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Abstract

Recent works have shown that imposing tensor structures on the coefficient tensor in re-
gression problems can lead to more reliable parameter estimation and lower sample com-
plexity compared to vector-based methods. This work investigates a new low-rank tensor
model, called Low Separation Rank (LSR) in Generalized Linear Model (GLM) problems.
The LSR model – which generalises the well-known Tucker and CANDECOMP/PARAFAC
(CP) models – is imposed onto the coefficient tensor in the GLM model. This work pro-
poses a block coordinate descent algorithm for parameter estimation in LSR-structured
tensor GLMs. Additionally, it derives a minimax lower bound on the error threshold on
estimating the coefficient tensor in LSR tensor GLM problems. The minimax bound is
proportional to the intrinsic degrees of freedom in the LSR tensor GLM problem, suggest-
ing that its sample complexity may be significantly lower than that of vectorised GLMs.
This result can also be specialised to lower bound the estimation error in CP and Tucker-
structured GLMs. The derived bounds are comparable to tight bounds in the literature for
Tucker linear regression, and the tightness of the minimax lower bound is further assessed
numerically. Finally, numerical experiments on synthetic datasets demonstrate the efficacy
of the proposed LSR tensor model for three regression types (linear, logistic ad Poisson),
and experiments on a collection of medical imaging datasets demonstrate the usefulness of
the LSR model over other tensor models (Tucker and CP) on real, imbalanced data with
limited available samples.

1 Introduction

In machine learning, regression models are used to understand the relationship between a set of independent
variables (also known as covariates) and a dependent outcome. More formally, given a vector of covariates,
x, and outcome, y, jointly distributed according to Px,y, the goal is to predict y when given x. Under
the Mean Squared Error (MSE) criterion, the solution would be finding the conditional mean Ey|x[y|x],
which is obtained by modeling the conditional probability Py|x and estimating the model class parameters.
Typically, the model class parameters are denoted as b and estimated through a set of n training data
samples {xi, yi}ni=1 , where xi is the ith sample vector of covariates. There are many regression models that
may suit different types of prediction problems. Some common examples are linear, logistic and Poisson
regression, all of which fall under a broader class of models called Generalized Linear Models (GLMs).
GLMs were introduced to encompass classes of models that cannot be appropriately modeled as a simple
‘linear-response model’ (McCullagh & Nelder, 2019). In particular, GLMs refer to a parametric statistical
framework that seeks to model the conditional probability of a scalar response variable (denoted as yi) that
follows an exponential family distribution. Many distributions are easily expressible as an exponential family
distribution, and thus GLMs allow one to study a broader class of regression problems.

GLM regression can handle a wide array of datasets for a multitude of applications, yet modern day tech-
nologies are creating data-intensive environments and collecting increasingly high-dimensional data. That is,
data in the form of variegated and structured multi-dimensional arrays (tensors), where the number of avail-
able data samples is far smaller than the number of variables (the dimensionality of the data). Prominent
examples of two-dimensional arrays include biological imaging data such as electroencephalography (EEG)
and fiber-bundle imaging (Dumas et al., 2019). Examples of three-dimensional arrays include functional Mag-
netic Resonance Images (fMRI) (Bellec et al., 2017) and Magnetic Resonance Angiography (MRA) (Yang
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et al., 2020). Though such data has been used in many instances throughout the literature (Li et al., 2018;
Hung & Wang, 2013; Zhou et al., 2013; Dumas et al., 2019), classical parameter estimation methods require
vector-structured covariates and estimate a corresponding coefficient vector. There are two major concerns
associated with multidimensional (a.k.a tensor) data and its vectorisation. First, vectorising data that was
originally in tensor form destroys its underlying structure (which often contains rich information valuable
for regression analysis). Secondly, the resulting vector model exhibits a very large number of parameters, in
the sense that in the high-dimensional setting the GLM regression model becomes ill-posed. We term this
problem as ‘the curse of dimensionality’ (Hung & Wang, 2013; Zhang & Jiang, 2018).

A common solution to the curse of dimensionality in tensor GLM problems is the imposition of structure on
the model parameters and thus is the focus of this work. If the covariates are tensor structured, we expect to
estimate coefficient tensors whilst exploiting the multidimensional structure of the data and rich information
lying in the correlation between tensor modes. Common structures include: The addition of a sparsity
regulariser or a low-rank inducing regulariser to the regression problem (Abramovich & Grinshtein, 2018;
Seber & Lee, 2003; Zhang & Jiang, 2018; An & Zhang, 2020; Raskutti et al., 2019); The imposition of some
tensor factorisation on the model parameters (Ahmed et al., 2020; Li et al., 2018; Zhou et al., 2013; Zhang
et al., 2020; Tan et al., 2012; Zhang & Jiang, 2016; Wu et al., 2022; Taki et al., 2021); Both of the above.
The imposition of such structures should ultimately lead to estimation of fewer parameters, improving the
computational complexity and performance of our parameter estimation problem.

The most commonly used tensor factorisations are the CANDECOMP/PARAFAC (CP) and Tucker de-
compositions (Kolda & Bader, 2009). These decompositions impose a compact structure on the coefficient
tensors, thereby restricting the class of possible solutions in the parameter estimation problem. Compared
to simple vector regression, these decompositions can decrease the number of training samples needed for
reliable coefficient estimation (also referred to as ‘sample complexity’). A smaller sample complexity can
lower the variance of the model, yet the restrictive nature of these decompositons can also reduce the repre-
sentation power of the coefficient tensors for many classes of tensors, causing a non-favourable bias-variance
tradeoff.

In this work we impose a new decomposition on the coefficient tensors that we will promptly refer to as the
Low Separation Rank (LSR) model. In fact we will show that the LSR decomposition is a generalisation of
the Tucker decomposition. The LSR model maintains a lower sample complexity than vectorisation-based
tensor GLM regression but is less restrictive than Tucker or CP. Though estimating an LSR-structured tensor
introduces a greater sample complexity than the aforementioned decompositions, this increase is compensated
by a stronger representation power, leading to better parameter estimation performance. In other words, we
show that the increase in variance of the LSR model is conquered by its stronger representation power for a
larger class of tensors (ergo, its decrease in bias), leading to a more favourable bias-variance tradeoff (model
compactness vs representation power).

1.1 Contributions

In this paper we make the following contributions. We introduce the LSR-structured tensor problem under
the GLM framework that we appropriately denote as LSR-TGLM. GLMs encompass various regression types
including linear, logistic and Poisson. We focus on the high-dimensional setting and discuss the various
parameters of an LSR-structured tensor (such as ‘rank’ and ‘seperataion rank’, terms we will introduce in
Section 2) that reduce the sample complexity of parameter estimation in GLMs. We also compare sample
complexities between different tensor decomposition models and the LSR model.

Additionally, we explore two problems at the core of this work. First, we propose a parameter estimation
algorithm (which we name LSRTR) for the LSR-TGLM problem. The main idea is that parameter estimation
in GLMs can be achieved through Maximum Likelihood Estimation (MLE) (McCullagh & Nelder, 2019).
However, for structured tensor settings, such as estimating CP or Tucker structured tensors, the objective
function of the MLE problem is highly non-convex (Li et al., 2018; Zhang & Jiang, 2016; Zhou et al., 2013;
Tan et al., 2012). This is also true when the tensor is LSR-structured. To overcome this, we observe that the
problem can be partitioned into several convex sub-problems that can then be solved alternately. On the basis
thereof we propose a block coordinate descent algorithm to find the MLE of the LSR-structured coefficient
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tensor. Secondly, we investigate the fundamental error thresholds of the LSR-TGLM problem under study.
We derive a minimax lower bound on the estimation error for the LSR-TGLM problem. The minimax
bound is useful for assessing the performance of the proposed algorithm and ascertaining the parameters
that may affect the sample complexity of the parameter estimation problem. The bound is general and can
be specialised to various regression types under the GLM framework. We also specialise our results for the
Tucker and CP regression frameworks. Obtaining the bound requires a special construction of a packing set
of LSR-structured tensors. The methods we develop are systematic and can be appropriate in other works
that consider similar topological properties of structured tensors (i.e., LSR-structured tensors). We also
assess the tightness of our bounds in two ways: 1) Through a numerical study where we show that the ratio
of the empirical error through LSRTR and the minimax bound is approximately constant with increasing
sample size, and 2) We specialise our minimax bound to the Tucker linear regression case and show that
our bound matches the optimal error rates for Tucker linear regression found in recent works (Zhang et al.,
2020).

Finally, we evaluate the performance of our algorithm through extensive numerical experiments on synthetic
data. We also test the performance of imposing the LSR structure on several classification problems with
multidimensional medical imaging datasets. We show that while the LSR model outperforms the vector
model, its rich representation power also allows for enhanced performance over the Tucker (and CP) case.

1.2 Relation To Prior Work

Regression problems have been a major focus of high dimensional statistics for many years (Giraud, 2021).
Some works on linear and logistic regression impose sparsity on the model parameter in order to reduce
the sample complexity of the vector-based regression problems (Abramovich & Grinshtein, 2018; Sun &
Zhang, 2012). However, in very high dimensional regimes such as when the data is tensor-structured, i.e.,
we have {Xi}ni=1, sparsity assumptions do not provide enough reduction in the sample complexity (Raskutti
et al., 2019; Lee & Courtade, 2020). Several works overcome the limitations of sparse vector regression by
extending regular regression to the high-dimensional and low-rank matrix settings. Low-rank assumptions
on data have been used ubiquitously throughout the literature in order to reduce the sample complexity
of estimation problems (Barnes & Ozgur, 2019; Shi et al., 2014). Such works propose regularized matrix
linear and logistic regression models to obtain low-rank and/or sparse estimates of the coefficient matrix
in regression problems, such as those on inference on images or graph data (Hung & Wang, 2013; Zhang
& Jiang, 2018; Shi et al., 2014; An & Zhang, 2020; Berthet & Baldin, 2020). Some works directly impose
low-rank structures on coefficient matrices through the rank-r singular value decomposition (SVD) (Taki
et al., 2021).

Additionally, though tensors and their decompositions have long since been introduced in the literature
(Kolda & Bader, 2009), their applications in regression analysis have recently become established. Anal-
ogous to the low-rank matrix regression works, a variety of works have introduced low-rank structures on
coefficients tensors for tensor regression problems. For logistic regression, Tan et al. (Tan et al., 2012) first
introduced using a low-rank and/or sparse CANDECOMP/PARAFAC (CP) decomposition. A more flexible
generalisation of this work is imposing the Tucker decomposition in the coefficient tensor in tensor logistic
regression (Zhang & Jiang, 2016; Wu et al., 2022). The Tucker structure has also been introduced for tensor
linear regression (Zhang et al., 2020; Ahmed et al., 2020; Wu et al., 2022).

More works to our interest generalise tensor linear and logistic regression works by imposing the CP and
Tucker decompositions in tensor GLMs (Li et al., 2018; Zhou et al., 2013). Both structures have been shown
to significantly reduce the number of learnable parameters, leading to efficient estimation and prediction in
a variety of regression problems, particularly with medical imaging data. The aforementioned works develop
efficient estimation algorithms and provide empirical results on their performance. The proposed approaches
outperform vector-based methods (in terms of estimation and prediction accuracy) in the high-dimensional
setting when the number of available samples is limited. However, these matrix and tensor structures are
aimed at being compact (in the sense that they decrease the number of learnable parameters in a given
problem), and are therefore also quite restrictive in their representation power of the true coefficient tensor.
A more general and flexible tensor model is required to achieve accurate and efficient estimation while
maintaining a useful level of compactness.
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In terms of theoretical guarantees, various regression works provide local identifiability guarantees of the
proposed CP and Tucker tensor models for GLMs, and asymptotic consistency and normality results for the
MLE estimator of the model parameter (Li et al., 2018; Zhang et al., 2020; Zhou et al., 2013). Some works
on high-dimensional regression also provide sample complexity bounds of the proposed model in the form
of risk upper bounds (Zhang et al., 2020; Ahmed et al., 2020) or minimax lower bounds (Barnes & Ozgur,
2019; Zhang et al., 2020; Raskutti et al., 2019; Foster et al., 2018; Abramovich & Grinshtein, 2018; Lee &
Courtade, 2020; Abramovich & Grinshtein, 2016; Raskutti et al., 2011); however, these works are specific
to vector-based logistic regression or Tucker linear regression. Current works in tensor logistic regression
or tensor-based GLMs do not provide any theoretical guarantees for sample complexity (upper or lower
bounds).

In terms of the LSR model, a special case of the LSR model was introduced by Tsiligkaridis and Hero for
covariance estimation problems (Tsiligkaridis & Hero, 2013). An extension of this model has only recently
been used on tensor data for dictionary learning (Ghassemi et al., 2019). In terms of the GLM framework,
to the best of our knowledge, this work is the first to consider the LSR model in regression problems.

1.3 Organization

The organization of this paper is as follows. In Section 2 we establish a background on various tensor
models, as well as the LSR tensor model. In Section 3 we formulate the LSR-TGLM model and introduce
two objectives: parameter estimation and minimax risk. In Section 4 we discuss the estimation problem
of LSR-structured coefficient tensors in GLMs and propose an efficient algorithm for parameter estimation.
In Section 5 we provide a numerical study of the LSRTR algorithm with synthetic data. In Section 6 we
introduce a sample complexity bound in the form of a minimax lower bound on the estimation error of the
low-rank LSR-GLM model and provide a formal proof in Section 6.3. We provide experimental results on
real data in Section 7 and conclude our work in Section 8. Proofs of lemmas for the main theorem are
provided in the appendix.

2 Preliminaries

We use the following notation convention throughout the paper: x, x, X and X denote scalars, vectors,
matrices and tensors, respectively. Given a fixed tensor X, x , vec(X) is the column-wise vectorisation of
X. The tensor Im is the m×· · ·×m identity tensor, such that for any tensor S, I ·S = S · I = S. Given n K-
mode tensors {Xi}ni=1 of dimension m1×m2×· · ·×mK , X is the combined (aggregated) tensor of n samples
of dimension m1×m2×· · ·×mK×n. For a positive integer K, the set [K] = {1, 2, . . . ,K} so that (Xk)k∈[K]
is the ordered set (X1,X2, . . . ,XK). Additionally we have −[K] so that (Xk)k∈−[K] = (XK ,XK−1, . . . ,X1).
For a matrix X, the vector x(j) is the jth column of X and the vector xT (j) is its jth row. For a vector x, x(j)
is the jth element of x. If x ∈ R then bxc is the greatest integer less than or equal to x. We use the standard
notation ‖x‖p for the p-norm (p ≥ 1)of a vector x. For a matrix X or tensor X, the Frobenius norms are
‖X‖F and ‖X‖F , respectively. For two vectors x1 and x2, x1 ◦ x2 denotes their outer product. Similarly,
for two matrices X1 and X2, X1 ⊗ X2 denotes their Kronecker product. The inner product between two
vectors, matrices or tensors is denoted as 〈·, ·〉. For a set of K vectors {xi}Ki=1, x1 ◦ x2 ◦ · · · ◦ xK produces
a k-dimensional rank-1 tensor. For K matrices {Xi}Ki=1,

⊗
k∈[K] Xk , X1 ⊗ X2 ⊗ · · · ⊗ XK produces a

‘K-order Kronecker-structured matrix’. We call a matrix a K-order kronecker-structured matrix if it is a
product of K ≥ 2 matrices. The mode-k matricisation of tensor X is X(k) (Kolda & Bader, 2009), and given
a matrix B, X ×k B denotes the multiplication of X by B along mode k. Finally, for all k ∈ [K] we have
X×[K] Bk , X×1 B1 ×2 · · · ×K BK .

