

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE EARLY BIRD CATCHES THE WORM: A POSITIONAL DECAY REWEIGHTING APPROACH TO MEMBERSHIP INFERENCE IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Membership inference attacks (MIAs) against large language models (LLMs) aim to detect whether a specific data point was included in the training dataset. While existing likelihood-based MIA methods have shown promise, they typically aggregate token-level scores using uniform weights (e.g., via simple averaging). We argue that this uniform aggregation is suboptimal because it fails to explicitly account for the decaying nature of memorization signals. Inspired by the information-theoretic principle that conditioning reduces uncertainty, we hypothesize that the memorization signal is strongest at the beginning of a sequence—where model uncertainty is highest—and generally decays with token position. To leverage this insight, we introduce Positional Decay Reweighting (PDR), a simple and lightweight plug-and-play method. PDR applies decay functions to explicitly re-weight token-level scores from existing likelihood-based MIA methods, systematically amplifying the strong signals from early tokens while attenuating noise from later ones. Extensive experiments show that PDR consistently enhances a wide range of advanced methods across multiple benchmarks.

1 INTRODUCTION

As Large Language Models (LLMs) are trained on vast and diverse corpora from the internet (Achiam et al., 2023; Touvron et al., 2023b), there exists a non-negligible risk that sensitive or personally identifiable information may be memorized and unintentionally exposed through model outputs (Grynbau & Mac, 2023; Mozes et al., 2023). Membership Inference Attack (MIA) aims to determine whether a sample was part of a model’s training set (Hu et al., 2022b; Wu & Cao, 2025). MIA has become increasingly critical in scenarios such as training data auditing, copyright infringement detection, and test set contamination analysis (Bertran et al., 2023; Zhang et al., 2025b), where identifying memorized content is essential for ensuring data integrity and compliance.

For LLMs, performing MIA methods introduces several critical challenges. First, the high-dimensionality and semantic richness of natural language make it difficult to define simple decision boundaries between training and non-training samples (Wu & Cao, 2025). Second, the internal representations and prediction behaviors of LLMs are shaped by deeply stacked transformer architectures, whose complexity often obfuscates direct interpretability (Achiam et al., 2023; Touvron et al., 2023b). Third, many real-world deployments of LLMs, such as commercial APIs, only provide black-box access, further limiting the attacker’s ability to probe model internals or gradients (Achiam et al., 2023). These factors collectively make membership inference in the context of LLMs a significantly harder problem compared to that in traditional MIA methods.

Existing MIA methods for LLMs can be broadly categorized into likelihood-based and non-likelihood-based approaches. Among dominant likelihood-based methods, Loss (Yeom et al., 2018) averages log-likelihoods across all tokens in the test sequence to serve as the detection score, while Min-k% (Shi et al., 2024) and Min-k%++ (Zhang et al., 2025b) select some the tokens with the lowest-probability from a sequence to compute its detection score. Methods like ReCaLL (Xie et al., 2024), and Ref (Carlini et al., 2021) introduce a reference point to calibrate likelihood-based scores, either prefixing target data points with non-member context or using a smaller auxiliary LLM. FSD (Zhang et al., 2025a) fine-tunes the target LLM on some non-member samples before

Figure 1: Visualization of (a) token-level entropy on subsets of the challenging Mimir dataset and (b) the average token-level log-probability for members and non-members on WikiMIA dataset for LLaMA-13B model.

computing the likelihood-based score (Zhang et al., 2025a). While varied in their specific strategies, these methods share a fundamental, unaddressed limitation: **they typically aggregate token-level scores using uniform weights. Whether aggregating scores from all tokens or a selected subset in the sequence, they assign equal weight to each included token’s contribution to the final detection score, failing to explicitly account for the positional decay of memorization signals.**

Our work is motivated by a key insight from information theory: conditioning on more information cannot increase entropy (Shannon, 1948). In autoregressive models, this implies that as more context accumulates, the model’s predictive uncertainty for the same token should not increase. This motivated us to hypothesize an empirical trend: in typical language generation, token-level entropy usually tends to decrease as a sequence progresses. We empirically investigate this hypothesis in Fig. 1 (a). The results reveal a dominant, albeit sometimes noisy, downward trend across diverse datasets. While corpora with heterogeneous structures like ArXiv and HackerNews show volatility, all datasets share a crucial characteristic: a high-entropy initial region that drops sharply. Consequently, an unusually confident prediction (high probability) for an early, high-entropy token is far more surprising—and thus more indicative of memorization—than comparable confidence later in the sequence. This is because in later positions, the abundance of context makes predictions easier for both member and non-member samples, thus shrinking the discriminative gap between them.

This leads to our core hypothesis: *the memorization signal is not uniformly distributed, but is concentrated in the initial stages of a sequence, with its discriminative power generally decaying with token position.* However, existing likelihood-based methods, **by utilizing uniform score aggregation**, dilute this skewed and powerful signal with less informative signals from later positions. Capitalizing on this key observation, we introduce Positional Decay Reweighting (PDR), a simple, effective, and “plug-and-play” method designed to align the scoring process with this positional signal decay. By applying monotonic decay functions (e.g., linear, exponential, polynomial), PDR systematically amplifies the high-value signals from early tokens while attenuating potential noise from later ones, thereby focusing the inference on the most informative parts of the sequence. Its key advantage is versatility: PDR can be seamlessly integrated into existing likelihood-based scoring functions. Extensive experiments validate that this straightforward modification yields substantial and consistent performance gains, improving upon advanced Min- $k\%++$ by up to 4.7 AUROC points on the WikiMIA benchmark of 128 length. Our main contributions can be summarized as follows: (1) We are the first to systematically demonstrate and analyze the positional decay of memorization signals from the view of token-level entropy, exposing the “uniform score aggregation” limitation inherent in prior methods. (2) We propose Positional Decay Reweighting (PDR), a lightweight, plug-and-play framework that reweights token scores to amplify early signals while attenuating later noise. (3) Our results across diverse LLMs and benchmarks establish PDR as an effective plug-and-play method, yielding notable performance gains especially for Min- $k\%++$.

108 **2 RELATED WORK**

109
110 **Membership Inference Attacks.** Membership Inference Attacks (MIA) have long been a core
111 topic in security and privacy (Shokri et al., 2017; Yeom et al., 2018). These attacks aim to deter-
112 mine whether a specific data point was included in the training dataset of a learning model. Ex-
113 tensive investigations across both vision (Dubiński et al., 2024) and language (Watson et al., 2022;
114 Mattern et al., 2023) domains have led to advances in attack methodologies. Notable examples in-
115 clude **LiRA** (Carlini et al., 2022), which leverages shadow models to estimate logit distributions
116 for likelihood-ratio tests, and **RMIA** (Zarifzadeh et al., 2023), which constructs robust pairwise
117 likelihood-ratio tests using a population of reference models. Beyond exact matching, **RAMIA** (Tao
118 & Shokri, 2025) extends the scope by testing if the model was trained on any data within a specified
119 semantic range, capturing privacy risks from similar or partially overlapping data. These develop-
120 ments have provided deeper insights into privacy risks (Mireshghallah et al., 2022), test-set contam-
121 ination (Oren et al., 2023), and copyright protection (Meeus et al., 2023; Duarte et al., 2024).

122 **Membership Inference Attacks for LLM.** While MIA is a long-standing problem, its applica-
123 tion to the pre-training stage of LLMs poses unique challenges, such as the impracticality of train-
124 ing shadow models and data characteristics that make inference difficult (Shi et al., 2024; Zhang
125 et al., 2025b). To this end, a category of existing methods focuses on the attack framework itself,
126 for instance, the distribution-free **DF-MIA** (Huang et al., 2025) for fine-tuned models, and **MIA-
127 Tuner** (Fu et al., 2025), which cleverly uses soft prompt tuning. Another is likelihood-based meth-
128 ods. The foundational **Loss** method (Yeom et al., 2018) uses the average negative log-likelihood
129 to compute the anomaly score, and the **Ref** (Carlini et al., 2021) method calibrates this score using
130 a smaller reference model. **Neighbor** (Mattern et al., 2023) eliminates the need for access to the
131 training data distribution by comparing the model score of a sample to those of its synthetically
132 generated neighbors. More advanced techniques focus on outlier tokens; **Min- $k\%$** (Shi et al., 2024)
133 averages the probabilities of the tokens with the lowest scores, while **Min- $k\%++$** (Zhang et al.,
134 2025b) extends this by normalizing token-level scores before selection. Other recent works further
135 refine likelihood-based scoring, such as **ReCaLL** (Xie et al., 2024), which scores samples by mea-
136 suring the change in likelihood when conditioned on a non-member prefix, or by fine-tuning the
137 model to amplify score differences (Zhang et al., 2025a). **CAMIA** (Chang et al., 2025) learns to
138 distinguish between member and non-member samples by aggregating multiple dynamic signals,
139 including the rate of change in token loss. Different from these methods, our work analyzes the
140 positional decay of memorization signals through the lens of token entropy. Based on this insight,
141 we introduce a plug-and-play framework to enhance existing likelihood-based methods, rather than
142 proposing an entirely new scoring function.

143 **Token Position in LLMs.** The importance of token position has been recognized in various do-
144 mains of large language model research. For instance, to optimize inference, methods like Token-
145 Butler (Akhauri et al., 2025) predict critical tokens to prune the KV-Cache, while OrthoRank (Shin
146 et al., 2025) identifies important tokens by measuring their hidden state orthogonality to “sink to-
147 ken”. The significance of token-level analysis extends to the sub-token level, where understanding
148 internal character positions can improve performance on fine-grained tasks (Xu et al., 2024). Differ-
149 ent from them, our work investigates how token positions impact membership inference, enhancing
150 existing likelihood-based MIA methods through position-based token reweighting.

151 **3 BACKGROUND**

152 In this section, we first formalize the problem of pre-training data detection as defined in prior
153 studies (Shokri et al., 2017; Shi et al., 2024; Duan et al., 2024), and then the likelihood-based scoring
154 functions for MIA methods in LLMs.

155 **3.1 PROBLEM STATEMENT**

156 Pre-training data detection is cast as a membership inference attack (MIA) (Shokri et al., 2017).
157 Denote a pre-trained auto-regressive LLM as M and its unknown training corpus as \mathcal{D} . For an
158 arbitrary text sample x , MIA aims to infer whether $x \in \mathcal{D}$ (member sample) or $x \notin \mathcal{D}$ (non-member
159 sample). Let $s(x; M)$ represent the scoring function that assigns a real-valued “membership” score
160 to x based on M ’s outputs. We make a binary decision via

$$\hat{y} = \mathbb{I}(s(x; M) \geq \epsilon), \quad (1)$$

162 where ϵ is a case-specific threshold and $\mathbb{I}(\cdot)$ is the indicator function. Consistent with the grey-box
 163 setting (Shi et al., 2024; Duan et al., 2024; Zhang et al., 2025b), we assume that only M 's out-
 164 put statistics (logits, token probabilities, loss values) are accessible; internal weights and gradients
 165 remain hidden. Designing an effective $s(x; M)$ to maximize the separation between member and
 166 non-member distributions is at the core of the detection task.

168 3.2 LIKELIHOOD-BASED SCORE FUNCTIONS

170 Modern LLMs are trained by maximizing the likelihood of training token sequences (Radford et al.,
 171 2019; Brown et al., 2020). Concretely, given a sequence $\mathbf{x} = (x_1, \dots, x_T)$, an auto-regressive
 172 LLM factorizes its joint probability using the chain rule: $p(\mathbf{x}) = \prod_{t=1}^T p(x_t | x_{<t})$, where $x_{<t} =$
 173 (x_1, \dots, x_{t-1}) is the prefix context. At inference time, the model generates text token by sampling
 174 from the conditional distribution $p(\cdot | x_{<t})$. In light of this, researchers usually design likelihood-
 175 based scoring functions to detect pretraining data in LLMs (Yeom et al., 2018). For example,
 176 based on the observation that members tend to have higher log-likelihood than non-members, the
 177 loss-based score (Yeom et al., 2018) is defined as the (negative) log-likelihood of the input sequence,

$$178 \quad s_{\text{loss}}(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^T \log p(x_t | x_{<t}), \quad (2)$$

181 where we flip the sign of the conventional loss-based score so that, consistent with other methods,
 182 higher scores indicate stronger membership. Instead of using the likelihood of all tokens, Min- $k\%$
 183 (Shi et al., 2024) selects the $k\%$ tokens with the smallest log-probabilities and averages them:

$$185 \quad s_{\text{Min-}k\%}(\mathbf{x}) = \frac{1}{|\mathcal{S}_k|} \sum_{x_t \in \text{Min-}k\%(\mathbf{x})} \log p(x_t | x_{<t}), \quad (3)$$

188 where \mathcal{S}_k represents the set of token positions corresponding to the smallest $k\%$ log-probabilities in
 189 the sequence. The intuition is that a non-member example is more likely to include a few outlier
 190 words with low likelihoods than members. Other methods are deferred to Appendix A.

191 4 METHODOLOGY

193 In this section, we first present our core motivation based on an empirical observation about to-
 194 ken entropy. We then introduce our general, plug-and-play weighting method, Positional Decay
 195 Reweighting (PDR), and demonstrate how apply it to enhance existing likelihood-based scores.

197 4.1 MOTIVATION

199 Our methodology is built on a key insight into how autoregressive language models process infor-
 200 mation. From an information-theoretic perspective, a fundamental principle is that conditioning on
 201 more information cannot increase entropy, i.e., $H(z|x, y) \leq H(z|y)$. In the context of autoregres-
 202 sive models, the uncertainty at each step can be quantified by the conditional entropy of the next
 203 token over the vocabulary V , given the prefix context $x_{<t}$:

$$204 \quad H(p(\cdot | x_{<t})) = - \sum_{v \in V} p(v | x_{<t}) \log p(v | x_{<t}). \quad (4)$$

207 Although the classic principle compares the entropy of the same random variable, whereas here we
 208 are comparing the entropy for different variables (x_t and x_{t+1}), it is a widely observed empirical
 209 phenomenon that the entropy at position t is frequently greater than at position $t + 1$.

210 To empirically investigate this phenomenon, we visualized the average token-level entropy across
 211 multiple diverse datasets, as shown in Fig. 1 (a). The visualization reveals two crucial findings. First,
 212 despite the varied nature of the corpora, they all exhibit a **dominant trend**: a high-entropy initial
 213 region followed by a general downward trend as the sequence progresses. Second, it highlights key
 214 differences in these trends; while datasets like Github and Wikipedia show a relatively smooth decay,
 215 corpora with more heterogeneous structures—such as ArXiv (with section headings and equations)
 and HackerNews (mixing prose, code, and quotes)—display significantly more volatility.

Figure 2: **Overview of Positional Decay Reweighting (PDR).** Our method reweights the predictive probabilities of input samples based on token positions, emphasizing early tokens with higher weights. This reweighting enhances the distinction between member and non-member samples by amplifying critical signals in the score \mathcal{S} , making it more effective for MIA. The framework is lightweight, plug-and-play, and can be applied to various likelihood-based scoring methods.

These empirical findings have direct implications for membership inference, as the initial high-entropy region provides a unique setting to distinguish memorization from generalization. An unusually confident (i.e., high-probability) prediction for a token in such a position strongly suggests that this confidence does not stem from contextual generalization, but rather from rote memorization of specific sequences in its training set. Conversely, in later positions (low-entropy regions), the abundance of context makes predictions easier for **both** member and non-member samples, thus shrinking the discriminative gap between them. This is directly confirmed by Fig. 1 (b), which shows that this gap is largest at the beginning of the sequence and diminishes over time.

