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Abstract

Improved state space models, such as Recurrent State Space Models (RSSMs), are a key fac-
tor behind recent advances in model-based reinforcement learning (RL). Yet, despite their
empirical success, many of the underlying design choices are not well understood. We show
that RSSMs use a sub-optimal inference scheme leading to an over-estimation of aleatoric
uncertainty. We analyze this inference scheme and find that, while being sub-optimal for
prediction, it implicitly regularizes RSSMs, allowing them to succeed in model-based RL. We
postulate that this implicit regularization fulfills the same functionality as explicitly model-
ing epistemic uncertainty, which is crucial for many other model-based RL approaches. Yet,
the sub-optimal inference also makes analyzing or improving RSSMs difficult as the bene-
ficial over-estimated aleatoric uncertainty is a side-effect of the inference scheme and not a
result of optimizing first order principles. Thus, we propose an alternative approach building
on well-understood components for modeling aleatoric and epistemic uncertainty, dubbed
Variational Recurrent Kalman Network (VRKN). This approach uses Kalman updates for
exact smoothing inference in a latent space and Monte Carlo Dropout to model epistemic
uncertainty. Due to the Kalman updates, the VRKN naturally handles varying numbers
of observations per time step. VRKN -based agents match the performance of RSSM -based
agents in the deterministic standard benchmarks while outperforming them in tasks where
appropriately capturing uncertainty in states and observations is crucial.

1 Introduction

Accurate system models are crucial for model-based control and reinforcement learning (RL) in au-
tonomous systems applications under partial observability. Practitioners commonly use state space models
(SSMs) (Murphy, 2012) to formalize such systems. SSMs consist of a dynamics model, describing how one
state relates to the next, and an observation model, which describes how system states generate observations.
Yet, dynamics and observation models are unknown for most relevant problems, and exact inference in the
resulting SSM is usually intractable. Researchers have proposed numerous approaches to learn the models
from data and approximate the inference to solve those issues.

Recurrent State Space Models (RSSMs) (Hafner et al., 2019) are of particular interest here. Using RSSMs as
the backbone for their Deep Planning Network (PlaNet), Hafner et al. (2019) showed that variational latent
dynamics learning can succeed in image-based RL for complex control tasks. Combined with simple plan-
ning, RSSMs can match the performance of model-free RL while requiring significantly fewer environment
interactions. The authors later improved upon their original model, including a parametric policy trained on
imagined trajectories (Dreamer) (Hafner et al., 2020). In general, approaches based on RSSM s have found
considerable interest in the model-based RL community. Yet, while RSSM s clearly draw inspiration from
classical SSMs, they use a simplified inference scheme. During inference, they assume the belief is indepen-
dent of future observations instead of using the correct smoothing assumptions (Murphy, 2012) to obtain
the belief. We formalize this observation in Section 2 and discuss how these simplified assumptions result
in a theoretically looser variational lower bound. Further, we analyze the assumptions’ effects on model
learning, where they cause an overestimation of aleatoric uncertainty, i.e., uncertainty due to the inherent
stochasticity of the system.
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The RSSM’s inference assumptions are a double-edged sword for model-based RL. On the one hand, the
overestimated aleatoric uncertainty can be beneficial for model-based RL as it leads to dynamics models that
generalize better and are more robust to objective mismatch (Luo et al., 2019; Lambert et al., 2020). Such
objective mismatch arises because model-based RL approaches use a different loss and data distribution
for training than for evaluation and data collection. While many approaches rely on explicit epistemic
uncertainty to tackle this issue (Chua et al., 2018; Janner et al., 2019), RSSMs succeed without capturing
epistemic uncertainty. On the other hand, they complicate the design and analysis of the system as the
overestimated aleatoric uncertainty is a side-product of the inference scheme and does not follow first-order
principles. As already reported by Hafner et al. (2019) purely stochastic models do not yield satisfactory
results. Thus, the RSSM relies on a deterministic-path, combining stochastic and deterministic features to
form the latent state. Further, as we will show in our experiments, overestimating the aleatoric uncertainty
can lead to poor performance in settings where correctly estimating it is important.

We show that removing this issue for RSSMs by implementing a naive approach to smoothing yields un-
satisfactory results, even if the model uses explicit epistemic uncertainty to compensate for the missing
over-estimation of the aleatoric uncertainty. To make smoothing inference work, we redesign the model archi-
tecture from first principles and propose the Variational Recurrent Kalman Network (VRKN) which combines
well-understood components for aleatoric and epistemic uncertainty. It uses a latent linear-Gaussian param-
eterization, allowing closed-form smoothing inference in the latent space and proper estimation of aleatoric
uncertainty. Further, it does not require an additional deterministic path, yielding a purely stochastic
model. Finally, we introduce a Bayesian treatment of our transition model’s parameters, explicitly modeling
the system’s epistemic uncertainty, using Monte Carlo Dropout (Gal & Ghahramani, 2016). The result-
ing architecture allows model-based agents to perform comparably to RSSM -based agents in deterministic
environments. If the tasks require accurate estimation of aleatoric uncertainty, the VRKN improves the
agents’ performance. Due to its linear Gaussian formulation, the VRKN can naturally deal with missing
observations and fuse information from multiple sensors working at different frequencies, which is useful in
many realistic applications. Here, observations such as camera images are only available at low frequencies,
while other inputs, e.g., proprioceptive measurements, are available at a much higher frequency. Finally,
our approach can serve as a basis for further improvements in this direction as we can now independently
consider, adapt, and improve the components for aleatoric and epistemic uncertainty.