We now formally define GLMs for vector-structured covariates, as seen in the literature.
Definition 1 (Vector-structured Generalized Linear Models). Consider an observation y, a vector of co-
variates x ∈ Rm, and a bias z and regression coefficient vector b, both to be estimated. Let y be a response
variable generated from a distribution in the exponential family with probability mass/density function as
follows:

P(y, η) = b(y) exp(ηT (y)− a(η)). (1)
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Here, η is called the natural parameter, T (y) is the sufficient statistic and a(η) is the log-partition (or
cumulant) function. Consider a given regression problem of estimating y given x. This requires minimizing
the MSE as follows:

ŷMMSE = arg min
ŷ

Ex,y[(ŷ − y)T (ŷ − y)] (2)

The Minimum MSE (MMSE) solution is the expected value of y conditioned on x, or E[y|x] = µ. Now,
let H be the support of y and consider a strictly increasing and invertible link function g(·) : H → R. The
Generalized Linear Model is then defined as

g(µ) = η , 〈b,x〉+ z, (3)

where the natural parameter η is the linear predictor and µ = g−1(η).

The core idea behind GLMs is that though many regression problems are not linear, the distribution of the
observation y is only affected by the linear combination 〈b,x〉 + z. If the distribution of y falls under the
exponential family (which it often does), then y is related to the linear predictor via g(·). In the case of
linear regression where y ∈ R is assumed to be a continuous response variable with Gaussian distribution, we
have µ = 〈b,x〉 and g(·) is just the identity function. In logistic regression y is Bernoulli distributed, taking
values y ∈ {0, 1}, and we have µ = 1

1+exp(−〈b,x〉) and g(µ) = log
(

µ
1−µ

)
. In Poisson regression y ∈ N is a

Poisson distributed random variable that expresses the count of an event occurring in a fixed time interval,
while µ = exp(〈b,x〉)and g(µ) = log (µ).

This work is based on structured tensor decompositions. For a more comprehensive tutorial on tensor
decompositions, see the survey of Kolda and Bader (Kolda & Bader, 2009). We will now list some necessary
preliminaries regarding tensors and tensor structures.
Definition 2 (CP Decomposition (Kolda & Bader, 2009; Zhou et al., 2013)). Consider a K-mode tensor
B ∈ Rm1×···×mK . The rank-r CP decomposition decomposes B into a sum of r rank-1 tensors as follows:

B =
∑
i∈[r]

b1,i ◦ · · · ◦ bK,i, (4)

where bk,i ∈ Rmk , k ∈ [K], i ∈ [r] is a column vector. Equivalently, (4) can be expressed in vector form as
follows:

vec(B) , b =
∑
i∈[r]

bK,i ⊗ · · · ⊗ b1,i. (5)

Definition 3 (Tucker decomposition (Kolda & Bader, 2009; Li et al., 2018)). Consider a K-mode tensor
B ∈ Rm1×···×mK . The rank-(r1, . . . , rk) Tucker decomposition decomposes B as follows:

B = G×1 B1 ×2 · · · ×K BK , (6)

where G ∈ Rr1×···×rK denotes the core tensor and {Bk ∈ Rmk×rk}k∈[K] denote the factor matrices. Equiva-
lently, by defining g , vec(G), (6) can be expressed in vector form as follows:

vec(B) , b =
(
BK ⊗ · · · ⊗B1

)
g. (7)

A visual depiction of the Tucker model is in Figure 1a. We pause to make some important observations.
First, the Tucker model decomposes a tensor into a core tensor G of dimension r1×· · ·× rK which has been
multiplied by a factor matrix Bk along each mode k ∈ [K]. Assuming G is small (i.e., rk � mk ∀k ∈ [K]),
the factor matrices Bk ∀k ∈ [K] are low-rank matrices. Additionally, the CP model appears as a specialised
case of the Tucker model as follows: Fix the number of basis vectors along all modes to some r ∈ R (i.e., fix

the rank of all factor matrices to r) and impose G ∈ R
k times

r×···×r as a diagonal tensor. The CP model lends a
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(a) (b)

Figure 1: (a): A third-order tensor under the Tucker model. Tensor B is decomposed into a core tensor
G and factor matrices Bk multiplied along the kth mode of G for k ∈ [3]. The CP model appears as a
special case of the Tucker model where G is a diagonal tensor of equal dimension along each mode. (b):
A third-order tensor under the LSR decomposition. Tensor B is comprised of a sum of Tucker-structured
tensors, with core tensor G fixed across all summands.

desirable compactness as the number of learnable parameters in a CP-structured tensor can be far fewer than
that of an unstructured tensor. Despite this, however, the restrictive nature of the CP model (specifically its
rank restriction, where each factor matrix must have equal rank) renders it unfavourable against the more
‘rank-flexible’ Tucker model.

Our second observation refers to (7). The vectorisation of a Tucker-structured tensor shows the Kronecker-
structured matrix composed of the K factor matrices. However this ‘Kronecker’ structure – which implies
that the coefficient vector b is composed of separable sub-matrices weighted by some vector g = vec(G) – is
also quite restrictive. To overcome this, we introduce the concept of matrix separation rank.
Definition 4 (Matrix Separation Rank (Tsiligkaridis & Hero, 2013)). Fix m = (m1,m2, . . . ,mK) ∈ NK

and r = (r1, r2, . . . , rK) ∈ NK , and set m̃ =
∏
k∈[K]mk and r̃ =

∏
k∈[K] rk. Then for a matrix B ∈ Rm̃×r̃,

its separation rank SK
m,p(·) is the minimum number S of K-order Kronecker-structured matrices such that

B =
∑
s∈[S]

B(1,s) ⊗ · · · ⊗B(K,s), (8)

where B(k,s) ∈ Rmk×rk .

We will show that the expression in (8) induces a generalisation of (7). It poses that a matrix can be
expressed as a sum of S Kronecker-structured matrices, with S = 1 being a specialised case and what we
observe in the Tucker model when the tensor is vectorised, as shown in (7). Having introduced the concept
of separation rank, we are now ready to define Low Separation Rank (LSR) tensors.
Definition 5 (Low Separation Rank (LSR) Tensor Decomposition). Consider a K-mode tensor B ∈
Rm1×···×mK . The rank-(r1, . . . , rk) LSR decomposition with separation rank S decomposes B as follows:

B =
∑
s∈[S]

G×1 B(1,s) ×2 · · · ×K B(K,s), (9)

where G ∈ Rr1×···×rK denotes the core tensor and B(k,s) ∈ Rmk×rk , k ∈ [K], s ∈ [S] denote the Kronecker-
structured factor matrices. Equivalently, by defining g , vec(G), (9) can be expressed in vector form as
follows:

vec(B) , b =
∑
s∈[S]

(
B(K,s) ⊗ · · · ⊗B(1,s)

)
g. (10)
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A visual depiction of the LSR model is in Figure 1b. For the purposes of this work, we pose some constraints
on the LSR decomposition. First, we assume that the K × S factor matrices B(k,s) are low rank (i.e.,
rk � mk ∀k ∈ [K]) and have orthonormal columns. Secondly, the LSR-model corresponds to tensor B
having a separation rank that is relatively small so that 1 ≤ S < min

(∏
k∈[K]mk,

∏
k∈[K] rk

)
. Thus,

defining Om×r as the manifold of matrices with orthogonal columns in Rm×r, and for a fixed tensor rank
(r1, r2, . . . , rK) and separation rank S, the LSR structured tensor B belongs to the following parameter space
P{rk},S :

P{rk},S ,

{
B′ =

∑
s∈[S]

G′ ×1 B′(1,s) ×2 · · · ×K B′(K,s) ∈ Rm1×···×mK : G′ ∈ Rr1×···×rK ,

rank(B′) = (r1, . . . , rK), B(k,s) ∈ Omk×rk , k ∈ [K], s ∈ [S]
}

(11)

The orthonormality assumption on the columns of B(k,s), is a commmon assumption made in the GLM
literature (Zhang & Jiang, 2016). Similar assumptions such as unit norm columns and columns with fixed
entries are also common (Zhou et al., 2013; Li et al., 2018). At this point, we do not investigate the uniqueness
of the LSR decomposition, and leave the discussion of this important topic to future work. We have described
how the LSR structure in (9) is a generalisation of the Tucker (and therefore of CP) decomposition. Table
1 reviews the number of learnable parameters for all models. The CP model contains the least number of
parameters, especially if r is small. The LSR model is the most complex of the three models in that it has
more parameters than the Tucker model. The working hypothesis throughout this work is that the price we
are likely to pay for an increase in sample complexity (by using the LSR model for tensor GLM problems)
is worth the gain we are likely to achieve in representation power and estimation accuracy.

CP Tucker LSR

Parameters
∑K
k=1(mkr) + r

∑K
k=1(mkrk) +

∏K
k=1 rk S

∑K
k=1(mkrk) +

∏K
k=1 rk

Table 1: Number of learnable parameters in the three tensor models (CP, Tucker and LSR).

3 Problem Statement

We are now ready to propose the Low Separation Rank Tensor Generalized Linear Model (LSR-TGLM).
Consider a response variable y with probability distribution belonging to the exponential family with pa-
rameter η, as in (1). Consider also tensor structured covariates X ∈ Rm1×1···×kmK and a coefficient tensor
B ∈ Rm1×1···×kmK that assumes a low-rank LSR structure as shown in (9). Given a link function g(·), the
LSR-TGLM model assumes η is given by

g(µ) = η ,

〈∑
s∈[S]

G×1 B(1,s) ×2 · · · ×K B(K,s),X
〉

+ z. (12)

It is important to note here that we assume that the tensor rank (r1, r2, . . . , rK) and LSR rank S are known.
We will discuss this point in more detail in Section 3.1. Additionally for algebraic simplicity, from this point
forward we will consider the standard case where z = 0 in (3) and without loss of generality we will express
the LSR-TGLM model as

g(µ) =
〈∑
s∈[S]

G×1 B(1,s) ×2 · · · ×K B(K,s),X
〉
. (13)

The LSR-TGLM model in (13) can be written as a standard GLM by vectorizing the parameters as follows

g(µ) = 〈vec(B), vec(X)〉 =
〈∑
s∈[S]

(
B(K,s) ⊗ · · · ⊗B(1,s)

)
g,x

〉
.
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The sum of Kronecker-structured matrices in (14) clearly appears in the LSR-TGLM model in (13). We can
now formally define the two goals that are at the core of this work: 1) Parameter estimation for LSR-TGLM
and 2) Minimax lower bound on the estimation error.

3.1 Parameter Estimation for LSR-TGLM

The objective in regression theory is to predict an outcome y based on X, which is achieved by first estimating
the model parameter. For LSR-TGLMs, we wish to find an estimate of B that best fits the model in (13).
The underlying (true)B is a low-rank LSR-structured tensor belonging to a constraint set C:

C ,

{
B ∈ Rm1×···×mK : B ∈ P{rk},S , rk ≤ RK , S ≤ min

{∏
k

mk,
∏
k

rk

}
, k ∈ [K]

}
. (14)

This is the set of all LSR-structured tensors with constrained tensor rank tuple (r1, r2, . . . , rK) and con-
strained separation rank S. Now consider the space of tensor-structured covariates X ⊂ Rm1×m2×···×mK ,
and space of scalar observations Y ⊂ R. There exists a probability measure, denoted as Pxy, that allows a
learning procedure to randomly draw points {X ∈ X, y ∈ Y} from the product space X×Y. We do not have
access to Pxy, but we can draw n independent observations {Xi, yi}ni=1. Therefore, we find an estimate of
B based on n independent observations through Maximum Likelihood Estimation (MLE). This makes the
objective function the negative log-likelihood:

Ln(B) =
n∑
i=1

log(b(yi)) +
n∑
i=1

(
〈B,Xi〉TT (yi)− a(〈B,Xi〉)

)
. (15)

To find the MLE, we minimize (15) over the constraint set C:

arg min
B∈C

n∑
i=1

log(b(yi)) +
n∑
i=1

(〈B,Xi〉T (yi)− a(〈B,Xi〉)) . (16)

It follows from Lemma 1 from Ghassemi et. al (Ghassemi et al., 2019) that since finding the rank r of a
tensor is NP-hard (Håstad, 1989), then finding the separation rank of a Kronecker structured matrix is also
NP-hard. The problem in (16) is therefore intractable. To mitigate this issue we first assume that the tensor
rank (r1, r2, . . . , rK) and separation rank S are known and we solve the following factorized problem for
parameter estimation for LSR-TGLMs:

arg min
{B(k,s)},G

=
n∑
i=1

log(b(yi)) +
n∑
i=1

〈
S∑
s=1

G×[K] Bk,Xi

〉
T (yi)− a

(〈
S∑
s=1

G×[K] Bk,Xi

〉)
. (17)

subject to B(k,s) ∈ Omk×rk .

The expression in (17) provides a tractable relaxation for (16), where the coefficient tensor is explicitly
written in terms of the core tensor G and factor matrices B(k,s) of the low-rank LSR structure. Thus, in
this work, we will study the problem in (17).

3.2 Minimax Lower Bound for LSR-TGLM

Our second goal is to derive a lower bound on the minimax risk of estimating LSR-structured coefficient
tensors for the LSR-TGLM problem in (13). Minimax bounds can be useful tools in developing an insight
into the parameters on which an achievable error of a given problem might depend and shed light on the
benefits of imposing tensor structures in regression problems. They also provide a means of quantifying the
performance of existing algorithms.

We adopt a local analysis and assume that the LSR-TGLM’s underlying (true) B resides within a neighbour-
hood with known radius around a fixed point. However, for a sufficiently large neighborhood, the minimax

8
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lower bounds derived in this work effectively become independent of the radius. Therefore we assume that
for a fixed tensor rank (r1, r2, . . . , rK) and separation rank S, the underlying B belongs to the set

Bd(0) , {B′ ∈ P{rk},S : ρ(B′,0) < d}, (18)
the open ball of radius d with distance metric ρ = ‖·‖F , which resides in the parameter space P{rk},S defined
in (11). Thus Bd(0) ⊂ P{rk},S and B has energy bounded since ‖B‖2F < d2. Note that we fix the reference
point as the tensor of all zero-elements 0 without loss of generality. Indeed, any neighbourbood Bd(A)
around a point A ∈ P{rk},S is just a translation from Bd(0) with known distance ‖A‖F . Additionally, we
note that the point 0 also belongs to the parameter space P{rk},S . The minimax risk is defined as the
minimum worst-case behaviour for any estimator. Mathematically, it is expressed as follows.

