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ABSTRACT

Membership inference attack (MIA) against large language models (LLMs) aim to
detect whether a specific data point was included in the training dataset of LLMs,
which have become increasingly critical in many scenarios. Existing likelihood-
based MIA methods against LLMs treat all token-level scores as equally impor-
tant, with a latent assumption that the memorization signal is position-agnostic.
We argue, however, that this signal is not uniformly distributed. Inspired by the
information-theoretic principle that conditioning reduces uncertainty, we hypoth-
esize that the memorization signal is not uniformly distributed. Instead, it tends
to be strongest at the beginning of a sequence—where model uncertainty is high-
est—and generally decays with token position. To leverage this insight, we in-
troduce Positional Decay Reweighting (PDR), a simple and lightweight plug-and-
play method. PDR applies decay functions to re-weight token-level scores from
existing likelihood-based MIA methods, systematically amplifying the strong sig-
nals from early tokens while attenuating noise from later ones. Extensive exper-
iments show that PDR consistently enhances a wide range of advanced methods
across multiple benchmarks.

1 INTRODUCTION

As Large Language Models (LLMs) are trained on vast and diverse corpora from the inter-
net (Achiam et al., 2023} [Touvron et al., [2023b), there exists a non-negligible risk that sensitive or
personally identifiable information may be memorized and unintentionally exposed through model
outputs (Grynbaum & Mac, [2023; Mozes et al.,|2023)). Membership Inference Attack (MIA) aims to
determine whether a sample was part of a model’s training set (Hu et al.| 2022bj |Wu & Cao, [2025)).
MIA has become increasingly critical in scenarios such as training data auditing, copyright infringe-
ment detection, and test set contamination analysis (Bertran et al.,|2023;[Zhang et al., 2025b), where
identifying memorized content is essential for ensuring data integrity and compliance.

For LLMs, performing MIA methods introduces several critical challenges. First, the high-
dimensionality and semantic richness of natural language make it difficult to define simple deci-
sion boundaries between training and non-training samples (Wu & Cao, 2025). Second, the in-
ternal representations and prediction behaviors of LLMs are shaped by deeply stacked transformer
architectures, whose complexity often obfuscates direct interpretability (Achiam et al., 2023} Tou-
vron et al.l 2023b). Third, many real-world deployments of LLMs, such as commercial APIs, only
provide black-box access, further limiting the attacker’s ability to probe model internals or gradi-
ents (Achiam et al.l|2023). These factors collectively make membership inference in the context of
LLMs a significantly harder problem compared to that in traditional MIA methods.

Existing MIA methods for LLMs can be broadly categorized into likelihood-based and non-
likelihood-based approaches. Among dominant likelihood-based methods, Loss (Yeom et al., [2018])
averages log-likelihoods across all tokens in the test sequence to serve as the detection score, while
Min-k% (Shi et al., 2024) and Min-k%++ (Zhang et al.l |2025b) select some the tokens with the
lowest-probability from a sequence to compute its detection score. Methods like ReCaLL (Xie
et al.l 2024), and Ref (Carlini et al.| 2021)) introduce a reference point to calibrate likelihood-based
scores, either prefixing target data points with non-member context or using a smaller auxiliary
LLM. FSD (Zhang et al.l 2025a) fine-tunes the target LLM on some non-member samples before
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Figure 1: Visualization of (a) token-level entropy on subsets of the challenging Mimir dataset and (b) the av-
erage token-level log-probability for members and non-members on WikiMIA dataset for LLaMA-13B model.

computing the likelihood-based score (Zhang et al.|[2025a). While varied in their specific strategies,
these methods share a fundamental, unaddressed limitation: they are position-agnostic. Whether
aggregating scores from all tokens or a selected subset, they assign equal weight to each token’s
contribution to the final detection score, regardless of sequence position.

Our work is motivated by a key insight from information theory: conditioning on more information
cannot increase entropy (Shannonl [1948). In autoregressive models, this implies that as more con-
text accumulates, the model’s predictive uncertainty for the same token should not increase. This
motivated us to hypothesize an empirical trend: in typical language generation, token-level entropy
usually tends to decrease as a sequence progresses. We empirically investigate this hypothesis in
Fig. E] (a). The results reveal a dominant, albeit sometimes noisy, downward trend across diverse
datasets. While corpora with heterogeneous structures like ArXiv and HackerNews show volatility,
all datasets share a crucial characteristic: a high-entropy initial region that drops sharply. Conse-
quently, an unusually confident prediction (high probability) for an early, high-entropy token is far
more surprising—and thus more indicative of memorization—than comparable confidence later in
the sequence. This is because in later positions, the abundance of context makes predictions easier
for both member and non-member samples, thus shrinking the discriminative gap between them.

This leads to our core hypothesis: the memorization signal is not uniformly distributed, but is con-
centrated in the initial stages of a sequence, with its discriminative power generally decaying with
token position. However, existing likelihood-based methods, by being position-agnostic, dilute this
skewed and powerful signal with less informative signals from later positions. Capitalizing on this
key observation, we introduce Positional Decay Reweighting (PDR), a simple, effective, and “plug-
and-play” method designed to align the scoring process with this positional signal decay. By apply-
ing monotonic decay functions (e.g., linear, exponential, polynomial), PDR systematically amplifies
the high-value signals from early tokens while attenuating potential noise from later ones, thereby
focusing the inference on the most informative parts of the sequence. Its key advantage is versatil-
ity: PDR can be seamlessly integrated into existing likelihood-based scoring functions. Extensive
experiments validate that this straightforward modification yields substantial and consistent perfor-
mance gains, improving upon advanced Min-k%-++ by up to 4.7 AUROC points on the WikiMIA
benchmark of 128 length. Our main contributions can be summarized as follows: (1) We are the
first to systematically demonstrate and analyze the positional decay of memorization signals from
the view of token-level entropy, exposing the “position-agnostic” limitation inherent in prior meth-
ods. (2) We propose Positional Decay Reweighting (PDR), a lightweight, plug-and-play framework
that reweights token scores to amplify early signals while attenuating later noise. (3) Our results
across diverse LLMs and benchmarks establish PDR as an effective plug-and-play method, yielding
notable performance gains especially for Min-k%++.

2 RELATED WORK

Membership Inference Attacks for LLM. While MIA is a long-standing problem, its applica-
tion to the pre-training stage of LLMs poses unique challenges, such as the impracticality of train-
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ing shadow models and data characteristics that make inference difficult (Shi et al.| 2024} [Zhang
et al., 2025b). To this end, a category of existing methods focuses on the attack framework itself,
for instance, the distribution-free DF-MIA (Huang et al., 2025)) for fine-tuned models, and MIA-
Tuner (Fu et al.,|2025)), which cleverly uses soft prompt tuning. Another is likelihood-based meth-
ods. The foundational Loss method (Zhang et al., 2025b)) uses the average negative log-likelihood
to compute the anomaly score, and Ref (Zhang et alJ |2025b) calibrates using a smaller reference
model. More advanced techniques focus on outlier tokens; Min-k£ % (Shi et al., 2024)) averages the
probabilities of the tokens with the lowest scores, while Min-k %++ (Zhang et al., 2025b) extends
this by normalizing token-level scores before selection. Other recent works further refine likelihood-
based scoring, such as ReCaLL (Xie et al.,[2024)), which scores samples by measuring the change in
likelihood when conditioned on a non-member prefix, or by fine-tuning the model to amplify score
differences (Zhang et al.| 2025a). In contrast to the position-agnostic nature of the methods above,
our work is the first to analyze the positional decay of memorization signals through the lens of
token entropy. Based on this insight, we introduce a plug-and-play framework to enhance existing
likelihood-based methods, rather than proposing an entirely new scoring function.

Token Position in LLMs. The importance of token position has been recognized in various do-
mains of large language model research. For instance, to optimize inference, methods like Token-
Butler (Akhauri et al.| 2025)) predict critical tokens to prune the KV-Cache, while OrthoRank (Shin
et al., |2025)) identifies important tokens by measuring their hidden state orthogonality to “sink to-
ken”. The significance of token-level analysis extends to the sub-token level, where understanding
internal character positions can improve performance on fine-grained tasks (Xu et al.;,[2024)). Differ-
ent from them, our work investigates how token positions impact membership inference, enhancing
existing likelihood-based MIA methods through position-based token reweighting.

3 BACKGROUND

In this section, we first formalize the problem of pre-training data detection as defined in prior
studies (Shokri et al.,[2017;|Shi et al.,|2024;|Duan et al.,[2024]), and then the likelihood-based scoring
functions for MIA methods in LLMs.

