, Figure 6 (b)
demonstrates the sensitivity to the number of nearest neighbours. On the other hand, this depends
on the environments. For example, in the RandomGoal environment, we found higher values of
sequence length does equally well if not better, because the grid is empty and having representations
to be linearly represented by the neighbours does not affect performance. However, with higher
sequence length for FourRooms, LCR does not perform as well because the representations are
forces to be representable from a large portion of the state space, which violates the neighbours
being local. Thus, we see a drop in performance for higher K. Figure 6 (c) highlights the sensitivity
to the learning rate. For most of our experiments, we found that too small of a learning rate does

8

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

not help learning at all compared to DQN, because the updates to the representations are not big
enough to have a sufficient effect on the actions taken. On the other hand, a high value of learning
rate can be detrimental, as the representations become too constrained. For our experiments, setting
the learning rate to be 1/10th of the learning rate used for the main RL agent works well. The fourth
hyper-parameter, batch size, has no such trade-offs. The higher the batch size, the less is the chance
of over-fitting on the main task, and thus better the performance.

Now, it might seem like we need to run sweeps across all these hyper-parameters to find the best
one, and that would be tedious. However, as mentioned in our experiments we found that normally
setting sequence length to 11, number of steps to 100 and learning rate 1/10th of the RL learning
rate worked really well. Thus, as a thumb rule, we set these parameters for all our experiments.

Detailed ablation studies across all the hyper-parameters are provided in the supplementary material.

4.6 ADDING LCR TO LOW DIMENSIONAL INPUTS

In very simple RL environments, separate representation learning is normally not required. Since we
have the assumption of representations being linearly predictable by the neighbours, it might happen
that the representations for simple tasks get constrained to the point that the agent does not learn
anything. To test the performance of LCR with low-dimensional state space, we run LCR on two
very simple environments, CartPole and Acrobot Brockman et al. (2016). For these environments
we used simple DQN Mnih et al. (2015) with 2 hidden layers followed by the value layer. The
output of the second hidden layer is the representation. From Figure 7, we can see that LCR does
not impact the performance of the DQN over various sequence lengths. In fact, for some sequence
lengths, DQN with LCR outperforms DQN.

5 CONCLUSION AND FUTURE WORK

LCR adds an auxiliary loss to constrain the state representations in a local policy space. This can
improve generalization and robustness of the representations learned. In any environment where
the states do not change rapidly, with slow-moving features, LCR would show improvement.
Furthermore, the addition of LCR does not hamper performance in simpler environments, where
learning representations with the main RL loss is sufficient.

However, the neighboring representations may not be linearly dependent on each other, and we can
introduce non-linear locally constrained representations as well. This will be a much softer con-
straint on the representations, as nonlinearity will make it much more flexible. Another interesting
future direction could be its extension to vision based tasks with the help of a decoder, where the
state representations can be reconstructed with the help of its neighbors.

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020. URL https:
//arxiv.org/abs/2002.05709.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Wesley Chung, Somjit Nath, Ajin Joseph, and Martha White. Two-timescale networks for nonlinear
value function approximation. In International Conference on Learning Representations, 2018.

9

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://github.com/maximecb/gym-minigrid

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

Zihan Ding, Tianyang Yu, Yanhua Huang, Hongming Zhang, Luo Mai, and Hao Dong. Rlzoo: A
comprehensive and adaptive reinforcement learning library. arXiv preprint arXiv:2009.08644,
2020.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov
decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011. doi: 10.1137/
10080484X. URL https://doi.org/10.1137/10080484X.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy networks for exploration. CoRR, abs/1706.10295, 2017. URL http://arxiv.org/
abs/1706.10295.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. CoRR, abs/1906.02736,
2019. URL http://arxiv.org/abs/1906.02736.

David Ha and Jürgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018. URL http:
//arxiv.org/abs/1803.10122.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. CoRR, abs/1811.04551,
2018. URL http://arxiv.org/abs/1811.04551.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to con-
trol: Learning behaviors by latent imagination. CoRR, abs/1912.01603, 2019. URL http:
//arxiv.org/abs/1912.01603.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. CoRR, abs/2010.02193, 2020. URL https://arxiv.org/abs/
2010.02193.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. CoRR, abs/1710.02298, 2017. URL http://
arxiv.org/abs/1710.02298.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507, 2006. doi: 10.1126/science.1127647. URL https:
//www.science.org/doi/abs/10.1126/science.1127647.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks.
CoRR, abs/1611.05397, 2016. URL http://arxiv.org/abs/1611.05397.

Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors. Au-
tonomous Robots, 39:407–428, 10 2015. doi: 10.1007/s10514-015-9459-7.

Rico Jonschkowski, Roland Hafner, Jonathan Scholz, and Martin A. Riedmiller. Pves: Position-
velocity encoders for unsupervised learning of structured state representations. CoRR,
abs/1705.09805, 2017. URL http://arxiv.org/abs/1705.09805.

Varun Raj Kompella, Matthew D. Luciw, and Jürgen Schmidhuber. Incremental slow feature analy-
sis: Adaptive and episodic learning from high-dimensional input streams. CoRR, abs/1112.2113,
2011. URL http://arxiv.org/abs/1112.2113.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017. doi:
10.1017/S0140525X16001837.

10

https://doi.org/10.1137/10080484X
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1906.02736
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1811.04551
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1912.01603
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2010.02193
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
https://www.science.org/doi/abs/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1705.09805
http://arxiv.org/abs/1112.2113

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. CoRR, abs/2004.14990, 2020. URL https:
//arxiv.org/abs/2004.14990.

Kuang-Huei Lee, Ian Fischer, Anthony Z. Liu, Yijie Guo, Honglak Lee, John F. Canny, and Sergio
Guadarrama. Predictive information accelerates learning in RL. CoRR, abs/2007.12401, 2020.
URL https://arxiv.org/abs/2007.12401.

Longxin Lin. Self-improving reactive agents based on reinforcement learning, planning and teach-
ing. Machine Learning, 8:293–321, 2004.

Jan Mattner, Sascha Lange, and Martin Riedmiller. Learn to swing up and balance a real pole based
on raw visual input data. In Tingwen Huang, Zhigang Zeng, Chuandong Li, and Chi Sing Leung
(eds.), Neural Information Processing, pp. 126–133, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. ISBN 978-3-642-34500-5.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323–2326, 2000. doi: 10.1126/science.290.5500.2323. URL
https://www.science.org/doi/abs/10.1126/science.290.5500.2323.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=uCQfPZwRaUu.

Pierre Sermanet, Corey Lynch, Jasmine Hsu, and Sergey Levine. Time-contrastive networks: Self-
supervised learning from multi-view observation. CoRR, abs/1704.06888, 2017. URL http:
//arxiv.org/abs/1704.06888.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–489, Jan 2016. ISSN 1476-4687.
doi: 10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that mas-
ters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/
science.aar6404. URL https://www.science.org/doi/abs/10.1126/science.
aar6404.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. CURL: contrastive unsupervised representa-
tions for reinforcement learning. CoRR, abs/2004.04136, 2020. URL https://arxiv.org/
abs/2004.04136.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. CoRR, abs/2009.08319, 2020. URL https://arxiv.org/
abs/2009.08319.

Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M. Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsu-
pervised sensorimotor interaction. In The 10th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS ’11, pp. 761–768, Richland, SC, 2011. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN 0982657161.

11

https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/2007.12401
http://dx.doi.org/10.1038/nature14236
https://www.science.org/doi/abs/10.1126/science.290.5500.2323
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
http://arxiv.org/abs/1704.06888
http://arxiv.org/abs/1704.06888
https://doi.org/10.1038/nature16961
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/2009.08319
https://arxiv.org/abs/2009.08319

Published as a workshop paper at Deep RL Workshop, NeurIPS 2022

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Ma-
chine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/
vandermaaten08a.html.

Herke van Hoof, Nutan Chen, Maximilian Karl, Patrick van der Smagt, and Jan Peters. Stable
reinforcement learning with autoencoders for tactile and visual data. In 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pp. 3928–3934, 2016. doi:
10.1109/IROS.2016.7759578.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. CoRR, abs/2102.11271, 2021a. URL https://arxiv.org/abs/
2102.11271.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International Conference on Learning Representa-
tions, 2021b. URL https://openreview.net/forum?id=GY6-6sTvGaf.

12

http://arxiv.org/abs/1807.03748
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://arxiv.org/abs/2102.11271
https://arxiv.org/abs/2102.11271
https://openreview.net/forum?id=GY6-6sTvGaf

	Introduction
	Background & Related Works
	Locally Constrained Representations
	Intuition
	Algorithm

	Results
	Implementation Details and Baselines
	MiniGrid Environments
	Mujoco
	Atari
	Ablation Studies
	Adding LCR to low dimensional inputs

	Conclusion and Future Work