ε∗ = inf
B̂

sup
B∈Bd(0)

Ey,Xc

{
φ(B̂,B)

}
. (19)

Here, B̂ denotes an estimator of B, the metric φ is a non-decreasing function with φ(0) = 0. If we define
φ = ‖·‖2F , R+ → R+ with φ(0) = 0 then the minimax risk is simply the worst-case Mean Squared Error
(MSE) for the best estimator, i.e.,

ε∗ = inf
B̂

sup
B∈Bd(0)

Ey,Xc

{∥∥∥B̂−B
∥∥∥2

F

}
. (20)

We point out that the minimax risk in (20) is an inherent property of the LSR-TGLM parameter estimation
problem. It holds for all possible estimators and can be used to assess the performance of all possible
algorithms. We pause to note that existing minimax bounds on the parameter estimation problem in GLMs
or regression models provided in the literature, (Abramovich & Grinshtein, 2016; Lee & Courtade, 2020;
Raskutti et al., 2011), cannot be utilised here for two reasons. Primarily, these bounds do not account for
the impact of the structural assumptions we make on our model. In fact, we require bounds that accurately
reflect the sample complexity of estimation algorithms for LSR structured coefficient tensors. Secondly, the
link function in GLMs makes part of our analysis non-trivial and fundamentally different to such works. The
derived minimax bound in this section conveniently generalizes the CP and Tucker tensor structures and
can be specialized to existing bounds in the literature such as that for Tucker structured linear regression
by Zhang et al. (Zhang et al., 2020).

We now introduce some standard lemmas and assumptions used in this work.
Assumption 1 (Covariate Distribution). For X ∈ Rm1×···×mK , define vec(X) , x and m̃ =

∏
k∈[K]

mk.

Then, E[x] = 0 and E[xxT ] = Σx.
Lemma 1 ((McCullagh & Nelder, 2019)). Any observation y generated according to a distribution from
the exponential family has mean a′(η), i.e., the first derivative of a(η), and variance a′′(η), i.e., the second
derivative of a(η).
Assumption 2. The first derivative of the cumulant function, a(η), with respect to η is bounded uniformly
by a constant M ≥ 0: a′(η) ≤M .
Lemma 2. Consider the standard GLM problem in Definition 1 with negative log-likelihood function

n∑
i=1

log(b(yi)) +
n∑
i=1

(
〈b,xi〉TT (yi)− a(〈b,xi〉)

)
. (21)

The gradient of (21) with respect to b is
∑n
i=1
(
T (yi)− g−1(〈b,xi〉)

)
xi.

The proof of Lemma 2 follows the same steps explained in (McCullagh & Nelder, 2019). Assumption 1
states that vec(X) , x is a zero-mean Gaussian random variable with covariance matrix σ2

x. We do not
place any further assumptions on the distribution of X. Assumption 2 implies that the mean of any GLM
observation y is bounded. This is a common assumption made in the literature (Lee & Courtade, 2020). For
binary logistic regression, e.g., this assumption is satisfied with M = 1. For linear or Poisson regression, this
assumption implies that the energy of y is bounded. Though the range of y is R and N for linear and Poisson
regression, respectively, any outcome can be bounded by a positive constant M with high probability in
most instances.

9
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4 Estimation Problem and Algorithm

To solve (17) we propose an approach similar to those found in (Li et al., 2018; Zhou et al., 2013; Zhang
& Jiang, 2016; Tan et al., 2012). The main idea behind this approach is to recognize that although the
objective function in (17) is non-convex in all elements G and {B(k,s)}k∈[K],s∈[S] jointly, it is convex with
respect to each element separately. In this work, we propose a Block Coordinate Descent (BCD) algorithm
that estimates each element of the LSR structured tensor B alone while holding all other elements constant.
We note for the reader that BCD is simply Alternating Minimization (AM) when there are only two factors
to be estimated. Additionally, one may use any solver to solve each convex sub-problem to estimate each
element, however, we choose to solve it via gradient steps in this work. First, for every k′ ∈ [K] and s′ ∈ [S],
we estimate the factor matrix Bk′,s′ while keeping all other factor matrices {B(k,s}k∈[K]\k′,s∈[S]\s′ and core
tensor G fixed. Secondly, we estimate the core tensor G while keeping all factor matrices {B(k,s}k∈[K],s∈[S]
fixed. We derive the optimization problem for each step of the algorithm below.

4.1 Algorithm: Estimating Factor Matrices

To estimate the factor matrices we perform gradient descent over our objective function and project each
iterate onto the set of orthogonal matrices, with the objective function corresponding to the block B(k′,s′)
given by:

Ln
(
B(k′,s′)

)
(22)

=
n∑
i=1

〈B(k′,s′),Xi(k′)

 ⊗
−[K]\k′

B(k,s′)

GT
(k′)

〉
+

∑
s∈[S]\s′

〈
G×[K] B(k,s),Xi

〉T (yi)

− a

〈B(k′,s′),Xi(k′)

 ⊗
−[K]\k′

B(k,s′)

GT
(k′)

〉
+

∑
s∈[S]\s′

〈
G×[K] B(k,s),Xi

〉 .

In order to derive the expression in (22) for every Bk′,s′ for k′ ∈ [K] and s′ ∈ [S], notice that:

〈B,X〉 =
〈
G×1 B(1,s′) ×2 · · · ×K B(K,s′),X

〉
+

∑
s∈[S]\s′

〈
G×1 B(1,s) ×2 · · · ×K B(K,s),X

〉
(23)

=
〈
B(k′,s′),X(k′)

(
B(K,s′) ⊗ · · · ⊗B(k′+1,s′) ⊗B(k′−1,s′) ⊗ · · · ⊗B(1,s′)

)
GT

(k′)

〉
+

∑
s∈[S]\s′

〈
G×1 B(1,s) ×2 · · · ×K B(K,s),X

〉
.

Now we define the following notations in order to keep the expressions in (24) concise. From the first
summand in (24) we define

ω(k′,s′) = vec
(
X(k′)

(
B(K,s′) ⊗ · · · ⊗B(k′+1,s′) ⊗B(k′−1,s′) ⊗ · · · ⊗B(1,s′)

)
GT

(k′)

)
, (24)

and from the second summand in (24) we define

γ(k′,s′) =
∑

s∈[S]\s′

〈
G×1 B(1,s) ×2 · · · ×K B(K,s),X

〉
. (25)

We can then express (24) as

〈B,X〉 =
〈
vec(B(k′,s′),ω(k′,s′))

〉
+ γ(k′,s′) =

〈[
vec(B(k′,s′)), 1

]
,
[
ω(k′,s′), γ(k′,s′)

]〉
. (26)

By defining x̃ ,
[
ω(k′,s′), γ(k′,s′)

]
, we rewrite (22) as

arg min
B(k′,s′)∈O

m
k′×r

k′

n∑
i=1

(〈[
vec(B(k′,s′)), 1

]
, x̃i
〉)
T (yi)− a

(〈[
vec(B(k′,s′)), 1

]
, x̃i
〉)
. (27)

10
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The most important insight here is that the resulting problem can be viewed as a parameter estimation prob-
lem for GLMs with B(k′,s′) as the ‘parameter’ and x̃i as the ‘predictor’ or structured covariates. Estimating
B(k′,s′) alone in particular results in a low-dimensional problem with mk′rk′ parameters. We solve (22) via
projected gradient descent. Using the above defined notations, the gradient of Ln(B(k′,s′)) with respect to
B(k′,s′) is

∂Ln
∂vec(Bk′,s′)

=
n∑
i=1

(
T (yi)− g−1 (〈[vec(B(k′,s′)), 1

]
, x̃i
〉))

x̃i, (28)

and the projection operator H : Rmk′×rk′ −→ Omk′×rk′ that projects the obtained iterate onto the manifold
of orthogonal matrices is defined as

H(B(k′,s′)) , arg min
B̂∈Om

k′×r
k′

∥∥∥B̂−B(k′,s′)

∥∥∥2

F
. (29)

The solution to the problem in (29) is simply obtained using the QR decomposition of B(k′,s′).

4.2 Algorithm: Estimating the Core Tensor

For core tensor G, we are only required to perform gradient descent. The optimization problem is

arg min
G

Ln (G) , where (30)

Ln (G) =
n∑
i=1

〈g,
∑
s∈[S]

⊗
−[K]

B(k,s)

T

xi

〉T (yi)− a

〈g,
∑
s∈[S]

⊗
−[K]

B(k,s)

T

xi

〉 .

In order to see the derivative of the expression in (30), notice that,

〈B,X〉 = 〈vec(B), vec(X)〉 =
∑
s∈[S]

〈⊗
−[K]

B(k,s)

g,x
〉

=
〈

g,
∑
s∈[S]

⊗
−[K]

B(k,s)

T

x
〉
. (31)

With a slight overload of notation we also define the following:

x̃ =
∑
s∈[S]

(
B(K,s) ⊗ · · · ⊗B(1,s)

)T x, (32)

and further express (31) and (30) as

〈B,X〉 = 〈g, x̃〉 (33)

and

arg min
G

n∑
i=1

(〈g, x̃i〉)T (yi)− a (〈g, x̃i〉) , (34)

respectively. Once again, the resulting problem can be viewed as a parameter estimation problem for GLMs
with G as the ‘parameter’ and x̃i as the ‘predictor’ or structured covariates. Estimating G alone results in
a low-dimensional problem with

∏
k∈[K]

rk parameters. We solve (30) via gradient descent, where the gradient

of Ln(G) with respect to G is

∂Ln
∂vec(G) =

n∑
i=1

(
T (yi)− g−1 (〈g, x̃i〉)

)
x̃i. (35)

11



Under review as submission to TMLR

4.3 Final Algrithm: LSRTR

We summarize the procedure discussed above in Algorithm 1 and we name our algorithm Low Separation
Rank Tensor Regression (LSRTR). We also show the prediction procedure performed using the estimated
coefficient tensor in Algorithm 2, where we calculate the mean E[y|X] of the posterior distribution based on
the estimated coefficient tensor B from Algorithm 1. The posterior mean allows us to make predictions for
an observation y and report confidence probabilities.

Algorithm 1 LSRTR: A block coordinate descent algorithm for LSR-TGLMs
1: Input: n training samples {Xi, yi}ni=1, step size α, separation rank S, tensor rank {r1, r2, . . . , rK}.
2: Initialise: Factor matrices B0

(k,s) ∀ k ∈ [K], s ∈ [S], core tensor G0 and t← 0.
3: repeat:
4: for s′ ∈ [S] do
5: for k′ ∈ [K] do
6: B̃(t)

(k′,s′) ← vec
(
B(t)

(k′,s′)

)
− α

∑n
i=1
(
T (yi)− g−1 (〈[vec(B(k′,s′)), 1

]
, x̃i
〉))

x̃i

7: B(t+1)
(k′,s′) ← H

(
B̃(t)

(k′,s′)

)
8: end for
9: end for

10: G̃
(t+1)

← vec(G(t))− α
∑n
i=1
(
T (yi)− g−1 (〈g, x̃i〉)

)
x̃i

11: t← t+ 1
12: until convergence
13: return B̂←

∑
s∈[S] G

(t) ×1 B(t)
(1,s) ×2 · · · ×K B(t)

(K,s)

Algorithm 2 Posterior prediction for LSR-TGLMs
Input Estimate B̂ ∈ Rm1×···×mK and nte test data points {Xi}

nte
i=1

Output Expectation µ̂ = [E[y1|X1],E[y2|X2] . . .E[ynte |Xnte
]

1: Define: X ,
[
X1,X2, . . . ,Xnte

]
]

2: Compute µ̂ for input X as: µ̂ = g−1(〈B̂,X〉
3: return µ̂

In Section 5 we assess the performance of our proposed algorithm on various GLM problems for 2-dimensional
and 3-dimensional synthetic data. Moreover, in Section 7, we use the LSR-TGLM model and the proposed
LSRTR algorithm to solve classification problems on several real world medical imaging datasets. Though
we do not provide any convergence guarantees for Algorithm 1, we make some promising remarks on its
practical performance and leave the theoretical analysis for future works.

5 Numerical Study

In this section we provide a comprehensive numerical study in order to assess the efficacy of the LSR-
TGLM regression model and the corresponding proposed LSRTR algorithm. The objectives of this study
are three-fold. First, we investigate the performance of our algorithm, particularly: 1) The performance
of our proposed approach (parameter estimation and prediction) against a substantial growth in number
of parameters, and 2) The performance of our algorithm, particularly when faced with a large increase
in sample size. Secondly, we compare the estimation and prediction accuracy gains of the LSR model to
current regression models and algorithms in the literature (Zhou et al., 2013; Li et al., 2018; Zhang et al.,
2020; McCullagh & Nelder, 2019; Seber & Lee, 2003).

12
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5.1 Experiments on Synthetic Data

We begin with experiments on synthetic data for three GLM problems: linear regression, logistic regression
and Poisson regression. The purpose of the experiments is to answer the following questions:

1. When the underlying coefficient tensor has an LSR structure, does the proposed LSRTR algorithm
lead to reliable parameter estimation? Specifically, does our algorithm achieve a reduction in sample
complexity and estimation error compared to vector-based methods (for a fixed sample size)?

2. Does our proposed algorithm: 1) provide reliable parameter estimation and prediction against a
substantial growth in number of parameters and 2) have per-iteration computation time comparable
to other tensor-based methods, when faced with a large increase in sample size?

In our experiments we generate an (r1, r2, . . . , rK)-rank LSR structured coefficient tensor B ∈ Rm1×···×mK

with separation rank S in (9) as follows. The entries of the core tensor G are sampled from a
Gaussian(0, 1

r1r2...rK
) distribution. Each factor matrix B(k,s) is constructed by first constructing matrix

A(k,s) ∈ Rmk×rk with independent standard normal entries. The QR decomposition is then applied to
A(k,s) in order to obtain the orthonormal matrix Ã(k,s) ∈ Omk×mk . The first rk columns are then extracted
from Ã(k,s) in order to obtain B(k,s). With the above construction, we have ‖B‖2F ≤ S2r̃ ‖G‖2F (we derive
a more precise bound on ‖B‖2F in Section 6.3). We also generate n data samples {X, y} with ntr samples
used for training and estimation, and nte samples used for testing and prediction. We generate independent
tensor-structured covariates {Xi}ni=1 with zero-mean Gaussian entries and covariance Σx, and observations
{yi}ni=1 which are randomly generated according to the probabilistic model in (13) and with appropriate
link function g(µ). For linear regression, the observation yi conditioned on data Xi follows a Gaussian
distribution, i.e., yi ∼ N

(
〈B,Xi, 〉 , σ2

xIm
)
. In logistic regression, the observation yi conditioned on data

Xi follows a Bernoulli distribution, i.e., yi ∼ Bernoulli
(

1
1+exp(−〈B,Xi〉)

)
. Finally, in Poisson regression, the

observation yi conditioned on data Xi follows a Poisson distribution, i.e., yi ∼ Poisson (exp(〈B,Xi〉)).