3.1 PROBLEM STATEMENT

Pre-training data detection is cast as a membership inference attack (MIA) (Shokri et al., [2017)).
Denote a pre-trained auto-regressive LLM as M and its unknown training corpus as D. For an
arbitrary text sample x, MIA aims to infer whether x € D (member sample) or x ¢ D (non-member
sample). Let s(x; M) represent the scoring function that assigns a real-valued “membership” score
to = based on M ’s outputs. We make a binary decision via

§ = I(s(; M) > e), )
where € is a case-specific threshold and I(+) is the indicator function. Consistent with the grey-box
setting (Shi et al 2024} |Duan et al., 2024; [Zhang et al., 2025b)), we assume that only M’s out-
put statistics (logits, token probabilities, loss values) are accessible; internal weights and gradients
remain hidden. Designing an effective s(x; M) to maximize the separation between member and
non-member distributions is at the core of the detection task.

3.2 LIKELIHOOD-BASED SCORE FUNCTIONS

Modern LLMs are trained by maximizing the likelihood of training token sequences (Radford et al.,

2019; [Brown et al., [2020). Concretely, given a sequence = (z1,...,Z7), an auto-regressive
LLM factorizes its joint probability using the chain rule: p(z) = [[,_, p(2: | <), where o, =
(21,...,x¢—1) is the prefix context. At inference time, the model generates text token by sampling

from the conditional distribution p(- | x<¢). In light of this, researchers usually design likelihood-
based scoring functions to detect pretraining data in LLMs (Yeom et al. 2018)). For example,
based on the observation that members tend to have higher log-likelihood than non-members, the
loss-based score (Yeom et al., 2018) is defined as the (negative) log-likelihood of the input sequence,

T
1
Stoss(T) = T Zlogp(xt | z<t), 2)
t=1
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where we flip the sign of the conventional loss-based score so that, consistent with other methods,
higher scores indicate stronger membership. Instead of using the likelihood of all tokens, Min-k%
(Shi et al.,|2024) selects the k% tokens with the smallest log-probabilities and averages them:

1
SMin-k% (T) = 1Sl > logplar | war), 3)
k ¢ EMin-k%(x)
where Sy, represents the set of token positions corresponding to the smallest £% log-probabilities in
the sequence. The intuition is that a non-member example is more likely to include a few outlier
words with low likelihoods than members. Other methods are deferred to Appendix [A]

4 METHODOLOGY

In this section, we first present our core motivation based on an empirical observation about to-
ken entropy. We then introduce our general, plug-and-play weighting method, Positional Decay
Reweighting (PDR), and demonstrate how apply it to enhance existing likelihood-based scores.

4.1 MOTIVATION

Our methodology is built on a key insight into how autoregressive language models process infor-
mation. From an information-theoretic perspective, a fundamental principle is that conditioning on
more information cannot increase entropy, i.e., H(z|z,y) < H(z|y). In the context of autoregres-
sive models, the uncertainty at each step can be quantified by the conditional entropy of the next
token over the vocabulary V, given the prefix context x ;:

H(p(|r<t)) = — Zp(v|z<t)logp(v|x<t). “4)
veV
Although the classic principle compares the entropy of the same random variable, whereas here we
are comparing the entropy for different variables (x; and x4 1), it is a widely observed empirical
phenomenon that the entropy at position ¢ is frequently greater than at position ¢ 4 1.

To empirically investigate this phenomenon, we visualized the average token-level entropy across
multiple diverse datasets, as shown in Fig.[I](a). The visualization reveals two crucial findings. First,
despite the varied nature of the corpora, they all exhibit a dominant trend: a high-entropy initial
region followed by a general downward trend as the sequence progresses. Second, it highlights key
differences in these trends; while datasets like Github and Wikipedia show a relatively smooth decay,
corpora with more heterogeneous structures—such as ArXiv (with section headings and equations)
and HackerNews (mixing prose, code, and quotes)—display significantly more volatility.

These empirical findings have direct implications for membership inference, as the initial high-
entropy region provides a unique setting to distinguish memorization from generalization. An un-
usually confident (i.e., high-probability) prediction for a token in such a position strongly suggests
that this confidence does not stem from contextual generalization, but rather from rote memoriza-
tion of specific sequences in its training set. Conversely, in later positions (low-entropy regions),
the abundance of context makes predictions easier for both member and non-member samples, thus
shrinking the discriminative gap between them. This is directly confirmed by Fig. |l| (b), which
shows that this gap is largest at the beginning of the sequence and diminishes over time.

This analysis leads to our refined core hypothesis: the memorization signal is not position-agnostic
but is heavily skewed towards the beginning of a sequence, with its strength generally decaying with
token position. This crucial insight reveals a limitation in existing likelihood-based MIA methods.
Whether they use scores from all tokens (like Loss) or from a subset of low-likelihood tokens (e.g.,
Min-k%), they are overwhelmingly position-agnostic. By treating the scores from different po-
sitions as equally important, they dilute the potent, high-fidelity signals concentrated in the early
positions with noisy, less informative signals from the end. This oversight prevents them from fully
exploiting the powerful evidence of memorization. Therefore, a principled, position-aware approach
is not merely an incremental improvement, but a necessary step to enhance MIA performance.

4.2 PLUG-AND-PLAY POSITIONAL DECAY REWEIGHTING (PDR)

Based on our core hypothesis established above—that memorization signals are heavily skewed to-
wards the beginning of a sequence—we argue that the performance of likelihood-based MIA meth-
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Figure 2: Overview of Positional Decay Reweighting (PDR). Our method reweights the predic-
tive probabilities of input samples based on token positions, emphasizing early tokens with higher
weights. This reweighting enhances the distinction between member and non-member samples by
amplifying critical signals in the score S, making it more effective for MIA. The framework is
lightweight, plug-and-play, and can be applied to various likelihood-based scoring methods.

ods is fundamentally limited by their position-agnostic nature. To rectify this, we propose Positional
Decay Reweighting (PDR): a simple, effective, and “plug-and-play” framework designed to inject
this crucial positional prior into existing methods. Our overview is illustrated in Fig.

PDR operates by re-weighting token-level scores using monotonically decreasing functions based
on a token’s position ¢ in a sequence of length 7. This systematically assigns higher importance to
earlier tokens, where the signal is strongest, and lower importance to later ones. We explore three
simple, standardized, and effective families of decay functions:

1. Linear Decay: This function linearly decreases the weight from 1. The rate of decay is controlled
by a single hyperparameter @ € [0, 1]:
t—1
w]inear(t) =l-« <1—,_:[> 3 (5)

where 7' is the total sequence length. When oo = 0, all tokens are weighted equally, reducing to
the original unweighted score.

2. Exponential Decay: This function applies a sharper, non-linear decay, placing a much stronger
emphasis on the initial tokens:

Wexp(t) = exp(—a- (t —1)). (6)
The hyperparameter o > 0 controls the steepness of the decay.

3. Polynomial Decay: This function provides a flexible decay curve whose shape is controlled by
the exponent a.. The hyperparameter o« > 0 determines the curvature of the decay. Values of
o > 1 result in a slower initial decay, while values 0 < a < 1 lead to a faster initial decay:

t—1\"
Wpoly (t) = (1 - Tl) : @)
We defer the visualization of three weight decay functions into Figl6|of Appendix [B]

4.3 APPLYING PDR TO MIA SCORING FUNCTIONS

A key advantage of PDR is its “plug-and-play” nature. It operates as a lightweight wrapper designed
to correct existing likelihood-based methods, requiring no modification to the target model’s archi-
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tecture or training process. This makes it a broadly applicable technique. We now demonstrate how
PDR integrates with two representative scoring functions.

For methods that aggregate scores across the entire sequence, such as the standard Loss score in
equation 2] PDR injects the positional prior by applying weights to each token’s log-probability
before aggregation. The resulting PDR-Loss score is defined as:

1
SPDR-Loss ( Z w(t) - log P(x¢|w<¢). ®)
=

The integration is more nuanced for outlier-based methods like Min-k% in equation Here, a
crucial detail is the order of operations. To preserve the integrity of the outlier selection process,
PDR is applied after the tokens have been selected based on their original, unweighted scores. The
re-weighting then uses the original position of these selected tokens, ensuring that we are amplifying
the most informative signals as identified by the baseline method. The PDR-Min-k% score is thus:

SPDR-Min-k% (T |Sk| > w(t) - log P(w|z<y), 9
teSk

where Sy, is the set of token positions with the smallest k% log-probabilities.

PDR can also be combined with other scoring functions, such as the reference-based method
(Ref), the normalized outlier method (Min-k%-++), and finetuned-based FSD . The full set of PDR-
enhanced scoring functions and algorithm are detailed in Appendix [C] By systematically amplifying
the signal from critical early tokens, PDR aims to widen the score distribution gap between member
and non-member samples, thereby enhancing overall detection performance.