This analysis leads to our refined core hypothesis: *the memorization signal is not uniformly distributed but is heavily skewed towards the beginning of a sequence, with its strength generally decaying with token position.* This crucial insight reveals a limitation in existing likelihood-based MIA methods. Whether they use scores from all tokens (like Loss) or from a subset of low-likelihood tokens (e.g., Min- $k\%$), **they overwhelmingly rely on uniform weighting schemes**. By treating the scores from different positions as equally important, they dilute the potent, high-fidelity signals concentrated in the early positions with noisy, less informative signals from the end. This oversight prevents them from fully exploiting the powerful evidence of memorization. Therefore, a principled, position-aware approach is not merely an incremental improvement, but a necessary step to enhance MIA performance.

4.2 PLUG-AND-PLAY POSITIONAL DECAY REWEIGHTING (PDR)

Based on our core hypothesis established above—that memorization signals are heavily skewed towards the beginning of a sequence—we argue that the performance of likelihood-based MIA methods is fundamentally limited by their **uniform scoring mechanism**. To rectify this, we propose Positional Decay Reweighting (PDR): a simple, effective, and “plug-and-play” framework designed to inject this crucial positional prior into existing methods. Our overview is illustrated in Fig. 2.

PDR operates by re-weighting token-level scores using monotonically decreasing functions based on a token’s position t in a sequence of length T . This systematically assigns higher importance to earlier tokens, where the signal is strongest, and lower importance to later ones. We explore three simple, standardized, and effective families of decay functions:

270 1. **Linear Decay:** This function linearly decreases the weight from 1. The rate of decay is controlled
 271 by a single hyperparameter $\alpha \in [0, 1]$:

273
$$w_{\text{linear}}(t) = 1 - \alpha \left(\frac{t-1}{T-1} \right), \quad (5)$$

274

275 where T is the total sequence length. When $\alpha = 0$, all tokens are weighted equally, reducing to
 276 the original unweighted score.

277 2. **Exponential Decay:** This function applies a sharper, non-linear decay, placing a much stronger
 278 emphasis on the initial tokens:

279
$$w_{\text{exp}}(t) = \exp(-\alpha \cdot (t-1)). \quad (6)$$

280 The hyperparameter $\alpha \geq 0$ controls the steepness of the decay.

281 3. **Polynomial Decay:** This function provides a flexible decay curve whose shape is controlled by
 282 the exponent α . The hyperparameter $\alpha > 0$ determines the curvature of the decay. Values of
 283 $\alpha > 1$ result in a slower initial decay, while values $0 < \alpha < 1$ lead to a faster initial decay.

284
$$w_{\text{poly}}(t) = \left(1 - \frac{t-1}{T-1} \right)^\alpha. \quad (7)$$

285 We defer the visualization of three weight decay functions into Fig.6 of Appendix B.

290 4.3 APPLYING PDR TO MIA SCORING FUNCTIONS

292 A key advantage of PDR is its “plug-and-play” nature. It operates as a lightweight wrapper designed
 293 to correct existing likelihood-based methods, requiring no modification to the target model’s archi-
 294 tecture or training process. This makes it a broadly applicable technique. We now demonstrate how
 295 PDR integrates with two representative scoring functions.

296 For methods that aggregate scores across the entire sequence, such as the standard Loss score in
 297 equation 2, PDR injects the positional prior by applying weights to each token’s log-probability
 298 before aggregation. The resulting PDR-Loss score is defined as:

300
$$s_{\text{PDR-Loss}}(x) = \frac{1}{T} \sum_{t=1}^T w(t) \cdot \log P(x_t | x_{<t}). \quad (8)$$

301

303 The integration is more nuanced for outlier-based methods like Min- $k\%$ in equation 3. Here, a
 304 crucial detail is the order of operations. To preserve the integrity of the outlier selection process,
 305 PDR is applied *after* the tokens have been selected based on their original, unweighted scores. The
 306 re-weighting then uses the *original position* of these selected tokens, ensuring that we are amplifying
 307 the most informative signals as identified by the baseline method. The PDR-Min- $k\%$ score is thus:

309
$$s_{\text{PDR-Min-}k\%}(x) = \frac{1}{|\mathcal{S}_k|} \sum_{t \in \mathcal{S}_k} w(t) \cdot \log P(x_t | x_{<t}), \quad (9)$$

310

311 where \mathcal{S}_k is the set of token positions with the smallest $k\%$ log-probabilities.

313 PDR can also be combined with other scoring functions, such as the reference-based method
 314 (Ref), the normalized outlier method (Min- $k\%++$), and finetuned-based FSD. The full set of PDR-
 315 enhanced scoring functions and algorithm are detailed in Appendix C. By systematically amplifying
 316 the signal from critical early tokens, PDR aims to widen the score distribution gap between member
 317 and non-member samples, thereby enhancing overall detection performance.

318 5 EXPERIMENTS

319 5.1 SETUP

320 **Benchmarks.** We evaluate our method on two commonly-used benchmarks for pre-training data
 321 detection. (1) **WikiMIA** (Shi et al., 2024) uses Wikipedia texts, distinguishing members by

324
 325 Table 1: AUROC results on WikiMIA benchmark (Shi et al., 2024). **w/ LPDR** utilizes our linear weights for
 326 reweighting. *Ori.* and *Para.* denote the original and paraphrased settings. [†]**Neighbor** results are from Zhang
 327 et al. (2025b). For each method pair, the higher score is in **bold**. The performance gains of our method on the
 328 average results are highlighted in **purple**.

329	330	Len.	Method	Mamba-1.4B		Pythia-6.9B		LLaMA-13B		GPT-NeoX-20B		OPT-66B		Average		
				Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.	
331	32	332	Lowercase	60.9	60.6	62.2	61.7	64.0	63.2	68.3	66.9	62.8	62.3	63.7	63.0	
			Zlib	61.9	62.3	64.4	64.2	67.8	68.3	69.3	68.5	65.8	65.3	65.8	65.7	
			[†] Neighbor	64.1	63.6	65.8	65.5	65.8	65	70.2	68.3	68.2	66.7	66.8	65.8	
			Loss	61.0	61.3	63.8	64.1	67.5	68.0	69.1	68.6	65.6	65.3	65.4	65.5	
			w/ LPDR (Ours)	61.5	61.8	64.0	64.2	67.7	68.2	68.9	68.3	65.6	65.0	65.5 ^{+0.1}	65.5	
			Ref	62.2	62.3	63.6	63.5	57.9	56.2	67.6	66.7	68.6	67.9	64.0	63.3	
			w/ LPDR	62.2	62.3	63.5	63.5	57.8	56.1	67.4	66.6	68.6	68.0	63.9	63.3	
			Min- <i>k</i> %	63.3	62.9	66.3	65.1	66.8	66.2	72.2	69.6	67.5	65.8	67.2	65.9	
			w/ LPDR	63.5	63.1	66.3	65.1	66.8	66.2	72.0	69.4	67.7	65.8	67.3 ^{+0.1}	65.9	
			Min- <i>k</i> %++	66.4	65.7	70.3	67.6	84.4	82.7	75.1	69.7	69.7	67.0	73.2	70.5	
			w/ LPDR	67.4	66.3	70.8	67.7	85.9	84.1	75.2	69.5	70.2	67.1	73.9 ^{+0.7}	70.9 ^{+0.4}	
333	34	35	Lowercase	57.0	57.0	58.2	57.7	62.0	61.0	66.3	65.6	61.1	60.0	60.9	60.3	
			Zlib	60.4	59.1	62.6	61.6	65.3	65.3	68.1	66.5	63.9	62.2	64.1	62.9	
			[†] Neighbor	60.6	60.6	63.2	63.1	64.1	64.7	67.1	67.4	64.1	64.6	63.8	64.1	
			Loss	58.2	56.4	60.7	59.3	63.6	63.1	66.6	64.4	62.3	60.3	62.3	60.7	
			w/ LPDR	59.7	59.5	62.6	62.4	65.0	66.2	67.6	67.2	64.2	63.1	63.8 ^{+1.5}	63.7 ^{+3.0}	
			Ref	60.6	59.6	62.4	62.9	63.4	60.9	66.0	66.0	66.9	67.8	63.9	63.5	
			w/ LPDR	61.1	60.8	63.3	64.0	59.8	57.9	66.8	67.2	68.2	69.1	63.9	63.8 ^{+0.3}	
			Min- <i>k</i> %	61.7	58.0	65.0	61.1	66.0	63.5	72.2	66.1	66.5	62.5	66.3	62.2	
			w/ LPDR	62.9	61.8	66.7	65.1	67.4	67.2	70.8	68.7	68.1	66.0	67.2 ^{+0.9}	65.8 ^{+3.6}	
			Min- <i>k</i> %++	67.2	62.2	71.6	64.2	84.3	78.8	76.5	66.2	69.8	63.3	73.9	66.9	
			w/ LPDR	68.2	65.5	72.1	68.3	87.2	84.3	76.4	68.2	70.1	66.6	74.8 ^{+0.9}	70.6 ^{+3.7}	
334	35	36	Lowercase	58.5	57.7	60.5	59.9	60.6	56.3	68.0	67.6	58.9	57.6	61.3	59.8	
			Zlib	65.6	65.3	67.6	67.4	69.7	69.6	72.3	72.0	67.3	66.9	68.5	68.2	
			[†] Neighbor	64.8	62.6	67.5	64.3	68.3	64	71.6	69.6	67.7	63.4	68.0	64.8	
			Loss	63.3	62.7	65.1	64.7	67.8	67.2	70.7	69.7	65.5	64.5	66.5	65.7	
			w/ LPDR	63.6	64.1	65.6	66.6	68.7	69.1	70.7	71.4	66.7	66.9	67.1 ^{+0.6}	67.6 ^{+1.9}	
			Ref	62.0	61.1	63.3	62.9	62.6	59.7	68.3	68.4	66.9	67.0	64.6	63.8	
			w/ LPDR	64.1	64.6	65.1	64.9	64.9	61.7	69.5	70.2	68.6	69.5	66.4 ^{+1.8}	66.4 ^{+2.6}	
			Min- <i>k</i> %	66.8	64.4	69.5	67.0	71.5	68.6	75.6	73.0	70.6	67.2	70.8	68.0	
			w/ LPDR	65.5	65.8	67.8	68.9	71.2	71.0	74.5	75.2	70.6	69.9	69.9	70.2 ^{+2.2}	
			Min- <i>k</i> %++	67.7	63.3	69.8	65.9	83.8	76.2	75.4	70.6	71.1	67.0	73.6	68.6	
			w/ LPDR	70.2	68.2	72.4	72.2	88.4	84.3	75.7	72.6	72.9	69.5	75.9 ^{+2.3}	73.3 ^{+4.7}	
358	359	360	timestamps, and includes different length text for both <i>original</i> and <i>paraphrased</i> settings. (2) MIMIR (Duan et al., 2024), built on the Pile dataset (Gao et al., 2020), is more challenging as it minimizes distributional and temporal shifts between member and non-member data.													
361	362	363	Baselines. We consider several representative and advanced methods as our baselines. A fundamental approach is Loss (Yeom et al., 2018), which directly uses all tokens’ likelihood as a detection score. Reference-based methods include Ref (Carlini et al., 2021), employing a smaller language model for likelihood calibration, as well as Zlib and Lowercase (Carlini et al., 2021), use zlib compression entropy or lowercase text likelihood for the same purpose. Besides , Neighbor (Mattern et al., 2023) evaluates membership by comparing the sample’s score against those of its synthetically generated neighbors. Focusing on the most indicative tokens, Min-<i>k</i>% (Shi et al., 2024) averages the lowest <i>k</i> % of token scores. An enhancement to this is Min-<i>k</i>%++ (Zhang et al., 2025b), which incorporates score normalization for each token before selection. What’s more, we include FSD (Zhang et al., 2025a), leverages score differences obtained after fine-tuning the model on non-member data.													
364	365	366	Models. For WikiMIA, we use Pythia (Biderman et al., 2023) (2.8B, 6.9B, 12B), LLaMA (Touvron et al., 2023a) (13B, 30B), GPT-NeoX (Black et al., 2022)(20B), OPT (Zhang et al., 2022) (66B), and Mamba (Gu & Dao, 2023) (1.4B, 2.8B). For MIMIR, we follow Duan et al. (2024) and use the Pythia model series (160M, 1.4B, 2.8B, 6.9B, 12B). For FSD, we follow Zhang et al. (2025a) and use GPT-J-6B, OPT-6.7B, Pythia-6.9B, LLaMA-7B, and GPT-NeoX-20B.													

378 **Metrics and Settings.** Following standard practice (Carlini et al., 2021; Shi et al., 2024), we use
 379 AUROC as the primary metric and also report True Positive Rate (TPR) at low False Positive Rates.
 380 For brevity, we use LPDR, EPDR, and PPDR to denote our PDR with Linear, Exponential, and
 381 Polynomial decay. We use a commonly-used $k = 20$ for Min- $k\%$ and Min- $k\%++$. In the main
 382 body, we primarily report results for LPDR. To demonstrate the general effectiveness of a simple
 383 and strong positional prior, we use a fixed $\alpha = 1$ for all our experiments with LPDR except for very
 384 short sequences (WikiMIA, $T = 32$), where such a sharp is suboptimal. More details about datasets,
 385 baselines and settings are deferred to Appendix D.

386

387

5.2 MAIN RESULTS.

388

389 **Results on WikiMIA.** As shown in Tab. 1, we report the AUROC results of different methods
 390 on WikiMIA with varying sequence lengths of $\{32, 64, 128\}$ on different backbones; please see
 391 Appendix E.1 for overall results on more methods (including our EPDR, PPDR), backbones and
 392 TPR numbers. **Besides, we also provide the best results on WikiMIA dataset cross five model in**
 393 **Appendix E.2 and plot the ROC curves in Appendix E.3 to demonstrate the consistent superiority**
 394 **of our method across various False Positive Rate (FPR) thresholds.** We observe that introducing
 395 our proposed linear positional decay reweighting strategy generally enhances the performance of
 396 existing likelihood-based MIA methods. This improvement is especially evident on the advanced
 397 Min- $k\%++$. For instance, when combined with the Min- $k\%++$ method, the performance gains from
 398 our LPDR become more pronounced as sequence length increases. Our LPDR improves the average
 399 AUROC by 0.7 (*Ori.*) and 0.4 (*Para.*) for length 32, by 0.9 (*Ori.*) and 3.7 (*Para.*) for length 64, and
 400 achieves the most significant gains of 2.3 (*Ori.*) and 4.7 (*Para.*) for length 128. These results prove
 the effectiveness of the our designed weight decay method in re-weighting token-level scores.

401

402 **Combination with FSD on WikiMIA.** Since ours is a plug-and-play reweighting method, it can
 403 also be used to enhance the finetune-based FSD. We perform the experiments on WikiMIA dataset
 404 with different LLMs, where we first finetune LLMs with non-member samples following its official
 405 code, then use Min- $k\%$ and Min- $k\%++$ as its score functions, respectively. To combine ours with
 406 FSD, we apply our LPDR to reweight the score functions. We show the results in Fig. 3 and defer
 407 details into Appendix F. We can find that our linear PDR provides consistent improvements on FSD
 408 no matter with Min- $k\%++$ or Min- $k\%++$ as the score functions. It demonstrates that ours is also
 409 beneficial for finetune-based methods by reweighting its score functions.