The experiment for each GLM problem is performed for various model sizes {mk}k∈[K], tensor ranks
{rk}k∈[K] and separation rank S. The coefficient tensor B and data samples {Xi, yi}ni=1 are generated
as described above and each experiment is repeated for increasing value of ntr. We compute and report the
following:

1. A coefficient tensor B̂ estimated through the following learning methods: (i) The LSRTR method
(Algorithm 1), (ii) Low-rank Tucker model methods, specifically, a ‘block relaxation’ algorithm for
parameter estimation of Tucker-structured GLMs proposed by Li et. al (we will call this procedure
TTR)(Li et al., 2018), and a similar iterative procedure for logistic Tucker regression (LTuR) with
Frobenius norm regularization proposed by Zhang et. al (Zhang & Jiang, 2016), (iii) unstructured
(vector-based) methods for regression. In the case of (i.i.i) we use Least Squares (LS) for linear
regression, a first-order method we name LR (Seber & Lee, 2003) for logistic regression, and a GLM
fitting algorithm we name PR, with log link function from (McCullagh & Nelder, 2019) for Poisson
regression. The performance of each method is evaluated via the normalised estimation error defined

as
∥∥B−B̂

∥∥2

F

‖B‖2
F

.

2. A predicted response vector ŷ = [ŷ1, ŷ2, . . . , ŷnte ] = [µ̂1, µ̂2, . . . , µ̂nte ] where µ̂i = g(−1)
(〈

B̂,Xi

〉)
.

The prediction accuracy for linear, logistic and Poisson regression is evaluated via the normalised
squared error defined as ‖ŷ−y‖2

2
‖y‖2

2
, the Mean Absolute Error (MAE) defined as ‖ŷ−y‖1

nte
, and the

normalised squared logarithmic error defined as ‖log(ŷ+1)−log(y+1)‖2
2

‖log(y+1)‖2
2

, respectively.

Finally, for each GLM problem, unless otherwise stated, we conduct 50 repetitions of each experiment (for
a fixed coefficient tensor B) and average the error over the repetitions.

13
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5.1.1 2D Synthetic Data

We begin with the two-dimensional (matrix) case with K = 2 as many medical imaging data fall under
this case (x-rays, EEG, fiber-bundle images.). In this set of experiments the underlying coefficient matrix
B has dimensions m × m and rank r. The dimensions and rank of B are thus represented as the tuple
(m, r). For all GLM problems we fix the separation rank S = 2; thus the number of learnable parameters
is S(mr + mr) + r2 = 4mr + r2. We now proceed with the specific experimental setups of the three GLM
problems under study.

For linear regression we consider various model sizes and ranks, i.e., m ∈ {64, 128, 256}, r ∈ {4, 8}. We range
sample size ntr from (roughly) the degrees of freedom (number of learnable parameters) of the smallest
model size to no smaller than the degrees of freedom of the largest model size. The smallest model size is
for the tuple (m = 64, r = 4) and the largest model size is for the tuple (m = 256, r = 8), which, under the
LSR structure, have 4(64 × 4) + 42 = 1040 and 4(256 × 8) + 82 = 8256 learnable parameters, respectively.
We compare the performance of LSRTR to TTR and LS. Figure 2 reports the mean normalised estimation
and prediction accuracy, respectively, across 50 repetitions. The shaded regions are one standard deviation
of mean estimation and prediction accuracy, based on 50 replications.

For logistic and Poisson regression we consider m ∈ {32, 64, 128} and r ∈ {4, 8}. Since the models are non-
linear, we follow the heuristic rule of ranging sample size n from (roughly) 5 times the degrees of freedom of
the smallest model size to no smaller than that of the largest model size (Li et al., 2018). The smallest model
size is for the tuple (m = 32, r = 4) and the largest model size is for the tuple (m = 128, r = 8), which, under
the LSR structure, have 4(32× 4) + 42 = 528 and 4(128× 8) + 82 = 4160 learnable parameters, respectively.
We compare the performance of the LSRTR method to i) LTuR and LR and ii) TTR and PR for logistic
and Poisson regression, respectively. Figure 3 and Figure 4 report the estimation and prediction accuracy for
logistic and Poisson regression, respectively, with shaded regions depicting one standard deviation of mean
accuracy, based on 50 replications.

We pause to make a few remarks. Firstly, in the case of synthetic data, the rank r and separation rank S are
assumed to be known and other algorithmic parameters (the step size α) are set using separate validation
experiments. Secondly, though the generated coefficient B is a matrix, the numerical study by Li et al.,
(Li et al., 2018), shows that the low-rank Tucker model effectively estimates two-dimensional parameters
and the TTR algorithm performs well in the matrix setting even with huge increases in model and sample
sizes. The study by Li et al. also shows how TTR generalises CP tensor regression algorithms and improves
upon the performance of several other methods (such as PCA and Bayesian regression methods) in terms
of estimation and prediction accuracy in experiments with synthetic data and for several regression types
(linear and logistic) (Li et al., 2018). For these reasons we limit our scope of comparative algorithms for
matrix-structured regression to TTR.

First we note that since we report normalised errors, we do not investigate any errors greater than 1 in
Figures 2-4. The plots in Figures 2-4 show that, for all algorithms in all GLM problems, the estimation
and prediction accuracy improves and the shaded regions (which characterise the standard deviation of
the error points over 50 repetitions) decay with an increase in observations. In particular, on the whole,
the tensor-based methods LSRTR, TTR and LTuT outperform the vector-based methods LR, LS and PR,
particularly with larger model sizem. This is because the number of observations provided in the experiments
is typically much lower than the sample complexity of the vector methods. For example, consider linear
regression with m = 256. LS requires at least 256 × 256 = 65, 536 observations for reliable parameter
estimation, while if we set r = 4 and S = 2, TTR and LSRTR require only 2064 and 4112 observations for
reliable parameter estimation, respectively. Additionally, for TTR, LTuR and LSRTR, as the core tensor
dimensions grow (i.e., as we increase the Tucker rank of our tensor models), we require a relatively larger
sample size to achieve better accuracy. This is not surprising as a larger core tensor increases the number
of parameters to be learned. Figures 2-4 also show that for all GLM problems under study (namely linear,
logistic and Poisson regression), the LSRTR algorithm shows ‘consistent’ performance for estimation and
prediction. What we mean by this, is that, even with a substantial growth in model size, the the estimation
error induced by LSRTR decreases with increasing sample size, and the LSRTR algorithm can still achieve
acceptable estimation and prediction errors as long as the number of observations provided is large enough.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Comparison of LSRTR with LS and TTR for two-dimensional synthetic data when m =
64, 128, 256, r = 4, 8 and S = 2. Normalised estimation error for m = 64, 128, 256 is shown in (a), (c), (e),
respectively. Normalised prediction error for m = 64, 128, 256 is shown in (b), (d), (f), respectively. Each
marker represents the mean normalised estimation/prediction errors, over 50 repetitions. The shaded regions
correspond to one standard deviation of the mean normalised errors.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison of LSRTR with LR and LTuR for two-dimensional synthetic data when m =
32, 64, 128, r = 4 and S = 2. Normalised estimation error for m = 32, 64, 128 is shown in (a), (c), (e),
respectively. Normalised prediction error for m = 32, 64, 128 is shown in (b), (d), (f), respectively. Each
marker represents the mean normalised estimation/prediction errors, over 50 repetitions. The shaded regions
correspond to one standard deviation of the mean normalised errors.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Comparison of LSRTR with PR and TTR for two-dimensional synthetic data when m =
32, 64, 128, r = 4, 8 and S = 2. Normalised estimation error for m = 32, 64, 128 is shown in (a), (c), (e),
respectively. Normalised prediction error for m = 32, 64, 128 is shown in (b), (d), (f), respectively. Each
marker represents the mean normalised estimation/prediction errors, over 50 repetitions. The shaded regions
correspond to one standard deviation of the mean normalised errors.
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Additionally, we can see that LSRTR algorithm can predict using new data and can avoid over-fitting even
with a very large number of observations.

We also gain some additional insights from the results. 1) If the underlying parameter model B is LSR
structured, then LSRTR can recover B with a relatively low number of observations, in the sense that the
number of observations required is proportional to the intrinsic degrees of freedom in the LSR model (rather
than the extrinsic dimensionality of B). This implies that though we do not provide any theoretical guar-
antees for Algorithm 1, it can be employed successfully in practice. 2) More interestingly, if the underlying
parameter model B is LSR structured, then imposing the Tucker model on B in the parameter estimation
procedure – as in TTR and LTuR algorithms – results in less accurate estimation compared to LSRTR. Par-
ticularly, we see that for relatively large model sizes, such as in Figures 2e and 2f, or for non-linear models,
such as in Figures 3e, and 4e, TTR and LTuR algorithms’ performance plateaus, even when the number of
observations has far exceeded the degrees of freedom of a Tucker structured coefficient matrix B. In fact,
even LS and LR outperform TTR and LTuR when the model size is small enough and enough observations
have been provided. Though we expect LSRTR to perform better than TTR or LTuR when B is originally
LSR structured, the results suggest that if regression problems with real data have model parameters that
are approximately LSR structured, then TTR or LTuR may not be suitable algorithms and we can motivate
the use of algorithms such at LSRTR that allow for the consideration of a richer class of tensors that may
lead to more reliable estimation.

We make specific remarks on Figures 3c and 3e. In the case of m = 64, we see that LSRTR shows lower
estimation error at n = 17500 (0.11 vs 0.29), yet has a larger standard deviation (shaded region) over 50
experiment replications (0.04 vs 0.006). This is an acceptable standard deviation, especially considering the
reduction in estimation error compared to the Tucker-based LTuR algorithm. In the case of m = 128, LTuR
shows lower estimation error than LSRTR until about n = 7500 (errors of 0.6 vs 0.4). This could be due
to the fact that LSRTR is operating in the undersampling regime for n = 7500 (as LSR has more learnable
parameters than Tucker). Additionally, we see in Figure 3e that the estimation error for LTuR increases after
n = 7500, and in Figure 3f that LSRTR outperforms LTuR, which suggests that LTuR may be overfitting
the GLM model.

We also make a specific remark on Figure 4a, where we witness a slight increase in estimation error for
(m, r) = (32, 8) between n = 5000 and n = 7500 (0.025 vs 0.08). However, we see that the estimation error
continues to decrease after n = 7500, and we do not witness this phenomena in any other experiment in
Figure 4.

5.2 3D Synthetic Data

We have evaluated the performance of the LSRTR algorithm against an increase in model and sample
size for K = 2. Now, we wish to further explore the performance of our method compared to the other
state-of-the-art methods with 3-dimensional data (K = 3). In these experiments, the underlying coefficient
tensor B has dimensions m1 × m2 × m3 and Tucker rank {r, r, r}. The dimensions and rank of B are
thus represented as the tuple (m, r) where m = [m1,m2,m3]. We study the linear regression problem
and we fix the separation rank S = 1, i.e., B is Tucker structured. Thus B is a 3-dimensional Tucker
tensor of dimension m1 ×m2 ×m3 and rank r along each mode, and the number of learnable parameters is
S(m1r+m2r+m3r) + r3 = r(m1 +m2 +m3 + r2). We consider the model size m = [16, 32, 64], r = 4. The
model size under the Tucker structure is (16+32+64+42)4 = 512. We range sample size ntr from (roughly)
two times the degrees of freedom to roughly eight times the degrees of freedom. We compare the performance
of LSRTR to TTR and LS. Figure 5 reports the estimation accuracy and prediction accuracy, respectively,
with shaded regions depicting one standard deviation of mean accuracy, based on 50 replications. For LSRTR
the rank r is assumed to be known and other parameters (the separation rank S and the step size α) are set
using separate validation experiments. The separation rank was thus chosen as S = 2.

We observe from figure 5 the same observations as in the previous set of experiments. We also conclude that
even with the underlying coefficient tensor being Tucker structured our proposed LSRTR method in this
experiment exhibits better statistical performance with fewer observations than ‘Tucker specific’ algorithm
TTR as well as LS. This suggests that the LSR model induces a richer class of solutions with greater
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(a) (b)

Figure 5: Comparison of LSRTR with LS and TTR for three-dimensional synthetic data when m =
[16, 32, 64], r = 4, S = 1. For LSRTR, S = 2 was chosen. Normalised estimation error is shown in
(a). Normalised prediction error is shown in (b). Each marker represents the mean normalised estima-
tion/prediction errors, over 50 repetitions. The shaded regions correspond to one standard deviation of the
mean normalised errors.

n = 100 n = 300 n = 500
LSRTR 0.1 (7e− 5) 0.37 (2e− 4) 0.65 (5e− 4)
TTR 0.048 (3e− 5) 0.18 (1e− 4) 0.31 (2e− 4)

Table 2: Per-iteration computation time (in seconds) of LSRTR and TTR over varying sample size (n = 100,
n = 300, n = 500). We report the mean (and variance) over 50 repetitions.

representation power that is able to capture meaningful information in the data that the more compact
state-of-the-art tensor models do not – even with increased sample size. The results also suggest that the
projection step in LSRTR (imposing orthonormal factor matrices), may contribute to the performance of
LSRTR in terms of estimation/prediction error (as TTR does not impose such a constraint).

Finally, we numerically investigate the per-iteration computational complexity of LSRTR vs TTR for
three-dimensional synthetic data, for varing sample size, n. We repeat the previous experiment, i.e.,
m = [16, 32, 64], r = 4, S = 2, over varying sample size (n = 100, n = 300, n = 500), and report the
mean per-iteration computation time (in seconds) over 50 repetitions of the experiment, for LSRTR and
TTR. Table 2 shows the results. We can see that LSRTR and TTR have comparable per-iteration compu-
tation times. In fact LSRTR has computation time of roughly S = 2 times that of TTR.

In Section 6, we derive a lower bound on the minimax risk of the estimation error in the LSR-TGLM param-
eter estimation problem in (13). We numerically assess the tightness of the derived bound. Furthermore,
in Section 7, we evaluate the LSR-TGLM model and the LSRTR algorithm on several medical imaging
datasets.

