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ABSTRACT

Large Language Models (LLMs) present an intriguing avenue for exploration in
the field of formal theorem proving. Nevertheless, their full potential, particularly
concerning the mitigation of hallucinations and refinement through prover error
messages, remains an area that has yet to be thoroughly investigated. To enhance
the effectiveness of LLMs in the field, we introduce the Lyra, a new framework
that employs two distinct correction mechanisms: Tool Correction (TC) and Con-
Jjecture Correction (CC). To implement Tool Correction in the post-processing of
formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g.,
Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction
significantly contributes to mitigating hallucinations, thereby improving the overall
accuracy of the proof. In addition, we introduce Conjecture Correction, an error
feedback mechanism designed to interact with prover to refine formal proof conjec-
tures with prover error messages. Compared to the previous refinement framework,
the proposed Conjecture Correction refines generation with instruction but does not
collect paired (generation, error & refinement) prompts. Our method has achieved
state-of-the-art (SOTA) performance on both miniF2F validation (48.0% — 55.3%)
and test (45.5% — 51.2%). We also present 3 IMO problems solved by Lyra. We
believe Tool Correction (post-process for hallucination mitigation) and Conjecture
Correction (subgoal adjustment from interaction with environment) could provide
a promising avenue for future research in this field.

1 INTRODUCTION

Formal proof automation is a challenging task that has garnered increased attention in recent
years (Bansal et al., 2019a; Polu & Sutskever, 2020; Lample et al., 2022; Jiang et al., 2022; Wu
et al., 2022; Wang et al., 2023b). Unlike other domains where deep learning approaches have
shown remarkable success, previous studies have proposed techniques to synthesize additional formal
training data (Wu et al., 2022; Polu & Sutskever, 2020; Han et al., 2021; Bansal et al., 2019b; Polu
et al., 2023). Recently, large language models (LLMs) trained on informal mathematical data have
showcased impressive quantitative reasoning abilities (Lewkowycz et al., 2022; Welleck et al., 2022).

Draft, Sketch, and Prove (DSP) (Jiang et al., 2023) maps informal proofs to formal proof sketches,
and uses the sketches to guide an automated prover by directing its search to easier sub-problems.
Following this direction, Subgoal-based Learning (Zhao et al., 2023) replaces the informal proof with
subgoal-proof and learns how to optimize subgoal demonstration selection. However, they have not
been able to post-process LLM generation or gradually refine previous generations.

In this paper, we seek to build Lyra based on LLM, focusing on formal theorem proving. There
are two major challenges for LLM generation: 1) hallucination mitigation; 2) interaction with the
environment. To mitigate LLM hallucination, we propose Tool Correction to leverage prior knowledge
and rules to guide incorrect tool replacement. As shown in the observation in Figure 1, prover fails
to prove conjecture © = 19 * (z div 19) + 4 because by (simp add: div.mult_mod_eq)
generated by LLM cannot prove = = 19 x (x div 19) + 4 (considered as LLM hallucination), while
the conjecture is correct but employed tool simp is not powerful enough. Tool Correction employs
predefined tools (e.g. sledgehammer, arith) to guide incorrect tool replacement and finally prove the
conjecture. We also propose a general interaction technique with LLM named Conjecture Correction.
To further improve and modify the conjectures, Conjecture Correction leverages a general framework
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Figure 1: Our proposed Lyra framework contains two modules. 7Zool Correction: employ the
predefined tools to replace the incorrect tools and prove the conjectures. The prover fails because
by (simp add: div.mult_mod_eq) generated by LLM cannot prove x = 19 % (x div 19) + 4, which
is considered as the hallucination. Actually, the conjecture is correct and simple, and the prover fails to prove
it because it employs an incorrect tool. Hence, the prover successfully proves the conjecture when employing
by arith. Conjecture Correction: We design an interaction framework that integrates previous formal sketch
and prover error messages to better sketch generation. The steps with the ATPWithTC delimiters are generated
by an automated prover with Tool Correction.

that can easily integrate feedback from any environment, in this case, the Isabelle prover, to further
polish conjectures. We believe the Lyra presents our insights to mitigate LLLM hallucination and
interact with the environment.

The proposed method significantly outperforms competing approaches in formal theorem-proving
tasks, achieving a pass rate of 51.2% on the miniF2F test dataset, a 5.7% absolute improvement over
the previous state-of-the-art. Furthermore, the insights gained from Tool Correction and Conjecture
Correction design can be applied to other frameworks that need to interact with the environment. In
summary, our contributions are as follows:

* We introduce Lyra, a method composed of two components Tool Correction and Conjecture
Correction, to guide automated provers with formal proof sketches.

* Tool Correction employs the predefined tools to replace the incorrect tools to mitigate
hallucination, while Conjecture Correction integrates previous formal sketch and prover
error messages to refine proof.
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* We establish a new SOTA of 55.3% and 51.2% on miniF2F validation and test, outper-
form previous best 7.3% and 5.7% respectively. And we newly solve two IMO problems:
IMO_1974_p5 and IMO_1981_p6.

2 RELATED WORKS

Interactive theorem provers. Contemporary mathematical verification systems are centered on
interactive theorem provers (ITPs), including Isabelle (Paulson, 1994), Lean (de Moura et al., 2015),
Coq (Barras et al., 1997), and Metamath (Megill & Wheeler, 2019). ITPs lay the groundwork for
mathematical definitions and theorems on a robust logical foundation through their core kernels. The
validation of each theorem is kernel-based and takes place within the ITP. To achieve formal proof, a
theorem is initially expressed in the programming language of the ITP and systematically refined into
simpler subgoals until it aligns with previously established facts. In this paper, the chosen ATP is
Isabelle, known for its potent prover tools, including sledgehammer (Paulson, 2010).

Machine learning for formal proving. Numerous approaches advocate the integration of machine
learning with contemporary interactive theorem provers (ITPs) (Yang & Deng, 2019; Gauthier et al.,
2021). They leverage the recent advancements in language models (Polu & Sutskever, 2020; Han
et al., 2021; Polu et al., 2023; Jiang et al., 2022; Lample et al., 2022; Mikuta et al., 2023). These
techniques recommend actions based on the current proving state, and the tree search identifies a
sequence of correct steps using actions provided by the language model. Potent methods like MCTS
(Silver et al., 2018; Wu et al., 2021; Laurent & Platzer, 2022) or dynamic-tree MCTS (Wang et al.,
2023b) are utilized for this purpose. Previous work (Wu et al., 2022) has demonstrated the few-shot
statement autoformalization capability of LLMs (Chowdhery et al., 2022). In investigating these
findings’ applicability to proof autoformalization, DSP (Jiang et al., 2023) conducted an in-depth
analysis using Draft, Sketch, and Proof. Subgoal-Learning (Zhao et al., 2023) further employs a
subgoal-goal-based informal proof approach. In an effort to support the open-source community,
LeanDojo (Yang et al., 2023) created a Lean playground that includes toolkits, data, models, and
benchmarks. While these methods directly use the results generated by LLMs, we adopt a different
approach by employing predefined tools to post-process the generations to mitigate hallucination,
specifically Tool Correction.

Large language model refinement. Calibration studies conducted on LLMs reveal that the proba-
bilistic predictions made by current LLMs are closely aligned with the actual frequencies of token
occurrences, resulting in well-calibrated predictions for specific tasks (Guo et al., 2017; Kadavath
etal., 2022; Jiang et al., 2020). As LLMs exhibit reliable calibration, an increasing number of research
studies emphasize using self-evaluation for verification. For instance, Reflexion (Shinn et al., 2023)
leverages an agent with dynamic memory and self-reflection capabilities, while Self-Refine (Madaan
et al., 2023) proposes a method to generate outputs from LLMs and refine their previously generated
outputs based on their own feedback. Taking a similar approach, methods like Self-Debug (Chen
et al., 2023) and CRITICS (Gou et al., 2023) interact with code interpreters to further debug. The
Baldur (First et al., 2023) trains a model to correct and refine the generated proof. In contrast,
Progressive-Hint Prompting (Zheng et al., 2023) iteratively extracts hints from previous LLM’s
answers as hints for the next answer generation. However, previous works require extensive prompts,
including generation prompts and refine prompts. Our approach Conjecture Correction refines
generation with instruction but does not collect paired (generation, error & refinement) prompts.