5 EXPERIMENTS

5.1 SETUP

Benchmarks. We evaluate our method on two commonly-used benchmarks for pre-training data
detection. (1) WikiMIA (Shi et al. 2024) uses Wikipedia texts, distinguishing members by
timestamps, and includes different length text for both original and paraphrased settings. (2)
MIMIR (Duan et al., 2024), built on the Pile dataset (Gao et al., [2020), is more challenging as
it minimizes distributional and temporal shifts between member and non-member data.

Baselines. We consider several representative and advanced methods as our baselines. A fundamen-
tal approach is Loss (Yeom et al.| |2018), which directly uses all tokens’ likelihood as a detection
score. Reference-based methods include Ref (Carlini et al} 2021), employing a smaller language
model for likelihood calibration, as well as zlib and lowercase (Carlini et al., [2021)), use zlib com-
pression entropy or lowercase text likelihood for the same purpose. Focusing on the most indicative
tokens, Min-k % (Shi et al.| [2024) averages the lowest k% of token scores. An enhancement to this
is Min-k %++ (Zhang et al., [2025b), which incorporates score normalization for each token before
selection. What’s more, we include FSD (Zhang et al.|[2025a), leverages score differences obtained
after fine-tuning the model on non-member data.

Models. For WikiMIA, we use Pythia (Biderman et al.,[2023) (2.8B, 6.9B, 12B), LLaMA (Touvron
et al., [2023a) (13B, 30B), GPT-NeoX (Black et al.| [2022)(20B), OPT (Zhang et al., 2022)) (66B),
and Mamba (Gu & Dao, |[2023) (1.4B, 2.8B). For MIMIR, we follow |Duan et al.| (2024) and use the
Pythia model series (160M, 1.4B, 2.8B, 6.9B, 12B). For FSD, we follow Zhang et al.|(2025a)) and
use GPT-J-6B, OPT-6.7B, Pythia-6.9B, LLaMA-7B, and GPT-NeoX-20B.

Metrics and Settings. Following standard practice (Carlini et al., 2021} |Shi et al., 2024)), we use
AUROC as the primary metric and also report True Positive Rate (TPR) at low False Positive Rates.
For brevity, we use LPDR, EPDR, and PPDR to denote our PDR with Linear, Exponential, and
Polynomial decay. We use a commonly-used £k = 20 for Min-k% and Min-k%-++. In the main
body, we primarily report results for LPDR. To demonstrate the general effectiveness of a simple
and strong positional prior, we use a fixed aw = 1 for all our experiments with LPDR except for very
short sequences (WikiMIA, T = 32), where such a sharp is suboptimal. More details about datasets,
baselines and settings are deferred to Appendix D}
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Table 1: AUROC results on WikiMIA benchmark (Shi et al., 2024). w/ LPDR utilizes our linear weights for
reweighting. Ori. and Para. denote the original and paraphrased settings. For each method pair, the higher
score is in bold. The performance gains of our method on the average results are highlighted in purple.

Mamba-1.4B  Pythia-6.9B LLaMA-13B GPT-NeoX-20B OPT-66B Average
Len. Method Ori.  Para. Ori. Para. Ori. Para. Ori Fara. Ori.  Para. Ori. Para.
Lowercase 609 606 622 617 640 632 6383 66.9 62.8 623 63.7 63.0
Zlib 619 623 644 642 678 683 693 68.5 658 653 65.8 65.7
Loss 61.0 613 638 641 675 680 69.1 68.6 65.6 653 65.4 65.5
w/LPDR (Ours) 61.5 61.8 640 642 67.7 682 689 68.3 656 650 655701 65.5
0 Ref 622 623 63.6 635 579 562 676 66.7 68.6 679 64.0 63.3
w/ LPDR 622 623 635 635 578 561 674 66.6 68.6 68.0 63.9 63.3
Min-k% 633 629 663 651 668 662 722 69.6 67.5 65.8 67.2 65.9
w/ LPDR 635 631 663 651 668 662 720 69.4 67.7 658 67.30! 65.9
Min-k%-++ 664 657 703 676 844 827 751 69.7 69.7 67.0 73.2 70.5
w/ LPDR 674 663 70.8 677 859 841 752 69.5 702 671 739707 709104
Lowercase 570 570 582 577 620 61.0 663 65.6 61.1 60.0 60.9 60.3
Zlib 604 59.1 62,6 616 653 653 68.1 66.5 639 622 64.1 62.9
Loss 582 564 60.7 593 636 631 66.6 64.4 623  60.3 62.3 60.7
w/ LPDR 59.7 595 626 624 650 662 67.6 67.2 642 63.1 63875 637130
61 Ref 60.6 59.6 624 629 634 609 66.0 66.0 669 67.8 63.9 63.5
w/ LPDR 61.1 608 633 640 598 579 66.8 67.2 682 69.1 63.9 63.870:3
Min-k% 61.7 580 650 61.1 660 635 722 66.1 66.5 625 66.3 62.2
w/ LPDR 629 618 667 651 674 672 708 68.7 68.1 660 672709 658136
Min-k%++ 672 622 71.6 642 843 788 765 66.2 69.8 633 73.9 66.9
w/ LPDR 682 655 721 683 872 843 764 68.2 70.1 66.6 74870 70.6137
Lowercase 585 577 605 599 606 563 68.0 67.6 589 57.6 61.3 59.8
Zlib 65.6 653 67.6 674 697 696 723 72.0 673  66.9 68.5 68.2
Loss 633 627 651 647 678 672 70.7 69.7 65.5 645 66.5 65.7
w/ LPDR 63.6 641 656 666 687 69.1 70.7 71.4 66.7 669 67.17°6 67.6"1°
128 Ref 620 61.1 633 629 626 597 683 68.4 669 67.0 64.6 63.8
w/ LPDR 641 646 651 659 649 617 69.5 70.2 68.6 69.5 66.47'° 664126
Min-k% 668 644 695 670 715 68.6 75.6 73.0 70.6  67.2 70.8 68.0
w/ LPDR 655 658 67.8 689 712 710 745 75.2 70.6  69.9 69.9 702122
Min-k%-++ 677 633 69.8 659 838 762 754 70.6 71.1  67.0 73.6 68.6
w/ LPDR 702 682 724 722 884 843 757 72.6 729 69.5 75923 73347

5.2 MAIN RESULTS.

Results on WikiMIA. As shown in Tab. [I} we report the AUROC results of different methods
on WikiMIA with varying sequence lengths of {32, 64, 128} on different backbones; please see
Appendix [E]for overall results on more methods (including our EPDR, PPDR), backbones and TPR
numbers. We observe that introducing our proposed linear positional decay reweighting strategy
generally enhances the performance of existing likelihood-based MIA methods. This improvement
is especially evident on the advanced Min-k%-++. For instance, when combined with the Min-
k%-++ method, the performance gains from our LPDR become more pronounced as sequence length
increases. Our LPDR improves the average AUROC by 0.7 (Ori.) and 0.4 (Para.) for length 32, by
0.9 (Ori.) and 3.7 (Para.) for length 64, and achieves the most significant gains of 2.3 (Ori.) and
4.7 (Para.) for length 128. These results prove the effectiveness of the our designed weight decay
method in re-weighting token-level scores.

Combination with FSD on WikiMIA. Since ours is a plug-and-play reweighting method, it can
also be used to enhance the finetune-based FSD. We perform the experiments on WikiMIA dataset
with different LLMs, where we first finetune LLMs with non-member samples following its official
code, then use Min-k% and Min-k%-++ as its score functions, respectively. To combine ours with
FSD, we apply our LPDR to reweight the score functions. We show the results in Fig. [3|and defer
details into Appendix [F] We can find that our linear PDR provides consistent improvements on FSD
no matter with Min-k%-++ or Min-k%++ as the score functions. It demonstrates that ours is also
beneficial for finetune-based methods by reweighting its score functions.