2 Inference and Learning in State Space Models
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Figure 1: (a) State space model, serving as
the generative model throughout this work. (b)
Graphical Model underlying the RSSM (Hafner
et al., 2019) inference scheme. In contrast to the
generative SSM, the direction between observa-
tions and latent states is inverted. These indepen-
dence assumptions result in a simplified inference
and subtle effects on model learning.

State Space Models (SSMs)(Murphy, 2012) assume a se-
quence of observations o≤T = {ot}t=0···T is generated
by a sequence of latent variables z≤T = {zt}t=0···T ,
given a sequence of actions a≤T = {at}t=0···T . In
SSMs, each observation ot is assumed to only depend
on the current latent state zt via an observation model
p(ot|zt). Further, they assume the latent states are
Markovian, i.e., each latent state only depends on its
direct predecessor and the corresponding action via a
dynamics model p(zt+1|zt, at). Finally, the initial state
is distributed according to a distribution p(z0). Fig-
ure 1a shows the corresponding graphical models. Typ-
ically, when inferring latent states from observations,
we consider three different beliefs for each zt. Those
are the prior p(zt|o≤t−1, a≤t−1), i.e., the belief before
observing ot, the posterior, p(zt|o≤t, a≤t−1), i.e., the
belief after observing ot, as well as the smoothed be-
lief p(zt|o≤T , a≤T ) which is conditioned on all future
observations and actions, until the last time step T .
We refer to those estimates as state-beliefs to distin-
guish them from dynamics distributions, i.e., distribu-
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tions conditioned on the previous state zt−1 such as the prior dynamics p(zt|zt−1, at−1), the posterior
dynamics p(zt|zt−1, at−1, ot) and the smoothed dynamics p(zt|zt−1, at−1, o≥t). To get from a dynam-
ics distribution to the corresponding state belief we need to marginalize out the previous state, i.e.,
p(zt|o≤t−1, a≤t−1) =

∫
p(zt|zt−1, at−1)p(zt−1|o≤t−1, a≤t−1)dzt−1 for the prior.

Traditionally, the independence assumptions of the generative model are also used for inference. Yet, RSSMs
(Hafner et al., 2019) work with a different set of assumptions during inference, shown in Figure 1b1. In
particular, in this graphical model the state zt is conditionally independent of all observations o>t and
actions a≥t given zt−1, at−1, and ot, which is not the case for the standard SSM. We discuss the effects of
those assumptions on inference and model learning.

2.1 Inference in State Space Models

As exact inference is intractable for most models of interest, we usually use approximate methods such as
variational inference. For a single sequence, the general variational lower bound decomposition to the log
likelihood of the observations given the actions log p(o≤T |a≤T ) is given by

log p(o≤T |a≤T ) ≥Eq(z≤T |o≤T ,a≤T )) [log p(o≤T , z≤T |a≤T ) − log q(z≤T |o≤T , a≤T )] . (1)
This bound is tight if q(z≤T |o≤T , a≤T ) = p(z≤T |o≤T , a≤T ). While this bound is valid for arbitrary distri-
butions q(z≤T |o≤T , a≤T ), we need to pose a set of independence assumptions to obtain tractable inference
models. If we use the same independence assumptions as the generative model, the inference model can be
obtained by explicitly inverting the generative direction using Bayes rule. The resulting factorization can be
read of the graphical model in Figure 1,

q(z≤T |o≤T , a≤T ) = q(z≤T , o≤T |a≤T )
q(o≤T |a≤T ) = q(z0|o≤T , a≤T )

T∏
t=1

q(zt|zt−1, a≥t−1, o≥t). (2)

Inserting these into the general lower bound given in Equation 1 leads to Lssm(o≤T , a≤T ) =
T∑

t=1
Eq(zt|o≤T ,a≤T ) [log p(ot|zt)] − Eq(zt−1|o≤T ,a≤T ) [KL [q(zt|zt−1, a≥t−1, o≥t) ∥ p(zt|zt−1, at−1)]] . (3)

For certain parametrizations of the model, this variational distribution can be computed analytically, e.g.,
by Kalman smoothing if the model is linear and Gaussian, and in this case the bound is tight.

Yet, RSSMs, as introduced in (Hafner et al., 2019), assume the variational distribution factorizes as

q(z≤T |o≤T , a≤T ) = q(z0|o0)
T∏

t=1
q(zt|zt−1, at−1, ot).

This assumption results in a simplified inference procedure, as the belief over zt is assumed to be independent
of all future observations o>t, given zt−1, ot, and at−1. Inserting this assumptions into the general lower
bound (Equation 1) gives the RSSM -bound introduced by Hafner et al. (2019), Lrssm(o≤T , a≤T ) =

T∑
t=1

Eq(zt|o≤t,a≤t) [log p(ot|zt)] − Eq(zt−1|o≤t−1,a≤t−1) [KL [q(zt|zt−1, at−1, ot) ∥ p(zt|zt−1, at−1)]] . (4)

This bound can not be tight, not even for linear Gaussian models, as the variational distribution does
not consider future observations. Therefore, the resulting variational distribution is always different from
p(z≤t|o≤T , a≤T ). Typically, tight variational bounds are preferable as they allow for faster optimization of
the marginal log-likelihood. Yet, this discussion is more hypothetical, as all considered architectures do not
provide tight lower bounds due to the use of deep neural networks, which prevents analytic solutions for the
inference. However, as a tight lower bound does not even theoretically exist for the RSSM assumptions, we
believe this is already an indication of the misspecification of its inference distribution.