3 METHOD

This section describes our Lyra for formal proof automation, which leverages Tool Correction and
Conjecture Correction to guide automated formal theorem provers with proof sketches.

3.1 BACKGROUND: PIPELINE OF DSP

DSP (Jiang et al., 2023) aims to generate a formal sketch from an informal statement, verifiable
by an off-the-shelf automated theorem prover. DSP creates /N demonstration examples, denoted as
E = F,, Es, ..., Ey, each containing informal/formal components (statements, proofs, sketches).
The pipeline of DSP has the following three steps.
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Algorithm 1 Pseudocode of Tool Correction in a Python-like style.

#tactic_list: list of the tactics of formal proof
#prover: Isabelle Prover
#TCUsage: whether employ Tool Correction
tool_heuristics=['by auto', 'by arith', 'by blast', 'by simp',
'by fastforce', 'by force', 'by eval', 'by presburger', 'by sos',
'by linarith', 'by (auto simp: field_simps)', 'sledgehammer']
for tactic in tactic_list:

use_heuristics=False

output = prover.run_tac(tactic)

if output['error'] is not None:

if TCUsage: # Use Tool Correction or Not
if tactic.strip() .startswith("by") or tactic.strip()==("."):
use_heuristic=True

if ("sledgehammer" in tactic) or use_heuristic:
for tool_try in tool_heuristics:
output = prover.run_tac(tool_try)

if output['error'] is None:
break
if output['error'] is not None:
return "tactic_failed", output
if output['tactic_state'] == 'no goals':

return "success", output

return "proof_incomplete", output

Informal proof generation. There are two scenarios: one with an existing human informal proof
and another where a language model generates draft-proof candidates without a human reference.
For LLM-generated informal proof, DSP provides the model with a few examples containing both
(statement, informal proof) for informal proof generation. Subsequently, DSP presents a problem
statement that needs to be translated and the model then generates the subsequent tokens to produce
the desired informal proof.

Formal proof generation. DSP leverages the few-shot learning capabilities of a large language
model. Specifically, DSP provides the model with a few example pairs containing (statement, informal
proof, formal sketch) for formal proof generation. Subsequently, DSP presents a (statement, informal
proof) that needs to be translated. The model then generates the subsequent tokens to produce the
desired formal sketch.

Prover validation. In the final phase, off-the-shelf automated provers address sketch gaps. These
systems create formally valid proofs. DSP framework remains agnostic to prover type (symbolic,
neural, hybrid). Successful prover results yield verifiable formal proofs.

3.2 TooL CORRECTION

Tool Correction employs prior knowledge to employ predefined tools (e.g. sledgehammer) to guide
incorrect tool replacement, as shown in Algorithm 1. We introduce the Tool Correction as a remedy
to alleviate the generation errors stemming from Large Language Models (LLMs). Through empirical
observation, it becomes evident that despite the factual accuracy of conjectures, LLMs at times adopt
misguided tools that do not withstand validation by theorem provers, as shown in Figure 1.

For instance, consider the statement z = 19 * (x div 19) + 4, where LLM proposes to utilize the
tactic by (simp add: div.mult_mod_-eq), leading to failure. This is the LLM hallucination,
as by (simp add: div.mult_mod_eq) is suited for proving a = a div b * b+ a mod b
but not x = 19 x (z div 19) + 4. Substituting it with by arith enables the theorem prover to
successfully verify © = 19 * (z div 19) + 4. Hence, in certain instances, LLM might formulate
correct conjectures but employ inappropriate tools, resulting in unsuccessful proof attempts. To
address this, Tool Correction leverages predefined tools to enhance the success rate.
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Algorithm 2 Pseudocode of Conjecture Correction in a Python-like style.

#round_count: the current round number
#prompt_sample: the prompt and proposed question
#previous_response: previous formal proof
#error_info: error information from Isabelle
input=[{"role": "system", "content": "You are an expert in \
Mathematical Proof and Isabelle Proof Assistant. Follow the given \
examples and complete the proof with Isabelle Proof Assistant"},
{"role": "user", "content": prompt_sample}]
if round_count%$5!=0: #If Falase, the initial round.
#Otherwise, then the Refinement round.
#Refinement Rround
input.append ({"role": "assistant", "content": previous_respon})
input.append ({"role": "user", "content": " (*The last proof has the \
following errors from Isabelle Prover. Therefore,\n 1) Please Follow \
the Above Prompt;\n\n 2) And Utilize the Following Errors to redo \
the last formal proof.\n {}.\n\nx)\n\n \
proof —-\n".format (error_info) })
json_obj = openai.ChatCompletion.create (messages=input)

The Tool Correction approach entails the validation of a given tactic ¢ using Isabelle. If validation
succeeds, we proceed; if not, Tool Correction intervenes to modify the tactic. Specifically, when a
tactic is equal to “.” or commencing with “by”” or “sledgehammer” but the tactic fails, we attempt
the application of ¢;,,;. This t:,,; can be either: 1) “sledgehammer” or; 2) by tool with tool
belonging to the set (auto, simp, blast, fastforce, force, eval, presburger, sos,

arith, linarith, auto simp: field simps).

By integrating Tool Correction, we systematically explore the applicability of “sledgehammer” and
11 heuristic tools. If any of these successfully pass the theorem prover, we progress to the subsequent
tactics. However, if proof still fails to prove the tactic after trying all ¢,,,; fail, the overall proof
attempt is deemed unsuccessful.

3.3 CONJECTURE CORRECTION

For Conjecture Correction, we design a framework that can easily integrate previous formal sketches
and error messages from the prover to improve sketch generation. LLMs, particularly GPT-4, can
leverage prior responses or contextual cues for improved output. Nonetheless, integrating feedback
into mathematical proving remains a challenge. This stems from two primary factors: 1) diverse
theorem provers employ distinct syntax, complicating the design of varied prompts; 2) often require
an extensive token count, incurring a high computational cost and exceeding model length limits. To
address these limitations, Lyra uses Conjecture Correction, offering a versatile refinement pipeline
that can transform a non-refined framework into a refined one. Compared to the previous refinement
framework, such as Self-Refine (Madaan et al., 2023) or Self-Debug (Chen et al., 2023), the proposed
Conjecture Correction refines generation with instruction, but does not collect paired (generation,
error & refinement) prompts. The details are shown in Algorithm 2.

Initial round generation. In the initial round generation, we follow the same process as DSP, directly
producing informal or formal proofs without prover error messages.

Rectification round. Our approach also involves the use of an LLM (e.g. GPT-4 (Bubeck et al.,
2023)) for rectification. In contrast to the initial round generation, the rectification employs the same
initial prompt as the first round but appends error messages from the prover. As most formal proofs of
our prompts begin with proof -, we add proof - at the end of the instruction so that the LLM
response is formal proof.

Reset initial round generation. Since the rectification round builds upon the first round, the quality
of Conjecture Correction performance is tied to the initial round proof. To ensure that a potentially
subpar initial round proof does not negatively affect subsequent proofs, we regenerate the initial
round proof at interaction rounds K, 2K, 3K and so on, refining its generation in the remaining
rounds. For example, when working with 200 attempts and setting K to 5, Conjecture Correction
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Table 1: Proving success rates on the miniF2F dataset with Isabelle. The table displays the success rates of
previous works and the Lyra, using both human and GPT-4 informal proofs. The highest success rates for each
set are highlighted in bold.

Success rate miniF2F-valid  miniF2F-test
Baselines

Sledgehammer (Paulson, 2010) 9.9% 10.4%
Sledgehammer + heuristics (Jiang et al., 2023) 18.0% 20.9%
Thor (Jiang et al., 2022) 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022) 37.3% 35.2%
Draft, Sketch, and Prove (100 attempts) (Jiang et al., 2023)

Human informal proof 42.6% 39.3%
540B Minerva informal proof 42.6% 38.9%
Subgoal-Learning (100 attempts) (Zhao et al., 2023) 48.0% 45.5%
Lyra (Ours)

GPT-4 informal proof (100 attempts) 52.8% 44.2%
GPT-4 informal proof (200 attempts) 54.9% 47.9%
Human informal proof (100 attempts) 52.0% 47.1%
Human informal proof (200 attempts) 55.3% 51.2%

partitions the 200 attempts into 40 patches. Each patch consists of the first proof derived from DSP,
followed by four subsequent refined proofs that build upon the previous proof and incorporate the
error message provided by the prover.

