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ABSTRACT

Membership inference attacks (MIAs) against large language models (LLMs)
aim to detect whether a specific data point was included in the training dataset.
While existing likelihood-based MIA methods have shown promise, they typi-
cally aggregate token-level scores using uniform weights (e.g., via simple aver-
aging). We argue that this uniform aggregation is suboptimal because it fails
to explicitly account for the decaying nature of memorization signals. Inspired
by the information-theoretic principle that conditioning reduces uncertainty, we
hypothesize that the memorization signal is strongest at the beginning of a se-
quence—where model uncertainty is highest—and generally decays with token
position. To leverage this insight, we introduce Positional Decay Reweighting
(PDR), a simple and lightweight plug-and-play method. PDR applies decay func-
tions to explicitly re-weight token-level scores from existing likelihood-based
MIA methods, systematically amplifying the strong signals from early tokens
while attenuating noise from later ones. Extensive experiments show that PDR
consistently enhances a wide range of advanced methods across multiple bench-
marks.

1 INTRODUCTION

As Large Language Models (LLMs) are trained on vast and diverse corpora from the inter-
net (Achiam et al., 2023} [Touvron et al., [2023b), there exists a non-negligible risk that sensitive or
personally identifiable information may be memorized and unintentionally exposed through model
outputs (Grynbaum & Mac, [2023; Mozes et al.,|2023)). Membership Inference Attack (MIA) aims to
determine whether a sample was part of a model’s training set (Hu et al.| 2022bj |Wu & Cao, [2025)).
MIA has become increasingly critical in scenarios such as training data auditing, copyright infringe-
ment detection, and test set contamination analysis (Bertran et al.,|2023;[Zhang et al., 2025b), where
identifying memorized content is essential for ensuring data integrity and compliance.

For LLMs, performing MIA methods introduces several critical challenges. First, the high-
dimensionality and semantic richness of natural language make it difficult to define simple deci-
sion boundaries between training and non-training samples (Wu & Cao, 2025). Second, the in-
ternal representations and prediction behaviors of LLMs are shaped by deeply stacked transformer
architectures, whose complexity often obfuscates direct interpretability (Achiam et al., 2023} Tou-
vron et al.l 2023b). Third, many real-world deployments of LLMs, such as commercial APIs, only
provide black-box access, further limiting the attacker’s ability to probe model internals or gradi-
ents (Achiam et al.l|2023). These factors collectively make membership inference in the context of
LLMs a significantly harder problem compared to that in traditional MIA methods.

Existing MIA methods for LLMs can be broadly categorized into likelihood-based and non-
likelihood-based approaches. Among dominant likelihood-based methods, Loss (Yeom et al., [2018])
averages log-likelihoods across all tokens in the test sequence to serve as the detection score, while
Min-k% (Shi et al., 2024) and Min-k%++ (Zhang et al.l |2025b) select some the tokens with the
lowest-probability from a sequence to compute its detection score. Methods like ReCaLL (Xie
et al.l 2024), and Ref (Carlini et al.| 2021)) introduce a reference point to calibrate likelihood-based
scores, either prefixing target data points with non-member context or using a smaller auxiliary
LLM. FSD (Zhang et al.l 2025a) fine-tunes the target LLM on some non-member samples before
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Figure 1: Visualization of (a) token-level entropy on subsets of the challenging Mimir dataset and (b) the av-
erage token-level log-probability for members and non-members on WikiMIA dataset for LLaMA-13B model.

computing the likelihood-based score (Zhang et al.|[2025a). While varied in their specific strategies,
these methods share a fundamental, unaddressed limitation: they typically aggregate token-level
scores using uniform weights. Whether aggregating scores from all tokens or a selected subset in
the sequence, they assign equal weight to each included token’s contribution to the final detection
score, failing to explicitly account for the positional decay of memorization signals.

Our work is motivated by a key insight from information theory: conditioning on more information
cannot increase entropy (Shannonl [1948)). In autoregressive models, this implies that as more con-
text accumulates, the model’s predictive uncertainty for the same token should not increase. This
motivated us to hypothesize an empirical trend: in typical language generation, token-level entropy
usually tends to decrease as a sequence progresses. We empirically investigate this hypothesis in
Fig. (1| (a). The results reveal a dominant, albeit sometimes noisy, downward trend across diverse
datasets. While corpora with heterogeneous structures like ArXiv and HackerNews show volatility,
all datasets share a crucial characteristic: a high-entropy initial region that drops sharply. Conse-
quently, an unusually confident prediction (high probability) for an early, high-entropy token is far
more surprising—and thus more indicative of memorization—than comparable confidence later in
the sequence. This is because in later positions, the abundance of context makes predictions easier
for both member and non-member samples, thus shrinking the discriminative gap between them.