1The full model of Hafner et al. (2019) also includes a deterministic-path which is of no concern regarding the discussion
here. Thus, we omit it for brevity. We elaborate on this deterministic-path in Section 2.3. Further, Hafner et al. (2019) compare
their RSSM to a baseline they abbreviate as SSM (stochastic state model), which also builds on the simplified assumptions. In
this work, we refer to all approaches based on the simplified assumptions as RSSM.
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Figure 2: Comparison of inference and model learning results under RSSM and SSM inference assumptions.
We consider both a closed-form (CF) version based on Kalman Smoothing and a version with a neural
network (NN) as an inference model for the SSM-based approaches and find that only the objective matters,
not the parametrization of the inference model. (a) Log-probability of the ground truth states under the
learned models. We compare against the quality of the ground truth smoothed (GT Smoothed) and posterior
(GT Posterior) beliefs, computed using a Kalman Smoother and ground truth generative model. While the
SSM objective reaches the quality of the smoothed belief, the RSSM -based inference fails to even attain
the quality of the posterior belief. (b): Distance between ground truth transition matrix and learned
transition matrix, measured using the Frobenius norm. Here, the SSM inference yields a model that is an
order magnitude closer to the ground-truth model than that learned by the RSSM -bound. (c): Transition
variance σ̃I. With the SSM-bound we recover the ground-truth aleatoric uncertainty while with the RSSM
bound the aleatoric uncertainty is significantly overestimated.

2.2 The Effects of Inference Assumptions on Model Learning

In the model-based RL setting considered in this work, we jointly learn the generative and inference models
using an auto-encoding variational Bayes approach (Kingma & Welling, 2013; Sohn et al., 2015). Using
an inference model that assumes future information cannot change the belief over a state has subtle effects
on generative model learning. Indeed, as the belief over past states can by definition not change due
to additional observations, any discrepancy between this past belief and the current observation must be
explained by the transition model. In contrast, a smoothing inference can also explain the discrepancy by
propagating information from observations to past beliefs. In Equation 4, this observation is reflected in
the expected KL-term, Eq(zt−1|o≤t−1,a≤t−1) [KL [q(zt|zt−1, at−1, ot) ∥ p(zt|zt−1, at−1)]] . Here, the expectation
does not consider ot or other future observations, thus the transition model has to explain the transitions
from a given zt−1 to zt, even if zt−1 would be rendered implausible by a future observation.

For a thought experiment illustrating these effects consider the following scenario. You meet a person
holding a box and they tell you there is a hamster inside. As your prior experience is that people are
usually trustworthy, you chose to believe them. Next, the box opens, and a cat jumps out. As you trust
your eyes, you now believe it is a cat. Yet, under the RSSM -assumptions, you cannot revise your belief
of the first time step and thus still believe it originally was a hamster. When updating your model based
on this interaction, you would learn that hamsters can turn into cats, as you cannot capture the, arguably,
more likely explanation that the person lied. Thus, learning under these assumptions requires you to model
unlikely events as more likely than they are and overestimate the aleatoric uncertainty in the world.

More formally, we can demonstrate this effect using a simple linear-Gaussian State Space Model without
actions. We will use a state dimension of 4 and the ground-truth generative model is given by

p(z0) = N (0, I), p(ot|zt) = N (Izt, 0.025I), p(zt+1|zt) = N (Azt, 0.01I)

where I denotes the identity matrix. The transition matrix A induces a slightly damped, oscillating behavior.
The complete matrix A, together with further details regarding the exact setup of this experiment, can
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be found in Appendix B. Using this generative model, we generate 1, 000 sequences of length 50. Even
in this simple setting, computing the optimal inference distribution for the RSSM -bound (Equation 4) is
impossible, and we thus resort to numerical methods. We parameterize q(zt|zt−1, ot) as locally linear-
Gaussian distributions and learn their parameters using a neural network. For the SSM-bound (Equation 3
we can either compute the optimal inference in closed form, or again parameterize q(zt|zt−1, o≥t) as a neural
network. To condition on future observations, we use a GRU (Cho et al., 2014) which runs backward over the
observation sequence. For the generative model, we learn a transition matrix Ã and an isotropic covariance
σ̃I jointly with the parameters of the inference model. We fix the remaining parts of the generative model
to the ground-truth values. Figure 2 summarizes the results and demonstrates that the RSSM -bound leads
to a sub-optimal inference and consequently to learning a wrong model. In particular, we can see that for
the RSSM, the transition variance σ̃ is much larger than the ground-truth value σ = 0.01 as all unexpected
observations have to be explained by the transitions instead of correcting the beliefs of past time steps.