MIMIR Results. As noted by prior work, MIMIR is particularly difficult because its training and
non-training texts are sourced from the same datasets, minimizing distributional shifts. Furthermore,
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95 B Min-k% 3 Min-k%++
1 Min-k% w/LDPR 1 Min-k%++ w/ LDPR

Table 2: AUROC scores of various MIA methods over five Pythia ~ %°
models on the Mimir dataset. Pub, Wiki, and Hack denote Pubmed §
Central, Wikipedia (en) and HackerNews, respectively. Average*

85

scores are computed by excluding Arxiv and HackerNews. 80
75
Method Wiki Pile-CC  Pub DM Math GitHub Average* <
Lowercase 522 493 511 489 7.1 515 509 545 &
Zlib 527 504 504 481 719 514 508 547
Loss 59 503 503 485 708 521 512 544
w/LPDR 528 507 503 486 709 518 513 546 . )
Min-k% 518 507 509 492 709 523 524 54.7 Figure 3: AUROC comparison of our
w/LPDR 542 512 510 495 710 514 515 554 . .
Min-k%++ 540 505 519 503 704 526 529 554 LPDR method when integrated with
w/LPDR 555 50.8 524 50.3 70.1 52.7 52.1 55.8 Min-k% and Min-k%++ across various
LLMs on WikiMIA dataset within the
FSD framework.

we identify that the sub-datasets within MIMIR exhibit notable differences in structural composi-
tion. As visually confirmed by their volatile entropy profiles in Fig. (1| (a), corpora like ArXiv and
HackerNews are structurally heterogeneous. This distinguishes them from more homogeneous cor-
pora like Wikipedia or GitHub. We treat the heterogeneous datasets as stress tests and compute an
Averagex* score on the five sub-datasets that align with our method’s positional prior. As listed
in Tab. [2] on this benchmark, baselines themselves perform close to random guess, underscoring
its difficulty. We can find that introducing ours can improve the Loss, Min-k%, and Min-k%-++.
It validates the efficacy of PDR’s positional prior in structurally homogeneous text datasets. More
detailed results are deferred to Appendix [G]

5.3 FURTHER ANALYSIS

Ablation Study about Weight Design. We conduct an ablation study with several alternative
weighting schemes. We consider applying our PDR-generated weights in different Order, including
Random, a shuffled sequence, and Reverse, a monotonically increasing sequence. Furthermore, we
use token-level entropy as a direct weight, either from a single Sample or the entire Dataset. Addi-
tionally, for Min-k% and Min-k%-++ methods, we compare our standard approach (reweighting the
subset of scores after selection) with an alternative where reweighting is applied to the full sequence
Before the lowest k% of scores are selected.

As shown in Tab. [3] both Random and Reverse orders significantly degrade performance, confirming
that a monotonically decreasing weight is crucial. For Min-k% methods, the results show that ap-
plying reweighting after selecting the most informative tokens is superior to reweighting the entire
sequence Before selection. This suggests that the initial selection effectively isolates the most rele-
vant signals, which are then more effectively amplified by our PDR. Another insightful comparison,
is with entropy-based weighting. Furthermore, comparing our three PDR variants (LPDR, EPDR,
and PPDR), we observe that their performance is generally comparable, and all can effectively en-
hance the performance of most baseline methods. While using Dataset-level entropy yields strong
performance, this approach is impractical as it requires full test dataset statistics. Conversely, Sam-
ple-level entropy is practical but ineffective due to high variance. PDR strikes a critical balance:
its simple, data-agnostic prior is a powerful and practical plug-and-play strategy, achieving results
competitive with the impractical dataset-level entropy approach.

Table 3: Ablation study about weighting schemes. We evaluate different weight orderings (Random, Reverse),
entropy-based weights (Sample, Dataset), and the reweighting for K-select in Min-k% and Min-k%++. Results
are on WikiMIA dataset with a sequence 7' = 128.

Weights Order Entropy K select w/ PDR(Ours)

Method Base Random Reverse Sample Dataset Before LPDR EPDR PPDR

Loss 65.1 64.5 63.4 63.2 66.4 - 65.6 64.8 66.1
Ref 63.3 61.8 58.0 62.1 63.8 - 65.1 67.5 65.7
Min-k% 69.5 64.3 59.8 64.1 70.6 68.1 67.8 69.2 66.7
Min-k%++ 69.8 66.5 61.0 68.7 70.5 70.3 724 71.2 72.7
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ferent weight decay functions with varying varying rates in Fig. [ of Appendix
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Figure 5: Token-level score changes for (a) member sample and (b) non-member sample after applying LPDR
to Min-k%. The red dot means the selected token by Min-k%, blue and red line denote the original and
reweighted token-level score, respectively.

Score Changes when Using Our Method. To further illustrate the mechanism of PDR, we selected
a pair of member and non-member samples that are indistinguishable within Min-k% for sharing
the same score. Fig. [§] visualizes how our LPDR method resolves this ambiguity. By applying a
monotonically decreasing weight, PDR enhances the importance of tokens at earlier positions and
decreases the importance of tokens at later positions. For the member sample (a), whose memo-
rization signals (high-probability tokens) are concentrated at the beginning, this reweighting process
significantly amplifies its final score. In contrast, the non-member sample (b) is less affected. As
a result, PDR effectively breaks the tie, creating a clear distinction between the two samples and
enhancing the overall detection accuracy. More examples can be found in Appendix |Hl Besides, we
also analyzed the score distributions in Appendix I]

6 CONCLUSION

In this paper, we address a critical oversight in likelihood-based MIA methods: the failure to account
for the positional nature of memorization signals. Based on the observation that a model’s predictive
uncertainty decreases as a sequence progresses, we argue that membership signals are strongest in
early tokens. Existing methods dilute these signals by treating all positions equally. We introduce
Positional Decay Reweighting (PDR), a simple, plug-and-play framework that applies a monotoni-
cally decreasing weight to token scores, enhancing existing MIA methods without requiring model
changes. Extensive experiments validate that PDR significantly improves the performance of strong
baselines like Min-k£% and Min-k%-++, both standalone and within advanced frameworks like FSD.
Our work provides a more robust approach to membership inference by systematically prioritizing
more reliable positional signals, contributing to a deeper understanding of privacy risks in LLMs.
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A LIKELIHOOD-BASED SCORE FUNCIONS

This section provides the formal definitions for the baseline likelihood-based MIA score functions
discussed in the main paper. For a given input sequence x = {x1,...,xr} of length T, these
methods compute a score based on the token-level log-probabilities produced by the target model
P.

Loss. (Yeom et al.,|2018) The standard Loss-based method, also known as Negative Log-Likelihood
(NLL), uses the average log-probability of a sequence as its score. A higher score (lower loss) is
indicative of membership. The score is defined as:

T
1
StLoss() = T E log P(x¢|x <) (10)
=1

Ref. (Carlini et al.| 2021)) The Reference-based method (Ref) calibrates the target model’s likelihood
by subtracting the log-likelihood from a smaller reference model (P¢). This helps to normalize for
tokens that are inherently common or easy to predict. The score is:

Skref(x) = Z (log P(z¢|z<t) — log Pret(w¢|T<t)) 1D

Min-£%. (Shi et al.,|2024) The Min-k% method operates on the assumption that member samples
have fewer “outlier” tokens with very low probabilities. It computes the score by averaging only the
lowest k% log-probabilities in the sequence. Let Sy be the set of token positions corresponding to
the lowest k% log-probabilities. The score is:

SMin-k (T) = |S | > log P(wi|r<) (12)
teSk

Min-k %++. (Zhang et al., 2025b) The Min-k%++ method enhances Min-k% by first normalizing
the log-probability at each position ¢ using pre-computed mean (u;) and standard deviation (o)
statistics for that position. This accounts for positional biases in the model’s predictions. Let the
normalized score be z; = (log P(x¢|x<¢) — p1t)/0r. Let Sk be the set of positions corresponding to
the lowest k% normalized scores z;. The final score is:

Shin-ko++ |S | Z 2t (13)

FSD. (Zhang et al.} 2025a) Finetuning-based Score Difference (FSD) is a framework that enhances
any base scoring function S(-). It computes the difference between the score from the original model
(M) and the score from a model fine-tuned on non-member data (M"). A larger difference suggests
membership.

Sesp(x) = S(z; M) — S(x; M) (14)

B VISUALIZATION OF WEIGHT DECAY FUNCTIONS

In this section, we visualize weight decay functions (Linear, Exponential, or Polynomial), with
varying .. We use the following ranges:

* For Linear decay, the range for the coefficient « is: {0.1,0.3,0.5,0.7,1.0}

» For Exponential decay, the range for the coefficient « is:
{0.002, 0.004, 0.006, 0.008,0.01,0.02,0.04, 0.06, 0.08, 0.1}.

* For Polynomial decay, the range for the coefficient « is:
{0.1,0.3,0.5,0.7,1.0,1.2,1.5,1.8,2.0}.

Fig.[6] visualizes how the decay function becomes steeper as the hyperparameter (cv) increases.
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Figure 6: Visualization of different positional weight functions (Linear, Exponential, Polynomial)
with various hyperparameters. The x-axis represents the token position in a sequence of length 150,
while the y-axis shows the corresponding weight applied to that position.

C LIKELIHOOD-BASED SCORE FUNCTIONS WITH PDR

This section details how our Position Difference Reweighting (PDR) method is integrated with var-
ious likelihood-based MIA score functions. For a given input sequence = {1, ...,2r} of length
T, PDR introduces a positional weight w(t) for each token x; at position ¢. The final score is then
computed based on the weighted combination of token-level scores.