4 EXPERIMENT

4.1 DATASET

In this study, we assess our approach using the miniF2F dataset (Zheng et al., 2021), which is a
collection of 488 formal mathematical problems derived from high-school competitions and expressed
in three formal languages: Lean (de Moura et al., 2015), HOL-Light (Bansal et al., 2019a), and
Isabelle (Paulson, 1994). The dataset is divided into validation and test sets, each containing 244
problems. These problems are sourced from three distinct categories, with 260 problems extracted
from the MATH dataset (Hendrycks et al., 2021), 160 problems taken from actual high school
mathematical competitions (AMC, AIME, and IMO), and 68 problems specially crafted to mirror the
difficulty level of the aforementioned competitions.

Evaluation. The objective of our study is to generate formal sketches for the problems in the miniF2F
dataset. We consider a proof valid if and only if (a) it does not have any “’cheating” keywords (sorry
and oops) that terminate a proof without completion, and (b) Isabelle must be capable of verifying
the corresponding formal statement with the proof.

Implementation details. In our research, we utilized GPT-4 as the Language Model Model (LLM)
for generating informal drafts and formal sketches. The temperature of GPT-4 was set to 0.7, with
200 attempts. The details of baselines are shown in Appendix.

4.2 MAIN RESULTS

Table 1 presents the distribution of successful formal proofs obtained from the miniF2F dataset using
the interactive theorem prover Isabelle. An examination of the results presented in Table 1 reveals
a conspicuous enhancement in the efficacy of the Sledgehammer automated prover, owing to the
integration of 11 supplementary heuristic tactics (Jiang et al., 2023). Noteworthy achievements are
also realized through deploying the DSP-based methods (DSP and Subgoal), attaining success rates
of 39.3% and 45.5%, respectively on the miniF2F test set.

By harnessing informal proofs generated by GPT-4, our proposed method achieves success rates of
54.9% and 47.9% on the validation and test sets of miniF2F respectively. This performance persists
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Table 2: Ablation results on the miniF2F dataset with Isabelle. There are three important conclusions: 1)
GPT-4 is better than Codex for mathematical proving; 2) Tool Correction can consistently improve performance;
3) Conjecture Correction can improve performance but needs more attempts. Our proposed method degrades
to DSP (Jiang et al., 2023) when without Tool Correction and Conjecture Correction.

Attempt  Formal Proof  Informal Proof TC CC miniF2F-valid miniF2F-test

Codex 540B Minerva X X 42.6% 38.9%
GPT-4 GPT-4 X X 48.3% 38.9%
100 Codex Human X X 42.6% 39.3%
GPT-4 Human X X 47.9% 39.7%
GPT-4 GPT-4 v v 52.8% 44.2%
GPT-4 Human o/ 52.0% 47.1%
GPT-4 GPT-4 X X 49.5% 40.9%
GPT-4 GPT-4 v X 55.3% 45.0%
GPT-4 GPT-4 X v 48.3% 40.9%
200 GPT-4 GPT-4 v v 54.9% 47.9%
GPT-4 Human X X 50.4% 42.6%
GPT-4 Human v X 52.8% 45.9%
GPT-4 Human X v 46.7% 43.0%
GPT-4 Human o/ 55.3% 51.2%

even when the attempt number is set at 100, affirming its robustness. When the attempt number is 100,
compared to 540B Minerva informal proof with DSP, our proposed Lyra improves the performance
on miniF2F validation set from 42.6% to 52.8% and miniF2F test set from 38.9% to 44.2%. This
outcome can be attributed to the Tool Correction and Conjecture Correction.

In instances where human informal proofs are employed, our proposed method demonstrates impres-
sive success rates of 55.3% and 51.2% on the validation and test sets of miniF2F. Comparative analysis
against DSP reveals an improvement of 12.7% and 11.9% on the validation and test sets respectively
for miniF2F. Furthermore, when contrasted with the previous state-of-the-art Subgoal-Learning
model, our approach showcases an advancement of 7.3% and 5.7% on the miniF2F validation and
test sets respectively.

The performance of human informal proofs surpasses that of GPT-4 generated counterparts, especially
on the test set. This substantiates the notion that precision in informal proofs is important for
generating formal sketches.

4.3 ABLATION STUDY

GPT-4 is better than Codex, especially on miniF2F validation dataset.. In the absence of
Tool Correction and Conjecture Correction, our proposed method experiences degradation to DSP.
Referring to Table 2, when considering the informal proof generated by LLM (GPT-4 or 540B
Minerva), GPT-4 is better than Codex (Chen et al., 2021). When compared with the deployment of
Codex for generating formal sketches, GPT-4 demonstrates improvements of 5.3% and 0.4% on the
validation and test subsets of miniF2F, respectively, while utilizing the same attempt number 100 and
human informal proof. This substantiates the notion that GPT-4 indeed enhances performance.

Tool Correction: consistently improve performance. As evident from Table 2 and Figure 2,
the inclusion of Tool Correction yields enhanced performance. Similarly, when assessing GPT-4-
generated informal proofs on the miniF2F test set, Tool Correction elicits improvements of 4.1%
and 7.0% in the absence and presence of Conjecture Correction, respectively. When considering
human informal proofs on the miniF2F test set, Tool Correction showcases enhancements of 3.3%
and 8.2% in scenarios devoid of and accompanied by Conjecture Correction, respectively. Therefore,
regardless of whether the informal sketch is generated by GPT-4 or created manually by a human,
Tool Correction consistently enhances performance and can further benefit from the addition of
Conjecture Correction.

Conjecture Correction: further improves performance, prefers more powerful prover and
requires more attempts to be convergent. The outcomes presented in Table 2 and illustrated
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Figure 2: Number of problems solved on miniF2F against the number of autoformalization attempts per
problem. On miniF2F validation and test set, we have shown the results of Tool Correction (TC) and Conjecture
Correction (CC) on human informal proof and GPT-4 informal proof respectively.

in Figure 2 underscore the efficacy of integrating Conjecture Correction, albeit at the expense of
requiring an increased number of attempts to achieve convergence. When considering human informal
proofs on the miniF2F test set, Conjecture Correction showcases enhancements of 0.4% and 5.3% in
scenarios devoid of and accompanied by Tool Correction, respectively. This suggests that Conjecture
Correction improves proof quality, but needs a more powerful prover (e.g. with Tool Correction) to
fill the formal gaps. Conjecture Correction needs more attempts to be convergent because Conjecture
Correction modifies the initial proof to generate subsequent proofs, which strongly hinges on the
quality of the initial proof. Specifically, Conjecture Correction partitions the pool of 200 attempts
into 40 patches, wherein the first proof originates from DSP, and the subsequent four are based on
the initial proof. Furthermore, it’s worth noting that, in theory, any problems solvable through DSP
remain solvable using our approach, as DSP is equivalent to our initial proof generation without 7oo!
Correction.

Attempt number: Lyra benefits more with attempt number increment. In the absence of 7Tool
Correction and Conjecture Correction, our proposed method reduces to DSP. Within the validation
set with human informal proofs, when the number of attempts is escalated from 100 to 200 (shown
in Table 2), the performance of DSP experiences a gain from 47.9% to 50.4%, achieving a 2.5%
improvement. Conversely, our proposed approach exhibits a performance improvement from 52.0%
to 55.3%, reflecting a more substantial 3.3% enhancement. For the test set, DSP’s performance
improves from 39.7% to 42.6%, marking a 2.9% increment. In contrast, our method demonstrates
an increment from 47.1% to 51.2%, indicating a more 4.1% boost. This divergence implies that
our proposed approach effectively surpasses the performance limitations of DSP, highlighting the
potential efficacy of expanding the attempt number to further enhance performance differences.