2.3 The Interplay of Policy Optimization and Regularization

Despite the theoretical considerations in the previous section, RSSMs work well for model-based RL. It is
well known that model-based RL suffers from an objective mismatch (Luo et al., 2019; Lambert et al., 2020)
issue. This issue arises because the model aims to maximize the ELBO (Equation 1) but is evaluated based
on the agent’s reward. The effect is further amplified by the distribution shift between training and data
collection, as data collection is typically performed only after a policy improvement step. In RL, we explicitly
want the agent to explore unseen parts of the state-action space, encountering observations the model has not
seen before. Thus, training the underlying model requires careful regularization such that wrong predictions
do not prevent the agent from exploring relevant parts of the state space. Many model-based RL approaches
(Chua et al., 2018; Janner et al., 2019) handle this issue by explicitly modeling the epistemic uncertainty
of the model, which is not required by the RSSM. Instead, we argue that RSSMs rely on the overestimated
aleatoric uncertainty caused by sub-optimal inference to address objective mismatch in a more heuristic
manner. The overestimation implicitly regularizes the RSSM as it forces the transition model to model
unlikely events with higher probability. This regularization thus implicitly prevents overconfident model
predictions due to overfitting. Yet, while it alleviates the objective mismatch issue, there are also drawbacks
to this heuristic solution. First, it complicates the model design, analysis, and improvement of RSSMs. As
already observed by Hafner et al. (2019), a fully stochastic model based on the RSSM -assumptions under-
performs without additional measures as it fails at reliably propagating information for multiple time steps.
As a remedy, Hafner et al. (2019) introduce a deterministic-path, i.e., a Gated Recurrent Unit (Cho et al.,
2014), and base the belief update on this instead of the stochastic belief. Second, as we show in Section 4.1,
there are settings where appropriately capturing the aleatoric uncertainty is important, and failing to do so
can hurt performance.

In a first attempt to address those issues, we minimally adapt the RSSM to be capable of smoothing.
This Smoothing RSSM uses a GRU which is added before the actual RSSM and runs backwards over the
representations extracted by the encoder, effectively accumulating all future information. The RSSM then
receives the output of this GRU instead of the original observation as input. When evaluating this model in
Section 4.1, we find that the performance decreases compared to the original RSSM. We argue that with a
proper inference the model can no longer rely on the overestimated aleatoric uncertainty for regularization
and thus becomes more prone to objective mismatch. Following other methods, we try to improve the results
by modeling epistemic uncertainty. To this end, we use Monte Carlo Dropout (MCD) but find that it
does not help to improve the Smoothing RSSM’s performance. From these results, we conclude that solely
addressing the sub-optimal inference assumption is insufficient, but we also need to rethink the model’s
parameterization. We postulate that the additional GRU for the backward pass is a poor inductive bias and
that we require a smoothing approach that adds as little complexity as possible to the model. In the next
section, we will introduce an architecture that allows for parameter-free smoothing using a locally linear
state space model in a latent space.
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Figure 3: (a) We use an encoder (blue) to extract a latent observation wt and an uncertainty estimate
from the observation ot. This latent observation is then used to update the state estimate zt using the
closed-form Kalman update (orange). We propagate the latent state estimate to the next time step using
the transition model detailed in (b). A decoder (red) reconstructs the observation. (b) The transition model
is a feed forward network that takes the current posterior mean µ+

t and the action at as input and emits the
transition matrix At, the offset term bt, and the transition noise σdyn

t . We find that a gated unit stabilizes
the training compared to a simple feed-forward network. For a Bayesian treatment of the transition model’s
parameters, we include Monte Carlo Dropout layers at the positions indicated by the purple dashed lines.

3 Variational Recurrent Kalman Networks

To provide a theoretically better-grounded alternative to the RSSM, we require a model which allows
tractable inference while still scaling to complex image-based control tasks. Further, the architecture should
allow efficient computation of smoothed and posterior state beliefs and dynamics. While we need smoothed
distributions for training, we require (filtered) posteriors for online control. Both should be computable
by the same network architecture to avoid an over-parametrization and overfitting as a consequence. In
addition, such an architecture can naturally integrate multiple sensors that emit data at different frequencies
into a common latent state representation. To meet these criteria, we introduce a new parametrization
of the latent dynamics based on a linear-Gaussian state space model (LGSSM)(Murphy, 2012) embedded
in a latent space. The linear-Gaussian assumptions allow for efficient inference and rigorous treatment of
uncertainties while working in a learned latent space allows for modeling high-dimensional and non-linear
systems. We use a Bayesian treatment of the LGSSM’s transition model by Monte Carlo Dropout (Gal
& Ghahramani, 2016) to include epistemic uncertainty in our approach. We name the resulting approach
Variational Recurrent Kalman Network (VRKN). Figure 3 shows a schematic overview.

3.1 Learning the Latent Space.

To allow working with high-dimensional observations which depend non-linearly on the latent state, we
introduce auxiliary, latent observations wt for the original observations ot. This intermediate representation
allows us to capture the highly complex relations between state and observations in the mapping from ot

to wt (encoder) while using a simple, tractable mapping between the state and wt. We assume these latent
observations are a deterministic encoding of the original observations, parameterized by a neural network.
Following (Haarnoja et al., 2016; Becker et al., 2019), we extend this network with a second output, emitting
uncertainty estimates σw

t , i.e., strictly positive vectors of the same size as the latent observation. We
provide the latent observations and the corresponding uncertainty estimates as input to the state space
model described below. Thus, we assume that we obtain a latent observation sample from the encoder, not
the mean of a distribution over latent observations. Intuitively, the variance encoder has to estimate the
information content of the observation. For example, when estimating the latent observation uncertainty
from images, some images might contain certain information, e.g., the positions of an object, while others do
not. The former case would result in a low uncertainty and the latter in a high one. Note that this approach
differs from many previous variational approaches, which model the latent observation as a random variable
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(Watter et al., 2015; Karl et al., 2016; Fraccaro et al., 2017) which results in a more complex model and
objective due to the additional latent variable. We assume a Gaussian generative distribution p(ot|zt) with
fixed variance and parameterize the mean by a neural network (decoder).