6 Minimax Lower Bounds for Tensor-Structured GLMs

In this section we derive lower bounds on the minimax risk of the LSR-TGLM problem. In the results
we will derive, the minimax risk depends explicitly on the parameters of the LSR-structured tensor model,
namely {rk}k∈[K], {mk}k∈[K], S, the distribution of X and the number of samples n. Specifically, we derive
lower bounds on ε∗ using an argument for estimation problems based on Fano’s inequality (Yu, 1997; Taki
et al., 2021). This approach relates the minimax risk of coefficient tensor B to a multiple hypothesis testing
problem. It states that if there exists an estimator (let us call it B̂(y,X ), and which can be estimated by any
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parameter estimation algorithm), with error matching the minimax risk ε∗ (i.e
∥∥∥B̂(y,X )−B

∥∥∥2

F
= ε∗), then

this estimator B̂(y,X ) can be used to solve a multiple hypothesis testing problem (MHTP) (Khas’minskii,
1979). In this MHTP, the hypothesis set consists of a collection, BL, of L LSR-structured coefficient tensors,
where the goal of the estimator, B̂(y,X ), is to detect the correct ‘generating’ LSR-structured tensor. Fano’s
inequality provides a fundamental limit/bound on the error probability for the multiple hypothesis testing
problem. This limit in turn provides a lower bound on the minimax risk ε∗. As mentioned in Section 3, our
analysis is local and our approach to deriving a lower bound on the minimax risk is information-theoretic and
thus involves the analysis of the mutual information (defined as I(y; l)) between observations y = [y1 . . . yn]
and hypothesis l ∈ [L];

I(y; l) , Ey,l

[
log f(y, l)

f(y)f(l)

]
, (36)

where f(·), is a probability distribution. We are now ready to state our main result.
Theorem 6. Consider the rank-(r1, · · · , rK) and separation rank S LSR-TGLM problem in (13) with n

i.i.d observations,
{
Xi, yi

}n
i=1, where vec(Xi) ∼ N (0,Σx) and the true coefficient tensor ‖B‖2F < d2. The

minimax risk ε∗ is then lower bounded by

ε∗ ≥
( 1

16
)
S
∑
k∈[K](mk − 1)rk +

∏
k∈[K](rk − 1)− 1

128M ‖Σx‖2 n
. (37)

Theorem 6 can be specialised to the Tucker and CP decomposition regression problems in the existing
literature. That is, when S = 1 we have the Tucker model, and when r1 = r2 = · · · = rK = r and G is
constructed as a diagonal tensor, we have the CP model. With these specializations we obtain the following
corollaries:
Corollary 1. Consider the rank-(r1, · · · , rK) Tucker-TGLM problem (Li et al., 2018; Zhang et al., 2020;
Zhang & Jiang, 2016) with n i.i.d observations,

{
Xi, yi

}n
i=1, where vec(Xi) ∼ N (0,Σx) and the true coeffi-

cient tensor ‖B‖2F < d2. The minimax risk is lower bounded by

ε∗ ≥
( 1

16
)∑

k∈[K](mk − 1)rk +
∏
k∈[K](rk − 1)− 1

128M ‖Σx‖2 n
. (38)

Corollary 2. Consider the rank-r CP-TGLM problem (Zhou et al., 2013; Tan et al., 2012) with n i.i.d
observations,

{
Xi, yi

}n
i=1, where vec(Xi) ∼ N (0,Σx) and the true coefficient tensor ‖B‖2F < d2. The

minimax risk is lower bounded by

ε∗ ≥
( 1

16
)∑

k∈[K](mk − 1)r + (r − 1)− 1
128M ‖Σx‖2 n

, (39)

Table 3 provides a summary of the minimax lower bounds from this work and the relevant current literature.
Specifically Table 3 shows the order-wise lower bounds on the minimax risk for logistic regression, linear
regression and GLMs for several tensor structures on the model parameter. We make three remarks prior
to our discussion of Table 3. First, we define the terms m̃ =

∏
k∈[K]m)k and r̃ =

∏
k∈[K] rk. Additionally,

σ2
y is the variance of observation y, L is a fixed constant and an upper bound on the second derivative of

the cumulant function (a′′(η)), and we place a dash (−) in the cells where there are no specific results in the
existing literature. However, note that our derived minimax bounds for tensor-structured GLMs cover these
gaps in the literature (namely the case of CP-structred linear and logistic regression, and Tucker-structured
Logistic regression). Secondly, the order-wise lower bounds reported for the unstructured case are in fact
bounds on the minimax risk for prediction error, rather than estimation error. Nonetheless we include them
in our comparison as the sample complexities of estimation and prediction in a given problem tend to be
proportional. Thirdly, here we have we reported lower bound on the minimax risk for non-sparse regression,
as we are not studying sparsity in the scope of this work. In the first two rows of the table, we report the
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Structure of B

Regression Unstructured CP Tucker LSR

Linear σ2
ym̃

n (Raskutti
et al., 2011)

−
σ2

y

( ∑
k∈[K]

mkrk−r2
k+r̃

)
n (Zhang

et al., 2020)
−

Logistic m̃
n (Abramovich &
Grinshtein, 2016)

− − −

GLM σ2
ym̃

Ln (Lee & Cour-
tade, 2020)

∑
k∈[K]

mkr+r

M‖Σx‖2n

∑
k∈[K]

mkrk+r̃

M‖Σx‖2n

(
S
∑

k∈[K]

mkrk

)
+r̃

M‖Σx‖2n

Table 3: Summary of order-wise lower bounds on the minimax risk for linear regression, logistic regression
and GLM settings and for various tensor structures (unstructured, CP, Tucker and LSR).

order-wise minimax lower bounds for linear and logistic regression. In all cells of the first two rows, we
see that the minimax risk decreases proportionally with increasing sample size. In the unstructured case,
the minimax risk is proportional to the number of learnable parameters in the model (

∏
kmk). For linear

regression, however, this only applies if the number of parameters is less than n. This condition puts this
result at a disadvantage for the high-dimensional setting under study. We can see that the minimax risk
of linear regression in the Tucker-structured tensor case is proportional to the number of parameters in
the Tucker model (

∑
kmkrk +

∏
k rk). The numerators (

∏
kmk) and (

∑
kmkrk +

∏
k rk) give insights into

the parameters on which an achievable minimax risk might depend, and thus give insights into the sample
complexity of the parameter estimation problem. We can see that imposing a low-rank Tucker structure
may significantly decrease the number of learnable parameters.

The third row is the row of interest as it summarizes results for GLMs. Similar to the previous rows, the
minimax risk decreases with an increase in sample size. In the unstructured case the sample complexity
is (
∏
kmk). We also have a dependence on σ2

y and 1
L . Intuitively speaking, this means that the minimax

risk increases with the variance of y. Theorem 6 and Corrolaries 1 and 2 make up the last three columns.
The minimax risk is proportional to the number of parameters for the CP, Tucker and LSR case. This
is intuitively pleasing as it suggests that imposing either the CP, Tucker or LSR structure on B, one can
significantly reduce the sample complexity from the unstructured case to

∑
kmkr + r,

∑
kmkrk +

∏
k rk,

and S
∑
kmkrk

∏
k rk, respectively, and that we can develop algorithms (such as LSRTR in Algorithm 1)

that meet these bounds. As previously mentioned, the CP model induces the lowest number of parameters
and the LSR model has (S − 1)

∑
kmkrk more parameters than the Tucker model. Additionally, our results

also imply an inverse relationship between the minimax risk and ‖Σx‖2 and M , which is due to an artifact
of our analysis.

Lastly, though we do not provide any theoretical guarantees for the tightness of our bounds in Theorem 6
and Corollaries 1 and 2, we can see that our minimax bound for the Tucker-GLM meets that of the Tucker
linear regression works by Zhang et al., (Zhang et al., 2020), (we do not consider the r2

k term in (Zhang et al.,
2020) as that only accounts for the non-singular transformation indeterminacy, which we do not discuss in
the scope of this work). Zhang et al. have shown that their bounds are indeed optimal, which suggests that
the minimax lower bounds derived in Theorem 6 and Corrolaries 1 and 2 are also tight. Moreover, we now
provide a numerical analysis to assess the tightness of our bounds.
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6.1 Tightness of Theorem 6

We utilise the results of our experiments on synthetic data in Section 5 to investigate the tightness of the
minimax lower bound in (6). Though we do not provide any theoretical guarantees for the tightness of
our result, we have shown that our result matches an existing bound in the literature for the specific case
of Tucker linear regression. Now, we perform an empirical assessment of our result. Figure 6 shows the
ratio of the mean empirical error (over 50 repetitions) of LSRTR from our experiments in Section 5.1.1 to
our obtained lower bound in (6). We do this for linear and logistic regression and we can see the ratio is
approximately constant as a function of sample size for both regression types. Such a result suggests that
our bound may be achievable in the sense that we can develop algorithms that meet the minimax lower
bound and take advantage of the LSR tensor structure to lower the sample complexity of GLM problems.

(a) (b)

Figure 6: Comparison of the empirical error in LSRTR to the minimax lower bound for linear and logistic
regression. (a) shows the ratio of the empirical error in linear regression to the minimax lower bound for
m = 64, 128 and r = 4, 8. (b) shows the ratio of the empirical error in logistic regression to the minimax
bound for m = 64, 128 and r = 4.

6.2 Roadmap for Proof of Theorem 6

We begin by introducing a few important concepts. First, in order to set up the multiple hypothesis testing
problem consider the constructed packing set

BL = {Bl ∈ P{rk},S : l ∈ [L]} ⊂ Bd(0), L ∈ N (40)

from which the true index l corresponding to the true coefficient tensor is generated uniformly at random. In
order to ensure a tight bound on our minimax risk, BL must possess following properties: (i) The minimum
packing distance between any two distinct hypotheses Bl,Bl′ ∈ BL, l, l′ ∈ [L], l 6= l′ is large. Specifically, for
a strictly positive parameter δ we require a construction such that ‖Bl −Bl′‖F ≥

√
8δ. (ii) The hypothesis

testing problem is hard in the sense that it is difficult to detect the true index l (and thus the true coefficient
tensor) based on an observation y. (iii) The construction of BL must induce lower bounds on the minimax
risk that reflects the reduction in the sample complexity of the LSR tensor structure, i.e., we require a bound
that exhibits a relation between the intrinsic degrees of freedom of the LSR tensor ({mk}k∈[K], {rk}k∈[K], S)
and the number of samples (n). Secondly, since the objective of the multiple hypothesis testing problem is
to detect the index l, it is solved through the minimum distance decoder

l̂(y) , arg min
l′∈[L]]

∥∥∥B̂−Bl′

∥∥∥
F
, (41)

where B̂ is estimated through any learning algorithm, such as Algorithm 1 proposed in this work. In the
LSR-TGLM problem we have the following hypothesis detection criteria:

22



Under review as submission to TMLR

• If
∥∥∥B̂−Bl

∥∥∥
F
≤
√

2δ: P(l̂(y) 6= l) = 0.

• If
∥∥∥B̂−Bl

∥∥∥
F
>
√

2δ: A detection error might occur, P(l̂(y) 6= l) ≥ 0.

The minimum distance decoder detects the true hypothesis if the estimate B̂ lies within the open ball
B(Bl,

√
2δ), and a detection error can only occur if

∥∥∥B̂−Bl

∥∥∥
F
>
√

2δ. Thus the probability of error is
bounded by

P(l̂(y) 6= l) ≤ P
(∥∥∥B̂−Bl

∥∥∥
F
≥
√

2δ
)
. (42)

In this approach we interpret the coefficient estimation problem as a communication problem. From the set
in (40), the source selects the true hypothesis Bl (the true coefficient tensor) uniformly at random. The
hypothesis Bl then generates the channel output according to a ‘channel model’ as in (13) with a chosen link
function g(·). Specifically, the channel outputs yi such that E[yi|Xi] = µi = g−1(〈Bl,Xi〉). The minimum
distance decoder then successfully recovers the true hypothesis if the estimator B̂ is within a ball of radius√

2δ around Bl. Thirdly, we recognise that the problem under study is supervised and the response variables
yi ∀i ∈ [n] are conditioned on input data Xi ∀i ∈ [n]. On the basis thereof we opt to evaluate the conditional
mutual information I(y; l|X) ≥ I(y; l). We use the aforementioned concepts to achieve our result in (37)

Figure 7: Information theoretic approach for deriving bounds on the minimax risk. Consider a packing set
BL = {Bl : l ∈ [L]} ⊂ Bd(0) with minimum distance between any two elements as

√
8δ. The true coefficient

tensor is selected uniformly at random (u.a.r) and the LSR-TGLM model generates the channel output. We
detect the true coefficient tensor using the minimum distance decoder. Here, the minimum distance decoder
will detect B1 as the true hypothesis

.

through the accomplishment of the following tasks: 1) We must construct the set BL as an exponentially
large (with respect to the dimensions of an LSR structured tensor) family of L distinct LSR structured
tensors, and satisfying the properties described above. This involves constructing KS+1 individual sets (for
the K×S factor matrices {B(k,s)}k∈[k], s∈[S] and core tensor G) and deriving conditions under which all sets
can exists simultaneously (with high probability). 2) We must find tight bounds on the conditional mutual
information I(y; l|X ). As explained in Section 3, ‘Off-the-shelf’ packing sets and bounds on the minimax
risk for the unstructured (vector-based) parameter estimation problem are not useful in our application as
our goal is to understand the benefits of imposing the LSR structure on the problem’s sample complexity.
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The novelty in our work is that we explicitly leverage this structure leading to a hypothesis set BL with
a structure than cannot be achieved through current methods. Lastly, though our analysis is local and
depends on a fixed tensor in a neighbourhood with known radius, our minimax risk becomes independent of
this radius if it becomes sufficiently large.

6.3 Proof of Theorem, 6

Four lemmas lay the foundation to the formal proof of Theorem 6. Through Lemmas 4, 6, 7 and 8 we
achieve the following: We construct the hypothesis set BL containing L distinct tensors. Since each Bl ∈ BL
is LSR structured, as defined in (9), then we construct BL by constructing KS + 1 individual sets that
correspond to K × S sets for B(k,s) (k ∈ [K], s ∈ [S]) and a set for G. Our construction of BL results in
tight upper and lower bounds on the distance ‖Bl −Bl′‖

2
F for any two distinct l, l′ ∈ [L], sampled uniformly

at random (u.a.r), which will be used to derive bounds on the mutual information I(y; l) and minimax risk
ε∗. Complete proofs of these lemmas are in the appendix. Lemma 4 (and Corollary 5) introduce the sets of
‘generating’ vectors (and matrices) from which we will later construct G (and B(k,s) for all k ∈ [k], s ∈ [S]),
that are in turn used to construct each Bl. Specifically, for some α ∈ N, our aim is to construct a set of
(α)-dimensional vectors with entries sampled uniformly at random from

{
−1√
α
, 1√

α

}
, with some designated

minimum packing distance in the Hamming metric between any two vectors. Topologically speaking, this
can also be viewed as the construction of a subset of an (α)-dimensional hypercube with a required minimum
Hamming distance between any two distinct elements in the set. Lemma 4 and its subsequent corollary utilise
the Gilbert-Vershamov bound on constructing binary codes with minimum distance in order to construct the
‘generating’ sets we have just described. The following can be found in the book by Tsybakov (Tsybakov,
2009, Lemma 2.9), where we restate the bound here in the interest of keeping this work self-contained.
Lemma 3 (Gilbert-Vershamov Bound, Lemma 2.9 (Tsybakov, 2009)). Let d ≥ 8. Then there exists a subset
C ⊂ {0, 1}d of size

|C| ≥ 2d/8 (43)

such that for any pair v,v′ ∈ C, we have ‖v− v′‖1 ≥
d
8 .

Corollary 3. For any d ≥ 8 there exists a set of binary vectors C ⊆ {−α, α}d of size |C| ≥ 2d/8 such that
for any pair v,v′ ∈ C, we have ‖v− v′‖0 ≥

d
8 .

Lemma 4 and Lemma 5 introduce a set of ‘generating’ binary vectors and matrices, respectively, with
minimum distance.
Lemma 4. Let rk > 0 ∀k ∈ [K] and r̃ =

∏
k∈[K] rk. For any integers (r1, r2, · · · , rk) such that r̃ ≥ 8, there

exists a collection of F ≥ 2(r̃−1)/8 vectors {sf ∈ 1√
r̃−1
{−1, 1}r̃−1 : f ∈ [F ]} such that for all f, f ′ ∈ [F ] we

have ‖sf − sf ′‖0 ≥ (r̃ − 1)/8.
Lemma 5. Let mk > 0 and rk > 0 ∀k ∈ [K]. For any integers (mk, rk) such that (mk − 1)rk ≥ 8 there
exists a collection of P = 2(mk−1)rk/8 matrices {Sp ∈ 1√

(mk−1)rk

{−1, 1}(mk−1)rk :
p ∈ [P ]} such that for all p, p′ ∈ [P ] we have ‖Sp − Sp′‖0 ≥ (mk − 1)rk/8.