410

411 Table 2: AUROC scores of various MIA methods over five Pythia
 412 models on the Mimir dataset. Pub, Wiki, and Hack denote Pubmed
 413 Central, Wikipedia (en) and HackerNews, respectively. Average*
 414 scores are computed by excluding Arxiv and HackerNews.
 415 [†]Neighbor results are from Zhang et al. (2025b), induces significant
 416 extra computational cost than others ($25\times$ in this case), for
 417 which reason we don't run on the 12B model.

418

Method	Wiki	Pile-CC	Pub	DM Math	GitHub	ArXiv	Hack	Average*
Lowercase	52.2	49.3	51.1	48.9	71.1	51.5	50.9	54.5
Zlib	52.7	50.4	50.4	48.1	71.9	51.4	50.8	54.7
[†] Neighbor	51.9	50.1	49.2	47.4	69.3	51.5	51.5	53.6
Loss	51.9	50.3	50.3	48.5	70.8	52.1	51.2	54.4
w/ LPDR	52.8	50.7	50.3	48.6	70.9	51.8	51.3	54.6
Min- $k\%$	51.8	50.7	50.9	49.2	70.9	52.3	52.4	54.7
w/ LPDR	54.2	51.2	51.0	49.5	71.0	51.4	51.5	55.4
Min- $k\%++$	54.0	50.5	51.9	50.3	70.4	52.6	52.9	55.4
w/ LPDR	55.5	50.8	52.4	50.3	70.1	52.7	52.1	55.8

419

420 **MIMIR Results.** As noted by prior work, MIMIR is particularly difficult because its training and
 421 non-training texts are sourced from the same datasets, minimizing distributional shifts. Furthermore,
 422 we identify that the sub-datasets within MIMIR exhibit notable differences in structural composition.
 423 As visually confirmed by their volatile entropy profiles in Fig. 1 (a), corpora like *ArXiv* and
 424 *HackerNews* are structurally heterogeneous. This distinguishes them from more homogeneous cor-
 425 pora like Wikipedia or GitHub. We treat the heterogeneous datasets as stress tests and compute an
 426 Average* score on the five sub-datasets that align with our method's positional prior. As listed
 427 in Tab. 2, on this benchmark, baselines themselves perform close to random guess, underscoring
 428 its difficulty. We can find that introducing ours can improve the Loss, Min- $k\%$, and Min- $k\%++$.
 429 It validates the efficacy of PDR's positional prior in structurally homogeneous text datasets. More
 430 detailed results are deferred to Appendix G.

431

432 Figure 3: AUROC comparison of our
 433 LPDR method when integrated with
 434 Min- $k\%$ and Min- $k\%++$ across various
 435 LLMs on WikiMIA dataset within the
 436 FSD framework.

432 5.3 FURTHER ANALYSIS
433434
435 **Ablation Study about Weight Design.** We conduct an ablation study with several alternative
436 weighting schemes. We consider applying our PDR-generated weights in different Order, including
437 *Random*, a shuffled sequence, and *Reverse*, a monotonically increasing sequence. Furthermore, we
438 use token-level entropy as a direct weight, either from a single *Sample* or the entire *Dataset*. Additionally, for Min- $k\%$ and Min- $k\%++$ methods, we compare our standard approach (reweighting the
439 subset of scores after selection) with an alternative where reweighting is applied to the full sequence
440 *Before* the lowest $k\%$ of scores are selected.
441442 As shown in Tab. 3, both *Random* and *Reverse* orders significantly degrade performance, confirming
443 that a monotonically decreasing weight is crucial. For Min- $k\%$ methods, the results show that ap-
444 plying reweighting after selecting the most informative tokens is superior to reweighting the entire
445 sequence *Before* selection. This suggests that the initial selection effectively isolates the most rele-
446 vant signals, which are then more effectively amplified by our PDR. Another insightful comparison,
447 is with entropy-based weighting. Furthermore, comparing our three PDR variants (LPDR, EPDR,
448 and PPDR), we observe that their performance is generally comparable, and all can effectively en-
449 hance the performance of most baseline methods. While using *Dataset*-level entropy yields strong
450 performance, this approach is impractical as it requires full test dataset statistics. Conversely, *Sam-
451 ple*-level entropy is practical but ineffective due to high variance. PDR strikes a critical balance:
452 its simple, data-agnostic prior is a powerful and practical plug-and-play strategy, achieving results
453 competitive with the impractical dataset-level entropy approach.
454455 **Ablation Study about Weight Design.** We conduct an ablation study with several alternative
456 weighting schemes. We consider applying our PDR-generated weights in different Order, including
457 *Random*, a shuffled sequence, and *Reverse*, a monotonically increasing sequence. Furthermore, we
458 use token-level entropy as a direct weight, either from a single *Sample* or the entire *Dataset*. **Ad-
459 ditionally, following CAMIA’s (Chang et al., 2025) concept of loss decreasing rate, we explore a
460 dynamic strategy where we fit a linear slope to each sample’s loss sequence and use this fitted slope
461 as the decay parameter α .** For Min- $k\%$ and Min- $k\%++$ methods, we compare our standard approach
462 (reweighting the subset of scores after selection) with an alternative where reweighting is applied to
463 the full sequence *Before* the lowest $k\%$ of scores are selected.
464465 As shown in Tab. 3, both *Random* and *Reverse* orders significantly degrade performance, confirming
466 that a monotonically decreasing weight is crucial. For Min- $k\%$ methods, the results show that ap-
467 plying reweighting after selecting the most informative tokens is superior to reweighting the entire
468 sequence *Before* selection. This suggests that the initial selection effectively isolates the most rele-
469 vant signals, which are then more effectively amplified by our PDR. Another insightful comparison
470 is with entropy-based weighting. While using *Dataset*-level entropy yields strong performance, this
471 approach is impractical as it requires full test dataset statistics. Conversely, *Sample*-level entropy is
472 practical but ineffective due to high variance. **For the fitted slope method (detailed in Appendix H),**
473 **we find its performance is hampered by the high volatility of token-level losses. This volatility leads
474 to small fitted slopes, as no strong trend can be reliably captured. The resulting weights are there-
475 fore too smooth to amplify the signal, yielding only marginal gains on WikiMIA and even more
476 limited improvements on the challenging MIMIR dataset.** PDR strikes a critical balance: its simple,
477 data-agnostic prior is a powerful and practical plug-and-play strategy.
478479
480 **Table 3:** Ablation study about weighting schemes. We evaluate slope, different weight orderings (Random,
481 Reverse), entropy-based weights (Sample, Dataset), and the reweighting for K-select in Min- $k\%$ and Min-
482 $k\%++$. Results are reported on the WikiMIA dataset using the Pythia-6.9B model with a sequence length of
483 $T = 128$.
484485

Method			Weights Order		Entropy		K select	w/ PDR(Ours)		
	Base	Slope	Random	Reverse	Sample	Dataset		LPDR	EPDR	PPDR
Loss	65.1	65.1	64.5	63.4	63.2	66.4	-	<u>65.6</u>	64.8	<u>66.1</u>
Ref	63.3	63.5	61.8	58.0	62.1	<u>63.8</u>	-	65.1	67.5	65.7
Min- $k\%$	69.5	69.5	64.3	59.8	64.1	70.6	68.1	67.8	69.2	66.7
Min- $k\%++$	69.8	69.8	66.5	61.0	68.7	70.5	70.3	72.4	71.2	72.7

486
487 **The Effect of Sharpness in Weight Decay.** We analyze the impact of the decay sharpness α in
488 Fig. 4. The results demonstrate LPDR’s general effectiveness, as it consistently improves upon the
489 baseline across all tested α values. We observe two distinct trends: for full-sequence methods (Loss
490 and Ref), performance peaks with a sharp decay at $\alpha = 1$, while for outlier-based methods (Min- $k\%$
491 and Min- $k\%++$), a smoother decay is better. However, even for the latter, the performance gain at
492 $\alpha = 1$ remains substantial. This analysis validates our choice to use a fixed $\alpha = 1$ as a simple
493 and robust default in our main experiments ($T \geq 64$), highlighting PDR’s ability to deliver signifi-
494 cant gains without requiring method-specific tuning. This choice highlights PDR’s ability to deliver
495 significant gains without requiring extensive, method-specific hyperparameter tuning. We plot dif-
496 ferent weight decay functions with varying varying rates in Fig. 6 of Appendix B. [We extend our](#)
497 [analysis by exploring the impact of varying truncation ratios in Appendix J. These supplementary](#)
498 [experiments consistently demonstrate the robustness and superiority of our proposed method across](#)
499 [diverse settings.](#)

Score Changes when Using Our Method.

500 To further illustrate the mechanism of PDR, we selected a pair of member and non-member samples that
501 are indistinguishable within Min- $k\%$ for sharing the same score. Fig. 5 visualizes how our LPDR method resolves this
502 ambiguity. By applying a monotonically
503 decreasing weight, PDR enhances the
504 importance of tokens at earlier positions
505 and decreases the importance of tokens
506 at later positions. For the member sample
507 (a), whose memorization signals (high-
508 probability tokens) are concentrated at
509 the beginning, this reweighting process
510 significantly amplifies its final score. In
511 contrast, the non-member sample (b) is
512 less affected. As a result, PDR effectively
513 breaks the tie, creating a clear distinction
514 between the two samples and enhancing
515 the overall detection accuracy. [For additional examples, detailed sample analysis, and score](#)
516 [distribution visualizations, please refer to Appendices K, L, and M, respectively.](#)

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 4: AUC comparison of different α for LPDR on log-likelihood methods (Loss, Ref, Min- $k\%$, Min- $k\%++$), results from Pythia-12B model at WikiMIA original dataset of 64 length.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
1

540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 cally decreasing weight to token scores, enhancing existing MIA methods without requiring model changes. Extensive experiments validate that PDR significantly improves the performance of strong baselines like Min- $k\%$ and Min- $k\%++$, both standalone and within advanced frameworks like FSD. Our work provides a more robust approach to membership inference by systematically prioritizing more reliable positional signals, contributing to a deeper understanding of privacy risks in LLMs.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

Yash Akhauri, Ahmed F AbouElhamayed, Yifei Gao, Chi-Chih Chang, Nilesh Jain, and Mohamed S Abdelfattah. Tokenbutler: Token importance is predictable. *arXiv preprint arXiv:2503.07518*, 2025.

Martin Bertran, Shuai Tang, Aaron Roth, Michael Kearns, Jamie H Morgenstern, and Steven Z Wu. Scalable membership inference attacks via quantile regression. *Advances in Neural Information Processing Systems*, 36:314–330, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In *International Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin Gregory Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Martin Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-neox-20b: An open-source autoregressive language model. In *Challenges & Perspectives in Creating Large Language Models*, 2022. URL <https://openreview.net/forum?id=HL7IhzS8W5>.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language models. In *30th USENIX Security Symposium (USENIX Security 21)*, pp. 2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Membership inference attacks from first principles. In *2022 IEEE symposium on security and privacy (SP)*, pp. 1897–1914. IEEE, 2022.

Hongyan Chang, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Haddadi, and Reza Shokri. Context-aware membership inference attacks against pre-trained large language models. In *Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing*, pp. 7299–7321, 2025.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference attacks work on large language models? *arXiv preprint arXiv:2402.07841*, 2024.

594 André V. Duarte, Xuandong Zhao, Arlindo L. Oliveira, and Lei Li. DE-COP: Detecting Copyrighted
 595 Content in Language Models Training Data, 2024.

596

597 Jan Dubiński, Antoni Kowalcuk, Stanisław Pawlak, Przemysław Rokita, Tomasz Trzciński, and
 598 Paweł Morawiecki. Towards more realistic membership inference attacks on large diffusion mod-
 599 els. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*
 600 (*WACV*), pp. 4860–4869, January 2024.

601 Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. MIA-tuner: Adapt-
 602 ing large language models as pre-training text detector. In *Proceedings of the AAAI Conference*
 603 *on Artificial Intelligence*, Philadelphia, Pennsylvania, USA, 2025.

604 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 605 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
 606 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

607

608 Michael M Grynbaum and Ryan Mac. The times sues openai and microsoft over ai use of copy-
 609 righted work. *The New York Times*, 27(1), 2023.

610 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 611 *preprint arXiv:2312.00752*, 2023.

612

613 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 614 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022a.

615 Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun Zhang. Mem-
 616 bership inference attacks on machine learning: A survey. *ACM Computing Surveys (CSUR)*, 54
 617 (11s):1–37, 2022b.

618 Zhiheng Huang, Yannan Liu, Daojing He, and Yu Li. Df-mia: A distribution-free membership
 619 inference attack on fine-tuned large language models. In *Proceedings of the AAAI Conference on*
 620 *Artificial Intelligence*, volume 39, pp. 343–351, 2025.

621

622 Justus Mattern, Fatemehsadat Mireshghallah, Zhiping Jin, Bernhard Schoelkopf, Mrinmaya Sachan,
 623 and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
 624 bourhood comparison. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
 625 *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 11330–11343,
 626 Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 627 findings-acl.719. URL <https://aclanthology.org/2023.findings-acl.719>.

628

629 Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-Alexandre de Montjoye. Did the neurons
 630 read your book? document-level membership inference for large language models. *arXiv preprint*
 631 *arXiv:2310.15007*, 2023.

632

633 Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza
 634 Shokri. Quantifying privacy risks of masked language models using membership inference
 635 attacks. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the*
 636 *2022 Conference on Empirical Methods in Natural Language Processing*, pp. 8332–8347,
 637 Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
 638 tics. doi: 10.18653/v1/2022.emnlp-main.570. URL <https://aclanthology.org/2022.emnlp-main.570>.

639

640 Maximilian Mozes, Xuanli He, Bennett Kleinberg, and Lewis D Griffin. Use of llms for illicit
 641 purposes: Threats, prevention measures, and vulnerabilities. *arXiv preprint arXiv:2308.12833*,
 642 2023.

643

644 Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B Hashimoto. Proving
 645 test set contamination in black box language models. *arXiv preprint arXiv:2310.17623*, 2023.

646

647 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 648 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

649

Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*,
 650 27(3):379–423, 1948.

648 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 649 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In
 650 *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=zWqr3MQuNs>.
 651

652 Seungjun Shin, Jaehoon Oh, and Dokwan Oh. Orthorank: Token selection via sink token orthogonality
 653 for efficient llm inference. *arXiv preprint arXiv:2507.03865*, 2025.
 654

655 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 656 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 657 pp. 3–18. IEEE, 2017.
 658

659 Jiashu Tao and Reza Shokri. Range membership inference attacks. In *2025 IEEE Conference on*
 660 *Secure and Trustworthy Machine Learning (SaTML)*, pp. 346–361. IEEE, 2025.
 661

662 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 663 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 664 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.
 665

666 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 667 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 668 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.
 669

670 Lauren Watson, Chuan Guo, Graham Cormode, and Alexandre Sablayrolles. On the importance of
 671 difficulty calibration in membership inference attacks. In *International Conference on Learning*
 672 *Representations*, 2022. URL <https://openreview.net/forum?id=3eIrl10TwQ>.
 673

674 Hengyu Wu and Yang Cao. Membership inference attacks on large-scale models: A survey. *arXiv*
 675 *preprint arXiv:2503.19338*, 2025.
 676

677 Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong,
 678 and Bhuwan Dhingra. ReCaLL: Membership inference via relative conditional log-likelihoods. In
 679 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 680 8671–8689, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 681 URL <https://aclanthology.org/2024.emnlp-main.493>.
 682

683 Zhu Xu, Zhiqiang Zhao, Zihan Zhang, Yuchi Liu, Quanwei Shen, Fei Liu, Yu Kuang, Jian He, and
 684 Conglin Liu. Enhancing character-level understanding in llms through token internal structure
 685 learning. *arXiv preprint arXiv:2411.17679*, 2024.
 686

687 Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
 688 ing: Analyzing the connection to overfitting. In *2018 IEEE 31st computer security foundations*
 689 *symposium (CSF)*, pp. 268–282. IEEE, 2018.
 690

691 Sajjad Zarifzadeh, Philippe Liu, and Reza Shokri. Low-cost high-power membership inference
 692 attacks. *arXiv preprint arXiv:2312.03262*, 2023.
 693

694 Hengxiang Zhang, Songxin Zhang, Bingyi Jing, and Hongxin Wei. Fine-tuning can help de-
 695 tect pretraining data from large language models. In *The Thirteenth International Confer-
 696 ence on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=X8dzvdkQwO>.
 697

698 Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank
 699 Yang, and Hai Li. Min-k%++: Improved baseline for pre-training data detection from large lan-
 700 guage models. In *The Thirteenth International Conference on Learning Representations*, 2025b.
 701 URL <https://openreview.net/forum?id=ZGkfoufDaU>.
 702

703 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 704 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
 705 language models. *arXiv preprint arXiv:2205.01068*, 2022.
 706

702 **A LIKELIHOOD-BASED SCORE FUNCTIONS**
 703

704 This section provides the formal definitions for the baseline likelihood-based MIA score functions
 705 discussed in the main paper. For a given input sequence $\mathbf{x} = \{x_1, \dots, x_T\}$ of length T , these
 706 methods compute a score based on the token-level log-probabilities produced by the target model
 707 P .