3.2 Latent Linear-Gaussian State Space Model.

Observation Model. Given the latent observations and uncertainty estimates from the encoder, we can
assume a simple linear latent observation model for the SSM with p(wt|zt) = N

(
Izt, diag(σw

t )
)
, i.e., the

latent observation wt is a noisy variant of the latent state zt where the noise is given by the encoder’s
uncertainty estimates. Using this approach, we can employ the standard Kalman update rule to update the
beliefs based on the current observation (Becker et al., 2019).

Dynamics Model. We model the latent dynamics as

p(zt+1|zt, at) = N
(

At(µ+
t , at)zt + bt(µ+

t , at), σdyn
t (µ+

t , at)
)

,

where µ+
t denotes the mean of the posterior state estimate p(zt|o≤t, a≤t), i.e., we learn a linearized model

around the current posterior mean. This linearization is identical to the one used in extended Kalman filter-
ing (Jazwinski, 1970), where a known model is linearized around the current posterior mean. In particular,
this model is linear in zt, enabling closed-form propagation of state beliefs.

We model At to be a diagonal matrix which is emitted together with the offset term bt and the transition
noise σdyn

t by a single neural network ϕdyn(µ+
t , at) =

(
At, bt, σdyn

t

)
and carefully design this network to

prevent the state estimates and gradients from growing indefinitely during training. First, as At is diagonal,
its values are its eigenvalues, and constraining them in an appropriate range ensures stable dynamics. To
this end, we use an activation of the form f(x) = s · sigmoid(x + b) + m where we choose s, b, and m such
that it saturates at 0.1 and 0.99 while f(0) = 0.9. Here, the intuition is that we want plausible and stable
dynamics, which we initialize as a slightly dampened system. Second, empirically, it is beneficial to not
model ϕdyn as a simple feed-forward network but, inspired by standard recurrent architectures (Hochreiter
& Schmidhuber, 1997; Cho et al., 2014), employ a gating mechanism to mitigate problems with vanishing
and exploding gradients. To this end, we use a standard GRU cell implementation but feed the posterior
mean µ+

t into the memory input, i.e., ϕdyn(µ+
t , at) = ϕ2(GRU(ϕ1(µ+

t , at), µ+
t )). The resulting model is still

fully stochastic and linear in zt. In contrast to the RSSM, it does not use a determinstic-path as the GRU
cell does not introduce an additional deterministic memory and is used solely for addressing problems arising
from unstable dynamics and gradients. Figure 3b provides an overview of the transition architecture.

Initial State Distribution. For the initial state distribution p(z0), we use a Gaussian with zero mean and
a learned diagonal variance which we initialize with the identity matrix.

Sensor Fusion. Given the possibility of using the Kalman update for incorporating observations, we can
use the VRKN for a simple but principled approach to sensor fusion. Formally, we assume the observation
ot factorizes into K different observations o(k)

t , i.e., p(ot|zt) =
∏K

k=1 p(o(k)
t |zt). Those observations can be of

various modalities and be available at different frequencies, e.g., high-frequency velocity information from an
internal IMU and low-frequency camera images of the surroundings. In this scenario, we have K encoders,
one for each o(k)

t , and accumulate the latent observations by repeatedly applying the Kalman update. As
the Kalman update is a simple instance of Bayesian conditioning, this architecture reflects the invariance to
permutations of all observations for a single time-step. It also allows simply omitting the update if some of
the K observations are unavailable for a time step. Additionally, we have K decoders and K reconstruction
loss terms in the ELBO.

3.3 Modeling Epistemic Uncertainty

As discussed in Section 2.3, the overestimated aleatoric uncertainty of the RSSM ’s transition model avoids
overconfident estimates due to overfitting and compensates for the lack of explicit epistemic uncertainty.
Thus, as our approach captures the aleatoric uncertainty correctly, we need to explicitly consider epistemic
uncertainty to obtain a model that is also useable for policy optimization. We use Monte Carlo Dropout
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Figure 4: Comparison of the RSSM, the simple smoothing extension (Smoothing-RSSM ) as well as versions
of both models using Monte Carlo Dropout (MCD) to capture epistemic uncertainty in the dynamics (MCD-
RSSM and Smoothing MCD-RSSM ). The leftmost plot in each row shows the average performance of all
considered agents. Those are not directly comparable as we use different environments for PlaNet and
Dreamer-based agents. We find that proper inference by smoothing deteriorates performance on average,
and the additional epistemic uncertainty does not compensate for this decrease in performance.

(Gal & Ghahramani, 2016) due to its simplicity and include corresponding layers at appropriate points in
the transition model, see Figure 3b.