PDR-Loss. The standard Loss-based method, often conceptualized as Negative Log-Likelihood
(NLL), uses the average log-probability of a sequence as its score. With PDR, we apply positional
weights to the log-probabilities of each token before averaging. A lower weighted loss (which
corresponds to a higher score) suggests the sequence is a member. The PDR-enhanced score is:

SPDR-Loss ( Zw ~log P(x¢|w<y) (15)
=

PDR-Ref. The Reference-based method (Ref) calibrates the target model’s likelihood by subtracting
the log-likelihood from a smaller reference model (P.f). PDR is applied to the resulting difference
at each position. The score is defined as:

T
SeoR-ret (T) = Z - (log P(¢|v<;) — log Per(i|7<1)) (16)

PDR-Min-k%. Following the standard Min-k% procedure, we first identifies the token posi-
tions corresponding to the lowest k% log-probabilities. Then computes the final score by taking
a weighted average of the log-probabilities at only these selected positions, where each score is
multiplied by its corresponding positional weight w % Let Sy, be the set of token positions corre-
sponding to the lowest k% values of {log P( xt|x<t }i—1. The score is:

SPDR-Min-k% |Sk| > w(t) - log P(wi|z<) a7
teSk

PDR-Min-k %++. Similarly, for Min-k%-++, we first identify the positions of the lowest k% nor-
malized z-scores. The PDR-enhanced score is then the weighted average of these selected z-scores,

with positional weights applied before averaging. Let z; = (log P(x¢|x<t) — pt)/0¢, and let Sy be
the set of positions for the lowest k% values of {zt}thl. The score is:

Seoremin ke () = 7o Sk| Z (18)

PDR-FSD. Finetuning-based Score Difference (FSD) calculates the difference between a score
function S(-) computed before and after fine-tuning the model on non-member data. Our PDR
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method can be applied to the base score function S(-) used within the FSD framework. If we denote
the fine-tuned model as M’, the FSD score using a PDR-enhanced base method S, ppg is:

SPDR»FSD(33) = S+PDR($; M) - S+PDR(33; M/) (19)

where S,ppr (x; M) and S,ppr (x; M’) are the PDR-enhanced scores computed using the original
model M and the fine-tuned model M’, respectively.

The detailed process of applying our PDR method to various likelihood-based MIA methods is
outlined in Algorithm|I] This algorithm specifically illustrates the computation for combining PDR
with Loss, Ref, Min-k£%, and Min-k %++.

Algorithm 1 Overall algorithm for applying PDR to different logit-based MIA methods

1: Input:
Test dataset D = {x!, ..., zV};
Target model’s predictive distribution P(x¢|x<y);
A chosen decay function fyecay € {Linear, Exponential, Polynomial};
Decay hyperparameter « or p;
A base MIA scoring method M € {Loss, Ref, Min-K %, Min-K %++};
(Optional) Reference model Preg(x¢|x<1);
(Optional) Positional normalization stats {j;, o4} ;.
2: Output: A list of PDR-enhanced scores Sppr = {s1,..., SN}
3: Initialize an empty list Sppr.
4: fori=1to N do > Iterate over all sequences in the dataset
52 xt={zl,... xb}
// Step 1: Compute Positional Weights for the current sequence
6 fort =1to T do > Iterate over all positions in the sequence
7 if fyecay is Linear then
8: wt) 1 —a-+=+
9 else if fqccay is Exponential then
0 w(t) « exp(—a - (t —1))
1 else if fjccay is Polynomial then

P
1 w(t) + (1- 4=4)
13: end if
14: end for
// Step 2: Apply PDR to the chosen base MIA method add color

10:
1

N

15: Initialize current score s* < 0.

16: if M is Loss theg o

17: R f% Yoo w(t) - log P(z}|a,)

18: else if M is ReTf then o o

19: st &> w(t) - (log P(zilal,) — log Per(zilz,))

20: else if M is Min-k% then

21: Let Sy, be the set of token positions with the smallest k% log-probabilities.
22: s" ISilk\ > ies, w(t) - log P(xy|zt,)

23: else if M is Min-k%-++ then o

24: For each ¢, compute normalized score z; = M.

25: Let Sy be the set of token positions with the smallest k% normalized scores z;.
26: R ISilk\ D oies, Wt) - 2

27: endif

28: Append s* to Sppg.

29: end for

30: return Sppr
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D EXPERIMENTS SETTING DETAILS

D.1 BENCHMARKS

We focus on two commonly-used benchmarks for pre-training data detection. (1) WikiMIA (Shi
et al.l 2024) is the first benchmark for pre-training data detection, comprising texts from Wikipedia
events. The distinction between training and non-training data is established based on temporal
timestamps. To enable fine-grained evaluation, WikiMIA organizes data into splits according to
sentence length. It also includes two evaluation settings: the original setting evaluates the detec-
tion of verbatim training texts, while the paraphrased setting uses ChatGPT to paraphrase training
texts and evaluates on paraphrased inputs. (2) MIMIR (Duan et al., [2024)) is built upon the Pile
dataset (Gao et al., [2020). This benchmark poses greater challenges compared to WikiMIA, as
the shared dataset origin between training and non-training texts eliminates substantial distribution
shifts and temporal discrepancies (Duan et al., [2024).

D.2 BASELINES
We consider several representative methods as our baselines:
* Loss (Yeom et al., 2018) is a general technique that directly uses the loss of the model as

the detection score.

e Ref (Carlini et al., 2021) employs an additional, typically smaller, language model as a
reference to calibrate the likelihood of the input text.

« zlib and lowercase (Carlini et al., 2021)) use the compression entropy of zlib and the likeli-
hood of the lowercase text as references to calibrate the likelihood.

* Min-k% (Shi et al., |2024)) examines the exact probabilities of the token and averages a
subset of the lowest token scores from the input sequence.

* Min-k%++ (Zhang et al., [2025b) extends Min-k% by standardizing the log-probability
of each token using the mean and standard deviation of log-probabilities at that specific
position, making scores more comparable across different positions before applying the
Min-k% selection.

* FSD (Zhang et al.l 2025a)) involves fine-tuning the model on non-member samples and
using the difference in logit-based scores before and after fine-tuning for detection.

D.3 ENVIRONMENT

All experiments were conducted on the Ubuntu 20.04.4 LTS operating system, Intel(R) Xeon(R)
Gold 5220 CPU @ 2.20GHz with a single NVIDIA A40 48GB GPU and 512GB of RAM. The
framework is implemented with Python 3.9.0 and PyTorch 2.6.0. Other key packages include trans-
former 4.40.1, numpy 1.24 and accelerate 0.26.0.

D.4 MODELS

This section details the specific models used in our experiments. For the Ref method, the choice
of reference model depends on the dataset following (Carlini et al., 2021} [Shi et al., 2024} [Zhang
et al., [2025b)).On the WikiMIA dataset, we used the following reference models for different model
families:

* For the Pythia family, we used Pythia—-70M.

* For the Llama family, we used L1ama—-"7B.

¢ For the GPT family, we used GPT-Neo—-125M.

* For the Mamba family, we used Mamba—-130M.

For the OPT family, we used OPT—-350M.
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D.5 HYPERPARAMETER

For Min-k% and Min-k%-++, we consistently use & = 20% following common practice. In our
experiments, settings are as follows:

* LPDR: on the WikiMIA dataset, we generally set o = 1.0 for sequence lengths of 64 and
128. For the shorter length of 32, a smaller weight was preferred like 0.1 or 0.5. On the
Mimir dataset, we set o« = 1.0.

* EPDR: on the WikiMIA dataset, Ref and Min-k%++ set &« = 0.02, where as Loss and
Min-k% set a = 0.002. On Mimir, o = 0.002 was used.

* PPDR: on the WikiMIA dataset, we used p = 0.1 for length 32, but a much steeper decay
of p = 2.0 for lengths 64 and 128. On Mimir, we set a gentler p = 0.1.

A clear trend emerges from these results. On the WikiMIA dataset, longer sequences tend to benefit
from more aggressive, steeper weight functions, while shorter sequences and the more challenging
Mimir dataset favor gentler, more gradual decay.

D.6 FSD SETTINGS

For the Finetuning-based Score Difference (FSD) experiments, we follow the implementation details
from the original paper. To construct the non-member dataset for fine-tuning, we first randomly
sample 30% of the entire dataset. All non-member samples within this subset are then used as the
fine-tuning dataset. The remaining 70% of the data is reserved for testing. We use LoRA (Hu et al.,
2022a)) to fine-tune the base model for 3 epochs with a batch size of 8. The initial learning rate is set
to 0.001 and is adjusted using a cosine scheduling strategy.

