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Abstract
Despite the growing trend towards large-context
transformer models, key questions remain about
how much context is truly required for accurate
language modeling. We explore this by treating
large language models as statistical oracles and
measuring the smallest prefix needed to replicate
full-context next-token predictions. Using sam-
ples from diverse natural text sources, we evaluate
minimal context length requirements across vari-
ous decoding strategies using correctness and sup-
port set overlap metrics. Under greedy decoding,
we find that over 80% of tokens require less than
10% of the most recent context to yield identical
predictions. For general sampling strategies, we
define Recall and Risk metrics to assess context
dependence, and find that dynamic strategies offer
higher support coverage at low percentiles—while
also increasing Risk due to broader supports at
shorter contexts.

1 Introduction
When prompted to continue a piece of text, how much of the
preceding context does a human actually rely on? Do they
focus on recent words and local coherence, or plan with a
broader, narrative-wide perspective? For example, when
writing a story, do they recall events from earlier chapters or
rely mainly on recent developments? While this question is
difficult to study rigorously in humans, large language mod-
els offer a testable analogue. Given a sequence of text, we
can ask: how far back must a model look to predict the next
token accurately? This question lies at the intersection of in-
terpretability, sampling, and architecture design. Although
modern transformers can attend to thousands of tokens, it’s
unclear how much of that capacity is truly used at inference
time, and whether predictions depend on distant or local
spans. This is especially relevant as language models now

1Department of Electrical and Computer Engineering, University of
British Columbia, Vancouver, Canada. Correspondence to: Vala
Vakilian <vaalaa@student.ubc.ca>.

Proceedings of the 1 st Workshop on Long-Context Foundation
Models, Vienna, Austria. 2024. Copyright 2024 by the author(s).

rival or surpass human-level performance in many tasks.
We present a systematic method for quantifying the context
length needed for next-token prediction and analyze how it
varies across models, datasets, and decoding strategies. See
Appx. A for further related-work and motivations.

Figure 1: Minimum Context Length (MCL) Selection: A
scenario illustrating our MCL selection strategy. The example
also highlights the need for distributional awareness. Al-
though Window-2 yields valid predictions, MCL rejects it and
selects Window-3 as the minimal context correctly prediction
the actual next token in the dataset. Our distributionally-aware
MCL (DaMCL) metric resolves such issues.

2 Setup and Notation

2.1 Experimental Setup

We use LLaMA-3-8B (Grattafiori et al., 2024), Mistral-7B
(v0.1) (Jiang et al., 2023) and Qwen2-7B (Yang et al., 2024)
as oracle language models and focus on natural language
documents, including Reddit Writing Prompts (Fan et al.,
2018), CNN/DailyMail news articles (Hermann et al., 2015;
Nallapati et al., 2016), U.S. Government reports from Gov-
Report (Huang et al., 2021), and Wikipedia articles from
WikiText-103 (Merity et al., 2016). For CNN/DailyMail,
Writing Prompts, and WikiText-103, we use the first 1000
tokens of each document; for GovReport, we use the first
4000 tokens. See Appx. B.

2.2 Notation

Boldface a differentiates vectors from scalars a. We let a[i]
denote the i-th entry of a. For integers i ≤ j, [i : j] denotes
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Figure 2: Distribution of MCL: Minimum context window needed to confidently predict the next token for sampled
contexts across benchmark datasets and LLMs. b̂ denotes the slope of the log-log fit. Most predictions resolve with much
smaller context windows across models and datasets. Results are consistent across datasets and LLMs.

the set {i, i+1, . . . , j}. For brevity, we write [: i] or simply
[i] for [1 : i]. For a ∈ Rn, we denote the suffix a[(n−l) : n]
of length l + 1 simply as a[−l :]. For p ∈ (0, 1), we denote
a[%p :] the suffix consisting of the last p fraction of entries,
specifically a[⌈(1− p)n⌉ : n]. We represent sequences of
tokens as vectors and the above notations apply. We let |a|
denote the vector/sequence’s length, i.e., the number of its
entries. ∆n denotes the probability simplex in Rn.