This leads to our core hypothesis: the memorization signal is not uniformly distributed, but is con-
centrated in the initial stages of a sequence, with its discriminative power generally decaying with
token position. However, existing likelihood-based methods, by utilizing uniform score aggregation,
dilute this skewed and powerful signal with less informative signals from later positions. Capitaliz-
ing on this key observation, we introduce Positional Decay Reweighting (PDR), a simple, effective,
and “plug-and-play” method designed to align the scoring process with this positional signal decay.
By applying monotonic decay functions (e.g., linear, exponential, polynomial), PDR systematically
amplifies the high-value signals from early tokens while attenuating potential noise from later ones,
thereby focusing the inference on the most informative parts of the sequence. Its key advantage
is versatility: PDR can be seamlessly integrated into existing likelihood-based scoring functions.
Extensive experiments validate that this straightforward modification yields substantial and consis-
tent performance gains, improving upon advanced Min-k%-++ by up to 4.7 AUROC points on the
WikiMIA benchmark of 128 length. Our main contributions can be summarized as follows: (1) We
are the first to systematically demonstrate and analyze the positional decay of memorization signals
from the view of token-level entropy, exposing the “uniform score aggregation” limitation inherent
in prior methods. (2) We propose Positional Decay Reweighting (PDR), a lightweight, plug-and-
play framework that reweights token scores to amplify early signals while attenuating later noise.
(3) Our results across diverse LLMs and benchmarks establish PDR as an effective plug-and-play
method, yielding notable performance gains especially for Min-k%-++.
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2 RELATED WORK

Membership Inference Attacks. Membership Inference Attacks (MIA) have long been a core
topic in security and privacy (Shokri et al., 2017} [Yeom et al 2018). These attacks aim to deter-
mine whether a specific data point was included in the training dataset of a learning model. Ex-
tensive investigations across both vision (Dubinski et al., |2024) and language (Watson et al.|, 2022
Mattern et al., 2023)) domains have led to advances in attack methodologies. Notable examples in-
clude LiRA (Carlini et al.| [2022), which leverages shadow models to estimate logit distributions
for likelihood-ratio tests, and RMIA (Zarifzadeh et al [2023)), which constructs robust pairwise
likelihood-ratio tests using a population of reference models. Beyond exact matching, RaMIA (Tao
& Shokril, 2025) extends the scope by testing if the model was trained on any data within a specified
semantic range, capturing privacy risks from similar or partially overlapping data. These develop-
ments have provided deeper insights into privacy risks (Mireshghallah et al.| [2022), test-set contam-
ination (Oren et al., [2023)), and copyright protection (Meeus et al., [2023} |Duarte et al., [2024)).
Membership Inference Attacks for LLM. While MIA is a long-standing problem, its applica-
tion to the pre-training stage of LLMs poses unique challenges, such as the impracticality of train-
ing shadow models and data characteristics that make inference difficult (Shi et al.| 2024} [Zhang
et al., 2025b). To this end, a category of existing methods focuses on the attack framework itself,
for instance, the distribution-free DF-MIA (Huang et al., 2025)) for fine-tuned models, and MIA-
Tuner (Fu et al.| [2025)), which cleverly uses soft prompt tuning. Another is likelihood-based meth-
ods. The foundational Loss method (Yeom et al 2018)) uses the average negative log-likelihood
to compute the anomaly score, and the Ref (Carlini et al., 2021) method calibrates this score using
a smaller reference model. Neighbor (Mattern et al., [2023)) eliminates the need for access to the
training data distribution by comparing the model score of a sample to those of its synthetically
generated neighbors. More advanced techniques focus on outlier tokens; Min-k % (Shi et al., [2024)
averages the probabilities of the tokens with the lowest scores, while Min-k%++ (Zhang et al.,
2025b) extends this by normalizing token-level scores before selection. Other recent works further
refine likelihood-based scoring, such as ReCaLL (Xie et al., 2024), which scores samples by mea-
suring the change in likelihood when conditioned on a non-member prefix, or by fine-tuning the
model to amplify score differences (Zhang et al| 2025a). CAMIA (Chang et al., [2025) learns to
distinguish between member and non-member samples by aggregating multiple dynamic signals,
including the rate of change in token loss. Different from these methods, our work analyzes the
positional decay of memorization signals through the lens of token entropy. Based on this insight,
we introduce a plug-and-play framework to enhance existing likelihood-based methods, rather than
proposing an entirely new scoring function.