E WIKIMIA RESULTS

This section presents the comprehensive results on the WikiMIA benchmark. We report detailed AU-
ROC and TPR scores across all models and sequence lengths under both the original and paraphrased
settings. The AUROC results are shown in Tab. ] and Tab. 5] respectively, while the corresponding
TPR results are reported in Tab. [6]and Tab.[7]

Table 4: AUC-ROC on WikiMIA benchmark under original setting. w/ LPDR utilizes linear weights
for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polyno-
mial weights for reweighting.

Length Models Lowercase Zlib Loss w/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR w/EPDR w/PPDR Min-k%++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 609 619|610 615 60.9 612 | 622 622 627 622 633 635 632 638 66.4 674 66.6 67.1
Mamba-2.8B 636 647|641 645 64.0 642 | 670 669 67.1 66.7 66.1 66.2 66.0 66.1 69.0 69.4 68.9 69.1
Pythia-2.8B 609 621|614 617 612 614 | 613 613 624 61.0 61.7 619 61.6 61.9 64.0 64.7 642 64.4
Pythia-6.9B 622 644|638 640 637 638 | 636 635 64.6 632 663 663 66.1 654 703 708 70.1 705

» Pythia-12B 648 658|654 654 652 654 | 651 651 66.1 647 68.1 68.0 678 674 722 723 713 720
Llama-13B 640 678|675 677 675 615 | 579 518 572 576 66.8 668 668 66.6 844 859 862 850
Llama-30B 641 698|694  69.6 694 695 | 635 635 628 632 693 69.4 693 692 844 854 855 846

OPT-66B 628 658|656 656 655 657 | 686 686 693 684 675 617 674 615 69.7 702 69.4 700
GPT-NeoX-20B | 683 693 | 69.1 689 689 690 | 676 674 66.7 610 722 720 718 711 75.1 752 744 750
T Avege | 635 6577653 654 651 653 | 641 640 643 638 | 668 669 667 665 | 2 I 735 729 I
Mamba-1.4B 570 604|582 597 58.2 607 | 606 611 61.9 603 617 629 620 628 612 682 619 682
Mamba-2.8B 617 630|612 630 612 636 | 643 661 66.6 655 65.1 662 65.4 653 70.6 70.4 70.0 69.6
Pythia-2.8B 578 606 | 584 601 58.4 608 | 596  60.5 622 60.0 612 633 614 628 648 659 65.1 656
Pythia-6.9B 582 626|607 626 606 630 | 624 633 65.0 627 65.0 66.7 652 653 716 721 712 712

o Pythia-12B 596 635|619 635 618 639 | 630 640 65.9 634 66.5 679 667 672 726 728 718 715
Liama-13B 620 653|636 650 637 657 | 634 598 60.1 570 66.0 674 66.1 66.7 843 872 870 874
Llama-30B 619 675|661 675 662 679 | 689 655 654 632 68.4 69.6 68.6 689 843 877 870 874

OPT-66B 6L1 639|623 642 622 644 | 669 682 69.0 68.0 66.5 68.1 66.7 668 698 70.1 695 69.0
GPT-NeoX-20B | 663  68.1| 666  67.6 665 676 | 660 668 67.1 654 72 7038 722 68.6 765 764 76.0 750
T Averge | 606 639|621 637 621 642 [ 639 639 648 628 | 658 670 660 660 | B5 745 739 79
Mamba-1.4B 585 656|633 636 629 642 | 620 641 66.7 654 66.8 655 66.9 648 677 702 69.8 705
Mamba-2.8B 624 685|663 667 659 669 | 669 694 77 702 703 693 704 68.0 79 734 711 723
Pythia-2.8B 595 650|628 631 626 633 | 596 614 635 622 66.9 643 66.6 632 663 66.8 66.4 669
Pythia-6.9B 605 676|651 656 648 661|633 651 675 65.7 69.5 678 69.2 66.7 69.8 724 712 727

128 Pythia-12B 614 678|658 662 65.6 667 | 639 651 672 66.0 70.7 70.0 705 689 718 735 719 735
Llama-13B 606 697|678 687 678 69.1 | 626 649 622 64.1 715 712 721 709 838 884 9.1 89.1
Llama-30B 590 718|703 710 703 712|719 704 66.0 68.0 737 725 738 716 827 859 874 87.0

17



Under review as a conference paper at ICLR 2026

Table 5: AUC-ROC on WikiMIA benchmark under paraphrased setting. w/ LPDR utilizes linear
weights for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes
polynomial weights for reweighting

Length Models Lowercase  Zlib Loss w/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR W/EPDR w/PPDR Min-k% ++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 606 623|613 618 613 615|623 623 627 624 629 63.1 629 634 65.7 66.3 653 66.2
Mamba-2.88 635 648|645 6438 643 646 | 666 665 66.7 6.2 65.3 654 652 649 673 675 6.6 672
Pythia-2.88 603 623|616 618 614 65 | 612 612 623 60.9 60.9 611 60.8 60.6 613 617 61.0 614
Pythia-6.9B 617 642|641 642 63.9 641 | 635 635 644 63.1 65.1 65.1 649 644 676 617 66.6 677

. Pythia-12B 644 659|656 657 65.4 657 | 649 649 660 645 672 67.2 669 662 69.4 69.4 68.1 69.1
Liama-13B 632 683680 682 68.0 682 559 66.2 662 66.3 656 827 84.1 843 833
Llama-30B 613 704|702 703 0.1 702 622 68.5 684 68.3 677 812 824 826 81.6

OPT-66B 623 653 650 65.1 653 68.1 658 658 6.5 649 67.0 67.1 66.0 669
GPT-NeoX-20B 686 683 684 68.5 66.1 694 693 68.0 9.7 69.5 684 692
Average | 627 658|635 656 653 )
Mamba-1.4B 570 590|564 595 6.4 60.5
Mamba-2.88 620 619|598 629 597 636
Pythia-2.88 s6l 590|565 593 56.5 603
Pythia-6.98 577 616|593 624 593 629

o Pythia-12B 592 621|600 630 60.0 636
Llama-138 610 653|631 662 634 669
Liama-308 598 674655 684 657 69.0

OPT-66B 600 622603 631 60.3 63.5
GPT-NeoX-20B 672
Mamba-1.4B 577 653|627 64l 627 646
Mamba-2.8B 612 684657 673 65.7 67.9
506 650|623 640 62.5 64.1

y 509 674|647 666 64.7 673

s Pythia-12B 604 679|654 670 654 67.6
Llama-13B 563 696|672 691 676 69.9
Llama-30B 553 715|693 712 69.7 720

OPT-66B 576 669|645 669 648 619

Average

Table 6: TPR on WikiMIA benchmark under original setting. w/ LPDR utilizes linear weights for
reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polynomial
weights for reweighting.

Length Models Lowercase  Zlib Loss w/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR w/EPDR w/PPDR Min-k%++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 101 155 152 140 140 | 78 78 88 72 142 147 150 134 14 116 140 16
Mamba-2.8B 168 163 176 158 152 | 98 101 109 10.1 173 163 150 165 14 114 140 14
Pythia-2.8B 101 158 176 150 155 | 62 62 14 54 165 173 165 176 106 109 142 109
Pythia-6.9B 106 163 152 145 134 | 67 65 12.1 57 178 18.1 18.1 18.1 145 152 173 152

» Pythia-12B 163 171 178 176 155 | 90 88 1.1 98 20 27 233 238 165 173 199 158
Llama-13B 96 116 142 140 147 |47 49 52 49 189 199 202 212 331 40.1 434 382
Llama-30B 14 145 178 183 189 [ 101 109 72 93 20 27 230 212 318 357 37.0 295
OPT-66B 14 165 152 152 160 |11 1L 106 10.1 217 217 209 202 1.9 140 152 147

GPT-NeoX-: 204 27 202 212|155 16 17.6 152 289 300 282 266 19.1 19.9 204 212
T Average | 160 17.1 160 160 [ 90 92 10.5 86 200 204 200 198 78 196 217 187
Mamba-1.4B 88 41|95 130 13 173 | 46 67 70 42 158 155 173 173 137 127 123 99
Mamba-2.8B 165 148|102 158 127 162 | 92 99 109 99 190 197 190 215 187 144 165 127
Pythia-2.8B 102 144102 141 109 162 [ 106 56 109 35 183 22 169 218 134 14.1 144 123
Pythia-6.9B 16 162|134 130 123 155 [ 120 63 120 49 19.0 187 173 169 162 20.1 197 187

o Pythia-12B 123 13|92 137 88 162 [ 130 74 109 8.1 215 190 211 232 169 22 232 194
Llama-13B 16 127[ 113 165 106 144 |42 49 60 67 173 211 158 215 313 419 525 47
Llama-30B 99 155 137 169 14.1 187 | 106 88 70 8.1 165 208 187 187 338 37 46.1 45.1
OPT-66B 109 137|134 137 134 169 | 134 95 123 74 218 22 29 183 194 165 187 183