We consider datasets consisting of stories, articles, etc.,
which we generically refer to as documents. Documents are
tokenized with respect to vocabulary V of V ≜ |V| tokens.
We let s = [t1, t2, . . . , tn] ∈ Vn be a document of n tokens,
representing a complete story, news article, or government
report from the dataset. We let s[i] = [t1, t2, . . . , ti] denote
the context window of the first i tokens.

For k ≤ n, we define operator Topk(·) : Rn →
(
[n]
k

)
,

returning the indices of the top k entries of its argument,
where

(
[n]
k

)
denotes the set of all k-element subsets of [n].

Let Top(l)k (·) ∈ [n] denote the l-th largest element in this
set when sorted by descending value, with l ∈ [k]. Note
that Top(l)n (a) denotes the index of the l-th largest entry of
a when sorted in decreasing order.

Let πθ : V∗ → ∆V denote an auto-regressive language
model with parameters θ. Given input sequence s, the model
outputs a probability distribution over V: πθ(s) ∈ ∆V .

Moreover, for k ≤ V , denote the composition of the Top-k
operator with the model output given an input sequence as
Topk,θ(·) : V∗ →

(
[V ]
k

)
, i.e.,

Topk,θ(s) := Topk,θ(πθ(s)) .

Finally, define the confidence with which the model predicts
the next token of sequence s as the probability gap between
the top-ranked token and the second-ranked token:

△Confθ(s) := πθ[Top
(1)
2,θ(s)]− πθ[Top

(2)
2,θ(s)] ≥ 0 .

3 Least Context for Prediction
Consider the following question: For a given randomly
sampled context and next-token, what is the minimum sub-
context needed to predict the actual next token correctly?

3.1 Minimal Context Length

As a first step, we focus on sequences where the oracle
LLM correctly and confidently predicts the next token from
text using greedy decoding. We set a confidence threshold
δ ∈ [0, 1], meaning the top token has at least δ higher
probability than the second-best. Using this, we define:

Definition 3.1. The Minimal Context Length (MCL) of
sequence s given the true next token t is defined as the
length of the smallest prefix of the sequence such that the
model output given the prefix is correct and confident (with
parameter δ ∈ [0, 1]). Formally,

MCL (s|t) := argmin
l∈|s|

{
l | Top1,θ(s[−l:]) = t,

△Confθ(s[−l:]) ≥ δ
}

In essence, MCL (s|t) represents the minimum number of
tokens the model needs to consider from the end of sequence
s to confidently and correctly predict the next token t.

3.2 Experimental Details

We form sequences (contexts) by parsing documents d from
the datasets. For the Writing Prompts, News Articles and
Wikipedia datasets, we sample 100 unique documents and
set maximum document length n = 1000 by truncating
documents to their first 1000 tokens. For Government Re-
ports, we set n = 4000 tokens as these documents typi-
cally rely more on long-context information. From each
document, we sample 100 contexts s[i] of varying lengths
with i ∈ [32, n − 1] and their respective next token ti+1.
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When sampling values of i, we ensure uniform distribu-
tion across document positions, avoiding bias toward either
shorter or longer context windows. This approach yields
10,000 unique contexts (100 contexts × 100 documents) and
their respective next tokens for each dataset. Our sampling
criterion requires that the model correctly and confidently
predicts the next token when given the full context, i.e.,

Top1,θ(s[i]) = ti+1 and △Confθ(s[i]) ≥ δ .

Note that for these selected sequences, MCL represents the
shortest suffix of the original context for which the model
output remains both correct and confident. A higher value
of MCL implies that the model requires information
from earlier in the context to predict the next token
correctly, while a smaller value indicates greater reliance
on local information from the most recent tokens. For
concreteness, in our experiments we choose δ = 0.2.

To determine the MCL, we evaluate a model’s pre-
dictions using increasing context window sizes l ∈
{32, 48, 64, . . . , |s|}, starting from 32 tokens and increment-
ing by 16. This choice reflects prior work suggesting 32
tokens capture local context beyond n-gram statistics (Liu
et al., 2025; Fang et al., 2025). For each window size, we
examine the model’s next-token distribution and stop once it
confidently predicts the correct next token or the full context
is reached. In practice, we provide the full input to preserve
positional encoding and simulate truncated contexts via
attention masking. While using only the truncated input
yields similar behavior, it disrupts positional encoding and
may conflate prediction differences with positional shifts
rather than true contextual effects—potentially confounding
interpretation of minimal context requirements.