Token Position in LLMs. The importance of token position has been recognized in various do-
mains of large language model research. For instance, to optimize inference, methods like Token-
Butler (Akhauri et al.l 2025) predict critical tokens to prune the KV-Cache, while OrthoRank (Shin
et al., 2025)) identifies important tokens by measuring their hidden state orthogonality to “sink to-
ken”. The significance of token-level analysis extends to the sub-token level, where understanding
internal character positions can improve performance on fine-grained tasks (Xu et al.,[2024)). Differ-
ent from them, our work investigates how token positions impact membership inference, enhancing
existing likelihood-based MIA methods through position-based token reweighting.

3 BACKGROUND

In this section, we first formalize the problem of pre-training data detection as defined in prior
studies (Shokri et al.,[2017;|Shi et al.||2024;|Duan et al.,|2024]), and then the likelihood-based scoring
functions for MIA methods in LLMs.

3.1 PROBLEM STATEMENT

Pre-training data detection is cast as a membership inference attack (MIA) (Shokri et al., [2017).
Denote a pre-trained auto-regressive LLM as M and its unknown training corpus as D. For an
arbitrary text sample x, MIA aims to infer whether € D (member sample) or ¢ D (non-member
sample). Let s(x; M) represent the scoring function that assigns a real-valued “membership” score
to = based on M ’s outputs. We make a binary decision via

g = I(s(z; M) > ¢), (1
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where e is a case-specific threshold and I(-) is the indicator function. Consistent with the grey-box
setting (Shi et al. 2024} |Duan et al., 2024; [Zhang et al., 2025b)), we assume that only M’s out-
put statistics (logits, token probabilities, loss values) are accessible; internal weights and gradients
remain hidden. Designing an effective s(x; M) to maximize the separation between member and
non-member distributions is at the core of the detection task.

3.2 LIKELIHOOD-BASED SCORE FUNCTIONS

Modern LLMs are trained by maximizing the likelihood of training token sequences (Radford et al.,

2019; Brown et al., [2020). Concretely, given a sequence € = (x1,...,Zr), an auto-regressive
LLM factorizes its joint probability using the chain rule: p(x) = Hthl p(zy | 2<t), where 2oy =
(z1,...,2¢—1) is the prefix context. At inference time, the model generates text token by sampling

from the conditional distribution p(- | £<¢). In light of this, researchers usually design likelihood-
based scoring functions to detect pretraining data in LLMs (Yeom et al.| 2018). For example,
based on the observation that members tend to have higher log-likelihood than non-members, the
loss-based score (Yeom et al.,[2018)) is defined as the (negative) log-likelihood of the input sequence,

T
1
Sloss(x) = T § logp(xt | -77<t)a 2
t=1

where we flip the sign of the conventional loss-based score so that, consistent with other methods,
higher scores indicate stronger membership. Instead of using the likelihood of all tokens, Min-k%
(Shi et al.; 2024 selects the k% tokens with the smallest log-probabilities and averages them:

1
SMin-k% () = 1Se Z log p(z: | 2<1), 3)
x+ EMin-k%(x)

where Sj, represents the set of token positions corresponding to the smallest k% log-probabilities in
the sequence. The intuition is that a non-member example is more likely to include a few outlier
words with low likelihoods than members. Other methods are deferred to Appendix

4 METHODOLOGY

In this section, we first present our core motivation based on an empirical observation about to-
ken entropy. We then introduce our general, plug-and-play weighting method, Positional Decay
Reweighting (PDR), and demonstrate how apply it to enhance existing likelihood-based scores.

4.1 MOTIVATION

Our methodology is built on a key insight into how autoregressive language models process infor-
mation. From an information-theoretic perspective, a fundamental principle is that conditioning on
more information cannot increase entropy, i.e., H(z|x,y) < H(z|y). In the context of autoregres-
sive models, the uncertainty at each step can be quantified by the conditional entropy of the next
token over the vocabulary V, given the prefix context x ;:

H(p(-|lz<t)) = = Y p(v]z<)log p(vfay). O]
veV

Although the classic principle compares the entropy of the same random variable, whereas here we
are comparing the entropy for different variables (z; and x4 1), it is a widely observed empirical
phenomenon that the entropy at position ¢ is frequently greater than at position ¢ + 1.

