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Abstract
Large-scale non-convex optimization problems, often involving mixed-integer
variables, arise naturally in domains such as finance and medical imaging. Conven-
tional CPU-based solvers rely on sequential decision-making, which limits their
ability to leverage modern hardware accelerators like GPUs. Motivated by recent
advances in quantum optimization, particularly Quantum Hamiltonian Descent
(QHD), we introduce Quantum-Inspired Hamiltonian Descent (QIHD), a family of
algorithms designed for efficient large-scale optimization on GPU clusters. QIHD
reformulates optimization tasks as classical dynamical systems and exploits mas-
sively parallel GPU simulations to accelerate computation. Despite being classical,
QIHD inherits distinctive QHD-like properties—such as tunneling—and demon-
strates similar empirical behavior. We provide a scalable GPU implementation
in JAX for mixed-integer quadratic programming (MIQP) problems, capable of
handling millions of nonzero elements within seconds. Extensive benchmarks on
large-scale MIQP problems show that QIHD consistently outperforms the state-of-
the-art CPU-based solver Gurobi when time budgets are limited, highlighting its
potential as a practical and scalable optimization framework.

1 Introduction

Mixed-integer quadratic programming (MIQP) is an optimization framework characterized by a
quadratic objective function defined over a feasible region with both continuous and binary variables:

min
x∈Rn

f(x) =
1

2
x⊤Qx+ w⊤x,

subject to Ax ≤ b, Cx = d, i ∈ I : xi ∈ {0, 1}, j ∈ J : xj ∈ [ℓj , uj ].
(MIQP)

Here, the disjoint index sets I and J form a partition of the index set of variables. Such rich problem
structures enable MIQP to serve as a unifying framework for a wide range of practical applications,
including quantitative finance [30], energy systems [14], and machine learning [7]. Meanwhile, as a
generalization of mixed-integer programming, MIQP is NP-hard in general, implying that finding
approximate global solutions to large-scale MIQP instances is computationally intractable in practice.
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Conventional approaches to MIQP problems generally fall into two categories: global methods and
metaheuristic methods. Commercial solvers such as Gurobi primarily adopt global strategies like
branch-and-bound [33], which iteratively reduce the gap between upper and lower bounds of the
objective function. These methods not only provide solutions but also offer certificates of optimality.
In contrast, metaheuristic solvers generate locally optimal solutions within shorter runtimes, often
drawing inspiration from natural phenomena—for example, genetic algorithms [19] and simulated
annealing [20]. A common feature of both categories is their reliance on sequential decision-making,
where each optimization step depends heavily on previous choices. This paradigm has aligned well
with the strengths of CPUs, which excel at performing complex, sequential operations, enabling these
methods to succeed across a broad range of applications over the past decades [15, 3, 35].

However, the era of big data presents new challenges. Many contemporary optimization tasks involve
millions of variables and dense representations derived from terabyte- or even petabyte-scale datasets
[27, 37]. Processing problems at this scale exceeds the capabilities of traditional CPU-based clusters.
Over the past decade, fueled by advances in artificial intelligence and machine learning, graphics
processing units (GPUs) have emerged as powerful alternatives [34]. GPUs excel at executing massive
numbers of simple operations in parallel, yet fully exploiting this capability requires algorithmic
paradigms fundamentally different from those designed for sequential CPU execution. Existing
optimization algorithms designed for CPUs, including gloabl solvers and metaheuristic solvers, have
heavy dependencies on sequential condition-branching, cross-core communications, random memory
access, or high-quality random number generation, while none can be easily engineered on GPUs.

In parallel, quantum computing has been explored since the early 2000s as a promising framework
for tackling complex optimization problems [9]. Under certain structural conditions—such as hidden
symmetries or algebraic properties—quantum algorithms can achieve super-polynomial speedups
over classical approaches for both combinatorial and continuous optimization tasks [26, 16, 24].
Building on these insights, quantum-inspired algorithms have gained traction as classical approaches
that borrow principles from quantum computation. Co-evolving with their quantum counterparts,
these methods replicate distinctive features of quantum algorithms without requiring large-scale
quantum hardware [8]. Importantly, many quantum-inspired algorithms are naturally parallelizable,
making them particularly well-suited for GPU acceleration. This positions them as practical and
scalable candidates for tackling real-world optimization problems today, while serving as a bridge
toward the eventual deployment of full-scale quantum computing.