708 **Loss.** (Yeom et al., 2018) The standard Loss-based method, also known as Negative Log-Likelihood
 709 (NLL), uses the average log-probability of a sequence as its score. A higher score (lower loss) is
 710 indicative of membership. The score is defined as:
 711

$$712 \quad 713 \quad 714 \quad S_{\text{Loss}}(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^T \log P(x_t | x_{<t}) \quad (10)$$

715 **Ref.** (Carlini et al., 2021) The Reference-based method (Ref) calibrates the target model’s likelihood
 716 by subtracting the log-likelihood from a smaller reference model (P_{ref}). This helps to normalize for
 717 tokens that are inherently common or easy to predict. The score is:
 718

$$719 \quad 720 \quad 721 \quad S_{\text{Ref}}(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^T (\log P(x_t | x_{<t}) - \log P_{\text{ref}}(x_t | x_{<t})) \quad (11)$$

722 **Min- $k\%$.** (Shi et al., 2024) The Min- $k\%$ method operates on the assumption that member samples
 723 have fewer “outlier” tokens with very low probabilities. It computes the score by averaging only the
 724 lowest $k\%$ log-probabilities in the sequence. Let \mathcal{S}_k be the set of token positions corresponding to
 725 the lowest $k\%$ log-probabilities. The score is:
 726

$$727 \quad 728 \quad 729 \quad S_{\text{Min-}k\%}(\mathbf{x}) = \frac{1}{|\mathcal{S}_k|} \sum_{t \in \mathcal{S}_k} \log P(x_t | x_{<t}) \quad (12)$$

730 **Min- $k\%++$.** (Zhang et al., 2025b) The Min- $k\%++$ method enhances Min- $k\%$ by first normalizing
 731 the log-probability at each position t using pre-computed mean (μ_t) and standard deviation (σ_t)
 732 statistics for that position. This accounts for positional biases in the model’s predictions. Let the
 733 normalized score be $z_t = (\log P(x_t | x_{<t}) - \mu_t) / \sigma_t$. Let \mathcal{S}_k be the set of positions corresponding to
 734 the lowest $k\%$ normalized scores z_t . The final score is:
 735

$$736 \quad 737 \quad 738 \quad S_{\text{Min-}k\%++}(\mathbf{x}) = \frac{1}{|\mathcal{S}_k|} \sum_{t \in \mathcal{S}_k} z_t \quad (13)$$

739 **FSD.** (Zhang et al., 2025a) Finetuning-based Score Difference (FSD) is a framework that enhances
 740 any base scoring function $S(\cdot)$. It computes the difference between the score from the original model
 741 (M) and the score from a model fine-tuned on non-member data (M'). A larger difference suggests
 742 membership.
 743

$$744 \quad S_{\text{FSD}}(\mathbf{x}) = S(\mathbf{x}; M) - S(\mathbf{x}; M') \quad (14)$$

744 **B VISUALIZATION OF WEIGHT DECAY FUNCTIONS**
 745

746 In this section, we visualize weight decay functions (Linear, Exponential, or Polynomial), with
 747 varying α . We use the following ranges:
 748

- 749 • For **Linear** decay, the range for the coefficient α is: $\{0.1, 0.3, 0.5, 0.7, 1.0\}$
 750
- 751 • For **Exponential** decay, the range for the coefficient α is:
 752 $\{0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1\}$.
 753
- 754 • For **Polynomial** decay, the range for the coefficient α is:
 755 $\{0.1, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5, 1.8, 2.0\}$.

755 Fig. 6 visualizes how the decay function becomes steeper as the hyperparameter (α) increases.

Figure 6: Visualization of different positional weight functions (Linear, Exponential, Polynomial) with various hyperparameters. The x-axis represents the token position in a sequence of length 150, while the y-axis shows the corresponding weight applied to that position.

C LIKELIHOOD-BASED SCORE FUNCTIONS WITH PDR

This section details how our Position Difference Reweighting (PDR) method is integrated with various likelihood-based MIA score functions. For a given input sequence $\mathbf{x} = \{x_1, \dots, x_T\}$ of length T , PDR introduces a positional weight $w(t)$ for each token x_t at position t . The final score is then computed based on the weighted combination of token-level scores.

PDR-Loss. The standard Loss-based method, often conceptualized as Negative Log-Likelihood (NLL), uses the average log-probability of a sequence as its score. With PDR, we apply positional weights to the log-probabilities of each token before averaging. A lower weighted loss (which corresponds to a higher score) suggests the sequence is a member. The PDR-enhanced score is:

$$S_{\text{PDR-Loss}}(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^T w(t) \cdot \log P(x_t | x_{<t}) \quad (15)$$

PDR-Ref. The Reference-based method (Ref) calibrates the target model’s likelihood by subtracting the log-likelihood from a smaller reference model (P_{ref}). PDR is applied to the resulting difference at each position. The score is defined as:

$$S_{\text{PDR-Ref}}(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^T w(t) \cdot (\log P(x_t | x_{<t}) - \log P_{\text{ref}}(x_t | x_{<t})) \quad (16)$$

PDR-Min- $k\%$. Following the standard Min- $k\%$ procedure, we first identifies the token positions corresponding to the lowest $k\%$ log-probabilities. Then computes the final score by taking a weighted average of the log-probabilities at only these selected positions, where each score is multiplied by its corresponding positional weight $w(t)$. Let \mathcal{S}_k be the set of token positions corresponding to the lowest $k\%$ values of $\{\log P(x_t | x_{<t})\}_{t=1}^T$. The score is:

$$S_{\text{PDR-Min-}k\%}(\mathbf{x}) = \frac{1}{|\mathcal{S}_k|} \sum_{t \in \mathcal{S}_k} w(t) \cdot \log P(x_t | x_{<t}) \quad (17)$$

PDR-Min- $k\%++$. Similarly, for Min- $k\%++$, we first identify the positions of the lowest $k\%$ normalized z-scores. The PDR-enhanced score is then the weighted average of these selected z-scores, with positional weights applied before averaging. Let $z_t = (\log P(x_t | x_{<t}) - \mu_t) / \sigma_t$, and let \mathcal{S}_k be the set of positions for the lowest $k\%$ values of $\{z_t\}_{t=1}^T$. The score is:

$$S_{\text{PDR-Min-}k\%++}(\mathbf{x}) = \frac{1}{|\mathcal{S}_k|} \sum_{t \in \mathcal{S}_k} w(t) \cdot z_t \quad (18)$$

PDR-FSD. Finetuning-based Score Difference (FSD) calculates the difference between a score function $S(\cdot)$ computed before and after fine-tuning the model on non-member data. Our PDR

method can be applied to the base score function $S(\cdot)$ used within the FSD framework. If we denote the fine-tuned model as M' , the FSD score using a PDR-enhanced base method S_{+PDR} is:

$$S_{PDR-FSD}(\mathbf{x}) = S_{+PDR}(\mathbf{x}; M) - S_{+PDR}(\mathbf{x}; M') \quad (19)$$

where $S_{+PDR}(\mathbf{x}; M)$ and $S_{+PDR}(\mathbf{x}; M')$ are the PDR-enhanced scores computed using the original model M and the fine-tuned model M' , respectively.

The detailed process of applying our PDR method to various likelihood-based MIA methods is outlined in Algorithm 1. This algorithm specifically illustrates the computation for combining PDR with Loss, Ref, Min- $k\%$, and Min- $k\%++$.

Algorithm 1 Overall algorithm for applying PDR to different logit-based MIA methods

```

1: Input:
2:   Test dataset  $\mathcal{D} = \{\mathbf{x}^1, \dots, \mathbf{x}^N\}$ ;
3:   Target model's predictive distribution  $P(x_t | x_{<t})$ ;
4:   A chosen decay function  $f_{decay} \in \{\text{Linear, Exponential, Polynomial}\}$ ;
5:   Decay hyperparameter  $\alpha$  or  $p$ ;
6:   A base MIA scoring method  $\mathcal{M} \in \{\text{Loss, Ref, Min-}K\%, \text{Min-}K\%++\}$ ;
7:   (Optional) Reference model  $P_{ref}(x_t | x_{<t})$ ;
8:   (Optional) Positional normalization stats  $\{\mu_t, \sigma_t\}_{t=1}^T$ .
9: 2: Output: A list of PDR-enhanced scores  $\mathcal{S}_{PDR} = \{s_1, \dots, s_N\}$ .
10: 3: Initialize an empty list  $\mathcal{S}_{PDR}$ .
11: 4: for  $i = 1$  to  $N$  do ▷ Iterate over all sequences in the dataset
12:    $\mathbf{x}^i = \{\mathbf{x}_1^i, \dots, \mathbf{x}_T^i\}$ 
13:   // Step 1: Compute Positional Weights for the current sequence
14:   for  $t = 1$  to  $T$  do ▷ Iterate over all positions in the sequence
15:     if  $f_{decay}$  is Linear then
16:        $w(t) \leftarrow 1 - \alpha \cdot \frac{t-1}{T-1}$ 
17:     else if  $f_{decay}$  is Exponential then
18:        $w(t) \leftarrow \exp(-\alpha \cdot (t-1))$ 
19:     else if  $f_{decay}$  is Polynomial then
20:        $w(t) \leftarrow \left(1 - \frac{t-1}{T-1}\right)^p$ 
21:     end if
22:   end for
23:   // Step 2: Apply PDR to the chosen base MIA method
24:   Initialize current score  $s^i \leftarrow 0$ .
25:   if  $\mathcal{M}$  is Loss then
26:      $s^i \leftarrow -\frac{1}{T} \sum_{t=1}^T w(t) \cdot \log P(x_t^i | x_{<t}^i)$ 
27:   else if  $\mathcal{M}$  is Ref then
28:      $s^i \leftarrow \frac{1}{T} \sum_{t=1}^T w(t) \cdot (\log P(x_t^i | x_{<t}^i) - \log P_{ref}(x_t^i | x_{<t}^i))$ 
29:   else if  $\mathcal{M}$  is Min- $k\%$  then
30:     Let  $\mathcal{S}_k$  be the set of token positions with the smallest  $k\%$  log-probabilities.
31:      $s^i \leftarrow \frac{1}{|\mathcal{S}_k|} \sum_{t \in \mathcal{S}_k} w(t) \cdot \log P(x_t^i | x_{<t}^i)$ 
32:   else if  $\mathcal{M}$  is Min- $k\%++$  then
33:     For each  $t$ , compute normalized score  $z_t = \frac{\log P(x_t^i | x_{<t}^i) - \mu_t}{\sigma_t}$ .
34:     Let  $\mathcal{S}_k$  be the set of token positions with the smallest  $k\%$  normalized scores  $z_t$ .
35:      $s^i \leftarrow \frac{1}{|\mathcal{S}_k|} \sum_{t \in \mathcal{S}_k} w(t) \cdot z_t$ 
36:   end if
37:   Append  $s^i$  to  $\mathcal{S}_{PDR}$ .
38: 29: end for
39: 30: return  $\mathcal{S}_{PDR}$ 

```

864 **D EXPERIMENTS SETTING DETAILS**
865866 **D.1 BENCHMARKS**
867868 We focus on two commonly-used benchmarks for pre-training data detection. (1) **WikiMIA** (Shi
869 et al., 2024) is the first benchmark for pre-training data detection, comprising texts from Wikipedia
870 events. The distinction between training and non-training data is established based on temporal
871 timestamps. To enable fine-grained evaluation, WikiMIA organizes data into splits according to
872 sentence length. It also includes two evaluation settings: the *original* setting evaluates the detec-
873 tion of verbatim training texts, while the *paraphrased* setting uses ChatGPT to paraphrase training
874 texts and evaluates on paraphrased inputs. (2) **MIMIR** (Duan et al., 2024) is built upon the Pile
875 dataset (Gao et al., 2020). This benchmark poses greater challenges compared to WikiMIA, as
876 the shared dataset origin between training and non-training texts eliminates substantial distribution
877 shifts and temporal discrepancies (Duan et al., 2024).
878879 **D.2 BASELINES**
880881 We consider several representative methods as our baselines:
882883

- **Loss** (Yeom et al., 2018) is a general technique that directly uses the loss of the model as
the detection score.
- **Ref** (Carlini et al., 2021) employs an additional, typically smaller, language model as a
reference to calibrate the likelihood of the input text.
- **zlib** and **lowercase** (Carlini et al., 2021) use the compression entropy of zlib and the likeli-
hood of the lowercase text as references to calibrate the likelihood.
- **Min- $k\%$** (Shi et al., 2024) examines the exact probabilities of the token and averages a
subset of the lowest token scores from the input sequence.
- **Min- $k\%++$** (Zhang et al., 2025b) extends Min- $k\%$ by standardizing the log-probability
of each token using the mean and standard deviation of log-probabilities at that specific
position, making scores more comparable across different positions before applying the
Min- $k\%$ selection.
- **FSD** (Zhang et al., 2025a) involves fine-tuning the model on non-member samples and
using the difference in logit-based scores before and after fine-tuning for detection.

884885 **D.3 ENVIRONMENT**
886887 All experiments were conducted on the Ubuntu 20.04.4 LTS operating system, Intel(R) Xeon(R)
888 Gold 5220 CPU @ 2.20GHz with a single NVIDIA A40 48GB GPU and 512GB of RAM. The
889 framework is implemented with Python 3.9.0 and PyTorch 2.6.0. Other key packages include trans-
890 former 4.40.1, numpy 1.24 and accelerate 0.26.0.
891892 **D.4 MODELS**
893894 This section details the specific models used in our experiments. For the Ref method, the choice
895 of reference model depends on the dataset following (Carlini et al., 2021; Shi et al., 2024; Zhang
896 et al., 2025b). On the **WikiMIA** dataset, we used the following reference models for different model
897 families:
898899

- For the **Pythia** family, we used Pythia-70M.
- For the **Llama** family, we used Llama-7B.
- For the **GPT** family, we used GPT-Neo-125M.
- For the **Mamba** family, we used Mamba-130M.
- For the **OPT** family, we used OPT-350M.