To empirically investigate this phenomenon, we visualized the average token-level entropy across
multiple diverse datasets, as shown in Fig.[I](a). The visualization reveals two crucial findings. First,
despite the varied nature of the corpora, they all exhibit a dominant trend: a high-entropy initial
region followed by a general downward trend as the sequence progresses. Second, it highlights key
differences in these trends; while datasets like Github and Wikipedia show a relatively smooth decay,
corpora with more heterogeneous structures—such as ArXiv (with section headings and equations)
and HackerNews (mixing prose, code, and quotes)—display significantly more volatility.
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Figure 2: Overview of Positional Decay Reweighting (PDR). Our method reweights the predic-
tive probabilities of input samples based on token positions, emphasizing early tokens with higher
weights. This reweighting enhances the distinction between member and non-member samples by
amplifying critical signals in the score S, making it more effective for MIA. The framework is
lightweight, plug-and-play, and can be applied to various likelihood-based scoring methods.

These empirical findings have direct implications for membership inference, as the initial high-
entropy region provides a unique setting to distinguish memorization from generalization. An un-
usually confident (i.e., high-probability) prediction for a token in such a position strongly suggests
that this confidence does not stem from contextual generalization, but rather from rote memoriza-
tion of specific sequences in its training set. Conversely, in later positions (low-entropy regions),
the abundance of context makes predictions easier for both member and non-member samples, thus
shrinking the discriminative gap between them. This is directly confirmed by Fig. [I] (b), which
shows that this gap is largest at the beginning of the sequence and diminishes over time.

This analysis leads to our refined core hypothesis: the memorization signal is not uniformly dis-
tributed but is heavily skewed towards the beginning of a sequence, with its strength generally de-
caying with token position. This crucial insight reveals a limitation in existing likelihood-based MIA
methods. Whether they use scores from all tokens (like Loss) or from a subset of low-likelihood to-
kens (e.g., Min-k%), they overwhelmingly rely on uniform weighting schemes . By treating
the scores from different positions as equally important, they dilute the potent, high-fidelity signals
concentrated in the early positions with noisy, less informative signals from the end. This oversight
prevents them from fully exploiting the powerful evidence of memorization. Therefore, a principled,
position-aware approach is not merely an incremental improvement, but a necessary step to enhance
MIA performance.

4.2 PLUG-AND-PLAY POSITIONAL DECAY REWEIGHTING (PDR)

Based on our core hypothesis established above—that memorization signals are heavily skewed to-
wards the beginning of a sequence—we argue that the performance of likelihood-based MIA meth-
ods is fundamentally limited by their uniform scoring mechanism. To rectify this, we propose Po-
sitional Decay Reweighting (PDR): a simple, effective, and “plug-and-play” framework designed to
inject this crucial positional prior into existing methods. Our overview is illustrated in Fig. [2]

PDR operates by re-weighting token-level scores using monotonically decreasing functions based
on a token’s position ¢ in a sequence of length 7. This systematically assigns higher importance to
earlier tokens, where the signal is strongest, and lower importance to later ones. We explore three
simple, standardized, and effective families of decay functions:
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1. Linear Decay: This function linearly decreases the weight from 1. The rate of decay is controlled
by a single hyperparameter « € [0, 1]:

t—1
wlinear(t) =l-« (T].) 5 ()

where T is the total sequence length. When o = 0, all tokens are weighted equally, reducing to

the original unweighted score.

2. Exponential Decay: This function applies a sharper, non-linear decay, placing a much stronger
emphasis on the initial tokens:

wexp<t) = exp(—a : (t - 1)) (6)

The hyperparameter o > 0 controls the steepness of the decay.

3. Polynomial Decay: This function provides a flexible decay curve whose shape is controlled by
the exponent o. The hyperparameter o« > 0 determines the curvature of the decay. Values of
o > 1result in a slower initial decay, while values 0 < a < 1 lead to a faster initial decay:

t—1\"
Wpoly (t) = (1 - T—1> : 0

We defer the visualization of three weight decay functions into Figl6|of Appendix

4.3 APPLYING PDR TO MIA SCORING FUNCTIONS

A key advantage of PDR is its “plug-and-play” nature. It operates as a lightweight wrapper designed
to correct existing likelihood-based methods, requiring no modification to the target model’s archi-
tecture or training process. This makes it a broadly applicable technique. We now demonstrate how
PDR integrates with two representative scoring functions.