In this work, motivated by a quantum algorithm named Quantum Hamiltonian Descent (QHD)
originally designated for continuous optimization [23], we propose Quantum-Inspired Hamiltonian
Descent (QIHD) for mixed-integer quadratic programming. To the best of our knowledge, QIHD is the
first quantum-inspired algorithmic framework for optimization with mixed-integer type decision vari-
ables. Our main contributions are threefold: (1) inspired by the quantum Hamiltonian dynamics from
QHD used to explore non-convex optimization landscapes, we propose a classical time-dependent
Hamiltonian dynamics framework in QIHD, whose long-term stable configurations correspond to
global solutions of (MIQP); (2) we discretize the proposed dynamics using the symplectic Euler
method, yielding an iterative process that can be efficiently simulated on GPUs; and (3) we conduct
extensive benchmarking experiments on various subclasses of MIQP problems, demonstrating that
QIHD substantially outperforms state-of-the-art classical commercial solvers (e.g., Gurobi) as well
as several other classical and quantum-inspired algorithms.

Related work. Leveraging GPUs for optimization has recently attracted significant attention. The
primal–dual hybrid gradient (PDHG) algorithm [4], for instance, has been applied to large-scale
linear programming [2] and convex quadratic programming [29], where its reliance on matrix
multiplications enables efficient GPU acceleration and scalable first-order solutions. In contrast,
second-order methods such as interior-point algorithms have fewer GPU-friendly subroutines, yet
notable successes have been reported [17, 36], including applications in medical imaging and
treatment planning [28]. More recently, neural network–based approaches have also been explored
for solving mixed-integer quadratic programming problems [5].

The development of quantum computing has inspired new hardware and algorithmic approaches,
particularly through formulations based on Ising models. Simulated bifurcation [12, 18, 11], derived
from nonlinear Hamiltonian dynamics, offers an example of a quantum-inspired algorithm that can
also be efficiently implemented on GPUs [1]. Similarly, coherent Ising machines [31, 22]—a class of
photonic and silicon-based hardware designed to solve Ising problems—have motivated classical
simulation frameworks that now serve as practical combinatorial optimizers [32, 21].
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Organization. In Section 2, we introduce a classical Hamiltonian dynamics framework whose
long-term equilibria correspond to global solutions of MIQP. The discretization of this dynam-
ics using symplectic integrators and its efficient GPU implementation are discussed in Section 3.
Finally, Section 4 presents our benchmarking experiments and results.

2 Quantum-inspired Hamiltonian dynamics

2.1 Motivation: Quantum Hamiltonian Descent for Quadratic Programming

Quantum Hamiltonian Descent (QHD) is a quantum algorithm designed for continuous optimiza-
tion [23, 25]. Drawing inspiration from gradient flows in classical optimization, QHD can be viewed
as a quantum analogue that exploits quantum tunneling to more effectively navigate the optimization
landscape and accelerate convergence to the global minimum. Its quantum advantage is supported by
both theoretical analysis and empirical results [26]. In particular, QHD has been proven to deliver
super-polynomial speedups over any classical methods for certain black-box non-convex optimization
problems [24].

To exemplify the formulation of QHD, we consider a classic nonlinear optimization problem with a
quadratic objective and a box-shaped feasible set, namely, box-constrained quadratic programming:

min
x∈[0,1]n

f(x) =
1

2
x⊤Qx+ w⊤x. (BoxQP)

We denote the feasible set as Ω = [0, 1]n. QHD is described by the following continuous-time
dynamics:

i∂tΨ(t, x) = H(t)Ψ(t, x), H(t) =
1

λ(t)

(
−1

2
∆

)
+ λ(t)f(x), (1)

where Ψ(t, x) : [0,∞) × Ω → C is a quantum wave function, subject to the Dirichlet boundary
condition Ψ(t, x) = 0 for all t ≥ 0 and x ∈ ∂Ω; λ(t) : [0,∞) → R+ is an increasing schedule
function. H(t) is a quantum Hamiltonian operator, where (−∆/2) is the quantum kinetic operator
(∆ =

∑n
j=1 ∂

2
jj the Laplacian), and the objective f plays the role of a potential operator. Eq. (1) is a

time-dependent Schrödinger equation (TDSE) and it preserves the L2-norm of Ψ(t, x). We require
the initial wave function Ψ(0, x) to have a unit L2-norm, therefore |Ψ(t, x)|2 can be interpreted as a
probability density function that evolves with time t.