3.3 Results and Discussion

As shown in Fig. 2, the distribution of MCL
(
s[i]|ti+1

)
is

highly skewed (with the histogram y-axis in log scale), in-
dicating that the model requires only the last 32–64 tokens
for the majority of contexts (≥ 80–90%) to confidently
predict the next token (MCL (si|ti+1) ≤ 64). To quantify
this behavior, we examine the slope b̂ of the best-fitting
line in log-log space (i.e., for y = a · xb). We exclude the
first dominating bin MCL ≤ 32 tokens to better capture the
trend. We find that b̂ typically hovers around 2, suggesting
that LLMs rely primarily on recent local tokens for pre-
diction. Notably, this trend persists even for Government
Reports—commonly used as a long-context benchmark (Bai
et al., 2024)—albeit with a shallower slope. This pattern
is consistent across all three models, further supporting the
generality of the observation. . These findings align with the
motivations in (Fang et al., 2025), reinforcing the idea that
local information is often sufficient for confident next-token
prediction from the model’s perspective. Finally, it is worth

Figure 3: Impact of Sampling: Distribution of DaMCLK (si)
for K ∈ {1, 5, 9}, along with Nucleus and Adaptive sampling.
While DaMCL for K = 1 and Nucleus behave similarly to
MCL (greedy decoding), increasing K shifts the distribution
toward requiring longer context spans for full Recall.

pointing that the MCL distribution over datasets appears
consistent across various LLMs.

4 Distributional Awareness
MCL evaluates whether a model can predict the actual next
token from the dataset, assuming a single ground-truth con-
tinuation. However, natural language often permits multiple
valid next tokens, and models may assign high probability to
plausible alternatives not present in the dataset. Moreover,
greedy decoding fails to reflect how modern generation
methods operate—many rely on sampling strategies that
consider sets of probable tokens rather than just the top-1.
These limitations motivate a broader formulation of MCL
that (1) relies on the model’s own next-token distribution
rather than a single ground-truth, and (2) incorporates the
dynamics of different sampling strategies. We elaborate on
this distribution-aware requirements in Appx C.

4.1 Distribution Aware MCL

Consider a decoding method ϕ that takes as input π(s)
for some input sequence s, truncates the distribution, and
outputs a set of valid tokens which we denote As,ϕ. We
will refer to this As,ϕ as the next-token Support Set for the
context s when sampling with ϕ. Furthermore, we define
the recall metric from set A to set B as:

Recall (A | B) := |A ∩B|
/
|B| ∈ [0, 1] ,

measuring the proportion of elements from set B that are
contained in set A. Recall = 1, indicates that the entirety of
elements in B are included in A, B ⊆ A. When considering
the support set of distributions, the higher this value, the
more set A covers elements in set B. We use Recall to
define a notion of MCL that does not depend on the specific
next-token of a given sequence from the dataset but rather
focuses on the valid support set as per the sampling strategy.

Definition 4.1. The Distribution-aware Minimal Context
Length (DaMCL) of a sequence s, as measured by a sta-
tistical oracle LLM with decoding strategy ϕ, is defined
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Figure 4: Recall Trend: Average Recall score for different context lengths i ∈ [200, 1000] (on the y-axis) and context
percentiles p ∈ [10% . . . , 90%] (on the x-axis) for Writing Prompts samples using Mistral-7B as the oracle.

as the length of the smallest prefix such that the decoding
method’s truncation set (aka the support set) As[−l:],ϕ for
the prefix covers that of the full context As,ϕ. Formally,

DaMCLϕ (s) :=
argminl∈|s|

{
l | Recall

(
As[−l:],ϕ | As,ϕ

)
= 1

}
.

This value represents the minimal amount of context re-
quired before the support set produced for the short context
fully contains the long context’s next token support. Note
that for greedy decoding, when restricted to sequences s for
which the top-1 token of the oracle’s output matches the
true next token t in the dataset, DaMCLK=1 (s) reduces to
MCL (s|t). Thus, this definition is more general while also
satisfying the two desiderata from the previous section.