The sets generated in Lemma Lemma 4 and Lemma 5 can be used to construct the set BL of L tensors
in (40). We now introduce Lemma 6, which derives conditions on L such that the sets in Lemma 4 and
Lemma 5 exist simultaneously. In Lemma 6 we construct BL with a certain set of properties. Note that
every element in BL must have an LSR structure. That is, every element is comprised of K×S low-rank and
orthogonal factor matrices (of dimensions mk× rk, k ∈ [K]), and a core tensor (of dimensions r1×· · ·× rK),
that we carefully construct from the set of ‘generating’ matrices and vectors defined in Lemma 5 and Lemma
4, respectively, according to (9). Additionally, any two distinct elements Bl,Bl′ ∈ BL must be a suitable
distance apart. Lemma 6 derives upper and lower bounds on this distance; the lower bound determines the
minimum packing distance, while the upper bound is used to derive upper bound on the conditional mutual
information in Lemma 7.
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Lemma 6. Define r̃ =
∏
k∈[K] rk. Let S > 0, mk > 0, rk > 0, and (mk − 1)rk ≥ 8 ∀k ∈ [K] There exists a

collection of L tensors BL , {Bl : l ∈ [L]} ⊂ Bd(0) for some d > 0 of cardinality

L ≥ 2
1
8

[
S
∑

k∈[K]
(mk−1)rk+(r̃−1)

]
(44)

such that for any

1
S

√
32(r̃ − 1)

r̃
< ε ≤ d

S

√
r̃ − 1
r̃

, (45)

we have

S2 r̃

r̃ − 1ε
2 ≤ ‖Bl −Bl′‖

2
F ≤ 4S2 r̃

r̃ − 1ε
2. (46)

The bounds in (46) match (up to a constant) and are tight, which help ensure that the upper bound on
the conditional mutual information is also tight. Until now, we have completed the tasks of constructing
the set BL with the packing distance 8δ = S2

4
r̃

r̃−1
ε2 and with packing number (cardinality) parametrised

by the parameters {rk}k∈[K], {mk}k∈[K], S. We transition to the next task of deriving upper bounds on the
conditional mutual information, I(y;X|). Upper bounds on I(y;X|) involve the evaluation of the Kullback-
Leibler (KL) divergence. For this we employ well-established results in the literature (Cover & Thomas,
2012; Jung et al., 2016). Specifically, define fl(y|X ) and fl′(y|X ) as the conditional probability distribution
of y given X with any two distinct coefficient tensors Bl and Bl′ respectively. Denote DKL as the relative
entropy, then

I(y; l|X ) ≤ 1
L2

∑
l,l′

EXDKL(fl(y|X )||fl′(y|X )). (47)

We note here that we require the hypothesis test to be hard, which corresponds to a relatively small KL
divergence. Therefore, our aim is to derive tight upper bounds on the KL divergence in (47), by relying on
the tight bounds in (46). Lemma 7 thus derives an upper bound on I(y; l|Xc).
Lemma 7. Consider the LSR-TGLM problem given by the model in (13) such that B ∈ Bd(0) for some
d > 0, and consider the set BL constructed in Lemma 6. Consider n i.i.d observations yi following a
probability distribution belonging to the exponential family when conditioned on vec(Xi) ∼ N (0,Σx). Then
we have:

I(y; l|X ) ≤ 4S2Mn ‖Σx‖2
r̃

r̃ − 1ε
2. (48)

The final step is to lower bound I(y; l|X ) using Fano’s inequality (Yu, 1997), stated below:

I(y; l|X ) ≥ I(y; l) ≥
(

1− P(l̂(y) 6= l)
)

log2(L)− 1. (49)

Evaluating (49) is simple. For this we refer the reader back to (42) in Section 6.2, which bounds the error
probability P(l̂(y) 6= l) for the recovery of hypothesis Bl using the minimum distance decoder. Lemma 8
bounds this probability, with proof that follows exactly that for Lemma 8 in (Jung et al., 2016), and thus is
omitted in this work.
Lemma 8. Consider the minimum distance decoder in (41). Consider also the LSR-TGLM regression
problem in (13) with minimax risk ε∗. Suppose ε∗ ≤ δ for some non-negative scalar δ. If the L tensors
destributed in Lemma 6 satisfy ‖B−Bl′‖ ≥ 8δ then the detection error of the minimum distance decoder is
upper bounded by P(l̂(y) 6= l) ≤ 1

2 .

Proof of Theorem 6. Fix (r1, r2, . . . , rK). From Lemma 6 for any ε > 0 satisfying (45) there exists a packing
set BL ⊂ Bd(0) with cardinality L and packing distance ‖Bl −Bl′‖

2
F satisfying (44) and (46), respectively.
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Also, from Lemma 7, with the set BL, I(y; l|X ) satisfies (48). Now suppose there exists an estimator B̂
which guarantees a risk ε∗ = S2r

32(r−1)ε
2. If we set 8δ = S2

4
r̃

r̃−1
ε2 then from Lemma 8 for the set BL and we

have P(l̂(y) 6= l) ≤ 1
2 . Combining Lemmas 7 and 8 we have

1
2 log2 L− 1 ≤ I(y; l|X ) ≤ 128Mn ‖Σx‖2 ε

∗, (50)

which can be rearranged to achieve the result in (6).

7 Experiments on Medical Imaging Data

We move on to investigating our approach on medical imaging data. Regression analysis of medical imaging
data can be a useful tool in medical decision making. We chose this type of data for several reasons.
Medical images are usually multi-dimensional, and since data acquisition in medical sciences is expensive,
the regression problems under study with such data is very high dimensional. Another major reason is that
medical images model complex biological structures (such as brain maps). We expect the model parameter
in the corresponding regression model to model this complexity. Lastly, the set of observations in medical
imgaing data is usually severely unbalanced. In other words, positive medical diagnoses are relatively rare,
and thus a given set of observations will contain far fewer positive diagnoses than negative diagnoses. The
high-dimensionality, complexity and unbalanced observation set of medical imaging data serve as an excellent
assessment of the efficiency of our proposed model and algorithm. Here we study three datasets; ABIDE
Autism (Craddock et al., 2013; Lodhi & Bajwa, 2020), ADHD200 (Bellec et al., 2017) and Vessel MNIST
3D (Yang et al., 2021).

7.1 ABIDE Autism

The Autism Brain Imaging Data Exchange (ABIDE) dataset contains the resting state fMRI data collected
from 98 subjects. The data has already been preprocessed for motion realignment and correction, slice timing
correction and image normalisation. Each data sample corresponds to 111 cortical and sub-cortical brain
regions scanned over 116 time periods (Craddock et al., 2013). Therefore each sample is a 111 × 116 data
matrix of fMRI data from one subject. Each observation is a binary response variable y ∈ {0, 1} depicting
a subjects’ diagnosis of either having autism (y = 1) or not (y = 0). The goal is to classify the subjects as
either having or not having autism. We perform a single train-test split procedure and we choose 40 autistic
and 40 control samples uniformly at random for training. We also choose 14 test subjects the same way.
The case-control ratio is this dataset is 1 : 1. ABIDE Autism is the only balanced dataset in this set of
experiments.

7.2 ADHD200

ADHD200 is a repository of resting state fMRI images of subjects from 8 research sites: Peking University,
Brown University, Kennedy Krieger Institute, Donders Institute, NYU Child Study Center, Oregon Health
and Science University, University of Pittsburgh and Washington University in St. Louis. The data includes
brain maps of fractional Amplitude of Low-Frequency Fluctuations (fALFF) of 959 child subjects. fALFF
brain maps can be useful in predicting Attention Deficit Hyperactivity Disorder (ADHD) in children. The
data has been preprocessed, (consortium, 2012), and we also perform standard preprocessing of the data such
as removing missing observations or images with poor quality (a list of images with poor quality has been
made public, (consortium, 2012)). Each data sample corresponds to a 3-dimensional patient fMRI brain
scan (T1-weighted image) of size 121×145×121. Figure 8 shows the axial, sagittal and coronal views (views
across each tensor mode) of a fMRI data sample . Each observation is a binary response variable y ∈ {0, 1}
depicting a child subject’s diagnosis of either having ADHD (y = 1) or being typically developing (y = 0).
The objective here is classification of children subjects with ADHD. The dataset has already undergone a
train-test split procedure. The training dataset consists of 762 samples, 280 of which are labeled as ADHD
(hyperactive/impulsive, inattentive and combined) and 482 of which are labeled as typical (control). The
testing dataset consists of 197 samples, where 76 and 93 are labeled as ADHD and control, respectively. The
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data is slightly imbalanced where the case-control ratio in the training and testing sets is 3 : 5 and 4 : 5,
respectively.

(a) (b) (c)

Figure 8: Axial (a), coronal (b), and sagittal (c) views of an fMRI data sample.

7.3 Vessel MNIST 3D

MedMNIST (Yang et al., 2021) is a collection of medical imaging datasets suitable for various tasks such as
classification and regression. One of the datasets is the Vessel 3D dataset (Yang et al., 2020) containing 1, 909
reconstructions of vessel segments from brain Magnetic Resonance Angiography (MRA) data of differents
subjects. Each data point corresponds to 3-dimensional vessel segment of dimension 28 × 28 × 28. Each
vessel segment may or may not exhibit an intracranial aneurysm and the dataset is diverse in the sense that
it includes a variety of shapes and scales of intracranial aneurysms. The data has also been preprocessed
to restore incomplete scans made by neurosurgeons and to remove duplicates data. Each observation is
a binary response variable y ∈ {0, 1} depicting a vessel segment diagnosis of either having an aneurysm
(y = 1) or being healthy (y = 0). The goal is to therefore classify each vessel segment as either exhibiting
an aneurysm or being healthy. The dataset has already undergone a train-test split procedure. The training
dataset consists of 1335 samples, 150 of which are labeled as ‘aneurysm’ and 1185 of which are labeled as
‘healthy’. The testing dataset consists of 382 samples, where 43 and 339 are labeled as ‘aneurysm’ and
‘healthy’, respectively. The data is severely imbalanced where the case-control ratio in both the training and
testing sets is 3 : 25.

7.3.1 Results of Experiments on Medical Imaging Data

All three medical imaging datasets support a logistic regression problem. We estimate the unknown coefficient
tensor B through our LSRTR algorithm and use our estimate to predict the responses of the test data
through a logistic regression model, i.e., we calculate the posterior probability using the sigmoid function
s = (1/(1 + exp 〈B,Xi〉)) for every test subject i and use a cut-off threshold of 0.5 to classify each response
as 1 or 0, where the positive class is chosen if s > 0.5. Parameters including the Tucker rank {rk}k∈[K], the
separation rank S and the step size α are set – for each dataset – using separate validation experiments.
On all three datasets we compare our method with four other methods, two of which have been previously
introduced, namely, LR and LTuR. The third method is a low-rank CP model method (which we name
LCPR), specifically a block coordinate descent approach for parameter estimation of CP structured logistic
regression models proposed by Tan et al. (Tan et al., 2012). The fourth method is a Support Vector Machine
(SVM) with Gaussian Kernel (Hearst et al., 1998). In the case of the Vessel MNIST dataset, we also compare
our method with an established baseline in the literature for Medical MNIST datasets: ResNet 50, which
is residual neural network that is 50 layers deep. This neural network has also been augmented with a
convolutional layer designed to handle 3-dimensional data. To evaluate the performance of each method
we report the following scores: Specificity, defined as the true negative rate, sensitivity, defined as the true
positive rate, the F1 score, the average accuracy score defined as the MAE, and the Area Under the Curve
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(AUC). We note that we penalise false positives and false negatives with the same severity and compute the
MAE to be consistent with the current literature (Li et al., 2018; Zhou et al., 2013; Zhang & Jiang, 2016).
We also note that it is important to use the F1 score and AUC, as they are more appropriate metrics in the
case of class imbalance, compared to average accuracy.

Table 4 summarizes the description of each dataset and Tables 5a, 5b, and 5c summarize the results. The
chosen rank (rk)k∈[K] for ABIDE Autism, ADHD200 and Vessel MNIST 3D are (6, 6), (6, 6, 6) and (3, 3, 3),
respectively. The chosen LSR rank for LSRTR for ABIDE Autism, ADHD200 and Vessel MNIST 3D are
S = 2, S = 3 and S = 2, respectively. The results show that the LSRTR method performs well in terms of
sensitivity and avergage accuracy for all datasets and the vector based-method LR has poorer performance
with all datasets, where for some datasets all observations are predicted as positive. Particularly with the
ADHD200 dataset, we are faced with the challenge of efficient estimation as the sample size is very small
with respect to the model size (762 vs 2097152). The relatively good performance of LSRTR suggests that
LSRTR performs well in the high-dimensional setting (i.e., when the sample size is significantly smaller than
the number of covariates). We notice that LR performs very poorly with ADHD200, as there are over 2 million
parameters to estimate. With the chosen rank, the LSR model decreases the dimensionality to 2322S + 216
which enables significantly more efficient classification. LTuR and LTR decrease the dimensionality to
2322 + 216 and 2322, respectively, but exhibit poorer performance than LSRTR (and even SVM), suggesting
that CP and Tucker models cause a loss of representation power that is essential to parameter estimation
for some datasets. With the Vessel MNIST dataset we have more training samples than ADHD200 and a
lower-dimensional problem (only 21952). For this reason all methods perform relatively well, with LSRTR
having one of the best performances. When compared to ResNet 50, our method approaches its performance
in terms of F1 score and beats its performance in terms of average accuracy. Additionally, we note that
an advantage of using GLMs over neural networks is that GLMs naturally provide prediction confidence
probabilities (not just accuracy scores) that complement the specificity and sensitivity scores through the
posterior probabilities. Such confidence probabilities are important information for medical professionals
to consider during in medical studies, as it provides valuable interpretability of the classification results.
Additionally, unlike the ResNet 50 (and additional convolutional layer) neural network, LSRTR is easily
extendable beyond the 3D case, and is trivially applied to other regression types (such as linear and Poisson),
and does not require fine tuning for each case.

We make a similar remark on Table 5a. The sensitivity for LSRTR is 1, which is likely due to the fact that
we use only 14 test samples from the ABIDE Autism dataset. In order to provide better interpretability,
Figure 9 shows a histogram of the posterior probabiltities for the 14 test data samples. We see that all of
the samples labeled as y = 1 are classified as such since their posterior probabilities are all over 0.5. Most
samples of Class 1 are classified with high confidence (in the sense that posterior probabilities are well above
the 0.5 threshold). Only one sample of Class 0 was misclassified.