918
919

D.5 HYPERPARAMETER

920 For Min- $k\%$ and Min- $k\%++$, we consistently use $k = 20\%$ following common practice. In our
921 experiments, settings are as follows:
922

- 923 • **LPDR**: on the WikiMIA dataset, we generally set $\alpha = 1.0$ for sequence lengths of 64 and
924 128. For the shorter length of 32, a smaller weight was preferred like 0.1 or 0.5. On the
925 Mimir dataset, we set $\alpha = 1.0$.
- 926 • **EPDR**: on the WikiMIA dataset, Ref and Min- $k\%++$ set $\alpha = 0.02$, where as Loss and
927 Min- $k\%$ set $\alpha = 0.002$. On Mimir, $\alpha = 0.002$ was used.
928
- 929 • **PPDR**: on the WikiMIA dataset, we used $p = 0.1$ for length 32, but a much steeper decay
930 of $p = 2.0$ for lengths 64 and 128. On Mimir, we set a gentler $p = 0.1$.
931

932 A clear trend emerges from these results. On the WikiMIA dataset, longer sequences tend to benefit
933 from more aggressive, steeper weight functions, while shorter sequences and the more challenging
934 Mimir dataset favor gentler, more gradual decay.
935

936 D.6 FSD SETTINGS

937 For the Finetuning-based Score Difference (FSD) experiments, we follow the implementation details
938 from the original paper. To construct the non-member dataset for fine-tuning, we first randomly
939 sample 30% of the entire dataset. All non-member samples within this subset are then used as the
940 fine-tuning dataset. The remaining 70% of the data is reserved for testing. We use LoRA (Hu et al.,
941 2022a) to fine-tune the base model for 3 epochs with a batch size of 8. The initial learning rate is set
942 to 0.001 and is adjusted using a cosine scheduling strategy.
943

944 E WIKIMIA RESULTS

945 E.1 WIKIMIA RESULTS ON FIXED α 946 This section presents the comprehensive results on the WikiMIA benchmark. We report detailed AU-
947 ROC and TPR scores across all models and sequence lengths under both the original and paraphrased
948 settings. The AUROC results are shown in Tab. 4 and Tab. 5, respectively, while the corresponding
949 TPR results are reported in Tab. 6 and Tab. 7.
950
951 Table 4: AUC-ROC on WikiMIA benchmark under original setting. w/ LPDR utilizes linear weights
952 for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polynomial
953 weights for reweighting. [†]Neighbor results are from Zhang et al. (2025b).
954

Length	Models	Lowercase	Zlib	Neighbor	Loss	w/ LPDR	w/ EPDR	w/ PPDR	Ref	w/ LPDR	w/ EPDR	w/ PPDR	Min- $k\%$	w/ LPDR	w/ EPDR	w/ PPDR	Min- $k\%++$	w/ LPDR	w/ EPDR	w/ PPDR
32	Mambu-1.4B	60.9	61.9	64.1	61.0	61.5	60.9	61.2	62.2	62.2	62.7	63.2	63.3	63.5	63.2	63.8	66.4	67.4	66.6	67.1
	Mambu-2.8B	63.6	64.7	67.0	64.1	64.5	64.0	64.2	67.0	66.9	67.1	66.7	66.1	66.2	66.0	66.1	69.0	69.4	68.9	69.1
	Pythia-2.8B	60.9	62.1	64.2	61.4	61.7	61.2	61.4	61.3	62.4	61.0	61.7	61.9	61.4	61.9	64.0	64.7	64.2	64.4	
	Pythia-6.9B	62.2	64.4	65.8	63.8	64.0	63.5	63.8	63.6	63.5	64.6	63.2	66.3	66.3	66.1	65.4	70.3	70.8	70.1	70.5
	Pythia-12B	64.8	65.8	66.6	65.4	65.4	65.2	65.4	65.1	66.1	67.0	68.1	68.0	67.8	67.4	72.2	72.3	71.3	72.0	
	Llama-13B	64.0	67.8	65.8	67.5	67.7	67.5	67.5	67.9	57.8	57.2	57.6	66.8	66.8	66.8	84.4	85.4	86.2	85.0	
	Llama-30B	64.1	69.8	67.6	69.4	69.6	69.4	69.5	69.5	63.5	62.8	63.2	69.3	69.4	69.2	84.4	85.4	85.5	84.6	
	OPT-66B	62.8	65.8	68.2	65.6	65.6	65.7	68.6	66.6	69.3	68.4	68.7	67.5	67.7	69.7	70.2	69.4	70.0	70.0	
	GPT-NeoX-20B	58.3	69.3	70.2	68.9	68.9	69.0	67.6	67.4	66.7	67.0	72.2	72.0	71.8	71.1	75.1	75.2	74.4	75.0	
	Average	63.5	65.7	66.6	65.3	65.4	65.1	65.3	64.1	64.0	64.3	63.8	66.8	66.9	66.7	66.5	72.8	73.5	72.9	73.1
64	Mambu-1.4B	57.0	60.4	60.6	58.2	59.7	58.2	60.7	60.6	61.1	61.9	60.3	61.7	62.9	62.0	62.8	67.2	68.2	67.9	68.2
	Mambu-2.8B	61.7	63.0	63.6	61.2	63.0	63.6	64.3	66.1	66.6	65.5	65.1	66.2	65.4	65.3	70.6	70.4	70.0	69.6	
	Pythia-2.8B	57.8	60.6	61.3	58.4	60.1	58.4	60.8	59.6	60.5	62.2	60.0	61.2	63.3	61.4	62.8	64.8	65.9	65.1	65.6
	Pythia-6.9B	58.2	62.6	63.2	60.7	62.6	60.6	63.0	62.4	63.5	65.0	62.7	65.0	66.7	65.2	65.3	71.6	72.1	71.2	71.2
	Pythia-12B	59.9	63.5	62.6	61.9	63.5	61.8	63.9	63.0	64.0	65.9	63.4	66.5	67.9	66.7	67.2	72.6	72.8	71.8	71.5
	Llama-13B	62.0	65.3	64.1	63.6	65.0	63.7	65.7	63.4	59.8	60.1	57.0	66.0	67.4	66.1	66.7	84.3	87.2	87.0	87.4
	Llama-30B	61.9	67.5	67.1	66.1	67.5	66.2	67.9	68.9	65.5	65.4	63.2	68.4	69.6	68.6	68.9	84.3	87.7	87.0	87.4
	OPT-66B	61.1	63.9	64.1	62.3	64.2	62.2	64.4	66.9	68.2	69.0	68.0	66.5	68.1	66.7	66.8	69.8	70.1	69.5	69.0
	GPT-NeoX-20B	56.3	68.1	67.1	66.6	67.6	66.5	67.6	66.0	66.8	67.1	65.4	72.2	72.6	76.6	76.5	76.4	76.0	75.0	
	Average	60.6	63.9	63.7	62.1	63.7	62.1	64.2	63.9	63.9	64.8	62.8	65.8	67.0	66.0	66.0	73.5	74.5	73.9	73.9
128	Mambu-1.4B	58.5	65.6	64.8	63.3	63.6	62.9	64.2	62.0	64.1	66.7	65.4	66.8	65.5	64.8	67.7	70.2	69.8	70.5	
	Mambu-2.8B	62.4	68.5	67.7	66.3	66.7	65.9	66.9	64.9	71.7	70.2	70.3	69.3	70.4	68.0	71.9	73.4	71.1	72.3	
	Pythia-2.8B	59.5	65.0	65.2	62.8	63.1	62.6	63.3	59.6	61.4	63.5	62.2	66.9	64.3	66.6	66.3	66.8	66.4	66.9	
	Pythia-6.9B	60.5	67.6	67.5	65.1	65.6	64.8	66.1	63.3	61.5	67.5	65.7	69.5	67.8	69.2	67.7	72.4	71.2	72.7	
	Pythia-12B	61.4	67.8	67.1	65.8	66.2	65.6	66.7	63.9	65.1	67.2	66.0	70.7	70.0	70.5	68.9	71.8	73.5	71.9	73.5
	Llama-13B	60.6	69.7	68.3	67.8	68.7	67.8	69.1	62.6	64.9	62.2	64.1	71.5	71.2	72.1	70.9	83.8	88.4	89.1	89.1
	Llama-30B	59.0	71.8	72.2	70.3	71.0	70.3	71.2	71.9	70.4	66.0	68.0	73.7	72.5	73.8	71.6	82.7	85.9	87.4	87.0
	OPT-66B	58.9	67.3	67.7	65.5	66.7	65.6	67.6	66.9	68.6	68.0	69.3	70.6	70.6	71.3	70.3	71.1	72.9	71.9	72.4
	GPT-NeoX-20B	68.0	72.3	71.6	70.7	70.7	70.4	71.0	68.3	69.5	69.3	69.6	75.6	74.5	75.7	72.6	75.4	75.7	73.9	75.1
	Average	61.0	68.4	68.0	66.4	66.9	66.2	67.4	65.0	66.2	67.2	66.7	70.6	69.5	70.7	68.5	73.4	75.5	74.7	75.5

Table 5: AUC-ROC on WikiMIA benchmark under paraphrased setting. w/ LPDR utilizes linear weights for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polynomial weights for reweighting. [†]Neighbor results are from Zhang et al. (2025b).

Length	Models	Lowercase	Zlib	Neighbor	Loss	w/ LPDR	w/ EPDR	w/ PPDR	Ref	w/ LPDR	w/ EPDR	w/ PPDR	Min-k%	w/ LPDR	w/ EPDR	w/ PPDR	Min-k% ++	w/ LPDR	w/ EPDR	w/ PPDR
32	Mambo-1.4B	60.6	62.3	63.6	61.3	61.8	61.3	61.5	62.3	62.3	62.7	62.4	62.9	63.1	62.9	63.4	65.7	66.3	65.3	66.2
	Mambo-2.8B	63.5	64.8	66.3	64.5	64.8	64.3	64.6	66.6	66.7	66.2	65.3	65.4	65.2	64.9	67.3	67.5	66.6	67.2	
	Pythia-2.8B	60.3	62.3	64.5	61.6	61.8	61.4	61.5	61.2	61.2	62.3	60.9	60.9	61.1	60.8	60.6	61.3	61.7	61.0	61.4
	Pythia-6.9B	61.7	64.2	65.5	64.1	64.2	63.9	64.1	63.5	63.5	64.4	63.1	65.1	65.1	64.9	67.6	67.7	66.6	67.7	
	Pythia-12B	64.4	65.9	66.8	65.6	65.7	65.4	65.7	64.9	64.9	66.0	64.5	67.2	67.2	66.9	66.2	69.4	69.4	68.1	69.1
	Llama-13B	63.2	68.2	65.0	68.0	68.2	68.0	68.2	66.2	66.2	56.1	54.9	55.9	66.2	66.3	65.6	82.7	84.1	84.3	83.3
	Llama-30B	61.3	70.4	66.3	70.2	70.3	70.2	70.2	62.4	62.4	61.3	62.2	68.5	68.4	68.3	77.7	81.2	82.4	82.6	81.6
	OPT-66B	62.3	65.3	66.7	65.3	65.0	65.1	65.3	68.0	68.0	68.9	68.1	65.8	65.8	64.9	67.0	67.1	66.0	66.9	
	GPT-NeoX-20B	66.9	68.5	68.3	68.3	68.4	68.5	66.7	66.6	66.0	66.1	69.6	69.4	69.3	68.0	69.7	69.5	68.4	69.2	
	Average	62.7	65.8	65.9	65.5	65.6	65.3	65.5	63.5	63.5	63.7	63.3	65.7	65.8	65.6	70.2	70.6	69.9	70.3	
64	Mambo-1.4B	57.0	59.1	60.6	56.4	59.5	60.4	59.6	60.8	61.1	60.2	58.0	58.0	58.4	61.6	62.2	65.5	63.5	65.8	
	Mambo-2.8B	62.0	61.9	63.7	59.8	62.9	59.7	63.6	64.5	66.3	66.6	65.2	62.4	65.1	62.7	64.0	64.9	67.9	66.0	67.5
	Pythia-2.8B	56.1	59.0	59.6	56.5	59.3	56.5	60.3	59.2	60.8	62.0	61.6	60.7	61.6	57.7	62.0	59.8	62.1		
	Pythia-6.9B	57.7	61.6	63.1	59.3	62.4	59.3	62.9	64.0	65.6	65.3	61.1	65.1	65.1	62.7	66.6	68.0			
	Pythia-12B	59.2	62.1	62.8	60.0	63.0	60.0	63.6	63.2	65.4	66.1	63.7	62.5	62.7	64.8	65.1	68.2	65.5	67.5	
	Llama-13B	61.0	65.3	64.7	63.1	66.2	63.4	66.9	60.9	57.9	57.7	55.2	63.5	67.2	64.1	66.2	78.8	84.3	83.5	85.0
	Llama-30B	59.8	67.4	66.7	65.5	68.4	65.7	69.0	65.3	62.8	62.9	60.8	64.9	67.9	74.7	81.7	80.5	82.4		
	OPT-66B	60.0	62.2	64.6	60.3	63.1	60.4	63.5	67.8	69.9	68.8	69.5	66.0	66.0	64.9	63.3	66.6	64.3	66.4	
	GPT-NeoX-20B	65.6	66.5	67.4	64.4	67.2	64.4	67.2	66.0	67.2	66.9	65.4	66.1	68.7	66.4	66.2	68.2	67.5		
	Average	59.8	62.8	63.7	60.6	63.5	60.6	64.2	63.3	63.7	64.3	62.5	61.9	65.5	62.3	66.3	70.3	68.3	70.3	
128	Mambo-1.4B	57.7	65.3	62.6	62.7	64.1	64.6	61.1	64.6	67.9	66.3	64.4	65.8	65.1	66.1	63.3	68.2	69.5	69.8	
	Mambo-2.8B	61.2	68.4	64.6	65.7	67.3	67.9	66.6	69.6	72.1	70.5	68.0	69.9	69.1	68.7	68.9	71.5	70.7	71.6	
	Pythia-2.8B	59.6	65.0	61.9	62.3	64.0	62.5	64.1	59.5	62.6	64.4	63.8	64.7	63.5	64.9	62.7	65.8	66.0	66.8	
	Pythia-6.9B	59.9	67.4	64.3	64.7	66.6	64.7	67.3	62.9	65.9	68.5	67.0	68.9	67.8	67.8	67.7	72.2	72.0	73.3	
	Pythia-12B	60.4	67.9	64.3	65.4	67.0	65.4	67.6	63.9	66.2	68.5	66.9	68.5	69.1	69.3	67.7	72.2	71.9	73.0	
	Llama-13B	56.3	69.6	64.0	67.2	69.1	67.6	69.9	59.7	61.7	58.8	60.6	68.6	71.0	70.3	76.2	84.3	87.2	86.1	
	Llama-30B	55.3	71.5	67.2	69.3	71.2	69.7	72.0	69.8	64.6	64.0	66.0	70.3	72.5	71.6	73.4	80.5	83.9	82.9	
	OPT-66B	57.6	66.9	63.4	64.5	66.9	64.8	67.9	67.0	69.5	70.9	70.0	67.2	69.9	68.4	67.0	69.5	70.0	70.4	
	GPT-NeoX-20B	67.6	72.0	69.6	69.7	71.4	69.6	71.9	68.4	70.2	70.0	70.6	73.0	75.2	73.8	73.5	70.6	72.6	72.3	
	Average	59.5	68.3	64.7	65.7	67.5	65.9	68.1	64.3	66.5	67.3	66.9	68.0	69.5	68.9	68.4	73.0	73.7	74.1	

Table 6: TPR on WikiMIA benchmark under original setting. w/ LPDR utilizes linear weights for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polynomial weights for reweighting. [†]Neighbor results are from Zhang et al. (2025b).