4.2 Experimental Details

We evaluate several decoding strategies: Top-K sampling
(K=1 for greedy) with K ∈ {1, . . . , 9} (Radford et al.,
2019; Fan et al., 2018), nucleus sampling with p=0.9 (Holtz-
man et al., 2020), and adaptive sampling with ϵ=0.001 (Zhu
et al., 2024). To ensure comparability across context sizes,
we use truncated windows based on percentiles of the full
context (e.g., last 10% to 100%) rather than fixed lengths.
Positions i are limited to [400, 4000] for government reports
and [200, 1000] otherwise. This percentile-based setup al-
lows fairer comparisons and lowers experimental overhead.
For Fig. 3, we combine results across both models and all
three datasets (Writing Prompts, News Articles, Government
Reports), as distributions are consistent across settings.

4.3 Results and Discussion

Looking at static sampling methods, namely Top-k, we ob-
serve that increasing the support set size skews the DaMCL
values, requiring the model to use larger portions of the con-
text to achieve full Recall (Fig. 3). For most contexts, when
using k = 1 (greedy sampling) or nucleus sampling, local
sub-contexts (l = 32) are often sufficient for full Recall. In
contrast, adaptive sampling typically falls between Top-1
and Top-5, and exhibits a more U-shaped distribution of
DaMCL values—suggesting that accurate predictions of-

ten rely more equally on local or full-context information.
These patterns highlight how sensitive context utilization
metrics are to the choice of decoding strategy.

Additionally, by analyzing Recall scores across percentiles
rather than relying solely on the binary DaMCL threshold,
we gain a more nuanced view of how sampling interacts
with context length. Fig. 4 shows Recall heatmaps for dif-
ferent sampling methods. Dynamic methods (nucleus and
adaptive) yield higher Recall scores—especially at lower
percentiles (e.g., 10% or 20%)—compared to the static Top-
5 method, indicating that shorter subcontexts more often
recover the full-context support. Unlike Top-5, Nucleus and
Adaptive sampling also show minimal variation across per-
centiles within each row, suggesting a robustness of DaMCL
to context length under dynamic decoding.

5 Conclusion and Future Work
In this work, we introduced the concept of Minimal Con-
text Length (MCL) to quantify how much prior context a
language model needs to confidently predict the next to-
ken. Our results show that models often rely on recent local
context to replicate full-context predictions. When treating
LLMs as statistical oracles for the true language distribution,
we highlighted limitations of using the actual next token as a
target and instead advocated evaluating against the model’s
own predictive distribution. We emphasized how decoding
strategy and sampling pool size—both part of the oracle’s
output—can affect minimal context requirements.

These findings open avenues for future work on alternative
metrics for contextual understanding. To capture aspects be-
yond Recall, we introduce the Risk metric in Appx. D, which
quantifies over-validation from subcontexts. This offers in-
sight into how LLMs use context and how this interacts with
decoding strategies—impacting interpretability and model
design. While our experiments focus on natural language,
the methodology extends to domains such as math, code,
or biomedical text, potentially revealing domain-specific
patterns in context use. Complementary to viewing LLMs
as statistical oracles, our study also highlights strengths and
limitations of decoding methodology.

4



How Much Context Does Natural Language Actually Require?

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A Discussion and Related Work
Transformer-based language models, first introduced by Vaswani et al. (2017), have become the de facto standard for
training large-scale language models, due to the self-attention mechanism’s ability to flexibly aggregate information over
wide context windows. Recent open-access models such as LLaMA 3 (Grattafiori et al., 2024), Mistral (Jiang et al., 2023),
Qwen2 (Yang et al., 2024), and Gemma (Team et al., 2024) support context lengths from 8K to 128K tokens. For reference,
these lengths can accommodate entire medium-sized novels within a single context window. Additionally, a wide range of
architectural and algorithmic innovations have been proposed to improve long-context modeling, including rotary position
encodings (RoPE) (Su et al., 2021), attention linear biases (ALiBi) (Press et al., 2021), and position interpolation (Chen
et al., 2023), which enable extrapolation to longer sequences without retraining the model from scratch. Beyond positional
encodings, recent approaches such as retrieval-augmented transformers (Borgeaud et al., 2022; Izacard et al., 2022; Wang
et al., 2023) aim to improve long-context reasoning by retrieving or caching relevant information from earlier context
segments, offering alternatives to simply extending attention length.