4.4 CASE STUDY

We solve another IMO problem IMO_1959 p1l with GPT-4 informal proof, which is also solved
via DSP with 540B Minerva. Furthermore, to present the effectiveness of our method, we provide
a formal sketch of an IMO problem named IMO_1974 _p5 that remains unproven by earlier state-
of-the-art methods. As demonstrated in Figure 3, our Lyra successfully proves IMO_1974_p5 with
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Statement: Determine all possible values of S =

a+%+d + a+z+c + b+z+d + a+§+d where a, b, ¢, d, are arbitrary positive numbers.
Informal Proof (Human): b " b "

_ _a @ a @
Notethat2 = 223 + o35 + cxa + chd > 5> afbterd T atbtord T atbicrd T afbrert
that S can reach any range in between 1 and 2.
Choose any positive number a. For some variables such that k, m,l > Oandk + m + 1 = 1,letb = ak,c = am, and d = al. Plugging
this back into the original fraction, we get S =

7= 1. We will now prove

a ak am al — 1 k
a+ak+al + at+ak+tam + ak+am-+al + at+am—+tal — 1+k+1 + 1+k+m +
1 + % +m + ﬁ Note that S is a continuous function

7k+:71+l + ﬁ The above equation can be further simplified to S =

2—m
and that f(m) = m + 2—1m is a strictly increasing function. We can now decrease k and ! to make m tend arbitrarily close to 1. We see
lim,, 51 m 4+ 52— =2, meaning S can be brought arbitrarily close to 2. Now, set a = d = x and b = ¢ = y for some positive real numbers

2—m
2 2
x,y. Then S = e L 2Y = %ME Notice that if we treat the numerator and denominator each as a quadratic in y, we will get
2z+y 2y+ax 2y2+4+5zy+2a

g(x) . fo T g(x) _ .
1+ 252 5wy 1202 where g () has a degree lower than 2. This means taking limy — oo 1 + 292 50y to02 = 1, which means S can be

brought arbitrarily close to 1. Therefore, we are done.

Formal Proof:

theorem imo_1974_p5:
fixesabcds :: real
assumes "a>0" "b>0" "c>0" "d>0"
assumes h0 : "s=a/(atb+d) + b/ (atbtc) + c/ (btctd) + d/ (atc+d) "
shows "1<s \<and> s<2"
proof -
(* Let's correct the proof. x)
(* Define the sum S *)
let ?S = "a/(atb+d) + b/ (atbtc) + c/ (btctd) + d/ (atc+d) "
(* Show that S > 1 x)
have "a/ (atbtctd) + b/ (atbtctd) + ¢/ (atbtctd) + d/ (atbtctd) = 1"
using assms by (simp add: divide_simps) [ATPWithTC]
moreover have "?S > a/(atbtctd) + b/ (atbtctd) + c/ (atbtctd) + d/ (atbtctd) "
proof —
have "a/ (atbtd) > a/ (atbtctd)" "b/ (atbtc) > b/ (atbtctd) "
"c/ (btctd) > ¢/ (atbtctd) " "d/ (atctd) > d/ (atbtctd) "
using assms by (simp_all add: divide_strict_right_mono) [ATPWithTC]
then show ?thesis by auto [ATPWithTC)]

qed
ultimately have "1 < ?S" by simp [ATPWithTC]
(* Show that S < 2 x)
have "a/ (atb) + b/ (atb) + c/(ctd) + d/(ctd) = 2"
using assms by (simp add: divide_simps) [ATPWithTC]
moreover have "?S < a/(atb) + b/ (atb) + c/(ctd) + d/ (ctd)"
proof -
have "a/ (atb+d) < a/(atb)" "b/ (atbtc) < b/ (atb)"
"c/ (btctd) < ¢/ (ctd) " "d/ (atctd) < d/ (c+d) "
using assms by (simp_all add: divide strict_right_mono) [ATPWithTC]
then show ?thesis by auto [ATPWithTC]
qed
ultimately have "?S < 2" by simp [ATPWithTC]
(* Conclude the proof x)
then show "1<s \<and> s<2" using assms h0 1 < ?S° by auto [ATPWithTC)]
ged

end

. J

Figure 3: A successful formal proof synthesized with human informal proof. With Tool Correction and
Conjecture Correction, we successfully solve an IMO problem IMO_1974_p5. The steps with the ATPWithTC
delimiters are generated by an automated prover with Tool Correction. We also solve IMO_1959_p1 with GPT-4
informal proof, which is shown in the Appendix.

Tool Correction and Conjecture Correction. We have shown the interaction details of TMO_1974_p5
and IMO_1959_p1 in the Appendix.

5 CONCLUSION

In this paper, we introduced Lyra, a novel pipeline that takes advantage of Tool Correction and
Conjecture Correction. Tool Correction employs prior knowledge to employ predefined tools (e.g.
sledgehammer) to guide incorrect tool replacement. Conjecture Correction, interacting with the
prover environment, integrates previous formal sketch and prover error messages for better sketch
generation. We demonstrated the feasibility and effectiveness of Lyra by reaching state-of-the-art
performance 55.3% and 51.2% on the miniF2F dataset validation and test, respectively, with the
Isabelle theorem prover. Central to our method is the incorporation of prior knowledge and the
development of a comprehensive GPT-4 refinement framework. Our ablations showed that both Tool
Correction and Conjecture Correction are critical to the success of Lyra.
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APPENDIX

A BASELINE

To evaluate the effectiveness of our proposed methodology, we employed several baseline methods,
which follow previous work setting (Jiang et al., 2023; Zhao et al., 2023).

Sledgehammer with heuristics The first baseline is Sledgehammer (Paulson, 2010), which a proof
automation tool in the Isabelle environment. Additionally, we utilized Sledgehammer supplemented
with heuristics, which integrates 11 prevalent tactics (i.e., auto, simp, blast, fastforce, force, evapl,
presburger, sos, arith, linarith, auto simp: field simps) with Sledgehammer. If all tactics fail, the
system employs Sledgehammer (Jiang et al., 2023).

Language model based methods Thor (Jiang et al., 2022) combines language models with automatic
theorem provers to hep select premises from a vast library. Thor+expert (Wu et al., 2022) iteration
enhances a neural theorem prover by training it on theorems that have been successfully formalized.
Draft, Sketch, and Prove (DSP) (Jiang et al., 2023) transforms informal proofs into formal sketches
and utilizes these formal sketches to guide an automated prover. Another LLM-based method is
Subgoal-Proof Learning (Zhao et al., 2023), which incorporates subgoal proof to replace informal
proof and proposes a prompt selection framework.

Following previous work (Jiang et al., 2023; Zhao et al., 2023), we excluded representative methods
such as HyperTree Proof Search (HTPS) (Lample et al., 2022) and GPT-f with expert iteration (Polu
et al., 2023), which are implemented using Lean de Moura et al. (2015), a different interactive
theorem prover. The disparity in tactics and automation between Lean and Isabelle renders them not
directly comparable to our method.

B NUMBER OF FIXED WRONG STEPS BY TOOL CORRECTION

To prove the effectiveness of Tool Correction, we calculate how many fixed wrong steps by Tool
Correction, compared to baseline sledgehammer + heuristics.

Table 3: The number of wrong fixed steps by Tool Correction.

Dataset Sledehammer+heuristics ~ Tool Correction ~ Number of Fixed Wrong Steps
miniF2F-valid 2260 3486 1226
miniF2F-test 2594 3887 1293

Proof comes from: the miniF2F validation set (pass rate 55.3%) and test set result (pass rate 51.2%),
with GPT-4, human informal proof, Conjecture Correction and Tool Correction. The definition of
proof step: a proof step is regarded as a tactic. Calculation protocol: if sledgehammer+heuristic or
Tool Correction fails to validate the current tactic, then the current proving process will be terminated
and we will turn to the next formal proof validation. Finally, we calculate how many correct
tactics/proof steps. On miniF2F-valid, sledgehammer+heuristics can help the prover successfully
pass 2260 steps. After adding Tool Correction, the number increases to 3486 steps. Therefore, Tool
Correction fixes 1226 wrong steps. On miniF2F-test, Tool Correction fixes 1293 wrong steps.

C RELATION BETWEEN PERFORMANCE AND THE TIME LIMIT

Given a time limit, the performance of Lyra is related to whether allowing parallel process. If allows
the parallel process, then we can keep the performance (55.3% on validation and 51.2% on test), if the
time limit is larger or equal to 10 minutes. For the relationship between time limit and performance,
we can refer to Figure 2 on Page 8, which presents the relationship between the number of attempts
and the performance. One attempt takes 2 minutes, if not allow the parallel process.