As λ(t) increases over time, the dynamics (1) resemble those of a quantum heavy ball transitioning
from wave-like (non-local) motion to particle-like (localized) motion. With a suitable choice of the
schedule function λ(t) and an appropriate evolution time t = T , the resulting probability distribution
|Ψ(T, x)|2 becomes concentrated in a neighborhood of the global minimizer of f(x) within the
feasible set Ω. Measuring the quantum state in the computational basis (equivalent to sampling
from |Ψ(T, x)|2) then yields a point X ∈ Ω that serves as an approximate global solution to the
problem (BoxQP).

The TDSE (1) can be efficiently simulated in a quantum computer [6], but is classically intractable
unless BPP = BQP [38]. While this observation confirms the inherent quantumness of QHD, it
also presents substantial challenges for studying QHD through numerical methods. Given the
limited scale of current quantum hardware, the largest instance solved by QHD to date involves 75
continuous variables [23]. This is certainly a non-trivial problem size, yet still within the capabilities
of commercial solvers such as Gurobi.

In physics, the Hamiltonian formalism is a bridge between classical and quantum mechanics: a
continuous-variable quantum Hamiltonian operator corresponds to a classical Hamiltonian function
that governs a Lagrangian-mechanical system. Specifically, the classical Hamiltonian function
corresponding to (1) takes the following form:

H(t,X, P ) =
1

2λ(t)
∥P∥2 + λ(t)V (X), V (X) =

{
f(X) X ∈ Ω

∞ X /∈ Ω
, (2)

where X and P are position and momentum variables, respectively. This Hamiltonian gives rise to
the dynamical evolution of a classical particle via Hamilton’s equations:1 In this work, we mainly

1The boundary condition of this system of ODEs needs to be specified to be consistent with the infinite
potential well outside of Ω.
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Figure 1: Dynamical behaviors of QHD (top row) and QIHD (bottom row). Success probabilities of QHD and
QIHD are 0.86 and 0.79, respectively; both are higher than uniformly random guesses (0.75).

consider (1) absorbing boundary conditions and (2) reflecting boundary conditions.

Ẋ(t) =
∂H

∂P
=

1

λ(t)
P (t), Ṗ (t) = −∂H

∂X
= −λ(t) (QX + w) , (X(0), P (0)) ∼ ρ0(x, p).

(3)
Note that (3) describes a stochastic process, where the randomness comes from the initial data
(X(0), P (0)) that follows the distribution ρ0.

Although their Hamiltonians are closely related, the process (3) is generally not equivalent to the
quantum Hamiltonian dynamics (1), even when initialized with the same distribution ρ(0, x) =
|Ψ(0, x)|2. In Figure 1, we compare the evolution of the probability density under QHD and QIHD at
various times t, applied to the minimization of a quadratic function f(x) = −x2 + 3

2x over the unit
interval x ∈ [0, 1], whose global minimum lies at x = 0. For reference, vanilla projected gradient
descent with uniformly random initialization succeeds with probability 0.75. Both QHD and QIHD
achieve higher success probabilities than random guessing, with QHD outperforming QIHD. This
suggests that QIHD can be viewed as a “weaker” counterpart of QHD, while still inheriting a partial
tunneling effect from its quantum origin.

2.2 Quantum-Inspired Hamiltonian Descent

Now, we extend the quantum-classical correspondence to handle binary decision variables and linear
constraints. Define the following classical Hamiltonian function, where A, b, C, d, I are the same as
in (MIQP):

HQIHD(t,X, P ) =
1

2λ(t)
∥P∥2︸ ︷︷ ︸

Kinetic Energy

+ λ(t)V (X)︸ ︷︷ ︸
Potential Energy/Objective

+Vpenalty(t,X)︸ ︷︷ ︸
Penalty Function

, (4)

where X and P are the position and momentum variable, respectively; V (X) is the same as in (2),
and the penalty function reads:

Vpenalty(t,X) =


α(t)Relu(AX − b)︸ ︷︷ ︸

Ineq. Constraint

+β(t) ∥CX − d∥︸ ︷︷ ︸
Eq. Constraint

+γ(t) ⟨X ⊙ (e−X), 1I⟩︸ ︷︷ ︸
Binary Constraint

X ∈ Ω

∞ X /∈ Ω

.