For methods that aggregate scores across the entire sequence, such as the standard Loss score in
equation 2] PDR injects the positional prior by applying weights to each token’s log-probability
before aggregation. The resulting PDR-Loss score is defined as:

SPDR»Loss f Z w log P xt |l<t) ®)
t=1

The integration is more nuanced for outlier-based methods like Min-k% in equation Here, a
crucial detail is the order of operations. To preserve the integrity of the outlier selection process,
PDR is applied after the tokens have been selected based on their original, unweighted scores. The
re-weighting then uses the original position of these selected tokens, ensuring that we are amplifying
the most informative signals as identified by the baseline method. The PDR-Min-k% score is thus:

SPDR-Min-k% ( |8 | > w(t) - log P(w|z<y), 9
klies,
where S is the set of token positions with the smallest k% log-probabilities.

PDR can also be combined with other scoring functions, such as the reference-based method
(Ref), the normalized outlier method (Min-k%-++), and finetuned-based FSD . The full set of PDR-
enhanced scoring functions and algorithm are detailed in Appendix[C] By systematically amplifying
the signal from critical early tokens, PDR aims to widen the score distribution gap between member
and non-member samples, thereby enhancing overall detection performance.

5 EXPERIMENTS

5.1 SETUP

Benchmarks. We evaluate our method on two commonly-used benchmarks for pre-training data
detection. (1) WikiMIA (Shi et al., |2024) uses Wikipedia texts, distinguishing members by
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Table 1: AUROC results on WikiMIA benchmark (Shi et al., 2024). w/ LPDR utilizes our linear weights for
reweighting. Ori. and Para. denote the original and paraphrased settings. 'Neighbor results are from [Zhang
et al.[(2025b)). For each method pair, the higher score is in bold. The performance gains of our method on the
average results are highlighted in purple.

Mamba-1.4B  Pythia-6.9B LLaMA-13B GPT-NeoX-20B OPT-66B Average
Len. Method Ori.  Para. Ori. Para. Ori. Para. Ori. Para. Ori.  Para. Ori. Para.
Lowercase 609 606 622 617 640 632 683 66.9 62.8 623 63.7 63.0
Zlib 619 623 644 642 678 683 693 68.5 658 653 65.8 65.7
fNeighbor 641 636 658 655 658 65 70.2 68.3 68.2  66.7 66.8 65.8
Loss 61.0 613 638 641 675 680 69.1 68.6 65.6 65.3 65.4 65.5
w/LPDR (Ours) 61.5 61.8 640 642 67.7 682 689 68.3 656 650 655101 65.5
32 Ref 622 623 63.6 635 579 562 676 66.7 68.6 679 64.0 63.3
w/ LPDR 622 623 635 635 578 561 674 66.6 68.6 68.0 63.9 63.3
Min-k% 633 629 663 651 668 662 722 69.6 67.5 65.8 67.2 65.9
w/ LPDR 63.5 631 663 651 668 662 720 69.4 67.7 658 67.310! 65.9
Min-k%++ 66.4 657 703 676 844 827 751 69.7 69.7 67.0 73.2 70.5
w/ LPDR 674 663 70.8 677 859 841 752 69.5 702 67.1 739707 70.9+04
Lowercase 570 570 582 577 620 61.0 66.3 65.6 61.1 60.0 60.9 60.3
Zlib 604 59.1 62,6 616 653 653 68.1 66.5 639 622 64.1 62.9
fNeighbor 60.6 606 632 63.1 641 647 67.1 67.4 64.1 64.6 63.8 64.1
Loss 582 564 607 593 636 631 66.6 64.4 62.3 603 62.3 60.7
w/ LPDR 59.7 595 626 624 650 662 67.6 67.2 642 63.1 63875 63730
64 Ref 60.6 59.6 624 629 634 609 66.0 66.0 669 67.8 63.9 63.5
w/ LPDR 61.1 608 633 640 598 579 66.8 67.2 682 69.1 63.9 63.8170:3
Min-k% 61.7 580 650 61.1 660 635 722 66.1 66.5 625 66.3 62.2
w/ LPDR 629 618 66.7 651 674 672 708 68.7 68.1 660 672709 65.8"36
Min-k%++ 672 622 T71.6 642 843 788 765 66.2 69.8  63.3 73.9 66.9
w/ LPDR 682 655 721 683 872 843 764 68.2 70.1 66.6 748700 70.6°7
Lowercase 585 577 60.5 599 606 563 638.0 67.6 589 57.6 61.3 59.8
Zlib 65.6 653 67.6 674 697 696 723 72.0 673  66.9 68.5 68.2
fNeighbor 648 626 675 643 683 64 71.6 69.6 67.7 634 68.0 64.8
Loss 633 627 651 647 678 672 707 69.7 65.5 645 66.5 65.7
w/ LPDR 63.6 641 656 666 687 69.1 70.7 714 66.7 669 671706 67.6"1°
128 Ref 620 61.1 633 629 626 597 683 68.4 669 67.0 64.6 63.8
w/ LPDR 641 646 651 659 649 617 69.5 70.2 68.6 69.5 66.47'° 664126
Min-k% 668 644 695 670 715 686 75.6 73.0 70.6  67.2 70.8 68.0
w/ LPDR 655 658 67.8 689 712 710 745 75.2 70.6  69.9 69.9 702122
Min-k%-++ 67.7 633 69.8 659 838 762 754 70.6 71.1  67.0 73.6 68.6
w/ LPDR 70.2 682 724 722 884 843 757 72.6 729 69.5 759723 733+47