Length	Models	Lowercase	Zlib	Neighbor	Loss	w/ LPDR	w/ EPDR	w/ PPDR	Ref	w/ LPDR	w/ EPDR	w/ PPDR	Min-k%	w/ LPDR	w/ EPDR	w/ PPDR	Min-k% ++	w/ LPDR	w/ EPDR	w/ PPDR
32	Mambo-1.4B	11.1	15.5	11.9	14.2	15.2	14.0	14.0	7.8	7.8	7.2	14.2	14.7	15.0	13.4	11.4	11.6	14.0	11.6	
	Mambo-2.8B	16.8	16.3	16.0	14.7	17.6	15.8	15.2	9.8	10.1	10.9	10.1	17.3	16.3	15.0	16.5	11.4	11.4	11.4	
	Pythia-2.8B	11.1	15.8	15.0	14.7	17.6	15.0	15.5	6.2	6.2	11.4	11.4	5.4	16.5	17.3	16.5	10.6	10.9	14.2	10.9
	Pythia-6.9B	10.6	16.3	16.5	14.2	15.2	14.5	13.4	6.7	6.5	12.1	5.7	17.8	18.1	18.1	14.5	15.2	17.3	15.2	
	Pythia-12B	16.3	17.1	19.4	17.1	17.8	17.6	15.5	9.0	8.8	11.1	9.8	23.0	22.7	23.3	23.8	16.5	17.3	19.9	15.8
	Llama-13B	9.6	11.6	11.6	14.0	14.2	14.0	14.7	4.7	4.9	5.2	4.9	18.9	19.9	20.2	21.2	33.1	35.7	37.0	29.5
	Llama-30B	11.4	14.5	9.3	18.3	17.8	18.3	19.1	10.1	9.7	9.2	9.3	22.0	22.7	23.0	21.2	31.8	35.7	37.0	29.5
	OPT-66B	11.4	16.5	21.7	14.2	15.2	15.2	16.0	11.1	11.1	10.6	10.1	21.7	21.7	20.9	20.2	11.9	14.0	15.2	14.7
	GPT-NeoX-20B	16.8	20.4	22.2	20.4	22.7	20.2	21.2	15.5	16.3	17.6	17.6	28.9	30.0	28.2	26.6	19.1	19.9	20.4	21.2
	Average	12.8	16.0	16.0	15.8	17.1	16.0	9.0	9.2	10.5	8.6	8.6	20.0	20.4	20.0	19.8	17.8	19.6	21.7	18.7
64	Mambo-1.4B	8.8	14.1	8.8	9.5	13.0	11.3	17.3	4.6	6.7	7.0	4.2	15.8	15.5	17.3	17.3	13.7	12.7	12.3	9.9
	Mambo-2.8B	16.5	14.8	10.6	10.2	15.8	12.7	16.2	9.2	9.9	10.9	9.9	19.0	19.7	19.0	21.5	18.7	14.4	16.5	12.7
	Pythia-2.8B	10.2	14.4	10.2	14.1	10.9	16.2	10.6	5.6	10.9	3.5	3.5	18.3	22.2	22.2	23.2	13.4	14.1	14.4	12.3
	Pythia-6.9B	11.6	16.2	10.9	13.4	13.0	12.3	15.5	12.0	12.3	12.0	4.9	19.0	18.7	17.3	16.9	12.2	20.1	19.7	18.7
	Pythia-12B	12.3	11.3	11.3	9.4	13.7	8.8	16.2	13.0	7.4	8.1	21.5	19.0	21.1	23.2	16.9	22.2	23.2	19.4	
	Llama-13B	11.6	12.7	10.2	11.3	16.5	10.6	14.4	4.2	4.2	6.0	6.7	17.3	21.1	21.1	21.6	20.1	23.7	18.0	20.1
	Llama-30B	9.9	15.5	9.9	13.7	16.9	14.1	18.7	10.6	8.8	7.0	8.1	16.5	20.8	18.7	18.7	33.8	43.7	46.1	45.1
	OPT-66B	10.9	13.7	12.0	18.0	15.1	18.0	13.0	12.2	11.5	12.2	11.5	20.1	25.9	23.0	23.0	18.0	26.6	25.9	25.9
	GPT-NeoX-20B	16.2	19.4	13.0	17.3	16.8	17.8	18.9	8.0	8.3	10.3	8.3	19.9	20.4	20.7	22.5	10.1	13.7	12.5	11.5
	Average	13.0	14.7	10.8	15.7	14.7	11.5	15.8	8.4	8.3	10.3	8.3	18.7	20.6	19.8	20.7	17.8	23.6	25.0	22.5
128	Mambo-1.4B	9.5	15.1	9.5	8.1	12.0	9.9	12.7	8.1	9.2	10.9	6.3	7.7	14.8	16.2	7.0	8.5	6.3	10.2	
	Mambo-2.8B	15.0	12.7	9.3	16.5	17.8	16.3	17.3	10.1	9.3	11.9	10.6	19.9	20.2	20.4	15.2	11.1	12.9	11.1	
	Pythia-2.8B	11.6	14.5	8.5	14.2	15.5	15.0	14.2	7.2	7.2	12.9	7.5	16.3	15.8	15.2	10.9	10.6	10.9	11.4	
	Pythia-6.9B	11.9	12.7	9.6	15.0	14.														

Table 8: Best AUROC results cross different α on WikiMIA benchmark (Shi et al., 2024). **w/ LPDR(Ours)** utilizes linear weights for reweighting. *Ori.* and *Para.* denote the original and paraphrased settings. For each method pair, the higher score is in **bold**. The performance gains of our method on the average results are highlighted in purple.

Len.	Method	Mamba-1.4B		Pythia-6.9B		LLaMA-13B		GPT-NeoX-20B		OPT-66B		Average	
		Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.
	Loss	61.0	61.3	63.8	64.1	67.5	68.0	69.1	68.6	65.6	65.3	65.4	65.5
32	w/ LPDR (Ours)	61.9	62.0	64.0	64.2	67.7	68.2	69.1	68.6	65.6	65.2	65.7 ^{+0.3}	65.6 ^{+0.1}
	Ref	62.2	62.3	63.6	63.5	57.9	56.2	67.6	66.7	68.6	68.0	64.0	63.3
	w/ LPDR (Ours)	62.2	62.4	63.5	63.5	57.8	56.1	67.4	66.6	68.6	68.1	63.9	63.3
	Min- $k\%$	63.3	62.9	66.3	65.1	66.8	66.2	72.2	69.6	67.5	65.8	67.2	65.9
	w/ LPDR (Ours)	64.0	63.5	66.3	65.1	67.0	66.3	72.0	69.4	67.7	65.8	67.4 ^{+0.2}	66.0 ^{+0.1}
	Min- $k\%++$	66.4	65.7	70.3	67.6	84.4	82.7	75.1	69.7	69.7	67.0	73.2	70.5
64	w/ LPDR (Ours)	67.6	66.3	70.8	67.8	86.3	84.5	75.2	69.7	70.2	67.1	74.0 ^{+0.8}	71.1 ^{+0.6}
	Loss	58.2	56.4	60.7	59.3	63.6	63.1	66.6	64.4	62.3	60.3	62.3	60.7
	w/ LPDR (Ours)	59.7	59.5	62.6	62.4	65.0	66.2	67.6	67.2	64.2	63.1	63.8 ^{+1.5}	63.7 ^{+3.0}
	Ref	60.6	59.6	62.4	62.9	63.4	60.9	66.0	66.0	66.9	67.8	63.9	63.4
	w/ LPDR (Ours)	61.1	60.8	63.3	64.0	63.3	60.9	66.8	67.2	68.2	69.1	64.5 ^{+0.6}	64.4 ^{+1.0}
	Min- $k\%$	61.7	58.0	65.0	61.1	66.0	63.5	72.2	66.1	66.5	62.5	66.3	62.2
128	w/ LPDR (Ours)	63.5	61.8	67.2	65.1	67.4	67.2	72.9	69.1	68.5	66.0	67.9 ^{+1.6}	65.8 ^{+3.6}
	Min- $k\%++$	67.2	62.2	71.6	64.2	84.3	78.8	76.5	66.2	69.8	63.3	73.9	66.9
	w/ LPDR (Ours)	68.3	65.5	72.7	68.3	87.2	84.3	77.2	68.2	70.6	66.6	75.2 ^{+1.3}	70.6 ^{+3.7}
	Loss	63.3	62.7	65.1	64.7	67.8	67.2	70.7	69.7	65.5	64.5	66.5	65.8
	w/ LPDR (Ours)	63.7	64.1	65.6	66.6	68.7	69.1	70.9	71.4	66.7	66.9	67.1 ^{+0.6}	67.6 ^{+1.8}
	Ref	62.0	61.1	63.3	62.9	62.6	59.7	68.3	68.4	66.9	67.0	64.6	63.8
128	w/ LPDR (Ours)	64.1	64.6	65.1	65.9	64.9	61.7	69.5	70.2	68.6	69.5	66.4 ^{+1.8}	66.4 ^{+2.6}
	Min- $k\%$	66.8	64.4	69.5	67.0	71.5	68.6	75.6	73.0	70.6	67.2	70.8	68.0
	w/ LPDR (Ours)	67.4	66.5	69.8	69.3	72.2	71.4	76.4	75.8	72.1	70.6	71.6 ^{+0.8}	70.7 ^{+2.7}
	Min- $k\%++$	67.7	63.3	69.8	65.9	83.8	76.2	75.4	70.6	71.1	67.0	73.6	68.6
	w/ LPDR (Ours)	70.2	68.2	72.4	72.2	88.4	84.3	75.9	72.6	73.3	69.5	76.0 ^{+2.4}	73.4 ^{+4.8}

E.2 WIKIMIA RESULTS ON BEST α

In this subsection, we present the best-performing results for our LPDR method on the WikiMIA benchmark. These results were obtained by selecting the optimal hyperparameter α for the linear decay function from the search space detailed in Section B. Table 8 showcases these results.

E.3 ROC CURVE VISUALIZATION

This section provides ROC curve visualizations to offer a more detailed view of our method’s performance. Figure 7 plots the ROC curves for several baseline methods and their LPDR-enhanced counterparts on the WikiMIA benchmark (length 128). Specifically, we show results for (a) Llama-13B on the paraphrased setting and (b) Pythia-6.9B on the original setting. As illustrated, the PDR-enhanced methods consistently offer a more favorable trade-off, achieving a higher True Positive Rate (TPR) for any given False Positive Rate (FPR). This enhanced discriminative capability helps to explain the AUROC gains reported throughout the paper.

E.4 STATIC ANALYSIS

To rigorously assess the statistical significance of our method’s improvements, we performed a non-parametric bootstrap analysis based on the model prediction scores and ground-truth labels. Our procedure is as follows: To rigorously assess the statistical significance of our method’s improvements, we performed a non-parametric bootstrap analysis based on the model prediction scores and ground-truth labels. Our procedure is as follows:

- **Bootstrap Resampling:** For each method, we generated $N = 1000$ bootstrap replicates. Each replicate was created by sampling indices from the original test set with replacement, forming a new dataset of the same size. A random seed was fixed to ensure reproducibility. If a replicate happened to contain samples from only one class, it was discarded for that specific calculation.
- **Metrics and Confidence Intervals:** For each of the N bootstrap replicates, we calculated the AUROC and TPR@0.5%FPR. After generating all replicates, we computed the mean

Figure 7: ROC curve comparison for various baseline methods and their PDR-enhanced versions on the WikiMIA-128 benchmark.

and standard deviation of these metrics. The 95% confidence intervals were then derived empirically from the 2.5th and 97.5th percentiles of the resulting distribution of 1000 metric values.

- **Paired Significance Testing:** To evaluate if the improvements of our PDR-enhanced methods over their respective baselines are statistically significant, we conducted a paired bootstrap test. This approach is crucial for reducing variance caused by the sampling process. For each of the $N = 1000$ replicates, we used the *exact same set of resampled indices* to evaluate both the baseline method and the PDR-enhanced method. We then calculated the performance difference for that replicate: $\delta = \text{AUROC}_{\text{PDR}} - \text{AUROC}_{\text{Baseline}}$. A one-sided P-value was subsequently derived by calculating the proportion of replicates where this difference was not positive ($\delta \leq 0$). This P-value directly tests the null hypothesis $H_0 : \text{AUROC}_{\text{PDR}} \leq \text{AUROC}_{\text{Baseline}}$. A P-value less than 0.05 is considered to indicate a statistically significant improvement.

The analysis reveals a clear trend: the effectiveness of PDR is strongly correlated with sequence length. For short sequences (e.g., 32 tokens), the performance gains are marginal and not always statistically significant. However, as the sequence length increases to 64 and 128, PDR's improvements become both substantial and statistically significant ($p\text{-value} < 0.05$) for most baselines. For instance, on Pythia-6.9B with length 128, PDR boosts the AUROC of Min-k%++ from 65.9 to 72.2 ($p\text{-value} < 0.001$). This demonstrates that the positional prior becomes a more robust and discriminative signal as more context becomes available in longer sequences, confirming that the observed gains are not due to random noise.

1134
 1135 Table 9: Performance comparison on Pythia-6.9B across different sequence lengths. We report AU-
 1136 ROC and TPR@0.5%FPR (mean \pm std). **w/ LPDR** denotes our method using linear weights. The
 1137 p-value indicates the statistical significance of the improvement of LPDR over the corresponding
 baseline.

Length	Method	AUROC	AUROC Std	TPR@0.5%FPR	TPR Std	p-value
32	Zlib	64.2	2.0	12.7	2.6	-
	Lowercase	61.7	2.1	11.9	3.2	-
	Loss	64.1	2.0	15.0	2.8	-
	w/ LPDR	64.2	2.0	15.0	2.8	0.275
	Ref	63.5	2.0	6.2	3.0	-
	w/ LPDR	63.5	2.0	5.7	3.2	0.785
	Min- $k\%$	65.1	2.0	21.7	3.5	-
	w/ LPDR	65.1	2.0	22.0	4.0	0.342
	Min- $k\%++$	67.6	2.0	14.5	3.2	-
	w/ LPDR	67.8	2.0	14.5	2.6	0.218
64	Zlib	61.6	2.5	15.8	3.5	-
	Lowercase	57.7	2.5	11.3	2.2	-
	Loss	59.3	2.5	10.6	3.7	-
	w/ LPDR	62.4	2.5	13.0	5.4	0.001
	Ref	62.9	2.4	16.2	2.8	-
	w/ LPDR	64.0	2.3	7.7	3.6	0.152
	Min- $k\%$	61.1	2.5	12.7	3.0	-
	w/ LPDR	65.1	2.4	18.3	5.2	0.019
	Min- $k\%++$	64.2	2.4	10.2	3.2	-
	w/ LPDR	68.3	2.4	12.7	4.6	0.006
128	Zlib	67.4	3.4	20.9	5.8	-
	Lowercase	59.9	3.6	11.5	4.2	-
	Loss	64.7	3.5	16.5	6.8	-
	w/ LPDR	66.6	3.4	15.1	4.9	0.061
	Ref	62.9	3.5	8.6	5.7	-
	w/ LPDR	65.9	3.4	10.8	5.0	0.016
	Min- $k\%$	67.0	3.4	16.5	6.1	-
	w/ LPDR	68.9	3.3	23.0	9.4	0.270
	Min- $k\%++$	65.9	3.5	18.0	7.1	-
	w/ LPDR	72.2	3.3	18.7	6.9	0.001

F FSD RESULTS

1164
 1165 This section presents the detailed results of combining our method with the Finetuning-based Score
 1166 Difference (FSD) framework on the WikiMIA dataset. Please refer to Tab. 10 and Tab. 11 for the
 1167 full experimental results.