Here, Relu(z) = max(0, z), ⊙ represents the element-wise (Hadamard) product, e is the all-one
vector, and 1I is a binary vector whose i-th element is 1 only if i ∈ I. When X ∈ Ω, the binary
constraint equals to

∑
i∈I Xi(1−Xi) ≥ 0, and the zero values are obtained if and only if Xi ∈ {0, 1}

for all i ∈ I. For positive α(t), β(t), and γ(t), the penalty function Vpenalty(t,X) is non-negative
and the zero values are obtained only when X satisfies all the constraints in (MIQP).
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Similar to (3), the Hamiltonian function HQIHD(t,X, P ) generates a Hamiltonian dynamics described
by Hamilton’s equations:

Ẋ = ∇PHQIHD(t, P,X), Ṗ = −∇XHQIHD(t, P,X). (5)

With random initializations of the generalized coordinate variable (X,P ), this dynamics gives rise
to a stochastic process. With appropriate choices of the schedules functions {λ(t), α(t), β(t), γ(t)},
this process may converge to an equilibrium that is localized near the solutions to (MIQP). We refer
to the process generated by (4) as Quantum-Inspired Hamiltonian Descent, or simply QIHD.

In practice, we take all time-dependent schedule functions (i.e., λ(t), α(t), β(t), and γ(t)) to be
monotonically increasing. As a result, the Hamiltonian dynamics undergo a phase transition as the
evolution progresses. When both λ(t) and the penalty term Vpenalty(t) are small, the system exhibits
chaotic behavior, exploring the full solution space Ω due to its large kinetic energy (i.e., ∥P∥2/2λ(t)).
As time evolves, the potential energy V and the penalty term Vpenalty increase, while the kinetic
energy dissipates, causing the dynamics to become progressively more structured and localized near
the low-energy manifold of the effective energy surface λ(t)V (X) + Vpenalty(t,X). This manifold
corresponds to the global minimum of the problem (MIQP).

3 Large-Scale Implementation with GPU

3.1 Symplectic integration

Hamiltonian dynamics preserves the symplectic form, which is essentially equivalent to the volume
in the phase space. Standard numerical integration schemes, such as Runge-Kutta methods, do
not preserve the symplectic structure of Hamiltonian dynamics, usually leading to distortion of the
phase space and poor stability in numerical computation. Instead, we need to incorporate numerical
methods that preserve the symplectic structure of the Hamiltonian dynamics, known as symplectic
integrators [13, 10].

To simulate QIHD, we consider the (first-order) symplectic Euler method. The corresponding update
rule is given below. We denote an integer k as the iteration number, and s > 0 is a pre-fixed step size.
The update rule is (tk = ks, effective evolution time at step k):{

pk+1 = pk − s∇xH(tk, xk, pk+1) = pk − s [λ(tk)(Qxk + w) +∇xVpenalty(tk, xk)] ,

xk+1 = xk + s∇pH(xk, pk+1) = xk + spk+1/λ(tk).
(6)

Note that while the symplectic Euler method is implicit for general Hamiltonian systems, it turns out
to be an explicit scheme in our case since the QIHD Hamiltonian is separable. This nice structure
significantly simplifies the numerical update step.

QIHD begins by drawing random initial positions and momenta for each sample. As a metaheuristic,
it generates multiple initial samples that evolve independently under the same dynamics. Since the
update equations consist solely of matrix multiplications and vector operations for MIQP problems,
QIHD naturally parallelizes across all samples, enabling efficient large-scale GPU acceleration.

3.2 GPU implementation

Our implementation of QIHD leverages JAX, a Python library for array computation and program
transformation targeting multiple hardware accelerators like GPUs and TPUs. With JAX, our QIHD
implementation is batchable and can be distributed to multiple GPUs easily. These features are
especially desired when solving multiple optimization problems of the same size. JAX’s native
just-in-time compilation ensures the array computation is optimized towards the hardware.