Usually, it takes about 1 to 2 minutes to finish one attempt (we take 2 min/attempt here), where each
problem is allowed to try 200 attempts(a total of 400 minutes), in our setting. For DSP, the 200
attempts can be processed in parallel. Hence, if allowing the parallel process, the maximum time cost
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Table 4: The relation between performance and time limit.

Parallel Process Time Limit Method Time Cost miniF2F-valid miniF2F-test

X 10 mins DSP 10 mins 32.7% 25.4%
X 10 mins Lyra 10 mins 33.6% 28.6%
X 30 mins DSP 30 mins 40.1% 31.5%
X 30 mins Lyra 30 mins 40.1% 36.0%
X 400 mins DSP 400 mins 50.4% 42.6%
X 400 mins Lyra 400 mins 55.3% 51.2%
X 600 mins DSP 400 mins 50.4% 42.6%
X 600 mins Lyra 400 mins 55.3% 51.2%
v 10 mins DSP 2 mins 50.4% 42.6%
v 10 mins Lyra 10 mins 55.3% 51.2%
v 10 mins DSP 2 mins 50.4% 42.6%
v 10 mins Lyra 10 mins 55.3% 51.2%

is 2 minutes. For Lyra, these 200 attempts are divided into 40 patches, where each patch contains
five attempts. The 40 patches can be processed in parallel. Hence, if allowing the parallel process,
the maximum time cost is 10 minutes. If not allowing the parallel process, when the time limit is
10 mins, Lyra achieves 33.6% miniF2F-validation and 28.6% miniF2F-test. And if not allow the
parallel process, when the time limit is 30 mins, Lyra achieves 40.1% miniF2F-validation and 36.0%
miniF2F-test.

D WHY THE INFORMAL PROOF AND THE FORMAL SKETCH ARE ACTUALLY
QUITE DIFFERENT

The informal proof is a guide to formal proof, and it is not necessary that the informal proof steps
and formal proof steps are one-to-one. The following two QAs may help better understand the
explanation.

Why Informal proof and the formal sketch are quite different? Reason: The informal proof is a guide
to formal proof generation. According to the original DSP paper, the informal proof only needs to be
useful for producing a sketch in the next stage.

Why the formal one does not cover continuity or limit? Reason: Actually, the formal one covers the
limit. For example, the formal proof has shown that ultimately have 1 < ?S” by simp [ATPWithTC]”,
which covers the limit. The limit is proved via the ATP and Tool Correction.

E HYPOTHESES FOR WHY THE LLMS ARE EVEN ABLE TO UNDERSTAND
ISABELLE ERROR MESSAGES

There are two hypotheses for why the LLMs are even able to understand Isabelle error messages.

Let’s start from an easy point: the LLMs can understand English and Isabelle syntax. LLMs can
understand English, which is approved by OpenAl. Therefore, this conclusion is obvious. Also, LLMs
can understand Isabelle syntex. There are publicly available Isabelle proof corpus. For example, The
entire AFP library, the largest formal library that contains most of Isabelle proofs, is 180MB in size
(Wu et al., 2022). LLMs can understand Isabelle’s syntax, and this is proved by previous works (Wu
et al., 2022; Jiang et al., 2022; 2023; Zhao et al., 2023).

Hypothesis 1: The publicly available Isabelle proof corpus also has examples of error messages.
The training dataset of GPT-3 (Brown et al., 2020) contains Common Crawl datasets (Raffel et al.,
2020), which contain Stackflow. On the Stackflow, we find examples of error messages. Example 1:

15



Under review as a conference paper at ICLR 2024

Failed to apply initial proof method: using this: [ ] € ns_public goal (1 subgoal): 1. V A B X. Says A
B X ¢ set_of list [ ]. Example 2: Failed to apply proof method: using this: (y, x) € * (z, y) € r goal
(1 subgoal): 1. (z, x) € r*. Example 3: Failed to apply initial proof method: using this: n <an <b
goal (1 subgoal): 1. n * n <a * b. Therefore, the publicly available Isabelle proof corpus may also
have examples of error messages.

Hypothesis 2: the LLLMs may understand Isabelle’s error message if they understand English
and Isabelle’s syntax, but do not have to see Isabelle’s error messages before. First, we show
what Isabelle’s error messages look like. The error message is written in English, such as “Failed to
apply proof method using this: 0 <y goal (1 subgoal): 1. 9 * (x * sinXx) +4/(x *sin x) =(9 * (x *
sin x)<Sup>2 +4) / (x * sin x) At command “by” “. According to the error message, we can find that
the error message only contains English words and Isabelle syntax (such as <Sup>). Therefore, to
understand Isabelle’s error message, the proposed LLM may not need to see Isabelle’s error message
before, but just has to understand English and Isabelle’s syntax.

F TooL CORRECTION GENERALIZATION

We discuss the Tool Correction generalization in this section.

F.1 ADDITIONAL EXPERIMENT

To prove the generalization of Tool Correction, we combine DT-Solver (Wang et al., 2023b) with
Tool Correction on PISA dataset (Jiang et al., 2021).

* Why not apply Lyra on the PISA dataset? Similarly to the experiment setting of DSP and
Sub-goal learning, the Lyra needs informal information, such as informal problem and
informal proof. To the best of our knowledge, only miniF2F has a Isabelle dataset that has
informal information, while PISA does not.

* Why choose DT-Solver? We used to reproduce the results of DT-Solver so that the experi-
ment can be finished before the rebuttal deadline. messages to refine proof.

* Why We choose the PISA dataset? It is used to evaluate previous famous works, such as
Lisa (Jiang et al., 2021), Thor (Jiang et al., 2022) and Thor + expert iteration (Wu et al.,
2022).

Table 5: The experiment result of DT-Solver with Tool Correction on PISA dataset.

Dataset DT-Solver DT-Solver + sledgehammer+heuristics =~ DT-Solver + Tool Correction
PISA 37.0% 37.0% 552%

According to the experiment results, we can observe that

* Tool Correction significantly improves the performance, from 37.0 to 55.2%. This proves
that Tool Correction is also useful for other datasets, such as the PISA dataset.

* The sledgehammer-+heuristics does not work well for DT-Solver on the PISA dataset,
because DT-Solver hardly uses sledgehammer tactics, while sledgehammer+heuristics only
works when the given tactics is sledgehammer.

* We believe the above experiment can prove that TC is also useful for other datasets but not
limited to miniF2F, even for different models. Meanwhile, TC is a plug-in-plug-out module,
which is easily integrated into other methods.

F.2 TooL CORRECTION TELLS US SOMETHING FUNDAMENTAL ABOUT THE NATURE OF
MATHEMATICAL PROOFS

Tool Correction tells us something fundamental about the nature of mathematical proofs: try as many

proving tools as we can, so that we can improve the performance by reducing the occurrence of “the
conjecture is correct, but the proving tools fail to prove the conjecture”.
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Why does the simple strategy used by TC, i.e., iteratively replacing the tactics in a failed proof with
one of the 11 tactics from the tool heuristics set, work?

* Recall when can we successfully prove a conjecture
— The conjecture should be correct, and the proving tools (such as a sledgehammer) can
prove the conjecture.

* Recall when we fail to prove a conjecture: the proving tools fail to prove the conjecture.
— Situation 1: The conjecture is incorrect.

— Situation 2: Or, the correction is correct, but the proving tool is not correct so the
proving tool cannot prove the conjecture.

* Why Observation: prover (such as Isabelle or Lean) fails to validate a formal proof, which
may caused by “the conjecture is correct, but the proving tools fail to prove the conjecture”.
The following is an example.

— Conjecture: 1*1=1

— If the proving tool can not process multiplication operation, then it will fail to prove
the conjecture 1*1=1, though the conjecture is correct.

* Therefore, to improve the performance, we can reduce the occurrence of “the conjecture is
correct, but the proving tools fail to prove the conjecture”
— One solution is Tool Correction: try as many proving tools as we can to prove the
conjecture.

F.3 OTHER POTENTIAL TACTICS BESIDES THE SLEDGEHAMMER + 11 TACTICS

To improve the effectiveness of TC, we can easily add tactics, including by clarify, by fact,
by rule,by erule,by elim, by induction,by algebra and so on.

According to the DSP paper, the 11 tactics can be used to process algebra and number theory problems.
And the tactics also have their own advantages and disadvantages. For example, it seems that by
simp is not very good at processing natural numbers, as shown in Figure 1 in our paper.