1168
 1169 Table 10: AUROC results on WikiMIA benchmark, compare with FSD

Dataset	Method	GPT-J-6B		OPT-6.7B		Pythia-6.9B		LLaMA-7B		NeoX-20B		Average	
		Base	w/ FSD	Base	w/ FSD	Base	w/ FSD	Base	w/ FSD	Base	w/ FSD	Base	w/ FSD
WikiMIA	Min- $k\%$	67.9	93.4	62.5	89.4	66.7	91.9	65.4	88.4	73.4	90.1	67.2	90.6
	w/ LPDR	68.1	94.0	62.9	89.6	67.0	92.6	66.7	88.8	73.5	91.0	67.6	91.2
	w/ EPDR	67.1	94.1	62.1	90.0	66.0	92.8	65.8	89.1	72.1	91.3	66.6	91.4
	w/ PPDR	67.9	93.8	62.9	89.5	66.9	92.2	66.6	88.9	73.3	90.7	67.5	91.0
	Min- $k\%++$	67.6	81.6	63.0	83.3	68.1	81.5	79.9	91.1	74.4	77.8	70.6	83.1
	w/ LPDR	68.3	84.8	63.6	84.5	69.4	85.0	80.8	92.1	74.8	81.7	71.4	85.6
	w/ EPDR	68.2	83.7	63.3	84.5	69.2	83.6	80.8	91.8	74.8	81.2	71.2	85.0
	w/ PPDR	68.3	85.5	63.7	84.6	69.5	85.8	80.7	92.1	74.6	82.4	71.4	86.1

1178
 1179 Table 11: TPR results on WikiMIA benchmark, compare with FSD

Dataset	Method	GPT-J-6B		OPT-6.7B		Pythia-6.9B		LLaMA-7B		NeoX-20B		Average	
		Base	w/ FSD	Base	w/ FSD	Base	w/ FSD	Base	w/ FSD	Base	w/ FSD	Base	w/ FSD
WikiMIA	Min- $k\%$	17.2	55.6	13.9	40.6	17.2	57.6	14.7	32.6	24.7	36.2	17.5	44.5
	w/ LPDR	18.0	61.9	16.4	41.9	18.2	61.1	16.4	33.7	27.7	52.9	19.3	50.3
	w/ EPDR	16.5	60.1	13.5	45.4	16.5	59.8	17.0	33.6	21.5	50.8	17.0	49.9
	w/ PPDR	17.9	59.9	15.4	39.9	19.9	61.9	18.5	31.6	27.0	50.3	19.7	48.7
	Min- $k\%++$	15.9	24.2	11.7	29.0	19.0	25.0	20.4	39.1	17.5	10.5	16.9	25.6
	w/ LPDR	18.9	32.2	12.9	35.7	19.0	37.4	22.2	48.4	19.7	15.5	18.5	33.9
	w/ EPDR	19.0	39.6	12.2	32.4	19.4	34.9	20.2	46.4	19.0	18.7	18.0	34.4
	w/ PPDR	18.9	34.9	12.9	36.7	17.0	40.4	24.0	51.6	19.7	17.4	18.5	36.2

1188 **G MIMIR RESULTS**

1189

1190 This section presents the complete AUROC and TPR results on the challenging MIMIR benchmark,
 1191 which is known for its minimal distribution shift and increased difficulty compared to WikiMIA.
 1192 The results in Tab. 12 and Tab. 13 comprehensively demonstrate the performance of our proposed
 1193 PDR methods (LPDR, EPDR, PPDR) and all baselines on MIMIR, across different models and sub
 1194 datasets.

1195 Table 12: AUROC results on the challenging MIMIR benchmark.[†]Neighbor results are from Zhang
 1196 et al. (2025b), induces significant extra computational cost than others (25 \times in this case), for which
 1197 reason we don't run on the 12B model.

Method	Wiki				Github				Pile CC				PubMed Central							
	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B
Lowercase	50.1	51.3	51.7	53.5	54.3	67.2	70.3	71.3	72.9	73.7	47.8	48.6	49.5	50.1	50.6	49.5	50.4	51.5	51.5	52.7
Zlib	51.1	52.0	52.4	53.5	54.3	67.5	71.0	72.3	73.9	74.9	49.6	50.1	50.3	50.8	51.1	49.9	50.0	50.1	50.6	51.2
[†] Neighbor	50.7	51.7	52.2	53.2	/	65.3	69.4	70.5	72.1	/	49.6	50.0	50.1	50.8	/	47.9	49.1	49.7	50.1	/
Loss	50.2	51.3	51.8	52.8	53.5	65.7	69.8	71.3	73.0	74.0	49.6	50.0	50.1	50.7	51.1	49.9	49.8	49.9	50.6	51.3
w/ LPDR	51.2	52.0	52.6	53.7	54.4	66.0	70.0	71.5	73.0	73.9	49.9	50.4	50.5	51.0	51.4	50.1	49.9	50.0	50.6	51.1
w/ EPDR	50.5	51.5	51.9	53.0	53.7	65.7	69.9	71.3	73.0	74.0	49.6	50.0	50.1	50.7	51.0	49.7	49.6	49.7	50.3	50.9
w/ PPDR	50.4	51.4	51.9	52.9	53.6	66.0	70.0	71.5	73.2	74.2	49.6	50.1	50.2	50.8	51.1	49.9	49.8	49.9	50.6	51.3
Min- k %	48.8	51.0	51.7	53.1	54.2	65.7	70.0	71.4	73.3	74.2	50.1	50.5	50.5	51.2	51.5	50.3	50.3	50.5	51.2	52.3
w/ LPDR	52.7	53.3	54.1	55.0	56.0	65.9	70.2	71.7	73.2	74.1	50.2	51.0	51.1	51.6	51.9	50.7	50.7	50.6	51.1	52.0
w/ EPDR	50.4	51.7	52.5	53.9	54.9	65.7	70.0	71.5	73.3	74.3	50.4	50.7	50.7	51.4	51.6	50.1	50.1	50.2	50.8	51.7
w/ PPDR	49.2	51.3	52.1	53.5	54.5	66.1	70.3	71.8	73.5	74.5	50.2	50.6	50.6	51.4	51.6	50.4	50.4	50.5	51.2	52.4
Min- k %++	49.2	53.1	53.8	56.1	57.9	64.7	69.6	70.9	72.8	74.2	49.7	50.0	49.8	51.2	51.8	50.2	50.8	51.5	52.8	54.0
w/ LPDR	51.0	54.8	55.5	57.5	59.0	64.6	69.5	70.6	72.3	73.7	49.7	50.6	49.9	51.8	51.9	50.4	51.8	52.2	53.6	54.4
w/ EPDR	49.9	53.7	54.4	56.7	58.5	64.7	69.7	70.8	72.7	74.1	49.9	50.3	49.9	51.5	51.8	50.0	50.9	51.5	52.8	53.7
w/ PPDR	49.3	53.5	54.2	56.5	58.3	64.8	69.8	71.0	72.9	74.3	49.7	50.2	49.8	51.4	51.9	50.2	51.1	51.7	53.1	54.3
ArXiv		DM Mathematics				HackerNews				Average										
Method	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B
Lowercase	50.8	50.7	51.3	51.9	52.8	48.9	49.0	49.0	49.1	48.2	49.0	50.4	51.1	51.6	52.3	52.4	53.4	54.1	54.8	55.4
Zlib	50.1	50.9	51.3	52.2	52.7	48.1	48.2	48.0	48.1	48.1	49.7	50.3	50.8	51.2	51.7	52.7	53.7	54.1	54.9	55.4
[†] Neighbor	50.7	51.4	51.8	52.2	/	49.0	47.0	46.8	46.6	/	50.9	51.7	51.5	51.9	/	52.0	52.9	53.2	53.8	/
Loss	51.0	51.5	51.9	52.9	53.4	48.8	48.5	48.4	48.5	48.5	49.4	50.5	51.3	52.1	52.8	52.5	53.5	53.9	54.7	55.3
w/ LPDR	50.4	51.1	51.5	52.7	53.2	48.7	48.6	48.4	48.5	48.6	49.7	50.6	51.3	52.2	52.6	52.7	53.7	54.1	54.9	55.4
w/ EPDR	50.7	51.2	51.6	52.5	53.0	48.5	48.3	48.2	48.3	48.3	49.5	50.3	51.0	51.6	52.1	52.4	53.4	53.8	54.6	55.1
w/ PPDR	50.9	51.4	51.9	52.9	53.4	48.8	48.6	48.4	48.5	48.5	49.4	50.5	51.3	52.1	52.8	52.6	53.6	54.0	54.8	55.4
Min- k %	50.4	51.4	52.1	53.4	54.3	49.3	49.3	49.1	49.2	49.2	50.6	51.2	52.4	53.5	54.5	52.4	53.7	54.2	55.2	56.0
w/ LPDR	49.2	50.8	51.2	52.5	53.2	49.5	49.7	49.3	49.5	49.5	50.3	50.7	51.3	52.4	52.8	53.0	54.3	54.6	55.5	56.1
w/ EPDR	49.9	51.0	51.5	52.8	53.5	49.3	49.4	49.1	49.2	49.2	50.5	51.0	51.9	52.9	53.3	52.6	53.8	54.3	55.2	55.9
w/ PPDR	50.2	51.4	52.1	53.4	54.3	49.3	49.4	49.2	49.3	49.3	50.5	51.1	52.3	53.5	54.4	52.6	53.9	54.4	55.4	56.1
Min- k %++	49.3	50.9	53.0	53.6	56.2	50.1	50.2	50.5	50.4	50.7	51.3	52.6	54.1	55.8	52.2	54.1	54.9	56.2	57.4	
w/ LPDR	50.0	51.1	52.4	53.9	56.1	50.1	50.3	50.2	50.4	50.5	50.7	50.9	51.7	53.0	54.3	52.6	54.7	55.1	56.6	57.6
w/ EPDR	49.6	50.8	52.6	53.4	55.7	49.8	50.0	49.9	50.2	50.2	50.6	50.9	52.0	53.3	54.7	52.3	54.2	54.9	56.2	57.3
w/ PPDR	49.5	51.0	53.1	53.8	56.3	50.2	50.2	50.6	50.5	50.5	51.2	52.5	54.0	55.6	52.3	54.3	55.0	56.4	57.6	

1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252

1253 Table 13: TPR results on the challenging MIMIR benchmark.[†]Neighbor results are from Zhang
 1254 et al. (2025b), induces significant extra computational cost than others (25 \times in this case), for which
 1255 reason we don't run on the 12B model.

Method	Wikipedia					Github					Pile CC					PubMed Central				
	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B
Lowercase	4.6	4.5	4.9	5.2	5.6	24.4	32.2	34.3	38.1	38.6	3.4	5.3	5.3	6.2	6.4	3.5	5	5.3	6	5.2
Zlib	4.2	5.7	5.9	6.3	6.8	25.1	32.8	36.2	40.1	40.8	4	5.1	5.4	6.2	6.6	3.8	3.6	3.5	4.3	4.4
[†] Neighbor	4.0	4.5	4.9	5.8	/	24.7	31.6	29.8	34.1	/	3.9	3.6	4.0	5.3	/	3.9	3.7	4.5	4.5	/
Loss	4.2	4.7	4.7	5.1	5	22.6	32.1	33.6	38.5	40.7	3.1	5	4.8	4.9	5.1	4	4.4	4.3	4.9	5
w/ LPDR	4.6	4.6	5.4	5.7	6	21	30.8	32.4	34.7	36.4	2.4	3.4	4	4.8	5.8	4.1	4.6	4.5	4.9	5.5
w/ EPDR	4.5	4.8	5.1	5.5	5.7	21.5	31.6	32.6	36.6	38.7	3.2	4.5	4.6	4.7	5.2	3.7	4.6	4.6	4.8	4.9
w/ PPDR	4.2	4.7	4.9	4.9	5.3	22.7	32.1	35	38.8	39.8	3	4.3	4.7	5.3	6.1	4.1	4.2	4.1	4.4	5.2
Min-k%	4.8	5.6	5	6.1	5.8	22.6	31.5	34	39	40.7	3.5	4.5	4.8	5	4.8	4.7	4.6	4.5	5.1	4.9
w/ LPDR	5.5	6.4	6.2	6.2	7.2	21.4	30.9	32.7	36	36.7	2.3	2.9	3.1	2.4	3.6	6	5.6	5.6	5.7	4.8
w/ EPDR	5	5.9	5.9	5.8	6.8	20.4	31	32.9	37.1	38.4	3.3	4.4	4.4	4.1	5.2	4	4.6	4.9	5.5	5.8
w/ PPDR	5.3	5.3	5.4	5.6	5.6	22.9	31.9	34.6	39.1	40.2	3.8	4.5	4.2	4.7	5.2	5.3	5.2	4.7	5.2	6.4
Min-k%++	5.2	5.3	5.9	7	7.8	25.2	33	34.2	38.2	40.1	5	3.7	3.7	4.8	4.6	4.8	6.1	4.8	5.6	6.4
w/ LPDR	4.6	6	6.3	7.5	7.9	22.6	30.6	32.7	35	39.7	4.7	2.9	3.4	4	5	4.2	6.4	5.5	7.8	6.2
w/ EPDR	5.1	5.9	6.6	7.8	8.2	24	33	33.5	37.4	40.7	4.6	3.4	3.6	4.3	4.9	4.9	5.4	5.4	6.8	5.8
w/ PPDR	5.2	5	5.5	7.7	7.5	26.2	34.2	34.9	38.8	40	5.2	3.5	3.3	4.3	4.6	5.1	6.4	5.1	5.8	6.7
ArXiv																				
Method	ArXiv					DM Mathematics					HackerNews					Average				
	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B
Lowercase	5.1	4.7	5.4	5.6	5.2	5.6	6.2	5.5	6.8	5.8	5.2	5.2	6.3	6.6	6.4	7.8	9.7	10.1	11.3	11.1
Zlib	2.9	4.3	4.1	4.6	4.7	4.1	5	4.6	4.3	4.3	5	5.5	5.8	5.6	5.8	7.4	9.4	10.0	11.0	11.3
[†] Neighbor	4.7	4.8	4.4	4.1	/	5.6	4.4	4.5	4.5	/	6.5	5.2	5.3	5.7	/	7.6	8.3	8.2	9.1	/
Loss	4	4.8	4.6	5.4	5.6	3.8	4.3	4.1	4.1	4	5	4.8	5.5	5.9	6.8	7.0	9.2	9.4	10.5	10.9
w/ LPDR	3.4	3.8	2.8	4.1	3.8	3.6	3.7	3.7	3.5	3.6	4.8	5.6	5.5	6	5.2	6.5	8.5	8.8	9.6	10.2
w/ EPDR	3.5	3.9	4	4.3	4.6	4.8	4.5	4.7	4.6	4.5	5.8	6.1	6	6	6.2	6.9	9.0	9.3	10.1	10.6
w/ PPDR	4.4	4.2	4.8	5.5	5.3	3.9	4.2	3.8	4.1	3.8	5.5	5.6	5.4	5.9	6.1	7.1	9.0	9.6	10.5	10.9
Min-k%	4.4	4.3	4.5	5.4	5.3	3.9	4.1	4.6	4.3	4.6	4.2	4.6	5.7	6.3	6.1	7.3	9.1	9.6	10.8	11.0
w/ LPDR	4	4.1	3.7	4.6	4.6	4	4.1	4.6	3.9	3.6	4.7	6.3	4.1	6	5.7	7.2	9.0	9.3	9.8	10.1
w/ EPDR	3.5	3.5	4	4.2	5	4.3	4.2	4.5	4.5	4.7	4.8	5.5	5	5.5	5.4	6.8	8.9	9.4	10.2	11.0
w/ PPDR	4.6	3.8	4.4	5	6.1	3.8	3.4	3.9	4.1	3.8	4.5	4.7	5.5	6.8	5.7	7.6	9.0	9.5	10.6	11.2
Min-k%++	5.4	4.7	6.2	6.8	7	4.4	4.8	5.4	4.5	5.4	4.4	3.5	4.6	5.7	5.7	8.3	9.6	10.0	11.2	11.9
w/ LPDR	4.6	5.2	6.8	7.6	8.6	4.4	4.4	4.4	4.5	4.7	5.3	3.9	4.8	6.8	7.2	7.5	9.3	9.9	11.1	12.0
w/ EPDR	5.1	5	7.1	7.3	6.4	4.6	4.8	4.8	4.5	5	4.3	4.7	5.4	6.2	6.4	8.1	9.6	10.2	11.4	11.8
w/ PPDR	5.5	4.6	6.4	7.3	6.7	4.3	4.8	5.2	4.6	5.1	4.3	3.7	5.1	6.6	5.8	8.6	9.8	10.1	11.4	11.8

1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296

H COMPARE WITH FITTED LOSS SLOPE

1297

1298 Inspired by Context-Aware MIA (CAMIA) (Chang et al., 2025), which designs multiple dynamic
1299 signals for detection, we explore a variant based on one of its key signals: the loss decreasing rate.
1300 Specifically, for each sample x , we compute a slope by performing a linear regression of its token-
1301 level losses $L_t(x_t)$ against their positions t . The slope is calculated as:

1302
$$f_{\text{Slope}}(x) = \frac{\sum_{t=1}^T (t - \bar{t})(L_t(x_t) - \bar{L})}{\sum_{t=1}^T (t - \bar{t})^2} \quad (20)$$
1303

1304 with $\bar{t} = \frac{T+1}{2}$ and $\bar{L} = \frac{1}{T} \sum_{t=1}^T L_t(x_t)$.