QIHD’s outputs are not necessarily locally optimal due to the remainder of kinetic energy in the
system. To ensure the local optimality of the outputs, we post-process QIHD’s outputs with an
implementation of restarted accelerated primal-dual hybrid gradient (rAPDHG) from MPAX, a
JAX-based solver for mathematical programming. Since rAPDHG is for continuous optimization,
we fix the integer variables in the outputs of QIHD and feed the vectors to MPAX as warm-starts.
Although there is no performance guarantee of rAPDHG for non-convex quadratic programming
problems, rAPDHG exhibits great performance in finding local minimum in our empirical study.
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(a) CQBO benchmark sweep-
ing problem size

(b) BoxQP benchmark sweep-
ing density

(c) MIQP benchmark sweeping the number
of binary variables

Figure 2: Benchmarking QIHD against Gurobi on randomly generated problem instances. Gurobi is given time
limits of 1× and 2× QIHD’s runtime. QIHD performs comparably to or better than Gurobi on nearly all cases.

4 Benchmarking Experiments

We evaluate QIHD on randomly synthesized benchmarks across multiple problem types. All QIHD
experiments are executed on a machine equipped with four NVIDIA RTX A5000 GPUs. As a
baseline, we compare against Gurobi, a commercial global solver that guarantees optimality, running
on two AMD EPYC 7302 CPUs with 256GB RAM. To highlight QIHD’s advantages, we limit
Gurobi’s runtime to either 1× or 2× the end-to-end runtime of QIHD with post-processing, with the
number of samples fixed at 1000.

To compare solution quality, we define a metric called the relative gap. Let fQ and fG denote the
objective function values of solutions obtained by QIHD and Gurobi, respectively. The relative gap is
defined as: Rel(fQ, fG) :=

fG−fQ
max{|fQ|,|fG|} . A positive value, Rel(fQ, fG) > 0, indicates that QIHD

produces a better solution than Gurobi.

Constrained Quadratic Binary Optimization (CQBO). CQBO is a special case of (MIQP) where
all variables are binary, i.e., J = ∅. We randomly synthesize dense problems with sizes ranging
from 50 to 5000 binary variables and 25% of that number of constraints to showcase how QIHD
performs over different sizes of problems. The benchmark compares QIHD against Gurobi on CQBO
in Figure 2a. Results in Figure 2a show that QIHD consistently outperforms Gurobi across all
problem sizes, with the performance gap widening as problem size increases. This improvement
arises because global methods (e.g., branch and bound) are not designed to efficiently produce
high-quality suboptimal solutions under tight time limits.

Box-constrained Quadratic Programming (BoxQP). BoxQP is arguably the simplest form of
continuous non-convex optimization problems. It is a special case of (MIQP) with I = ∅ and
A is the zero matrix. The problem is still NP-hard when Q is not positive semi-definite. We
synthesize problems with dimension 1000 but with different densities, where the number of non-zero
entries ranges from 104 to 106. As shown in Figure 2b, QIHD consistently produces solutions
comparable to or better than Gurobi. Importantly, Gurobi’s performance degrades significantly as
density increases, while QIHD benefits from GPU-accelerated dense matrix multiplications, leading
to growing advantages at higher densities.

Mixed-Integer Quadratic Programming (MIQP). Finally, we evaluate the general mixed-integer
quadratic programming (MIQP) problem. Benchmarks are conducted on dense problems with 1000
variables and 250 linear constraints. We specify the first m variables as binary, varying m to study
the effect of increasing discrete variables. Results in Figure 2c show that QIHD consistently performs
at least as well as Gurobi and often outperforms it, especially when the proportion of continuous
variables is large. However, the relative advantage of QIHD drops as the proportion of binary variables
increases, likely because Gurobi performs better for quadratic objectives when binary variables are
the majority.
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Appendices

A Simulated Bifurcation

SB is inspired by the quantum adiabatic evolution of a network of Kerr-nonlinear parametric oscillators
(KPOs), whose Hamiltonian is given by

H(t) = ℏ
N∑
i=1

[
K

2
a†i

2
a2i −

p(t)

2
(a†i

2
+ a2i ) + ∆ia

†
iai

]
− ℏξ0

N∑
i=1

N∑
j=1

Ji,ja
†
iaj . (7)

By approximating the expectation value of ai (and a†i ) as a complex amplitude xi+ iyi (and xi− iyi),
we derive the classical approximation of the quantum system:

Hc(x, y, t) =

N∑
i=1

[
K

4
(x2

i + y2i )
2 − p(t)

2
(x2

i − y2i ) +
∆i

2
(x2

i + y2i )

]
−ξ0

2

N∑
i=1

N∑
j=1

Ji,j(xixj+yiyj).