As introduced in the DSP paper, the Sledgehammer (Paulson, 2010) is relatively special, as it works
by flattening the goals encoded in the higher-order logic used by Isabelle/HOL into other logics (e.g.,
first-order logic) which can then be fed into automated theorem provers. The development of proving
tools is also an important direction of automated theorem proving. Recently, there has been a work
named Magnushammer Mikuta et al. (2023), which is more powerful than Sledgehammer.
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G IMO 1974 p5 CASE

Statement: Determine all possible values of S =
are arbitrary positive numbers.

a b @ d
arbrd T amore T 55exad T axeora Wherea, b, ¢, d,

Informal Proof (Human):

— b d b d _

Note t.hat 2= aL+b + atb + ct+d + +d = S > a+bic+d + atbtctd + a+bJCrc+d + atbtctd — 1
We will now prove that S can reach any range in between 1 and 2

Choose any positive number a. For some variables such that k,m,l > Oand k + m + 1 = 1,

letb = ak, c = am, and d = al. Pluggmg this back into the 0r1g1na1 fractlon we get S =
k 3

a+a7c+al + a+a7c+am + ak+‘;’:”n+al + a+am+al - 1+k+l + 1+k+m + k+m+l + 1+m+l The above

= & 2 ; +m + 5. Note that S is a continuous

equation can be further s1mp11ﬁed to S =
function and that f(m) = m + 5=—isa strlctly 1ncreas1ng functlon We can now decrease k and

I to make m tend arbitrarily close to 1. We see limp,—1m + m = 2, meaning S can be brought
arbitrarily close to 2. Now seta = d = x and b = ¢ = y for some positive real numbers x, y. Then

_ _ 2¢y%48ay42a?
S = 2z +y + 2y H = 2%t 5oy taa? Notice that if we treat the numerator and denominator each as a

quadratic in y, we will get 1 +

m, where g(z) has a degree lower than 2. This means taking

> = 1, which means S can be brought arbitrarily close to 1. Therefore, we

g(x)
hmy%‘” I+ 2y2+5xy+2x

are done.

Formal Proof:

theorem imo 1974 pb5:
fixesabcds :: real
assm‘es "a>0" "b>o" "C>O" "d>o"
assumes h0 : "s=a/ (atbt+d) + b/ (atbtc) + c/ (botc+d) + d/ (atct+d)"
shows "1<s \<and> s<2"
proof -
let ?2S = "a/ (atbt+d) + b/ (atbtc) + c/ (btctd) + d/ (atc+d) "
have c0: "a/ (at+b)+b/ (atb) +c/ (c+d) +d/ (c+d) = 2" using assms by auto [ATPWithTC]
have cl: "a/ (atbtctd) +b/ (atbt+ctd) +c/ (atbtctd) +d/ (atbt+ctd) = 1" using assms by
auto [ATPWithTC]
have "1 < ?S" using assms by (simp add: add_pos_pos cl) [ATPWithTC]
moreover have "?S < 2" using assms by (simp add: add pos_pos c0) [ATPWithTC]
then show "1<s \<and> s<2" using assms h0 by auto [ATPWithTC]
ged

Figure 4: I1MO_1974 p5: first round.
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Statement: Determine all possible values of S = where a, b, ¢, d,

are arbitrary positive numbers.

a b c d
a-+b+d + a-+b+c + b+c+d + a+c+d

Informal Proof (Human):

_ a b c d a b c d
Note t.hat 2= taptaateaa >’ > atbtord T atbterd | atbterd T atbtotd
We will now prove that S can reach any range in between 1 and 2.
Choose any positive number a. For some variables such that k,m,l > Oand kK + m + 1 = 1,
letb = ak, c = am, and d = al. Plugglng this back into the orlglnal fractlon we get S =

=1.

a ak am —
a+ak+al + a+ak+am + ak+am-+al + a+am+al - 1+k+l + 1+k+m + k:+m+l + 1+m+l The above
equation can be further 51mp11ﬁed 0SS = 5= + 3 e ; +m+ # Note that S is a continuous

function and that f(m) = m + ﬁ is a strlctly 1ncreasmg functlon. We can now decrease k£ and
l to make m tend arbitrarily close to 1. We see lim,,—,1 m + ﬁ = 2, meaning S can be brought
arbitrarily close to 2. Now, set a = d = x and b = ¢ = y for some positive real numbers x, y. Then

_ 2y _ 2y°+8zy+20° : : :
S = 29@ +y + 57 = 3a%isariaa? Notice that if we treat the numerator and denominator each as a

quadratic in y, we will get 1 + %, where g(z) has a degree lower than 2. This means taking

limy oo 1+ M% = 1, which means S can be brought arbitrarily close to 1. Therefore, we

are done.

Formal Proof:
theorem imo_1974_pb5:

fixes ab cds :: real
ass‘ms lla>0" llb>0ll ll<->oll lld>o"
assumes h0 : "s=a/ (atbt+d) + b/ (atbtc) + c/ (botctd) + d/ (atc+d)"
shows "1<s \<and> s<2"
proof —

let ?S = "a/(atb+d) + b/ (atbtc) + c/ (btctd) + d/ (atc+d)"

(* Let's show that S > 1 x)
have cl: "a/ (atbtctd) + b/ (atbtctd) + ¢/ (atbtctd) + d/ (atbtctd) = 1"
using assms by (simp add: divide simps)
have "1 < 23"
proof -
note add_strict_mono[of aab d, cf bacb, of cbdc, of da c d]
then have "a/ (atb+d) > a/ (atbtct+d)" "b/ (atbt+c) > b/ (atbt+c+d)"
"o/ (lotctd) > ¢/ (atbtctd)" "d/ (atctd) > d/ (atbt+ctd) "
using assms by (simp _all add: divide strict_right_mono) [ATPWithTC]
then show "1 < ?S" using cl by auto [ATPWithTC]

ged

(* Let's show that S < 2 *)
have c2: "a/(atb) + b/ (atb) + c/(ctd) + d/ (ctd) = 2"
using assms by (simp add: divide simps) [ATPWithTC]
have "?S < 2"
proof -
note add_strict_mono[of aab 0, cf baOc, ocf c0db, of da 0 c]
then have "a/ (atbtd) < a/(atb)" "b/ (atb+c) < b/ (atb)"
"o/ (btctd) < ¢/ (ctd)" "d/ (atc+d) < d/ (c+d)"
using assms by (simp_all add: divide strict_right_mono) [ATPWithTC]
then show "?S < 2" using c2 by auto [ATPWithTC]
ged

then show "1<s \<and> s<2" using assms hO "1 < ?S° by auto [ATPWithTC]
gqed

Figure 5: 1M0.1974_p5: second round.
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Statement: Determine all possible values of S = where a, b, ¢, d,

are arbitrary positive numbers.

a b c d
a-+b+d + a-+b+c + b+c+d + a+c+d

Informal Proof (Human):

_ b d b d
Notethat 2 = %5 + 5 + fa + 6ia > 5> optera t aipiera T atbiora T atbiera
We will now prove that S can reach any range in between 1 and 2.
Choose any positive number a. For some variables such that k,m,l > Oand kK + m + 1 = 1,
let b = ak, ¢c = am, and d al. Plugglng this back into the orlglnal fractlon we get S =

a ak

a+ak+al + a+ak+am + ak+am+al + a+am+al - 1+k+l + 1+k+m + k:+m+l + 1+m+l The above
equation can be further 51mp11ﬁed to S = 2_1m I 5 e ; +m+ # Note that S is a continuous
function and that f(m) = m + 5= is a strictly i 1ncreasmg functlon We can now decrease k£ and
{ to make m tend arbitrarily close to 1. We see lim,, .1 m + 27m = 2, meaning S can be brought
arbitrarily close to 2. Now, set a = d = x and b = ¢ = y for some positive real numbers x, y. Then

Sf

=1.

2y _ 2y*+8zy+22? . . .
+ 5505 = 397 say1a.2 - Notice that if we treat the numerator and denominator each as a

2x+y

quadratic in y, we will get 1 + %, where g(z) has a degree lower than 2. This means taking
limy oo 1+ M% = 1, which means S can be brought arbitrarily close to 1. Therefore, we

are done.