3.4 Inference and Training

To infer belief states using our model we first need to embed the observations in the latent space using the
encoder. Given its output, i.e., the latent observations and uncertainty estimates, as well as the locally linear
observation and dynamics model, we can compute the prior and posterior beliefs using the standard Kalman
filter equations and smooth by iterating backward over those beliefs using the Rauch-Tung-Striebel (RTS)
(Rauch et al., 1965) equations. Note that due to factorization induced by the diagonal transition matrices and
observation covariance matrices, all Kalman updates can be reduced to scalar divisions instead of using costly
matrix inversions (Becker et al., 2019). We train all parts of the model jointly by maximizing Equation 3,
for which we need the smoothed dynamics q(zt+1|zt, a≥t, o≥t+1). We provide a recursive formula, extending
the RTS equations, for computing these smoothed dynamics with minimal overhead in Appendix A.

When using the model for online control, we cannot smooth but have to act based on samples from the
posterior estimate q(zt|a≤t, o≤t). Building on a latent LGSSM provides a strong inductive bias which
prevents the model from learning a solution that relies on the backward recursion as it does not introduce
new parameters and only uses quantities computed during the forward pass. Thus, the inductive bias allows
learning reasonable posterior estimates without them explicitly being part of the training objective.

4 Evaluation

We compare the original RSSM, the smoothing RSSM and the VRKN on image-based continuous control
tasks using the DeepMind Control Suite (Tassa et al., 2020). Prior works (Lambert et al., 2020; Lutter
et al., 2021) concluded that the model’s predictive performance is often uninformative about the quality of
the model-based agent. We concluded the same after preliminary experiments and want to study the effects
of the different assumptions and parametrizations on the performance in a model-based RL setting. Thus,
we evaluate the state space models as backbones for model-based agents and directly consider the achieved
reward. We use both the PlaNet(Hafner et al., 2019) and the Dreamer(Hafner et al., 2020) approaches
for control. The PlaNet-agents plan actions using the cross entropy method by rolling out trajectories
on the model. The Dreamer-agents learn a parametric policy and value function, using the model as a
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Figure 5: Comparison of VRKN and RSSM based PlaNet and Dreamer agents on the standard benchmarks.
The leftmost plot in each row shows the average performance of all considered agents. Those are not directly
comparable as we use different environments for PlaNet and Dreamer-based agents. While the VRKN
without epistemic uncertainty (VRKN (no MCD)) cannot compete with the RSSM -agents, the Bayesian
treatment allows it to reach a similar performance. In all environments, the VRKN profits from the epistemic
uncertainty, either in terms of sample complexity, final performance, or both. Yet, for Dreamer-agents the
Bayesian treatment is more relevant than in the PlaNet case. Further, for Dreamer-agents, the VRKN
improves sample complexity in several environments.

differentiable simulator. The experiment setup closely follows the original works introducing PlaNet and
Dreamer. Appendix C gives further details about the experimental setup and used baselines. We report the
mean reward over all environments to show general trends and reward curves for the individual environments,
showing median performance, where the shaded areas indicate 25% to 75%-percentiles. We use 5 seeds for
each agent-environment pair, train for 1 million environment steps, and use 10 rollouts for evaluation.
Appendix D provides further quantitative results and the reward curves for all considered environments.

4.1 Evaluation of the Effect of Epistemic Uncertainty on Different Smoothing Architectures

We start our evaluation by comparing the original RSSM with its extended smoothing version using a
GRU with and without Monte Carlo Dropout (MCD), described in Section 2.3. For completeness, we also
include a version of the original-RSSM with MCD to model epistemic uncertainty. For the PlaNet-agents,
we evaluate the 6 environments originally used in (Hafner et al., 2019), for the Dreamer-agents we use 8
environments, i.e., Cheetah Run, Walker Walk, Cartpole Swingup, Cup Catch, Reacher Easy, Hopper Hop,
Pendulum Swingup, and Walker Run. The proper smoothing inference deteriorates performance, as the
model now lacks regularization to cope with the objective mismatch. Adding epistemic uncertainty in the
form of MCD does, on average, neither affect the performance of the original RSSM nor the smoothing RSSM.
Next, we compare the VRKN to the RSSM using the same environments and also include a version of the
VRKN without Monte Carlo Dropout (MCD), i.e., without epistemic uncertainty, dubbed VRKN (no MCD).
Figure 5 shows a summary of the results and reward curves for some of the environments. Comprehensive
results can be found in Appendix D.2. The results show that the VRKN relies on the epistemic uncertainty
to match the RSSMs performance while VRKN (no MCD) cannot compete with the original RSSM -agents.
In the case of the Dreamer-agents, we even find the VRKN converges faster to the final performance in
several environments. These results emphasize regularization, either implicitly by sub-optimal inference or
explicitly by capturing epistemic uncertainty, is important for model-based RL. Additionally, they indicate
that epistemic uncertainty alone is insufficient for approaches using a correct smoothing inference. Those
also rely on an appropriate inductive bias, as provided by the VRKN.
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Figure 6: Dreamer-agent results on the occlusion task. The σ in the title indicates the standard deviation
of the Gaussian transition noise. In all tasks, the VRKN achieves better performance after 1 million en-
vironment steps. The comparison to the reward-only baseline, i.e., a RSSM -based agent trained without
observation reconstruction, indicates that the occluded images still contain relevant information.
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Figure 7: Exemplary sub-sequence of reconstructions,
based on the model’s posterior beliefs. The first row is
the noise-free ground truth image, which the models
never see. The second row is the model input, followed
by the VRKN and the RSSM reconstructions. Even
though the ball is partly visible in most images, the
RSSM fails to reconstruct its position. The VRKN
manages to do so and even provides a reasonable es-
timate for cup position. These results indicate the
VRKN’s improved ability to capture the system state
in noisy scenarios.