Much of the evaluation of a model’s contextual understanding has focused on tasks such as question answering, retrieval,
and needle-in-the-haystack probing, evaluated on datasets such as NarrativeQA (Kočiský et al., 2018), TriviaQA (Joshi
et al., 2017), QuALITY (Pang et al., 2022), and LongBench (Bai et al., 2024). While these benchmarks test a model’s ability
to extract specific information from distant context, they differ from standard language modeling and tend to be highly
task-specific. A recent study by Fang et al. (2025) proposes a method for identifying tokens with long-context dependencies
and encourages training-time metrics that distinguish such tokens. While their work focuses on a binary classification of
long- vs. short-context tokens, we adopt a more fine-grained perspective: treating the language model as a probabilistic
oracle and estimating the minimal context required for each next-token prediction in natural text.

Given our assumption that language models serve as strong proxies for language understanding, it is important to account for
the decoding strategy used during inference. A growing body of research has shown that different sampling methods—such
as greedy decoding, top-k sampling (Radford et al., 2019; Fan et al., 2018), nucleus (p) sampling (Holtzman et al., 2020),
and adaptive techniques (Basu et al., 2021; Zhu et al., 2024)—can substantially influence output diversity, factuality, and
calibration. Greedy decoding in particular has been shown to produce degenerate or overly deterministic outputs, while
adaptive and dynamic approaches aim to adjust sampling entropy and generate a high-quality, contextually valid subset of
tokens (Holtzman et al., 2020; Zhu et al., 2024; Basu et al., 2021). When treating the language model as a statistical oracle
for analyzing context usage, it is essential to consider how decoding strategy influences conclusions about effective context
length. This perspective may help improve the practical utility of methods such as Fang et al. (2025), which focus primarily
on a single sample from the next-token distribution to classify tokens by their context length requirements. Accordingly, we
provide a dedicated analysis of how decoding strategies impact context dependence in next-token prediction.

B Experimental Detail
In this study, we investigate the behavior of pretrained LLMs on natural language datasets composed of human-written
narratives and documents. We assume that the models under consideration are sufficiently capable to exhibit reliable
performance on next-token prediction and question answering tasks. Specifically, we evaluate two open-weight models:
Llama-3-8B (Grattafiori et al., 2024) and Mistral-7B (v0.1) (Jiang et al., 2023). Both models share a vocabulary size of
approximately |V| ≈ 32,000, with Llama supporting a maximum context length of 8000 tokens, and Mistral supporting up
to 32,768 tokens. All experiments are performed on a V100 Nvidia GPU with 32GB of memory.

Our primary goal is to analyze the minimum context length required for accurate or confident prediction of each token.
To this end, we use datasets consisting of plain English text, including narrative and expository writing. For next-token
prediction tasks, we use Reddit collected writing prompts (Fan et al., 2018), CNN/DailyMail news articles (Hermann et al.,
2015; Nallapati et al., 2016), Wikipedia Articles (Merity et al., 2016), and U.S. Government reports curated from the
GovReport dataset [(Huang et al., 2021)]. For CNN/DailyMail, the Writing Prompts and Wikipedia, we slice the first 1000
tokens of any sampled document, and set the cutoff to be the first 4000 tokens for GovReport. These datasets are deliberately
chosen for their linguistic simplicity and general domain coverage, avoiding specialized formats such as mathematics or
programming code, which may exhibit fundamentally different context dependencies. We leave such extensions to future
work.
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Figure 5: An example illustrating the potential issues when we rely on next token prediction and probability
distribution to determine contextual understanding.

C Motivations on DaMCL
In Sec. 3, we posed the question of determining the minimum subcontext prefix needed to predict the next token in a given
dataset. A key limitation of this formulation is that it is constrained by the specific realization of the natural language
distribution underlying that dataset.