Formal Proof:
(*statement beginx)
theorem imo_1974_p5:
fixes ab cds :: real
assmes "a>0" "b>o" "DO" "d>o"
assumes h0 : "s=a/ (atbt+d) + b/ (atbtc) + c/ (btc+d) + d/ (atct+d)"
shows "1<s \<and> s<2"
(*statement endx)
proof —
(* Let's correct the proof. x*)
(» Define the sum S *)
let 2S = "a/(atb+d) + b/ (atbt+c) + c/ (b+ct+d) + d/ (atctd) "
(* Show that S > 1 *)
have "a/ (atbtctd) + b/ (atb+ctd) + c/ (atbtctd) + d/ (atb+ct+d) = 1"
using assms by (simp add: divide_simps) [ATPWithTC]
moreover have "?S > a/ (atbtctd) + b/ (atbt+ctd) + c/ (atbtctd) + d/ (atbt+ctd)"
proof -
have "a/ (atbtd) > a/ (atbtctd)" "b/ (atbtc) > b/ (atbtctd) "
"o/ (btctd) > ¢/ (atbtctd) " "d/ (atctd) > d/ (atbtc+d) "
using assms by (simp _all add: divide strict_right_mono) [ATPWithTC)]
then show ?thesis by auto [ATPWithTC]
ged
ultimately have "1 < ?S" by simp [ATPWithTC]
(* Show that S < 2 x)
have "a/ (atb) + b/ (ath) + c/(c+d) + d/ (c+td) = 2"
using assms by (simp add: divide simps) [ATPWithTC]
moreover have "?S < a/(atb) + b/ (atb) + ¢/ (ctd) + d/ (c+d)"
proof —
have "a/ (atbt+d) < a/ (atb)" "b/ (atb+c) < b/ (atb)"
"o/ (btctd) < ¢/ (c+d)" "d/ (atctd) < d/ (c+d)"
using assms by (simp_all add: divide strict_right_mono) [ATPWithTC]
then show ?thesis by auto [ATPWithTC)]
qed
ultimately have "?S < 2" by simp [ATPWithTC]
(* Conclude the proof *)
then show "1<s \<and> s<2" using assms hO "1 < ?S° by auto [ATPWithTC]
gqed
end

Figure 6: IMO_1974_p5: Third round.
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H

IMO 1959 p1 CASE

Statement: Prove that the fraction ﬂgig is irreducible for every natural number n.

Informal Proof (GPT-4): We can use the Euclidean algorithm to prove this. If the greatest common
divisor (gcd) of the numerator and the denominator is 1, then the fraction is irreducible.

Let’s find the gcd of 21n + 4 and 14n + 3.

We start by subtracting the smaller number from the larger one. We get: (21n+4)—(14n+3) = Tn+1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n +3) — (Tn+ 1) = Tn + 2.

Now, we subtract 7Tn + 1 from 7n + 2. We get: (Tn+2) — (Tn+1) = 1.

Since the greatest common divisor of 21n -+ 4 and 14n + 3 is 1, the fraction ﬂgig is irreducible for

every natural number n.

Formal Proof:
theorem imo 1959 pl:

fixes n :: nat
shows "gcd (21xn + 4) (14*n + 3) = 1"
proof —

(*» Let's find the gcd of 21n +4 and 14n + 3. *)
have hl: "gcd (21xn + 4) (14xn + 3) = gcd ((21+n + 4) — (14*n + 3)) (14*n + 3)"
by (metis add diff inverse nat gcd diffl nat le add2 nat_le linear) [
ATPWithTC)
(* We start by subtracting the smaller number from the larger one.
We get: (2In+4) — (14n+3) =Tn+ 1. *)
also have "... = gcd (7+n + 1) (14*n + 3)" by simp [ATPWithTC]
(* Next, we subtract 7n + 1 from 14n + 3. We get: (14n+3) — (Tn+1) =Tn + 2.
*)

also have "... = gcd (7+n + 1) (7+n + 2)"
by (metis add diff inverse nat gcd diffl nat le add2 nat_le linear) [
ATPWithTC)
(* Now, we subtract Tn+ 1 from 7Tn+2. We get: (Tn+2) — (Tn+1)=1. %)
also have "... = gcd (7#n + 1) 1" by simp [ATPWithTC]

(* Since 1 is the greatest cammon divisor of any number,
we find that ged (7*n + 1) 1 = 1. %)
finally show ?thesis by simp [ATPWithTC)]

gqed

Figure 7: 1M0O_1959.pl: first round.
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Statement: Prove that the fraction ﬂZig is irreducible for every natural number n.

Informal Proof (GPT-4):
We can use the Euclidean algorithm to prove this. If the greatest common divisor (gcd) of the numerator

and the denominator is 1, then the fraction is irreducible.

Let’s find the gcd of 21n + 4 and 14n + 3.

We start by subtracting the smaller number from the larger one. We get: (21n+4)—(14n+3) = Tn+1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n +3) — (Tn+ 1) = Tn + 2.

Now, we subtract 7Tn + 1 from 7n + 2. We get: (Tn+2) — (Tn+1) = 1.

Since the greatest common divisor of 21n 4 4 and 14n + 3 is 1, the fraction ﬂZig is irreducible for

every natural number n.

Formal Proof:
theorem imo 1959 pl:

fixes n :: nat
shows "gcd (21x*n + 4) (14xn + 3) = 1"
proof —

(* Let's find the gcd of 21n + 4 and 14n + 3. *)
have hl: "gcd (21xn + 4) (14xn + 3) = gcd (14*n + 3) ((21xn + 4) mod (14»n + 3)
)"
using gcd_red nat by blast [ATPWithTC]
(* We compute modulo operation and get: (21n + 4)mod(14n+3) = Tn+ 1 *)

also have "... = gcd (14*n + 3) (7*n + 1)"
by (smt add.right_neutral add Suc_right add lessDl gcd.commute mult_2
mult_Suc
mult_less cancell mult_numeral 1 numeral BitO numeral Bitl numeral eq iff
semiring norm(76) semiring norm(78) semiring_norm(8)) [ATPWithTC]
(* Then we again compute the GCD with the modulo operation. *)
also have "... = gcd (7*n + 1) ((14xn + 3) mod (7+n + 1))"

using gcd_red nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (14n + 3)mod(Tn+ 1) =n+2. *)
alsohave "... = gcd (7*n + 1) (n + 2)"
by (smt add_2_eq Suc add_lessD1l gcd.commute mult_2 mult_Suc mult_less_cancell
semiring norm(76) semiring norm(78) semiring_norm(8)) [ATPWithTC]
(* Then we again compute the GCD with the modulo operation. *)
alsohave "... =gcd (n + 2) ((7n + 1) mod (n + 2))"
using gcd_red nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (7n + 1)mod(n +2) =1. *)
alsohave "... =gcd (n + 2) 1"
by (smt add.commute add lessDl gcd.commute mult_less_cancell
semiring norm(76) semiring norm(78) semiring_norm(8)) [ATPWithTC]
(* gcd of any number with 1 is 1. *)

also have "... = 1" by simp [ATPWithTC]
finally show ?thesis . [ATPWithTC]
ged

Figure 8: I1MO.1959.pl: second round.

22



Under review as a conference paper at ICLR 2024

Statement: Prove that the fraction ﬂZig is irreducible for every natural number n.

Informal Proof (GPT-4):
We can use the Euclidean algorithm to prove this. If the greatest common divisor (gcd) of the numerator

and the denominator is 1, then the fraction is irreducible.

Let’s find the gcd of 21n + 4 and 14n + 3.

We start by subtracting the smaller number from the larger one. We get: (21n+4)—(14n+3) = Tn+1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n +3) — (Tn+ 1) = Tn + 2.

Now, we subtract 7Tn + 1 from 7n + 2. We get: (Tn+2) — (Tn+1) = 1.

Since the greatest common divisor of 21n + 4 and 14n + 3 is 1, the fraction ﬂZig is irreducible for

every natural number n.