GPT-NeoX-: 4] 123 151 13.0 215 | 148 137 162 127 19.0 264 197 187 25 208 215 211
Average | 120 47771157 4T e " T170 103 81 10.4 73 187 206 187 198 207 236 250 225
Mamba-1.4B 13.0 194 | 115 18.0 13.0 115 10.1 9.4 15.8 122 9.4 194 115 216 10.1 13.7 122 11.5
Mamba-2.8B 137 237|194 180 216 165 [ 101 158 144 165 20.1 338 20.1 230 194 266 187 180
Pythia-2.8B 108 187] 94 137 15 144|101 101 158 79 137 180 180 158 144 173 137 165
Pythia-6.9B 130 209|144 151 158 158|137 151 173 137 18.0 288 216 216 20.1 237 180 20.1

s Pythia-12B 130 237[180 151 180 130|122 115 122 15 2011 259 23 230 180 266 259 259
Llama-13B 158 187|216 194 209 158|108 58 50 58 2011 28 23 2.1 38.1 568 576 547
Llama-30B 101 180|237 180 216 187 108 122 79 137 23 266 230 2.1 23 360 576 468
OPT-66B 151 216(209 165 23 201|158 158 130 216 2.1 237 25 165 180 194 18.0

130 23| 180 151 165 158 288 245 216 26.6 187
Average - N 130 133 124777185 266 205 244 204 267 277 256
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Table 7: TPR on WikiMIA benchmark under paraphrased setting. w/ LPDR utilizes linear weights
for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polyno-
mial weights for reweighting.

Length Models Lowercase  Zlib Loss W/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR w/EPDR w/PPDR Min-k%++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 132 1B32] 142 160 129 155 | 59 59 96 62 19 140 124 150 78 114 1.6 98
Mamba-2.88 150 127]165 178 163 173|100 93 1.9 106 199 202 204 152 1.1 129 111 9.8
Pythia-2.8B 16 145|142 155 150 142 | 72 72 129 75 163 168 152 158 109 106 109 114
Pythia-6.98 19 127[150 140 142 145 | 62 57 129 57 217 220 27 18.1 145 165 155 150

» Pythia-12B 165 155|173 168 17.8 189 | 80 83 103 83 199 204 207 183 155 134 14.0 134
Llama-13B 9.6 150|163 165 16.0 168 | 54 59 44 6.2 142 152 145 155 339 317 339 359
Llama-30B 132 152|147 176 155 168 | 83 75 59 78 18.1 178 178 194 258 292 318 28
OPT-66B 129 168|152 176 155 155 | 93 96 109 85 168 183 181 147 163 163 17.1 134

GPT-NeoX-20B | 145 196 | 176 194 189 199 152 150 142 140 19.1 194 194 196 134 132 119 11
T Avemge | 307 050|157 168 158 166 | 84 83 103 83 | | 1757 2 1y ey [ 166 179 175 061
Mamba-1.4B 95 151 | 8.1 120 99 127 | 81 92 109 63 77 148 92 162 7.0 63 102
Mamba-2.8B 148 148|123 130 130 158 |13 123 148 95 1.6 197 123 183 9.5 127 165

Pythia-2.8B 113 165 | 95 134 123 15.1 13.0 9.9 127 74 9.9 183 113 187 8.1 74 134
Pythia-6.9B 113 158106 130 12.7 144|162 71 15.5 5.6 127 183 13.0 173 10.2 10.9 165

64
Pythia-2.8B 86 165 144 115 72 130 |72 101 15 58 122 216 158 180 79 10.1 130 86
Pythia-6.9B 115 209|165 151 180 130 | 86 108 18.0 86 165 23.0 165 216 18.0 187 144 173

s Pythia-12B 122 194|194 144 165 122 |86 130 101 130 18.7 331 108 25 9.4 15.1 20.1 187
Llama-13B 158 216|180 237 216 259 | 43 79 65 79 15.1 309 209 3.1 353 468 453 496
Llama-30B 115 194|180 259 151 280 173 130 15 10.1 173 338 165 374 216 345 496 468

OPT-66B 115 187[187 158 180 158 [ 165 173 13.0 122 151 317 216 237 137 158 23 180
GPT-NeoX-20B | 151 223|201 259 20.1 245|180 122 115 13.0 230 324 237 317 209 94 209 122
T Averge | 126 196173 1937059 175 [ 114 124 129 15 | 150 286 173 265 | 162 196 238 217

F FSD RESULTS

This section presents the detailed results of combining our method with the Finetuning-based Score
Difference (FSD) framework on the WikiMIA dataset. Please refer to Tab. [§]and Tab.[9] for the full
experimental results.

Table 8: AUROC results on WikiMIA benchmark, compare with FSD

GPT-J-6B OPT-6.7B Pythia-6.9B LLaMA-7B NeoX-20B Average
Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD

Min-k% 67.9 93.4 62.5 89.4 66.7 91.9 65.4 88.4 73.4 90.1 67.2 90.6
w/ LPDR 68.1 94.0 62.9 89.6 67.0 92.6 66.7 88.8 73.5 91.0 67.6 91.2
w/ EPDR 67.1 94.1 62.1 90.0 66.0 92.8 65.8 89.1 72.1 91.3 66.6 914
w/ PPDR 67.9 93.8 62.9 89.5 66.9 922 66.6 88.9 733 90.7 67.5 91.0
Min-k%++ 67.6 81.6 63.0 83.3 68.1 81.5 79.9 91.1 74.4 77.8 70.6 83.1
w/ LPDR 68.3 84.8 63.6 84.5 69.4 85.0 80.8 92.1 74.8 81.7 71.4 85.6
w/ EPDR 68.2 83.7 63.3 84.5 69.2 83.6 80.8 91.8 74.8 81.2 71.2 85.0
w/ PPDR 68.3 85.5 63.7 84.6 69.5 85.8 80.7 92.1 74.6 82.4 71.4 86.1

Dataset Method

WikiMIA

Table 9: TPR results on WikiMIA benchmark, compare with FSD

GPT-J-6B OPT-6.7B Pythia-6.9B LLaMA-7B NeoX-20B Average
Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD

Min-k% 17.2 55.6 13.9 40.6 17.2 57.6 14.7 32.6 24.7 36.2 17.5 445
w/ LPDR 18.0 61.9 16.4 419 18.2 61.1 16.4 33.7 27.7 529 19.3 50.3
w/ EPDR 16.5 60.1 13.5 45.4 16.5 59.8 17.0 33.6 21.5 50.8 17.0 49.9
w/ PPDR 17.9 59.9 15.4 39.9 19.9 61.9 18.5 31.6 27.0 50.3 19.7 48.7
Min-k%++ 15.9 242 11.7 29.0 19.0 25.0 20.4 39.1 17.5 10.5 16.9 25.6
w/ LPDR 18.9 322 12.9 35.7 19.0 37.4 222 484 19.7 15.5 18.5 339
w/ EPDR 19.0 39.6 12.2 324 19.4 349 20.2 46.4 19.0 18.7 18.0 344
w/ PPDR 18.9 349 12.9 36.7 17.0 40.4 24.0 51.6 19.7 17.4 18.5 36.2

Dataset Method

WikiMIA

G MIMIR RESULTS

This section presents the complete AUROC and TPR results on the challenging MIMIR benchmark,
which is known for its minimal distribution shift and increased difficulty compared to WikiMIA.
The results in Tab. [I0] and Tab. [TT] comprehensively demonstrate the performance of our proposed
PDR methods (LPDR, EPDR, PPDR) and all baselines on MIMIR, across different models and sub
datasets.
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Table 10:

AUROC results on the challenging MIMIR benchmark

Method

Wikipedia

Github

Pile CC

PubMed Central

160M

1.4B

2.8B

6.9B

12B 160M 1.4B 2.8B 6.9B 12B

160M

14B 2.8B 6.9B

160M

1.4B 2.8B 6.9B

Lowercase
Zlib

50.1
51.1

51.3
52.0

51.7
52.4

53.5
53.5

543 672 703 713 729 73.7
543 675 71.0 723 739 749

47.8
49.6

48.6 49.5 50.1
50.1 503 50.8

49.5
49.9

50.4 51.5 51.5
50.0 50.1 50.6

Loss

w/ LPDR
w/ EPDR
w/ PPDR

535 657 698 713 73.0 74.0
544 66.0 70.0 71.5 73.0 739
537 657 699 713 73.0 74.0
53.6 66.0 70.0 71.5 732 742