Put simply, given a context, there are often multiple valid next tokens—valid in terms of the underlying (but unknown)
distribution of natural language. While we cannot access this true distribution, we have treated pretrained LLMs as statistical
oracles. However, in defining MCL in Definition 3.1, we constrain these oracles by evaluating them against only the
actual next token from the dataset. Furthermore, we rely solely on greedy decoding, which outputs a single token, thereby
underutilizing the model’s full predictive distribution as a language oracle.

We summarize the issues as follows:

1. Even if the oracle’s top-1 prediction does not match the next token in the source text, i.e., Top1,θ(s[−l:]) ̸= ti+1, this
does not invalidate the model’s output or imply a lack of contextual understanding. As shown in Fig. 5, the model
assigns high probability to several plausible continuations, even if the dataset token is not ranked first. This suggests
that relying solely on the dataset token may mislead any context-length detection method.

2. Using the Top-1 token from the sampling distribution is not always a reliable way to evaluate next-token prediction,
as greedy decoding often results in low-quality or repetitive outputs (Holtzman et al., 2020). More recent sampling
strategies instead aim to identify a set of valid next tokens (Zhu et al., 2024; Zhou et al., 2025), shifting the focus away
from single-token probabilities toward broader support coverage.

These issues motivate the need for a broader definition of MCL—one that 1) relies on the model’s own next-token
distribution rather than the actual next token, and 2) accounts for the sampling strategy used during inference. The
goal of DaMCL is to mitigate these limitations and offer a more faithful metric for contextual understanding.

D Risk, The Missing Metric
While our Recall-based observations are informative, they do not capture an inherent distinction between static methods like
Top-k and their dynamic counterparts. In Top-k sampling, the support set is explicitly constrained, potentially excluding
some valid tokens, but also reducing noise in next-token prediction. In contrast, dynamic methods—without fixed support
size limits—may assign nonzero probability to a much larger set of tokens. This raises a concern: under short-context
conditions, could dynamic sampling methods overgenerate, labeling too many tokens as valid due to distributional uncertainty
and lack of constraints on the support size ?

In order to have a measure of the amount of samples generated outside the support set for the full-context inference, we keep
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Figure 6: Histogram for Risk distribution across different sampling strategies using Mistral-7B and Reddit
Writing Prompts. We can see here that higher risk is associated with lower context percentiles pointing
towards possible lack of contextual understanding.

track of the following metric:

Risk (A | B) :=
|A| − |A ∩B|∣∣B|

∈ [0,∞) .

Effectively, a Risk value of zero implies that A ⊆ B. Unlike Recall, Risk is unbounded above; a high Risk value indicates
that many elements in A are not found in B. Notably, Risk (A | B) = 0 and Recall (A | B) = 1 together imply set equality
(A = B). However, the two metrics are decoupled: one may observe Recall (A | B) = 1 (full coverage) while still having
Risk (A | B) ≫ 1, meaning A includes many additional, potentially spurious tokens. Conversely, a low Risk with low
Recall could simply reflect that A is too small to adequately cover B.

Analogous to our computation of Recall between the subcontext and full-context support sets, we define the Risk metric
as Risk

(
As[l:],ϕ | As,ϕ

)
. A low Risk value indicates that the subcontext’s predicted support closely aligns with the full

context’s, suggesting that few extraneous tokens are introduced. In contrast, a high Risk value signals that subcontext-based
sampling may be overly permissive, validating many tokens that would not appear as plausible under the full context.

As shown in Fig. 6, shorter subcontexts—particularly those in the 10% and 20% percentile ranges—exhibit significantly
higher Risk, highlighting the importance of token rejection as context length increases. This may arise from the model
becoming more confident in its top predictions with more context, resulting in smaller support sets, or from improved
contextual grounding that eliminates tokens which appear valid under limited context.

Interestingly, Top-k sampling provides a natural upper bound on Risk by capping the number of tokens considered valid.
This can prevent excessive over-validation by subcontexts. Moreover, while adaptive sampling does exhibit elevated Risk at
shorter context lengths, it performs more favorably than nucleus sampling in terms of Risk overall. These findings suggest
that Risk, alongside Recall, offers valuable insights into how sampling methods interact with context length. Future work
may consider hybrid metrics, such as combining Risk with next-token probability or Recall, to better quantify contextual
understanding.
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