(8)

To achieve faster numerical implementation, the Hamiltonian (8) can be further simplified to the
following one, which we will refer to as the original adiabatic SB (aSB) [12],

HaSB =
a0
2

N∑
i=1

y2i + VaSB, VaSB =

N∑
i=1

(
x2
i

4
+

a0 − a(t)

2
x2
i

)
− c0

2

N∑
i,j

Ji,jxixj , (aSB)

The aSB dynamics is defined over the full Euclidean space and sometimes the state vector x(t) can
move away from the unit box. To improve the numerical accuracy, two modified SB dynamics are
proposed in a follow-up work [11], namely, the ballistic SB (bSB) and the discrete SB (dSB),

HbSB =
a0
2

N∑
i=1

y2i + VbSB, VbSB =

{∑N
i=1

a0−a(t)
2 x2

i − c0
2

∑N
i,j Ji,jxixj |x| ≤ 1

+∞ otherwise
(bSB)

HdSB =
a0
2

N∑
i=1

y2i + VdSB, VdSB =

{∑N
i=1

a0−a(t)
2 x2

i − c0
2

∑N
i,j Ji,jxisignxj) |x| ≤ 1

+∞ otherwise

(dSB)
Note that the Hamiltonian dynamics generated by both bSB and dSB are restricted to the unit box
[0, 1]N due to the infinite potential wall (inelastic wall in [11]) on the boundary.

Reinterpreting SB as a Hamiltonian descent. An Ising problem can be reformulated as the
following continuous optimization problem:

min
x

f(x) = −1

2

N∑
i,j

Ji,jxixj , (9)

subject to 1− x2
i = 0,−1 ≤ xi ≤ 1 ∀i ∈ [N ]. (10)

And the time-dependent part in VbSB can be regarded as a “soft” penalty added to the objective
function:

HbSB =
a0
2

N∑
i=1

y2i︸ ︷︷ ︸
kinetic energy

+
a(t)− a0

2

(
N∑
i=1

−x2
i

)
︸ ︷︷ ︸

time-varying penalty

+

−c0
2

N∑
i,j

Ji,jxixj


︸ ︷︷ ︸

objective function

(11)

B QIHD Dynamics

Consider the Hamiltonian:
H(t) =

a0
2

∑
i

y2i + V (t, x), (12)
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where the potential function is defined by

V (t, x) =

{
a0−a(t)

2

∑
i∈I xi(xi − 1) + g(t)ReLu(Ax− b) + c0f(x) x ∈ [0, 1]N

+∞ otherwise
(13)

The corresponding Hamilton’s equation is{
ẋ = a0y,

ẏ = −∇xV (t) = −
[
a0−a(t)

2 r + g(t)
∑

j∈[m] 1>0(a
T
j x− bj)aj + c0 (Qx+ w)

] (14)

where r is a vector defined by

ri =

{
1− 2xi i ∈ I
0 i ∈ J .

(15)

If we want to have a dSB-style numerical integration, the last part in the ∇xV (t, x) should be

c0 (Qx̃+ w) , x̃j =

{
1>1/2(xj) j ∈ I,
xj j ∈ J ,

(16)

and the second part in ∇xV (t, x) should be

g(t)
∑
j∈[m]

1>0(a
T
j x̃− bj)aj (17)

We may choose c0 as follows:

c0 =
0.5

C
√
N

, C =

√∑
i,j Q

2
i,j +

∑
j w

2
j

N(N + 1)
. (18)
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims in the abstract and introduction capture our contributions in the
paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]
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Justification: Due to limited space, we neglect the discussion of limitation in the submission.
We will release a full version with limitation discussions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have theorems proven in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our methods in detail, and will make our code public.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code to reproduce the results of the submission will be public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experiment settings in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide extensive amount of data points in the reports.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We deposit the experiment settings in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, there is no violation to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the potential influence of this work in the introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: To the best of our knowledge, we have cited all related assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The benchmark dataset can be reproduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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