4.2 Dealing with Occlusions

To better analyze the approaches’ capabilities to capture and handle uncertainty, we design tasks where
this is more important than in the almost noise-free standard benchmarks. To this end, we modify the
observations of the environments Cheetah Run, Walker Walk, Cartpole Swingup, and Cup Catch. First, we
introduce transition noise by adding Gaussian noise to the actions before execution. Second, we introduce
additional observation uncertainty by rendering slow-moving occluding discs over the images. See the second
row of Figure 7 for some examples. In the resulting environments, the prior beliefs are uncertain due to the
transition noise, and not every observation has the same amount of useful information. Thus, the models need
to correctly capture uncertainties in the system, allowing them to trade off information from the prior belief
and current observation. We compare Dreamer-agents based on the RSSM and the VRKN and train using
masked reconstruction, i.e., only non-occluded pixels contribute to the reconstruction loss2. We also consider
a baseline where we train solely on the reward to show that the approaches can still extract information from
the highly occluded observations. Figure 6 shows the results of the comparison. While the RSSM’s and the
VRKN’s performance is almost identical in the standard versions of the considered environments (Figure 16),
the VRKN works significantly better in the modified environments. Additionally, we qualitatively compare
images reconstructed from posterior beliefs of both approaches to gain further insights into the quality of
the belief state. Figure 7 shows some of those reconstructions for the Cup Catch task, further images can be
found in Appendix D.5. From these images, it appears that the VRKN better captures the actual system
state and uncertainty and thus allows the model-based agent to achieve a higher reward.

4.3 Dealing with Multiple Sensors at Different Frequencies

To test the models’ capabilities for sensor fusion, we design a task where we provide only every n-
th image, where n is sampled uniformly between 4 and 8 while proprioceptive information is avail-

2We want to emphasize that we do not consider the availability of such loss masks a realistic scenario but see the task as a
reasonable benchmark to evaluate the models’ capabilities to cope with uncertainties.
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able at every time step. The exact form of the proprioceptive information is task-dependent. For
example, for Cup Catch, we define the cup position as proprioceptive, but not the ball position,
which has to be inferred from images. Appendix C.3 provides an overview for all considered tasks.
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Figure 8: Average Dreamer-agent results over all con-
sidered environments on the fusion task. The σ in the
title indicates the standard deviation of the Gaussian
transition noise. In general, the VRKN seems to ex-
ploit and accumulate the available information better,
as the resulting agents perform better than those based
on the RSSM. Further, the VRKN seems to cope bet-
ter with the transition noise, most likely due to its
appropriate modeling of the system’s aleatoric uncer-
tainty. Comprehensive results for individual environ-
ments can be found in Appendix D.3.

While for the VRKN, we can rely on the natural
fusion mechanism described in Section 3, for the
RSSM, we work with concatenation by feeding de-
fault values for unavailable observation and flags in-
dicating whether the observation is valid. This ex-
periment mimics a common robotics scenario where
we have proprioceptive information about the robot
at high frequencies but need to estimate the envi-
ronment’s state based on lower frequency images.
It tests the approaches’ abilities to form reason-
able state estimates from observations that arrive
in different modalities and at varying frequencies.
Here again, the models need to trade off informa-
tion encoded in the prior belief with the informa-
tion available in both sensor sources, based on un-
certainty. We test with and without transition noise
and evaluate a baseline where we only provide the
low-frequency images and no proprioceptive infor-
mation. We consider the same 4 tasks as in the pre-
vious experiment and show average reuslts in Fig-
ure 8. For detailed results, we refer to the supple-
ment. On average, the VRKN achieves a higher

reward than the RSSM, especially in the setting with transition noise. This result again emphasizes the
VRKNs capability to exploit all available information and appropriately capture the system’s uncertainty.

5 Related Work

Recurrent State Space Models. While earlier works (Wahlström et al., 2015; Watter et al., 2015; Banija-
mali et al., 2018; Ha & Schmidhuber, 2018) showed the feasibility of control using learned latent state space
models, the work originally proposing the RSSM (Hafner et al., 2019) was the first to show that such ap-
proaches can achieve similar performance to model-free RL on pixel-based complex continuous control tasks
while using significantly fewer environment interactions. Since then, Hafner et al. (2020) improved their
approach using a parametric policy learned on imagined trajectories and categorical latent spaces (Hafner
et al., 2021). These approaches gained interest in the model-based RL community and are empirically suc-
cessful, yet, little attention has been paid to the underlying state space model itself, the assumptions it
builds upon, and its parametrization.