49.6
49.9
49.6
49.6

499
50.1
49.7
49.9

49.8 499 50.6
499 50.0 50.6
49.6 49.7 503
49.8 499 50.6

Min-k%

w/ LPDR
w/ EPDR
w/ PPDR

542 657 70.0 714 733 742
56.0 659 702 71.7 732 74.1
549 657 700 71.5 733 743
545 66.1 703 71.8 73.5 745

50.1
50.2
50.4
50.2

50.3
50.7
50.1
50.4

503 50.5 51.2
50.7 50.6 5I.1
50.1 50.2 50.8
504 505 512

Min-k%++
w/ LPDR
w/ EPDR
w/ PPDR

579 647 69.6 709 728 742
59.0 64.6 695 70.6 72.3 737
585 647 69.7 708 72.7 74.1
583 648 698 71.0 729 743

49.7
49.7
49.9
49.7

502 498 514

50.2
50.4
50.0
50.2

50.8 51.5 52.8
51.8 522 53.6
509 51.5 528
51.1 51.7 53.1

Method

DM Mathematics

HackerNews

Average

160M

12B 160M 1.4B 2.8B 6.9B 12B

160M

14B 2.8B 6.9B

160M

1.4B 2.8B 6.9B

Lowercase
Zlib

50.8
50.1

52.8 489 49.0 49.0 49.1 482
527 48.1 482 48.0 48.1 48.1

49.0
49.7

50.4 51.1 51.6
50.3 50.8 51.2

52.4
52.7

534 541 548
53.7 54.1 549

Loss

w/ LPDR
w/ EPDR
w/ PPDR

51.0
50.4
50.7
50.9

534 488 485 484 485 485
532 4877 48.6 484 485 486
53.0 485 483 482 483 483
534 488 48.6 484 485 485

494
49.7
49.5
494

50.5 513 521
50.6 51.3 522
50.3 51.0 51.6
50.5 51.3 521

52.5
52.7
52.4
52.6

53.5 539 547
53.7 54.1 549
534 538 54.6
53.6 540 54.8

Min-k%

w/ LPDR
w/ EPDR
w/ PPDR

50.4
49.2
49.9
50.2

543 493 493 49.1 492 492
532 495 49.7 493 495 495
535 493 494 49.1 492 492
543 493 494 492 493 493

50.6
50.3
50.5
50.5

52.4
53.0
52.6
52.6

Min-k%++
w/ LPDR
w/ EPDR
w/ PPDR

49.3
50.0
49.6
49.5

56.2 50.1 50.2 50.2 50.5 504
56.1 50.1 503 502 504 50.5

563 502 502 502 506 505

50.7
50.7
50.6
50.5

522
52.6
52.3
52.3
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Table 11: TPR results on the challenging MIMIR benchmark

Wikipedia Github Pile CC PubMed Central

Method 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 14B 2.8B 6.9B 12B
Lowercase 4.6 45 49 52 56 244 322 343 381 386 34 53 53 62 64 35 5 53 6 52
Zlib 42 57 59 63 68 251 328 362 40.1 408 4 51 54 62 66 38 3.6 35 43 44
Loss 42 47 47 51 5 226 321 336 385 407 31 5 48 49 51 4 44 43 49 5

w/LPDR 46 46 54 57 6 21 308 324 347 364 24 34 4 48 58 41 46 45 49 55
w/EPDR 45 48 51 55 57 215 31.6 326 366 387 32 45 46 47 52 37 46 46 48 49
w/PPDR 42 47 49 49 53 227 321 35 388 398 3 43 47 53 6.1 41 42 41 44 52
Min-k% 48 56 5 61 58 226 315 34 39 407 35 45 48 5 48 47 46 45 51 49
w/LPDR 55 64 62 62 72 214 309 327 36 367 23 29 31 24 36 6 56 56 57 48
w/ EPDR 5 59 59 58 68 204 31 329 371 384 33 44 44 41 52 4 46 49 55 58
w/PPDR 53 53 54 56 56 229 319 346 39.1 402 38 45 42 47 52 53 52 47 52 64
Min-k%++ 52 53 59 7 78 252 33 342 382 401 5 37 37 48 46 48 61 48 56 64
w/LPDR 46 6 63 75 79 226 306 327 35 397 47 29 34 4 5 42 64 55 78 62
w/EPDR 51 59 66 78 82 24 33 335 374 407 46 34 36 43 49 49 54 54 68 58
w/PPDR 52 5 55 77 75 262 342 349 388 40 52 35 33 43 46 51 64 51 58 67

ArXiv DM Mathematics HackerNews Average

Method 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B
Lowercase 5.1 47 54 56 52 56 62 55 68 58 52 52 63 66 64 78 97 101 113 11.1
Z1ib 29 43 41 46 47 41 5 46 43 43 5 55 58 56 58 74 94 100 110 113
Loss 4 48 46 54 56 38 43 41 41 4 5 48 55 59 68 70 92 94 105 109
w/LPDR 34 38 28 41 38 36 37 37 35 36 48 56 55 6 52 65 85 88 96 102
w/EPDR 35 39 4 43 46 48 45 47 46 45 58 61 6 6 62 69 90 93 101 106
w/PPDR 44 42 48 55 53 39 42 38 41 38 55 56 54 59 61 71 90 9.6 105 109
Min-k% 44 43 45 54 53 39 41 46 43 46 42 46 57 63 61 73 91 96 108 11.0
w/ LPDR 4 41 37 46 46 4 41 46 39 36 47 63 41 6 57 72 90 93 98 101
w/EPDR 35 35 4 42 5 43 42 45 45 47 48 55 5 55 54 68 89 94 102 11.0
w/PPDR 46 38 44 5 61 38 34 39 41 38 45 47 55 68 57 76 90 95 106 11.2
Min-k%++ 54 47 62 68 7 44 48 54 45 54 44 35 46 57 57 83 96 100 11.2 119
w/LPDR 46 52 68 76 86 44 44 44 45 47 53 39 48 68 72 75 93 99 1L.1 120
w/EPDR 51 5 7.1 73 64 46 48 48 45 5 43 47 54 62 64 81 96 102 114 118
w/PPDR 55 46 64 73 67 43 48 52 46 51 43 37 51 66 58 86 98 101 114 11.8
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H SAMPLE REWEIGHTED ANALYSIS

This section presents additional visualizations of its effect on individual samples. We specifically
select pairs of member and non-member samples that are challenging for the baseline Min-k%
method, meaning their original scores are very close and difficult to distinguish.

Figures[7] 8] and[J]illustrate how applying our LPDR, EPDR, and PPDR methods, respectively, alters
the token-level scores for these ambiguous pairs. In each case, the reweighting process amplifies the
scores of the member samples more significantly than the non-member samples by emphasizing the
low-probability tokens that appear early in the sequence. This creates a more distinct separation
between them, demonstrating how PDR enhances detection accuracy at the individual sample level.
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Figure 7: Visualization of token-level score changes for (a) member sample and (b) non-member
sample after applying LPDR to the Min-k% method.
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Figure 8: Visualization of token-level score changes for (a) member sample and (b) non-member
sample after applying EPDR to the Min-k% method.
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Figure 9: Visualization of token-level score changes for (a) member sample and (b) non-member
sample after applying PPDR to the Min-£% method.
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I SCORE DISTRIBUTION.

To visually demonstrate the effectiveness of our method, we analyze the score distributions of mem-
ber and non-member samples before and after applying PDR. Figure. [I0]illustrates this comparison
for the Min-k%++ method on the LLaMA-13B model, using the WikiMIA dataset with a sequence
length of 64. For a clearer visualization, the scores are normalized to a range of [0,1]. As the figure
shows, the original Min-k%-++ method already provides some separation between the two distribu-
tions. However, after applying our Linear PDR (LPDR), the distributions are pushed further apart.
The member sample distribution shifts noticeably towards higher scores, while the non-member dis-
tribution remains relatively stable. This increased separation makes it easier to distinguish between
member and non-member samples, directly contributing to the improved AUROC performance we
observe in our experiments.

Original Min-k%++ Score Linear Reweighted Min-k%++ Score
T T
= Non-member = Non-member H [
= Member =1 Member
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Figure 10: Member and non-member score distribution comparison between Min-k% and LPDR-
Min-k% on LLaMA-13B model with 64-token input length on WikiMIA dataset. Our PDR method
enhances the separation between member and non-member distributions.

J LLM USE

LLMs were used solely for polishing the writing, e.g., improving clarity and readability. All research
ideas, methods, and results were entirely developed and conducted by the authors.
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