timestamps, and includes different length text for both original and paraphrased settings. (2)
MIMIR (Duan et al., 2024), built on the Pile dataset (Gao et al., [2020), is more challenging as
it minimizes distributional and temporal shifts between member and non-member data.

Baselines. We consider several representative and advanced methods as our baselines. A fundamen-
tal approach is Loss (Yeom et al., |2018)), which directly uses all tokens’ likelihood as a detection
score. Reference-based methods include Ref (Carlini et al [2021), employing a smaller language
model for likelihood calibration, as well as Zlib and Lowercase (Carlini et al.,[2021)), use zlib com-
pression entropy or lowercase text likelihood for the same purpose. Besides, Neighbor (Mattern
et al.| 2023)) evaluates membership by comparing the sample’s score against those of its synthet-
ically generated neighbors. Focusing on the most indicative tokens, Min-k% (Shi et al., [2024)
averages the lowest k% of token scores. An enhancement to this is Min-k%++ (Zhang et al.
2025b)), which incorporates score normalization for each token before selection. What’s more, we
include FSD (Zhang et al.,[2025a)), leverages score differences obtained after fine-tuning the model
on non-member data.

Models. For WikiMIA, we use Pythia (Biderman et al.,[2023) (2.8B, 6.9B, 12B), LLaMA (Touvron
et al., [2023a) (13B, 30B), GPT-NeoX (Black et al.| [2022)(20B), OPT (Zhang et al., 2022) (66B),
and Mamba (Gu & Dao, |[2023) (1.4B, 2.8B). For MIMIR, we follow |Duan et al.| (2024) and use the
Pythia model series (160M, 1.4B, 2.8B, 6.9B, 12B). For FSD, we follow Zhang et al.| (2025a)) and
use GPT-J-6B, OPT-6.7B, Pythia-6.9B, LLLaMA-7B, and GPT-NeoX-20B.
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Metrics and Settings. Following standard practice (Carlini et al., 2021} |Shi et al., 2024)), we use
AUROLC as the primary metric and also report True Positive Rate (TPR) at low False Positive Rates.
For brevity, we use LPDR, EPDR, and PPDR to denote our PDR with Linear, Exponential, and
Polynomial decay. We use a commonly-used £ = 20 for Min-k% and Min-k%++. In the main
body, we primarily report results for LPDR. To demonstrate the general effectiveness of a simple
and strong positional prior, we use a fixed o = 1 for all our experiments with LPDR except for very
short sequences (WikiMIA, T = 32), where such a sharp is suboptimal. More details about datasets,
baselines and settings are deferred to Appendix [D]

5.2 MAIN RESULTS.

Results on WikiMIA. As shown in Tab. |1} we report the AUROC results of different methods
on WikiMIA with varying sequence lengths of {32, 64, 128} on different backbones; please see
Appendix [E.T| for overall results on more methods (including our EPDR, PPDR), backbones and
TPR numbers. Besides, we also provide the best results on WikiMIA dataset cross five model in
Appendix [E.2] and plot the ROC curves in Appendix to demonstrate the consistent superiority
of our method across various False Positive Rate (FPR) thresholds. We observe that introducing
our proposed linear positional decay reweighting strategy generally enhances the performance of
existing likelihood-based MIA methods. This improvement is especially evident on the advanced
Min-k%-++. For instance, when combined with the Min-k%-++ method, the performance gains from
our LPDR become more pronounced as sequence length increases. Our LPDR improves the average
AUROC by 0.7 (Ori.) and 0.4 (Para.) for length 32, by 0.9 (Ori.) and 3.7 (Para.) for length 64, and
achieves the most significant gains of 2.3 (Ori.) and 4.7 (Para.) for length 128. These results prove
the effectiveness of the our designed weight decay method in re-weighting token-level scores.