State Space Models. The Machine Learning community extensively studied and used state space models
(SSMs). Besides classical approaches using linear models (Shumway & Stoffer, 1982) and works using
Gaussian Processes (Eleftheriadis et al., 2017; Doerr et al., 2018), most recent methods build on Neural
Networks (NNs). The first class of NN-based models of particular relevance for this work embeds linear-
Gaussian SSMs (LGSSM) into latent spaces (Watter et al., 2015; Karl et al., 2016; Fraccaro et al., 2017;
Banijamali et al., 2018; Becker-Ehmck et al., 2019; Klushyn et al., 2021). These approaches assume actuated
systems and learn using stochastic gradient variational Bayes (Kingma & Welling, 2013). Yet, non of these
approaches were used to model or even control systems of the complexity considered by (Hafner et al.,
2019) and here. They are not directly applicable to these scenarios for various reasons. First, they use
full transition matrices and covariances, which prevents them from scaling to sufficiently high-dimensional
latent spaces. (Karl et al., 2016; Becker-Ehmck et al., 2019) do not allow smoothing. (Fraccaro et al., 2017;
Klushyn et al., 2021) model the latent observations as random variables which are inferred jointly with
the latent states and use constant observation uncertainty for the filtering in the latent space. This choice
complicates inference and training and prevents principled usage of the observation uncertainty for filtering.
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Our parameterization of the LGSSM alleviates these issues by building on factorization assumptions which
yield a scalable architecture. Further, it allows smoothing and principled usage of observation uncertainty
during filtering by modeling the observations in latent space as deterministic. Finally, non of these approaches
considered modeling epistemic uncertainty.

Another class of approaches directly uses NN-based, nonlinear parametrization for SSMs (Archer et al.,
2015; Krishnan et al., 2015; Gu et al., 2015; Zheng et al., 2017; Krishnan et al., 2017; Yingzhen & Mandt,
2018; Schmidt & Hofmann, 2018; Naesseth et al., 2018; Moretti et al., 2019). Out of this class, Structured
Inference Networks (SINs) (Krishnan et al., 2017) are the most relevant for our work. SINs build on the
same variational objective as VRKN, yet without conditioning on actions. The smoothing-RSSM baseline
introduced in Section 2.3 can be considered an instance of a SIN. Yet while it builds on the same loss and
fundamental ideas, the underlying NN architecture is very different.

Kalman Updates in Deep Latent Space. Haarnoja et al. (2016) first proposed using an encoder to
extract uncertainty estimates from high-dimensional observations for filtering. They only learned the encoder
while assuming the transition dynamics to be known. Becker et al. (2019) proposed an efficient factorization
to additionally learn a high-dimensional, latent, locally-linear dynamics model. Shaj et al. (2020) extended
this approach by introducing a principled form of action conditioning. While the V-RKN builds on many
of their design choices, there are also considerable differences. Those mainly concern the parametrization
of the dynamics model and further simplifying the factorization assumptions. These changes are necessary
to make the approaches scale to the complex control tasks considered in this work. Additionally, Haarnoja
et al. (2016); Becker et al. (2019); Shaj et al. (2020) train using regression and do not learn a full generative
model. Thus, they cannot produce the reasonable latent trajectories needed for model-based RL.

Epistemic Uncertainty for Model-Based RL. Ample work emphasises the importance of modeling
epistemic uncertainty for model-based RL (Deisenroth & Rasmussen, 2011; Chua et al., 2018; Janner et al.,
2019) and several authors equipped RSSMs with epistemic uncertainty. Okada et al. (2020) use an ensemble
of RSSMs and showed improved results on modified versions of the Deep Mind Control Suite (Tassa et al.,
2020) benchmarks. Sekar et al. (2020) also combine an ensemble with the RSSM but focus on exploration
and generalization to unseen tasks. Yet, neither of these works questioned the assumptions underlying the
RSSM or analyzed their effects on the learned models.

6 Conclusion

We analyzed the independence assumptions underlying Recurrent State Space Models (RSSMs) and found
they are theoretically sub-optimal. Yet, they implicitly regularize the model by causing an overestimated
aleatoric uncertainty and are crucial to the RSSMs success in model-based RL. When trying to avoid this
heuristic approach and use the correct assumptions while replacing the implicit regularization with a more
explicit approach using epistemic uncertainty, we found a simple extension of the RSSM architecture is
insufficient. Thus, we redesigned the model from first principles, using an inductive bias, which is appropriate
for smoothing. As a result, we propose the Variational Recurrent Kalman Network (VRKN) which builds
on well-understood tools for modeling the aleatoric and epistemic uncertainties. It uses extended Kalman
smoothing for exact inference in a latent space to capture aleatoric uncertainty and explicit models the
epistemic uncertainty using Monte Carlo Dropout. While agents based on the VRKN and the RSSM perform
similar on the standard, noise-free benchmarks, the VRKN -agents significantly outperform those using the
RSSM on tasks where capturing uncertainties is more relevant. Additionally, the VRKN provides a natural
approach to sensor fusion and outperforms the RSSM on tasks that require fusing sensor observations from
several sensors at different frequencies.

Limitations. We showed that designing a state space model out of well-founded components that at least
matches the RSSMs performance is possible which opens a path to improve them individually. Yet, here
we used simple instances of these components and have not yet further investigated how to improve them.
Further, we have not investigated the interplay between the models and the controllers used on top of them
but used the control approaches proposed in (Hafner et al., 2019) and (Hafner et al., 2020) with default
parameters. Due to the intricate interplay between model learning and using the resulting controller for
data collection, it is reasonable to rethink the design of the controller when changing the model.
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