1305 We then use this dynamically computed slope as the decay parameter α in our reweighting scheme,
1306 referring to this method as “w/ fitted slope PDR”. We compare this dynamic approach with our
1307 fixed-hyperparameter LPDR. Table 14 shows the results on the WikiMIA benchmark across Pythia-
1308 2.8B, 6.9B, and 12B models, while Table 15 presents results on the MIMIR (DM Mathematics,
1309 Github, Pile CC) datasets.

1310 The analysis reveals a consistent trend: while the sample-fitted slope method is dynamic, it often
1311 provides only marginal or inconsistent improvements over the baselines. This is because the slopes
1312 learned from individual samples tend to be relatively gentle or “smooth,” resulting in weights that
1313 do not provide a strong enough reweighting signal to significantly enhance the distinction between
1314 member and non-member samples. In contrast, our LPDR, which often employs a steeper, pre-
1315 defined decay, more effectively amplifies the memorization signals present in the initial tokens.
1316 As shown in the tables, our LPDR method consistently and more substantially outperforms both the
1317 original baselines and the dynamic “w/ fitted slope PDR” approach across most settings, highlighting
1318 the effectiveness of a robust, albeit simpler, positional prior.

1319
1320

Table 14: AUROC comparison on the WikiMIA benchmark. For each group of three methods, “w/ fitted
1321 LPDR” denotes applying LPDR with slope fitted on single test sample loss, while “LPDR” uses a fixed default
1322 hyperparameter. The highest score per column is in **bold**. Our method’s rows are highlighted in gray.

1323

Len.	Method	Pythia-2.8B		Pythia-6.9B		Pythia-12B		Average	
		Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.
32	Loss	61.37	61.57	63.83	64.07	65.44	65.60	63.55	63.75
	w/fitted slope PDR	61.42	61.60	63.79	64.06	65.33	65.60	63.52	63.75
	w/LPDR	61.73	61.83	63.97	64.20	65.45	65.70	63.71	63.91
	Ref	61.34	61.17	63.57	63.52	65.12	64.86	63.34	63.19
	w/fitted slope PDR	61.22	61.11	63.44	63.31	64.95	64.69	63.20	63.04
	w/LPDR	61.34	61.18	63.55	63.47	65.09	64.90	63.33	63.18
	Min- $k\%$	61.68	60.89	66.28	65.09	68.07	67.20	65.35	64.39
	w/fitted slope PDR	61.56	60.81	66.19	64.98	67.88	67.00	65.21	64.26
	w/LPDR	61.91	61.12	66.33	65.15	68.02	67.20	65.42	64.49
	Min- $k\%++$	63.97	61.33	70.27	67.56	72.24	69.40	68.83	66.10
64	w/fitted slope PDR	64.08	61.48	70.37	67.70	72.32	69.56	68.92	66.24
	w/LPDR	64.74	61.66	70.85	67.74	72.26	69.36	69.28	66.25
	Loss	58.44	56.49	60.74	59.28	61.86	60.02	60.35	58.60
	w/fitted slope PDR	58.59	56.78	60.89	59.60	61.97	60.23	60.48	58.87
	w/LPDR	60.09	59.35	62.58	62.41	63.47	62.97	62.05	61.57
	Ref	59.62	59.22	62.38	62.89	63.04	63.18	61.68	61.76
	w/fitted slope PDR	59.77	59.34	62.51	63.10	63.16	63.33	61.81	61.92
	w/LPDR	60.52	60.82	63.34	64.00	64.05	64.51	62.64	63.11
	Min- $k\%$	61.20	56.68	64.97	61.07	66.50	62.49	64.22	60.08
	w/fitted slope PDR	61.39	57.03	65.19	61.40	66.69	62.79	64.42	60.41
128	w/LPDR	63.26	61.59	66.67	65.07	67.94	66.08	65.95	64.25
	Min- $k\%++$	64.79	57.71	71.64	64.23	72.62	65.09	69.68	62.34
	w/fitted slope PDR	64.91	57.90	71.82	64.53	72.75	65.34	69.83	62.59
	w/LPDR	65.94	61.95	72.08	68.30	72.76	68.22	70.26	66.16
	Loss	62.81	62.31	65.08	64.66	65.77	65.40	64.55	64.12
	w/fitted slope PDR	62.85	62.32	65.07	64.82	65.81	65.47	64.58	64.20
	w/LPDR	63.12	63.97	65.64	66.63	66.25	67.01	65.00	65.87
	Ref	59.57	59.54	63.27	62.92	63.93	63.91	62.26	62.12
	w/fitted slope PDR	59.84	59.80	63.47	63.29	64.02	64.06	62.44	62.38
	w/LPDR	61.42	62.56	65.07	65.90	65.05	66.16	63.85	64.87
	Min- $k\%$	66.86	64.74	69.47	67.03	70.68	68.54	69.00	66.77
	w/fitted slope PDR	66.90	64.87	69.46	67.21	70.71	68.71	69.02	66.93
	w/LPDR	64.27	63.46	67.83	68.88	69.95	69.08	67.35	67.14
	Min- $k\%++$	66.32	62.67	69.77	65.88	71.83	67.70	69.31	65.42
	w/fitted slope PDR	66.40	62.75	69.82	66.09	71.97	67.81	69.40	65.55
	w/LPDR	66.80	65.77	72.39	72.20	73.50	72.19	70.90	70.05

1350
 1351 Table 15: AUROC results on sub MIMIR datasets (DM Mathematics, Github, Pile CC). “w/ fitted
 1352 LPDR” denotes applying LPDR with slope fitted on single test sample loss, while “LPDR” uses
 1353 a fixed default hyperparameter. Results are bolded if they improve upon their respective baseline
 1354 (Loss, Min-k%, or Min-k++).

Method	DM Mathematics					Github					Pile CC				
	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B	160M	1.4B	2.8B	6.9B	12B
Loss	48.84	48.53	48.36	48.47	48.47	65.75	69.82	71.29	73.01	73.99	49.56	50.01	50.09	50.69	51.07
w/ fitted LPDR	48.84	48.53	48.36	48.47	48.47	65.76	69.83	71.29	73.01	74.00	49.56	50.02	50.09	50.69	51.07
LPDR	48.72	48.60	48.40	48.51	48.57	66.04	70.04	71.50	72.99	73.94	49.91	50.43	50.49	51.05	51.39
Min-k%	49.27	49.29	49.10	49.16	49.21	65.65	69.96	71.44	73.26	74.24	50.10	50.47	50.46	51.20	51.48
w/ fitted LPDR	49.28	49.29	49.09	49.16	49.21	65.68	69.99	71.46	73.27	74.25	50.09	50.48	50.46	51.21	51.48
LPDR	49.52	49.70	49.25	49.47	49.54	65.93	70.20	71.66	73.16	74.09	50.24	51.00	51.07	51.65	51.94
Min-k%++	50.12	50.17	50.21	50.52	50.42	64.66	69.63	70.88	72.80	74.18	49.67	50.04	49.78	51.19	51.75
w/ fitted LPDR	50.12	50.17	50.21	50.52	50.43	64.67	69.64	70.89	72.81	74.19	49.68	50.05	49.77	51.20	51.76
LPDR	50.11	50.32	50.16	50.37	50.50	64.59	69.46	70.57	72.29	73.69	49.69	50.63	49.94	51.84	51.87

I ENTROPY ANALYSIS WITH VARYING PREFIX LENGTH

To provide a more rigorous theoretical foundation for our work, we analyze the entropy of the *same* token conditioned on prefixes of varying lengths. According to the principles of information theory, conditioning on more information cannot increase entropy. This implies that for a given token x_T , its predictive entropy should monotonically decrease as the length of its conditioning prefix $x_{<T}$ increases:

$$H(x_T|x_{T-1}) \geq H(x_T|x_{T-2}, x_{T-1}) \geq \dots \geq H(x_T|x_1, \dots, x_{T-1}). \quad (21)$$

As visualized in Figure 8, we plot the entropy of x_T against the context length k of member samples and non-member samples. We observe that as the prefix length grows, the entropy for predicting the final token decreases for both member and non-member samples. Besides, member samples exhibit a rapid entropy drop-off in the early context window ($k < 10$), while Non-member samples maintain higher entropy for longer. This discriminative gap in the early positions provides the empirical justification for PDR’s decay weighting scheme.

Figure 8: Visualization of last token entropy changes by given different length prefix on WiliMIA-32 benchmark based on Pythia-6.9B for (a) member sample and (b) non-member sample.

J TRUNCATION ANALYSIS

We compare PDR to a simple **Truncation** baseline, which discards a suffix of the sequence before scoring. We varied the truncation percentage (the portion of the sequence retained) to find the optimal performance for each base method. As shown in Figure 9, the optimal truncation percentage is highly inconsistent across different methods, making it difficult to find a single best setting. In contrast, our LPDR method (with a fixed $\alpha = 1.0$, shown as dashed lines) robustly outperforms

even the best possible truncation result for all base methods. This demonstrates that PDR's "soft" reweighting is more effective and reliable than the "hard" cutoff of truncation.

Figure 9: Performance comparison between the Truncation baseline and our LPDR method ($\alpha = 1.0$) on the WikiMIA dataset (length 64, Pythia-12B). The x-axis represents the percentage of the sequence retained for the truncation method. Solid lines show the performance of base methods with truncation, while dashed lines show the performance of the same base methods enhanced with LPDR.

K SAMPLE REWEIGHTED ANALYSIS

This section presents additional visualizations of its effect on individual samples. We specifically select pairs of member and non-member samples that are challenging for the baseline $\text{Min-}k\%$ method, meaning their original scores are very close and difficult to distinguish.

Figures 10, 11, and 12 illustrate how applying our LPDR, EPDR, and PPDR methods, respectively, alters the token-level scores for these ambiguous pairs. In each case, the reweighting process amplifies the scores of the member samples more significantly than the non-member samples by emphasizing the low-probability tokens that appear early in the sequence. This creates a more distinct separation between them, demonstrating how PDR enhances detection accuracy at the individual sample level.

Figure 10: Visualization of token-level score changes for (a) member sample and (b) non-member sample after applying LPDR to the $\text{Min-}k\%$ method.

Figure 11: Visualization of token-level score changes for (a) member sample and (b) non-member sample after applying EPDR to the Min- $k\%$ method.

Figure 12: Visualization of token-level score changes for (a) member sample and (b) non-member sample after applying PPDR to the Min- $k\%$ method.

L ANALYSIS OF SELECTED TOKEN DISTRIBUTION AND CASE STUDY

We analyze token-level probability distributions to explain PDR’s effectiveness. Non-member samples often feature high-surprise factual tokens (e.g., dates) early in the sequence, whereas member samples, being memorized, show low surprise on these tokens. Standard methods dilute this early signal by averaging across the sequence. PDR, by assigning higher weights to the prefix, acts as a “matched filter”: it amplifies the informative early tokens while suppressing the noise from later function words.

Error Study (Figure 15): While PDR shows consistent improvements in most cases, examining failure cases provides valuable insights into its limitations. Figure 15 shows challenging examples: (a) a member sample that remains misclassified after PDR, and (b) a non-member incorrectly pushed towards a higher score. A key observation is that the highlighted Top- k tokens (yellow background) are distributed uniformly across the sequence rather than concentrated at the start. This anomaly suggests **weak memorization**—the model encountered the text but formed no strong memory trace, possibly due to low training frequency, generic content (common function words lacking distinctive features), or **sentence fragmentation** where the dataset’s fixed-length segmentation splits sentences mid-stream, causing the “new sentence start” in the latter half to carry unexpectedly high informativeness and scatter the Top- k tokens. When such positional patterns are absent, PDR’s monotonic decay assumption becomes less effective or even counterproductive. These cases highlight potential improvements: adaptive weighting that detects weak memorization or sentence boundaries, and sentence-aware segmentation to preserve natural information flow.

1533 Figure 13: Top k token frequency comparison between member and non-member samples on
1534 LLaMA-13B model with 64-token input length on WikiMIA dataset.

1561 Figure 14: Visualization of token-level score changes and highlight top k tokens for (a) member
1562 sample and (b) non-member sample after applying PPDR to the Min- $k\%$ method.

1563
1564
1565

Figure 15: **i**nsualization error case about token-level score changes and highlight top k tokens for (a) member sample and (b) non-member sample.

M SCORE DISTRIBUTION.

To visually demonstrate the effectiveness of our method, we analyze the score distributions of member and non-member samples before and after applying PDR. Figure. 16 illustrates this comparison for the Min- $k\%++$ method on the LLaMA-13B model, using the WikiMIA dataset with a sequence length of 64. For a clearer visualization, the scores are normalized to a range of [0,1]. As the figure shows, the original Min- $k\%++$ method already provides some separation between the two distributions. However, after applying our Linear PDR (LPDR), the distributions are pushed further apart. The member sample distribution shifts noticeably towards higher scores, while the non-member distribution remains relatively stable. This increased separation makes it easier to distinguish between member and non-member samples, directly contributing to the improved AUROC performance we observe in our experiments.

Figure 16: Member and non-member score distribution comparison between Min- $k\%$ and LPDR-Min- $k\%$ on LLaMA-13B model with 64-token input length on WikiMIA dataset. Our PDR method enhances the separation between member and non-member distributions.

1620 N LLM USE
1621

1622 LLMs were used solely for polishing the writing, e.g., improving clarity and readability. All research
1623 ideas, methods, and results were entirely developed and conducted by the authors. The authors take
1624 full responsibility for the content of the manuscript.

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673