Combination with FSD on WikiMIA. Since ours is a plug-and-play reweighting method, it can
also be used to enhance the finetune-based FSD. We perform the experiments on WikiMIA dataset
with different LLMs, where we first finetune LLMs with non-member samples following its official
code, then use Min-k% and Min-k%-++ as its score functions, respectively. To combine ours with
FSD, we apply our LPDR to reweight the score functions. We show the results in Fig. [3and defer
details into Appendix [F] We can find that our linear PDR provides consistent improvements on FSD
no matter with Min-k%++ or Min-k%-++ as the score functions. It demonstrates that ours is also
beneficial for finetune-based methods by reweighting its score functions.

Table 2: AUROC scores of various MIA methods over five Pythia = inic 1 Minkk s

1 Min-k% w/LDPR 1 Min-k%++ w/ LDPR

models on the Mimir dataset. Pub, Wiki, and Hack denote Pubmed
Central, Wikipedia (en) and HackerNews, respectively. Aver-
age* scores are computed by excluding Arxiv and HackerNews.
TNeighbor results are from [Zhang et al.| (2025b), induces signifi-
cant extra computational cost than others (25x in this case), for
which reason we don’t run on the 12B model.

Method Wiki Pile-CC Pub DM Math GitHub Average*

Lowercase 522 493 511 489 71 515 509 545

Zlib 527 504 504 481 719 514 508 547

iNeighbor 519  50.1 492 474 693 515 515 536 Figure 3: AUROC comparison of our
Loss 519 503 503 485 708 521 512 544 X .
w/LPDR 528 507 503 486 709 518 513 546 LPDR method when integrated with
Min-k% 518 507 509 492 709 523 524 547 Min-k% and Min-k%++ across various
W/LPDR 542 512 510 495 7.0 514 515 554 o S
Min-k%++ 540 505 519 503 704 526 529 554 LLMs on WikiMIA dataset within the
w/LPDR 555 508 524 503 7001 527 521 558 FSD framework.

MIMIR Results. As noted by prior work, MIMIR is particularly difficult because its training and
non-training texts are sourced from the same datasets, minimizing distributional shifts. Furthermore,
we identify that the sub-datasets within MIMIR exhibit notable differences in structural composi-
tion. As visually confirmed by their volatile entropy profiles in Fig. [T] (a), corpora like ArXiv and
HackerNews are structurally heterogeneous. This distinguishes them from more homogeneous cor-
pora like Wikipedia or GitHub. We treat the heterogeneous datasets as stress tests and compute an
Averagex score on the five sub-datasets that align with our method’s positional prior. As listed
in Tab. |2} on this benchmark, baselines themselves perform close to random guess, underscoring
its difficulty. We can find that introducing ours can improve the Loss, Min-k%, and Min-k%-++.
It validates the efficacy of PDR’s positional prior in structurally homogeneous text datasets. More
detailed results are deferred to Appendix [G]
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5.3 FURTHER ANALYSIS

Ablation Study about Weight Design. We conduct an ablation study with several alternative
weighting schemes. We consider applying our PDR-generated weights in different Order, including
Random, a shuffled sequence, and Reverse, a monotonically increasing sequence. Furthermore, we
use token-level entropy as a direct weight, either from a single Sample or the entire Dataset. Addi-
tionally, for Min-k% and Min-k%-++ methods, we compare our standard approach (reweighting the
subset of scores after selection) with an alternative where reweighting is applied to the full sequence
Before the lowest k% of scores are selected.

As shown in Tab. [3] both Random and Reverse orders significantly degrade performance, confirming
that a monotonically decreasing weight is crucial. For Min-k% methods, the results show that ap-
plying reweighting after selecting the most informative tokens is superior to reweighting the entire
sequence Before selection. This suggests that the initial selection effectively isolates the most rele-
vant signals, which are then more effectively amplified by our PDR. Another insightful comparison,
is with entropy-based weighting. Furthermore, comparing our three PDR variants (LPDR, EPDR,
and PPDR), we observe that their performance is generally comparable, and all can effectively en-
hance the performance of most baseline methods. While using Dataset-level entropy yields strong
performance, this approach is impractical as it requires full test dataset statistics. Conversely, Sam-
ple-level entropy is practical but ineffective due to high variance. PDR strikes a critical balance:
its simple, data-agnostic prior is a powerful and practical plug-and-play strategy, achieving results
competitive with the impractical dataset-level entropy approach.