Figure 9: Histogram of posterior probabilities for test data in ABIDE Autism Dataset.
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Dataset Covariate Dimensions Train Size Test Size
ABIDE Autism (111, 116) 80 14
ADHD200 (121, 145, 121) 762 169
Vessel MNIST 3D (28, 28, 28) 1335 382

Table 4: Description of three medical imaging datasets (ABIDE ADHD, ADHD 200 and Vessel MNIST
3D). Described are the model dimensions and train and test sizes for all three datasets.

SVM LR LCPR LTuR LSRTR
Sensitivity 0.71 0.71 0.71 0.71 1
Specificity 0.14 0.71 0.85 0.85 0.85
F1 score 0.55 0.71 0.77 0.77 0.93
AUC 0.42 0.51 0.84 0.84 0.9

Average Accuracy 0.43 0.71 0.78 0.78 0.92

(a) ABIDE Autism
SVM LR LCPR LTuR LSRTR

Sensitivity 0.41 1 0.62 0.51 0.83
Specificity 0.78 0 0.34 0.52 0.4
F1 score 0.5 0.62 0.35 0.48 0.65
AUC 0.62 0.5 0.56 0.62 0.67

Average Accuracy 0.62 0.45 0.47 0.51 0.59
(b) ADHD200

SVM LR LCPR LTuR LSRTR ResNet 50
Sensitivity 0.39 0.53 0.26 0.32 0.47 0.85
Specificity 0.95 0.55 0.946 0.94 0.96 0.86
F1 score 0.44 0.21 0.3 0.37 0.55 0.57
AUC 0.84 0.52 0.6 0.66 0.81 0.9

Average Accuracy 0.89 0.55 0.869 0.87 0.91 0.85
(c) Vessel MNIST 3D

Table 5: Comparison of LSRTR with LR, LCPR and LTuR for classification diagnosis of test subjects in
datasets: (a)ABIDE Autism (b) ADHD200 and (c) Vessel MNIST 3D. In the case of Vessel MNIST 3D,
LSRTR is also compared to ResNet 50.

8 Conclusion

In this work, we investigate the LSR model on tensor-structured GLM problems. Specifically, we imposed a
low-rank LSR structure on the coefficient tensor in GLMs. The parameter estimation problem is highly non-
convex, and we propose a block coordinate descent algorithm, called LSRTR. Each convex sub-problem in
LSRTR estimates a separate element/component of the LSR-structured coefficient tensor. In our theoretical
analysis, we provide a minimax lower bound on the estimation error of the parameter estimation problem of
LSR-structured tensors and specialise these bounds for Tucker-structured and CP-structured tensors. These
bounds show that LSR reduces sample complexity compared to that of the vector case. We evaluate the
tightness of these bounds numerically and through the comparison of the specific case of Tucker regression to
tight bounds in the literature. The methods we use may be of interest to readers as they can also be utilised
for deriving minimax bounds on other LSR-structured estimation problems. Furthermore, we evaluate the
LSRTR algorithm and the LSR-model on several synthetic and real datasets. These experiments demonstrate
that the LSR model is less restrictive than other tensor models (such as Tucker or CP), and can can be
effectively employed for analysis on balanced and imbalanced medical imaging data. Some possible future
work include theoretical analysis of the tightness of the minimax bounds, and theoretical guarantees of the
LSRTR algorithm.

29



Under review as submission to TMLR

References
Felix Abramovich and Vadim Grinshtein. Model selection and minimax estimation in generalized linear
models. IEEE Transactions on Information Theory, 62(6):3721–3730, 2016.

Felix Abramovich and Vadim Grinshtein. High-dimensional classification by sparse logistic regression. IEEE
Trans. on Information Theory, 65(5):3068–3079, 2018.

Talal Ahmed, Haroon Raja, and Waheed U Bajwa. Tensor regression using low-rank and sparse Tucker
decompositions. SIAM Journal on Mathematics of Data Science, 2(4):944–966, 2020.

Baiguo An and Beibei Zhang. Logistic regression with image covariates via the combination of `1 and Sobolev
regularizations. PLOS One, 15(6):e0234975, 2020.

Leighton Pate Barnes and Ayfer Ozgur. Minimax bounds for distributed logistic regression. arXiv preprint
arXiv:1910.01625, 2019.

Pierre Bellec, Carlton Chu, Francois Chouinard-Decorte, Yassine Benhajali, Daniel S Margulies, and
R Cameron Craddock. The Neuro Bureau ADHD-200 preprocessed repository. Neuroimage, 144:275–
286, 2017.

Quentin Berthet and Nicolai Baldin. Statistical and computational rates in graph logistic regression. In
Proc. Int. Conf. on Artificial Intelligence and Statistics (PMLR), pp. 2719–2730, 2020.

ADHD-200 consortium. The adhd-200 consortium: a model to advance the translational potential of neu-
roimaging in clinical neuroscience. Frontiers in systems neuroscience, 6:62, 2012.

Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley & Sons, 2012.

Cameron Craddock, Yassine Benhajali, Carlton Chu, Francois Chouinard, Alan Evans, András Jakab, Bud-
hachandra Singh Khundrakpam, John David Lewis, Qingyang Li, Michael Milham, et al. The Neuro
Bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Fron-
tiers in Neuroinformatics, 7:27, 2013.

John P Dumas, Muhammad A Lodhi, Batoul A Taki, Waheed U Bajwa, and Mark C Pierce. Computational
endoscopy—a framework for improving spatial resolution in fiber bundle imaging. Optics Letters, 44(16):
3968–3971, 2019.

Dylan J Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik Sridharan. Logistic regression: The
importance of being improper. In Proc. Conf. On Learning Theory (PMLR), pp. 167–208, 2018.

Mohsen Ghassemi, Zahra Shakeri, Anand D Sarwate, and Waheed U Bajwa. Learning mixtures of separable
dictionaries for tensor data: Analysis and algorithms. IEEE transactions on signal processing, 68:33–48,
2019.

Christophe Giraud. Introduction to High-dimensional Statistics. Chapman and Hall/CRC, 2021.

Johan Håstad. Tensor rank is NP-complete. In Proc. International Colloquium on Automata, Languages,
and Programming, pp. 451–460. Springer, 1989.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector
machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

Hung Hung and Chen-Chien Wang. Matrix variate logistic regression model with application to EEG data.
Biostatistics, 14(1):189–202, 2013.

Alexander Jung, Yonina C Eldar, and Norbert Görtz. On the minimax risk of dictionary learning. IEEE
Trans. on Inf. Theory, 62(3):1501–1515, 2016.

Rafail Z Khas’minskii. A lower bound on the risks of non-parametric estimates of densities in the uniform
metric. Theory of Probability & Its Applications, 23(4):794–798, 1979.

30



Under review as submission to TMLR

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500,
2009.

Kuan-Yun Lee and Thomas Courtade. Minimax bounds for generalized linear models. Proc. Advances in
Neural Information Processing Systems, 33:9372–9382, 2020.

Xiaoshan Li, Da Xu, Hua Zhou, and Lexin Li. Tucker tensor regression and neuroimaging analysis. Statistics
in Biosciences, 10(3):520–545, 2018.

Muhammad Asad Lodhi and Waheed U Bajwa. Learning product graphs underlying smooth graph signals.
arXiv preprint arXiv:2002.11277, 2020.

Peter McCullagh and John A Nelder. Generalized Linear Models. Routledge, 2019.

Frank Nielsen. Statistical divergences between densities of truncated exponential families with nested sup-
ports: Duo bregman and duo jensen divergences. Entropy, 24(3):421, 2022.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 7(15):510, 2008.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for high-dimensional
linear regression over \ell_q −balls. IEEE transactions on information theory, 57(10):6976–6994, 2011.

Garvesh Raskutti, Ming Yuan, and Han Chen. Convex regularization for high-dimensional multiresponse
tensor regression. The Annals of Statstics, 47(3):1554–1584, 2019.

George AF Seber and Alan J Lee. Linear Regression Analysis, volume 330. John Wiley & Sons, 2003.

Jianing V Shi, Yangyang Xu, and Richard G Baraniuk. Sparse Bilinear Logistic Regression. arXiv preprint
arXiv:1404.4104, 2014.

Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898, 2012.

Batoul Taki, Mohsen Ghassemi, Anand D Sarwate, and Waheed U Bajwa. A minimax lower bound for
low-rank matrix-variate logistic regression. In Proc. 2021 55th Asilomar Conference on Signals, Systems,
and Computers, pp. 477–484. IEEE, 2021.

Xu Tan, Yin Zhang, Siliang Tang, Jian Shao, Fei Wu, and Yueting Zhuang. Logistic tensor regression for
classification. In Proc. 2012 PMLR Int. Conf. on Intelligent Science and Intelligent Data Engineering,
pp. 573–581. Springer, 2012.

Theodoros Tsiligkaridis and Alfred O Hero. Covariance estimation in high dimensions via Kronecker product
expansions. IEEE Transactions on Signal Processing, 61(21):5347–5360, 2013.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer New York, NY, 2009.

Martin J Wainwright. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy
setting. IEEE Trans. on Inf. Theory, 55(12):5728–5741, 2009.

Ying Wu, Dan Chen, Chaoqian Li, and Niansheng Tang. Bayesian tensor logistic regression with applica-
tions to neuroimaging data analysis of Alzheimer’s disease. Statistical Methods in Medical Research, pp.
09622802221122409, 2022.

Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight automl bench-
mark for medical image analysis. In Prpc. 2021 IEEE 18th International Symposium on Biomedical
Imaging (ISBI), pp. 191–195. IEEE, 2021.

Xi Yang, Ding Xia, Taichi Kin, and Takeo Igarashi. Intra: 3d intracranial aneurysm dataset for deep
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2656–2666, 2020.

31



Under review as submission to TMLR

Bin Yu. Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam, pp. 423–435. Springer, 1997.

Anru R Zhang, Yuetian Luo, Garvesh Raskutti, and Ming Yuan. ISLET: Fast and optimal low-rank tensor
regression via importance sketching. SIAM J. on Mathematics of Data Science, 2(2):444–479, 2020.

Jianguang Zhang and Jianmin Jiang. Decomposition-based tensor learning regression for improved classifi-
cation of multimedia. Journal of Visual Communication and Image Representation, 41:260–271, 2016.

Jianguang Zhang and Jianmin Jiang. Rank-optimized logistic matrix regression toward improved matrix
data classification. Neural Computation, 30(2):505–525, 2018.

Hua Zhou, Lexin Li, and Hongtu Zhu. Tensor regression with applications in neuroimaging data analysis.
Journal of the American Statistical Association, 108(502):540–552, 2013.

A Supporting results

Proof of Lemma 3. By Lemma 3 there exists a packing with minimum distance d
8 in the `1 norm containing

2d/8 binary vectors. Mapping 0 → −α and 1 → α for all vectors in this packing shows that there exists a
packing of at least 2d/8 vectors in {−α, α}d with minimum distance dα

4 in the `1 norm. For any pair v,v′ in
that packing we have ‖v− v′‖0 ≥

d
8 , since every entry of v− v′ is in {−2α, 0, 2α}.

Proof of Lemma 4. This is a direct consequence of Corollary 3.

The proof of Lemma 6 contains the derivation of a tight upper bound on ‖Bl −Bl′‖
2
F . The following lemma

is a component needed to achieve such an upper bound; specifically, we will see that it proves useful in
deriving an upper bound on ‖Bl‖

2
F , for any l ∈ [L].

Lemma 9. Let x ∈ Rm be any m-dimensional real vector and O ∈ Om×m be any orthogonal basis of
Rm. Define ui = | cos θi|, where θi is the angle between any possible x and basis vector oi. The function
f =

m∑
i=1

(ui + 1)2 is minimized when ui = −1√
m
, or when x is equiangular to all basis vectors oi,∀i ∈ [m].

Proof of Lemma 9. Consider the function f =
m∑
i=1

(ui + 1)2. Additionally, for a basis O ∈ Om×m and

x ∈ Rm,
∑m
i=1(cos θi)2 = 1, thus we have the equality constraint g =

m∑
i=1

u2
i − 1 = 0. Denote λ as the

Lagrange multiplier, and thus the Lagrange function is defined as

Lg =
m∑
i=1

(ui + 1)2 − λ(
m∑
i=1

u2
i − 1). (51)

The partial derivative of Lg with respect to ui,∀i ∈ [m] is

∂Lg
∂ui

= 2(ui + 1)− 2λui, ∀i ∈ [m]. (52)

The partial derivative of Lg with respect to λ is

∂Lg
∂λ

= −
m∑
i=1

u2
i + 1. (53)

By setting (52) and (53) to zero we get

ui = −1
1− λ ∀i ∈ [m], (54)
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and

−
m∑
i=1

u2
i + 1 = 0, (55)

respectively. What we have in (54) and (55) is a system of m+ 1 equations and m+ 1 unknowns. We solve
the system to find the critical points of f(·), which are ui = −1√

m
and ui = 1√

m
. Since ui ≥ 0, the solution is

ui = 1√
m
,∀i ∈ [m] minimizes the function f(·).

Proof of Lemma 6. Fix the following arbitrary real orthonormal bases: Q of Rr̃, and K sets of rk bases,{
Uk,j

}rk

j=1 of Rmk ,∀k ∈ [K].

Next, consider the following hypercubes or subsets thereof: 1) The set of F vectors {sf} from Lemma 4:

sf ∈
{
−1√
r̃ − 1

,
+1√
r̃ − 1

}r̃−1
, (56)

where f ∈ [F ], and 2) S ×K sets of P(k,s) matrices ∀k ∈ [K], ∀s ∈ [S], from Lemma 5:

Sp(k,s) ∈
{

−1√
(mk − 1)rk

,
+1√

(mk − 1)r
k

}(mk−1)×rk

∀k ∈ [K], s ∈ [S], (57)

where p(k,s) ∈ [P(k,s)].

We proceed with the following steps in order to construct the final set BL of coefficient tensors from the sets
in (56) and (57). Since BL ⊂ Bd(0), we assume that the energy of any Bl is upper bounded by d2. We will
construct Gf , and matrices with orthonormal columns, namely Bp(k,s)∀k ∈ [K], s ∈ [S], all of which will
be used to construct every Bl ∈ BL. Specifically, due to our LSR model, any tensor Bl will have a low-rank
LSR structure.

We use the notation (f, i) to denote the ith step in constructing the f th element of Gf . Hence in the first
step, we construct vectors g(f,1) ∈ Rr̃ for f ∈ [F ], using Q and sf , as follows:

g(f,1) = Q
[√

1√
r̃−1

sf

]
,∀f ∈ [F ]. (58)

From (58), since ‖sf‖22 = 1 we have:

∥∥g(f,1)
∥∥2

2 =
∥∥∥∥∥Q

[√
1√
r̃−1

sf

]∥∥∥∥∥
2

2

= r̃

r̃ − 1 .

Now, we define each vector gf as

gf = ε√
r̃
g(f,1),∀f ∈ [F ], (59)

for some positive number ε.