Formal Proof:
theorem imo 1959 pl:

fixes n :: nat

shows "gcd (21xn + 4) (14xn + 3) = 1"
theorem imo 1959 pl:

fixes n :: nat
shows "gcd (21+n + 4) (14%n + 3) = 1"
proof —

(* Let's find the gcd of 21n + 4 and 14n + 3. *)
have hl: "gcd (21+n + 4) (14#n + 3) = gcd (14*n + 3) ((21*n + 4) mod (14xn + 3)
) n
using gcd_red nat by blast [ATPWithTC]
(* We compute modulo operation and get: (21n + 4)mod(ldn+3) = Tn+1 *)
also have "... = gcd (14*n + 3) (7+n + 1)"
by (simp add: mod_simps) [ATPWithTC]
(* Then we again compute the GCD with the modulo operation. *)
also have "... = gcd (7*n + 1) ((14xn + 3) mod (7+n + 1))"
using gcd_red nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (14n + 3)mod(Tn+ 1) =n+2. *)
alsohave "... = gcd (7+n + 1) (n + 2)"
by (simp add: mod_simps) [ATPWithTC]
(* Then we again compute the GCD with the modulo operation. *)
alsohave "... =gcd (n + 2) ((7*n + 1) mod (n + 2))"
using gcd_red nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (7n + 1)mod(n +2) =1. *)
alsohave "... = gcd (n + 2) 1"
by (simp add: mod_simps) [ATPWithTC]
(* gcd of any number with 1 is 1. *)

also have "... = 1" by simp [ATPWithTC]
finally show ?thesis . [ATPWithTC]
gqed

Figure 9: IMO_1959 pl: third round.
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21n+4

Statement: Prove that the fraction {77 =

is irreducible for every natural number n.

Informal Proof (GPT-4):

We can use the Euclidean algorithm to prove this. If the greatest common divisor (gcd) of the numerator
and the denominator is 1, then the fraction is irreducible.

Let’s find the gcd of 21n + 4 and 14n + 3.

We start by subtracting the smaller number from the larger one. We get: (21n+4)—(14n+3) = Tn+1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n +3) — (Tn+ 1) = Tn + 2.

Now, we subtract 7Tn + 1 from 7n + 2. We get: (Tn+2) — (Tn+1) = 1.
Since the greatest common divisor of 21n 4 4 and 14n + 3 is 1, the fraction
every natural number n.

21n+4

Tinis I8 irreducible for

Formal Proof:
theorem imo 1959 pl:

fixes n :: nat
shows "gcd (21x*n + 4) (14xn + 3) = 1"
proof —

(* We can use the Euclidean algorithm to prove this. x)
(» If the greatest common divisor (gcd) of the numerator and the denominator is
1,
then the fraction is irreducible. *)
have hl: "gcd (21+n + 4) (14#n + 3) = gcd (14*n + 3) ((21*n + 4) mod (14xn + 3)
)ll
using gcd_red nat by blast [ATPWithTC]
(* We start by subtracting the smaller number from the larger one. x)
also have "... = gcd (14*n + 3) ((21 — 14)*n + (4 — 3))"
using mod_if by auto [ATPWithTC]
(x We get: (2In+4) — (1dn+3)=Tn+ 1. *)
also have "... = gcd (14»n + 3) (7*n + 1)"
by simp [ATPWithTC)]
(* Next, we subtract 7n + 1 from 14n + 3. *)
also have "... = gcd (7*n + 1) ((14%n + 3) mod (7xn + 1))"
using gcd_red nat by blast [ATPWithTC]
(x We get: (14n+3)— (Tn+1)=Tn+2. %)

also have "... =gcd (7*n + 1) ((14 — 7)*n + (3 — 1))"
using mod_if by auto [ATPWithTC]
also have "... = gcd (7+n + 1) (7+n + 2)"

by simp [ATPWithTC]
(* Now, we subtract Tn + 1 from Tn + 2. *)
also have "... = gcd (7*n + 2) ((7*n + 1) mod (7+n + 2))"
using gcd red nat by blast [ATPWithTC]
(* We get: (Tn+2)—(Tn+1)=1. %)
also have "... = gcd (7#n + 2) (1)"
using mod_if by auto [ATPWithTC]
(* Since the greatest common divisor of 21n +4 and 14n + 3 is 1, *)
also have "... = 1"
by simp [ATPWithTC]
finally show ?thesis . [ATPWithTC]
ged

Figure 10: 1IMO.1959.pl: fourth round.
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I IMO 1981 p6 CASE

Statement: The function f(x,y) satisfies

M f(0,y) =y+1,

2 f(z+1,0) = f(z,1),

@) fle+1y+1) = f(z, f(z+1,y)),

for all non-negative integers x, y. Determine f(4,1981)

Informal Proof (Human):

We observe that f(1,0) = f(0,1) = 2 and that f(1
induction, f(1,y) = y + 2. Similarly, f(2,0) = f(1,
f(2,y)=2y+3.

We continue with £(3,0) +3 = 8; f(3,y + 1) + 3 = 2(f(3,9) + 3); f(3,y) + 3 = 2¢™>; and
f(4,0)+3=2%; f(4,y) +3 = 27 0¥,

It follows that f(4,1981) = 2> — 3 when there are 1984 2s, Q.E.D.

i_l) = f(1>f(1>y)) = f(lvy) + 1, SOby

'Y
1) =3and f(2,y+1) = f(2,y) + 2, yielding

Formal Proof:

theorem imo_1981_pé6:
fixes f :: "nat \<Rightarrow> nat \<Rightarrow> nat"
assumes "\<forall> y. f 0y =y + 1"
and "\<forall> x. £ (x+1) 0 =£f x 1"
and "\<forall> xy. £ (x +1) (y+1) =fx (f (x+1) y)"
shows "\<forall>y. £ 4 (y +1) =2°(fF 4y + 3) — 3"
(xstatement endx)
proof —

(* We observe that f(1,0) = f(0,1) =2 %)
have "\<forall>y. £ 1y =y + 2"
proof

fix y

show "f 1y =y + 2"
proof (induction y)
case 0
then show ?case using assms(2) [rule_format, of "0"]
by simp ATPWithTC]
next
case (Suc vy)
then show ?case using assms(3) [rule_format, of "0" "y"]
by simp ATPWithTC]
ged

ged
then have fl: "\<forall>y. £ 1y =y + 2"

by simp
(* similarly, f(2,0)= f(1,1)=3 and f(2,y+1) = f(2,y) +2, yielding
F(2,y) =2y +3. %)
have "\<forall>y. f 2 y = 2%y + 3"
proof
fix y
show "f 2 y = 2%y + 3"
proof (induction y)
case 0
then show ?case using assms(2) [rule_format, of "1"]
using f1 by simp ATPWithTC]
next
case (Suc vy)
then show ?case using assms(3) [rule_format, of "1" "y"]
using f1 by simp ATPWithTC]

ged
ged

Figure 11: 1M0_1981.p6: Part 1.
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then have f2: "\<forall>y. f 2 y = 2xy + 3"
by simp [ATPWithTC]
(* We continue with f(3,0)+3=38; f(3,y+1)+3=2(f(3,y)+3);
fB,y)+3=2v" x)
have "\<forall>y. £f 3y + 3 =2"(y + 3)"
proof
fix y
show "f 3y +3=2"(y +3)"
proof (induction y)
case 0
then show ?case using assms(2) [rule_format, of "2"]
using f2 by simp [ATPWithTC]
next
case (Suc vy)
then show ?case using assms(3) [rule_format, of "2" "y"]
using f2 by simp [ATPWithTC]
ged

ged
then have £3: "\<forall>y. £ 3y +3 =2"(y + 3)"
by simp [ATPWithTC]

(* and f(4,0) +3=22"; f(4,y)+3 =2V 4
have "\<forall>y. £ 4 (y+1) =2"(f4y+3) - 3"
proof
fix y
show "f 4 (y+1) =2"(f4y+3) —-3"
proof (induction y)
case 0
then show ?case using assms(2) [rule_format, of "3"]
using £3 by simp [ATPWithTC]
next
case (Suc vy)
then show ?case using assms(3) [rule_format, of "3" "y"]
using £3 by simp [ATPWithTC]
ged
ged

then show ?thesis
by simp [ATPWithTC]
ged

Figure 12: I1MO_.1981.p6: Part 2. This problem is finished with human informal proof and Tool
Correction, but without Conjecture Correction. Actually, if a problem can be solved by only Tool Correction,
then it can be solved via Tool Correction and Conjecture Correction. The Lyra needs more attempts to solve the
IMO_1981_p6, as Conjecture Correction needs more attempts.
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