Similaryly, we use the notation (p(k,s), i) to denote the ith step in constructing the pth(k,s) element of Bp(k,s) .
Hence, we construct matrices B(p(k,s),1) ∈ Rmk×rk , for p(k,s) ∈ [P(k,s)],∀k ∈ [K], s ∈ [S]. Define B(j)

(p(k,s),1) as
the jth column of B(p(k,s),1),∀k ∈ [K], s ∈ [S], and S(j)

p(k,s) as the jth column of Sp(k,s) . Let the columns be
constructed as follows:

B(j)
(p(k,s),1) = Uk,j

[ 1
S(j)
p(k,s)

]
,∀p(k,s) ∈ [P(k,s)], k ∈ [K], s ∈ [S]. (60)

33



Under review as submission to TMLR

From (60) we have: ∥∥∥B(p(k,s),1))(j)
∥∥∥2

2
= = rk + 1

rk
∀k ∈ [K].

We now construct matrices Bp(k,s) ∈ Rmk×rk , for p(k,s) ∈ [P(k,s)], k ∈ [K], s ∈ [S]. The construction of each
Bp(k,s) follows the same procedure for all k ∈ [K] and s ∈ [S]. Define B(j)

p(k,s) ∈ Rmk as the jth column of
Bp(k,s) , for j ∈ [rk]. We set

B(1)
p(k,s)

=
B(1)

(p(k,s),1)∥∥∥B(1)
(p(k,s),1)

∥∥∥
2

, (61)

and define

a(j+1) ,B(j+1)
(p(k,s),1) −

j∑
j′=1
〈B(j+1)

(p(k,s),1),B
(j′)
p(k,s)

〉B(j′)
p(k,s)

, (62)

and

B(j+1)
p(k,s)

,
aj+1

‖aj+1‖2
. (63)

The steps in (61), (62) and (63) constitute the well-known Gram-Schmidt process. Thus, the set of vectors
B(j)

(p(k,s),1), for j ∈ [rk], p(k,s) ∈ [P(k,s)], k ∈ [K] and s ∈ [S] are orthonormal, i.e,
∥∥∥B(j)

p(k,s)

∥∥∥2

2
= 1 and

B(j)
p(k,s) ⊥ B(j′)

p(k,s) , for any two distinct j, j′ ∈ [rk]. Consequently,
(
Bp(k,s)

)T (Bp(k,s)

)
= Irk

. Now by defining
the set

L ,
{

(f,
(
p(k,s)

)
k∈[K], s∈[S]) : f ∈ [F ], p(k,s) ∈ [P(k,s)], k ∈ [K], s ∈ [S]

}
(64)

as the set of all tuples, (f, p(1,1), . . . , p(1,S), . . . , p(K,1), . . . , p(K,S)), we have

L = |L|
(a)
≥ 2(1/8)

[
(r̃−1)+S

∑K

k=1
(mk−1)rk

]
, (65)

where (a) follows from Lemma 4 and Corollary 5. We define the set of coefficient tensors, BL as,

BL ,

{
Bl =

S∑
s=1

Gf ×1 Bp(1,s) ×2 Bp(2,s) · · · ×K Bp(K,s) : l ∈ [L], f ∈ [F ], p(k,s) ∈ [P(k,s)], k ∈ [K], s ∈ [S]
}
,

(66)

and we restrict ε such that

1
S

√
32(r̃ − 1)

r̃
< ε <

d

S

√
r̃ − 1
r̃

. (67)

We make the final note that, due to the Kronecker product, we can express vec(Bl) as:

vec(Bl) =
S∑
s=1

(Bp(K,s) ⊗Bp(K−1,s) ⊗ · · · ⊗Bp(1,s))gf . (68)

We have the following remaining tasks at hand: 1) We must show that the energy of any Bl is less than d2.
2) We must derive upper and lower bounds on the distance

(
‖Bl −Bl′‖

2
F

)
between any two distinct tensors
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Bl,Bl′ ,∈ BL. We begin by showing ‖Bl‖
2
F < d2:

‖Bl‖
2
F =

∥∥∥∥∥
S∑
s=1

Gf ×1 Bp(1,s) ×2 Bp(2,s) ×3 · · · ×K Bp(K,s)

∥∥∥∥∥
2

F

=
∥∥∥∥∥
S∑
s=1

(
Bp(K,s) ⊗Bp(K−1,s) ⊗ · · · ⊗Bp(1,s)

)
gf

∥∥∥∥∥
2

2

(b)
≤

∥∥∥∥∥
S∑
s=1

Bp(K,s) ⊗ · · · ⊗Bp(1,s)

∥∥∥∥∥
2

F

‖gf‖22 (69)

(c)
≤

(
S∑
s=1

∥∥Bp(K,s) ⊗ · · · ⊗Bp(1,s)

∥∥
F

)2

‖gf‖22 (70)

(d)= S2
∏
k

‖Bk,pk
‖2F ‖gf‖

2
2 = S2r̃ε2

r̃ − 1
(e)
< d2, (71)

where (b) follows from the fact that for any matrix A and any vector a, ‖Aa‖2 ≤ ‖A‖2 ‖a‖2 and the fact
that ‖A‖2 ≤ ‖A‖F (Petersen et al., 2008). Additionally, (c) follows the triangle inequality and (d) from the
fact that the matrix norm of the Kronecker product is the product of the matrix norms. Additionally, (e)
holds due to (67).

We proceed with deriving lower and upper bounds on ‖Bl −Bl′‖
2
F for any two distinct Bl,Bl′ ∈ BL. We

first denote the square matrix B̃p(k,s) ∈ Rmk×mk as the completed orthonormal matrix of each low-rank
matrix Bp(k,s) ∈ Rmk×rk . Also, G̃f ∈ Rm1×···×mK has entries G̃f (·) defined as follows:

{
G̃f (1 : r1, . . . , 1: rK) = Gf (1 : r1, . . . , 1: rK)
G̃f (r1 + 1: m1, . . . , rK + 1: mK) = Gf (1 : r1, . . . , 1: rK).

(72)

Also define B̃l =
∑S
s=1 G̃f ×1 B̃p(1,s) ×2 · · · ×K B̃p(K,s) for any l ∈ [L]. We these definitions, we have the

eqaulity ‖Bl −Bl′‖
2
F =

∥∥∥B̃l − B̃l′

∥∥∥2

F
. Defining

k=1⊗
k=K

B̃p(k,s) , B̃p(K,s) ⊗ · · · ⊗ B̃p(1,s) for any l ∈ [L] and we

have the following:

‖Bl −Bl′‖
2
F = ε2

r̃

∥∥∥∥∥
S∑
s=1

(
k=1⊗
k=K

B̃p(k,s)

)
g̃(f,1) −

S∑
s=1

(
k=1⊗
k=K

B̃p′(k,s)

)
g̃(f ′,1)

∥∥∥∥∥
2

2

= ε2

r̃

∥∥∥∥∥
S∑
s=1

(
k=1⊗
k=K

B̃p(k,s)

)
g̃(f,1)

∥∥∥∥∥
2

2

+
∥∥∥∥∥
S∑
s=1

(
k=1⊗
k=K

B̃p′(k,s)

)
g̃(f ′,1)

∥∥∥∥∥
2

2

−2
〈

S∑
s=1

(
k=1⊗
k=K

B̃p(k,s)

)
g̃(f,1),

S∑
s=1

(
k=1⊗
k=K

B̃p′(k,s)

)
g̃(f ′,1)

〉)
.
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Define Ts =
k=1⊗
k=K

B̃p(k,s) , Vs =
k=1⊗
k=K

B̃p′(k,s)
for any s ∈ [S], and T(j)

s , V(j)
s as the jth column of Ts and Vs,

respectively, then we have

‖Bl −Bl′‖
2
F = ε2

r̃

∥∥∥∥∥
S∑
s=1

Tsg̃(f,1)

∥∥∥∥∥
2

2

+
∥∥∥∥∥
S∑
s=1

Vsg̃(f ′,1)

∥∥∥∥∥
2

2

− 2
〈

S∑
s=1

Tsg̃(f,1),

S∑
s=1

Vsg(f ′,1)

〉
= ε2

r̃

( S∑
s=1

TT (1)
s g̃(f,1)

)2

+ · · ·+
(

S∑
s=1

TT (m)
s g̃(f,1)

)2

+
(

S∑
s=1

VT (1)
s g̃(f ′,1)

)2

+ · · ·+
(

S∑
s=1

VT (m)
s g̃(f ′,1)

)2

−2
((

S∑
s=1

TT (1)
1 g̃(f,1)

)(
S∑
s=1

VT (1)
s g̃(f ′,1)

)
+ · · ·+

(
S∑
s=1

TT (m)
s g̃(f,1)

)(
S∑
s=1

VT (m)
s g̃(f ′,1)

)))

We group every
(∑S

s=1 TT (j)
s g̃(f,1)

)2
+
(∑S

s=1 VT (j)
s g̃(f ′,1)

)2
− 2

(∑S
s=1 TT (j)

1 g̃(f,1)

)(∑S
s=1 VT (j)

s g̃(f ′,1)

)
,

for j ∈ [m]. We get

‖Bl −Bl′‖
2
F ≥

ε2

r̃

m∑
i=1

(∣∣∣∣∣
S∑
s=1

TT (i)
s g̃(f,1)

∣∣∣∣∣−
∣∣∣∣∣
S∑
s=1

VT (i)
s g̃(f ′,1)

∣∣∣∣∣
)2

. (73)

The expression in (73) contains inner products. Specifically,
∣∣∣∑S

s=1 TT (i)
s g̃(f,1)

∣∣∣ =
∣∣∣〈∑S

s=1 TT (i)
s , g̃(f,1)

〉∣∣∣.
Denote λi =

∣∣∣cos∠
(∑S

s=1 TT (i)
s , g̃(f,1)

)∣∣∣, then we have

‖Bl −Bl′‖
2
F

(f)
≥ ε2

r̃

m∑
i=1

(
λi

∥∥∥∥∥
S∑
s=1

TT (i)
s

∥∥∥∥∥
2

∥∥g̃(f,1)
∥∥

2 −

∥∥∥∥∥
S∑
s=1

VT (i)
s

∥∥∥∥∥
2

∥∥g̃(f ′,1)
∥∥

2

)2

(g)= r̃ε2

r̃(r̃ − 1)

m∑
i=1

(
λi

∥∥∥∥∥
S∑
s=1

TT (i)
s

∥∥∥∥∥−
∥∥∥∥∥
S∑
s=1

VT (i)
s

∥∥∥∥∥
)2

(h)
≥ r̃ε2

r̃(r̃ − 1)

m∑
i=1

S2(λi + 1)2

(i)
≥ r̃ε2

r̃(r̃ − 1)

m∑
i=1

S2(1 + 1√
m

)2 ≥ S2r̃

r̃ − 1ε
2, (74)

where (d) is due to applying Cauchy-Schwartz inequality to
∣∣∣∑S

s=1 VT (i)
s g̃(f ′,1)

∣∣∣, (g) is due to (59), (h) is due

to the fact that
∥∥∥∑S

s=1 TT (i)
s

∥∥∥ and
∥∥∥∑S

s=1 TV (i)
s

∥∥∥ are lower and upper bounded by −S abd S, respectively.
Finally, (i) is from the result in Lemma 9. Finally, for finding upper bounds on ‖Bl −Bl′‖

2
F , we have:

‖Bl −Bl′‖
2
F

(j)
≤

(∥∥∥∥∥
S∑
s=1

(
Bp(K,s) ⊗ · · · ⊗Bp(1,s)

)
gf

∥∥∥∥∥
F

+
∥∥∥∥∥
S∑
s=1

(
Bp′(K,s)

⊗ · · · ⊗Bp′(1,s)

)
gf ′
∥∥∥∥∥
F

)2

≤

(
S∑
s=1

∏
k

∥∥Bp(k,s)

∥∥
F
‖gf‖2 +

S∑
s=1

∏
k

∥∥∥Bp′(k,s)

∥∥∥
F
‖gf ′‖2

)2

(k)=
(

2
S∑
s=1

∏
k

∥∥Bp(k,s)

∥∥
F
‖gf‖2

)2

= 4S2r̃

r̃ − 1ε
2, (75)
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where (j) follows from the triangle inequality, (k) follows from the fact that
∥∥Bp(k,s)

∥∥
F

=
∥∥∥Bp′(k,s)

∥∥∥
F

and
that ‖gf‖2 = ‖gf ′‖2.

Proof of Lemma 7. Consider the set BL from Lemma 6, where the bounds in (74) and (75) hold. For the
LSR-TGLM model in (13), consider n i.i.d samples, with covariate tensors Xi ∈ Rm1×···×mK ,∀i ∈ [n],
where vec(Xi) ∼ N (0,Σ2

x). According to (13), observations yi follow an exponential family distribution
when conditioned on Xi, ∀i ∈ [n]. Consider the vector of n observations, y, and the tensor of n samples,
X. Define also I(y; l|X) as the mutual information between observations y and index l conditioned on
side-information X. From (Cover & Thomas, 2012; Wainwright, 2009), we have,

I(y; l|X) ≤ 1
L2

∑
l,l′

EXDKL(fl(y|X)||fl′(y|X), (76)

where DKL(fl(y|X)||fl′(y|X) is the Kullback-Leibler (KL) divergence of probability distribution fl(y|X)
and

fl′(y|X)

of y given X for some Bl,Bl′ ∈ BL. Denote ηli and ηl′i as the link functions associated with fl(yi|Xi) and
fl′(yi|Xi), respectively. Also denote µli as the expectation of sufficient statistic T (yi) conditioned on Xi

under model Bl (otherwise known as the canonical parameter). We evaluate the KL divergence which is
defined as follows (Nielsen, 2022):

DKL(fl(y|X)||fl′(y|X)) =
∑
i∈[n]

(ηli − ηl′ i)µl − a(ηli) + a(ηl′ i). (77)

Now, we take the expectation of (77) with respect to the side-information X. We have
EX [(ηli − ηl′ i)µl − a(ηli) + a(ηl′ i)] = EX [(ηli − ηl′ i)µl], due to the fact that EX[a(ηli)] = EX[a(ηl′ i)]. We
now have:

EXDKL(fl(y|X)||fl′(y|X) =
∑
i∈[n]

EX
[
(〈Bl,Xi〉 − 〈Bl′ ,Xi〉)E[T (yi)|Xi, l]]

(l)=
∑
i∈[n]

EX
[
(〈Bl −Bl′ ,Xi〉)

∂a(ηli)
∂ηli

]

≤
∑
i∈[n]

√
EX[〈Bl −Bl′ ,Xi〉]EX

[(∂a(ηli)
∂ηli

])2
(78)

≤ n ‖Σx‖2 ‖Bl −Bl′‖
2
F M, (79)

Where (l) follows from the fact that µli = E[T (yi)|Xi, l] = ∂a(ηli)
∂ηli

. We achieve (78) through Cauchy-Schwartz
inequality. We make some remarks regarding (79): First, we replace the summation over n samples with n
since each sample Xi is independent. Secondly, Assumption 2 allows us to bound ∂a(ηli)

∂ηli
with M . Thirdly,

the conditions on ε in (67) means ‖Bl −Bl′‖F > 1 thus ‖Bl −Bl′‖
2
F > ‖Bl −Bl′‖F . Plugging in (79) into

(76) gives us,

I(y; l|Xc) ≤ n ‖Σx‖2 ‖Bl −Bl′‖2F M
(e)
≤ 4S2Mn ‖Σx‖2

r̃

r̃ − 1ε
2,

where (e) follows from (75).
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