Ablation Study about Weight Design. We conduct an ablation study with several alternative
weighting schemes. We consider applying our PDR-generated weights in different Order, including
Random, a shuffled sequence, and Reverse, a monotonically increasing sequence. Furthermore, we
use token-level entropy as a direct weight, either from a single Sample or the entire Dataset. Ad-
ditionally, following CAMIA’s (Chang et al., [2025) concept of loss decreasing rate, we explore a
dynamic strategy where we fit a linear slope to each sample’s loss sequence and use this fitted slope
as the decay parameter . For Min-k% and Min-k%-++ methods, we compare our standard approach
(reweighting the subset of scores after selection) with an alternative where reweighting is applied to
the full sequence Before the lowest k% of scores are selected.

As shown in Tab. [3] both Random and Reverse orders significantly degrade performance, confirming
that a monotonically decreasing weight is crucial. For Min-k% methods, the results show that ap-
plying reweighting after selecting the most informative tokens is superior to reweighting the entire
sequence Before selection. This suggests that the initial selection effectively isolates the most rele-
vant signals, which are then more effectively amplified by our PDR. Another insightful comparison
is with entropy-based weighting. While using Dataset-level entropy yields strong performance, this
approach is impractical as it requires full test dataset statistics. Conversely, Sample-level entropy is
practical but ineffective due to high variance. For the fitted slope method (detailed in Appendix [H),
we find its performance is hampered by the high volatility of token-level losses. This volatility leads
to small fitted slopes, as no strong trend can be reliably captured. The resulting weights are there-
fore too smooth to amplify the signal, yielding only marginal gains on WikiMIA and even more
limited improvements on the challenging MIMIR dataset. PDR strikes a critical balance: its simple,
data-agnostic prior is a powerful and practical plug-and-play strategy.

Table 3: Ablation study about weighting schemes. We evaluate slope, different weight orderings (Random,
Reverse), entropy-based weights (Sample, Dataset), and the reweighting for K-select in Min-k% and Min-
k%-++. Results are reported on the WikiMIA dataset using the Pythia-6.9B model with a sequence length of
T =128.

Weights Order Entropy K select w/ PDR(Ours)
Method Base Slope Random Reverse Sample Dataset Before @LPDR EPDR PPDR
Loss 65.1 65.1 64.5 63.4 63.2 66.4 - 65.6 64.8 66.1
Ref 63.3 635 61.8 58.0 62.1 63.8 - 65.1 67.5 65.7
Min-k% 69.5 69.5 64.3 59.8 64.1 70.6 68.1 67.8 69.2 66.7
Min-k%++ 69.8  69.8 66.5 61.0 68.7 70.5 70.3 724 71.2 72.7
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The Effect of Sharpness in Weight Decay. We analyze the impact of the decay sharpness « in
Fig. [l The results demonstrate LPDR’s general effectiveness, as it consistently improves upon the
baseline across all tested o values. We observe two distinct trends: for full-sequence methods (Loss
and Ref), performance peaks with a sharp decay at o = 1, while for outlier-based methods (Min-k%
and Min-k%++), a smoother decay is better. However, even for the latter, the performance gain at
a = 1 remains substantial. This analysis validates our choice to use a fixed o = 1 as a simple
and robust default in our main experiments (I' > 64), highlighting PDR’s ability to deliver signifi-
cant gains without requiring method-specific tuning. This choice highlights PDR’s ability to deliver
significant gains without requiring extensive, method-specific hyperparameter tuning. We plot dif-
ferent weight decay functions with varying varying rates in Fig. [6] of Appendix [B] We extend our
analysis by exploring the impact of varying truncation ratios in Appendix [J| These supplementary
experiments consistently demonstrate the robustness and superiority of our proposed method across
diverse settings.

Score Changes when Using Our

Method. To further illustrate the mech- Loss Ref
anism of PDR, we selected a pair of T namina T Praamnd
member and non-member samples that g

are indistinguishable within Min-k% for
sharing the same score. Fig. [§] visualizes
how our LPDR method resolves this
ambiguity. By applying a monotonically Mink% a0 Mink%++
decreasing weight, PDR enhances the e wieon

importance of tokens at earlier positions g
and decreases the importance of tokens J

at later positions. For the member sample 2
(a), whose memorization signals (high-
probability tokens) are concentrated at 0z o0a o6 o8 1o '*° 02 o0a 06 08 10
the beginning, this reweighting process
significantly amplifies its final score. In
contrast, the non-member sample (b) is
less affected. As a result, PDR effectively
breaks the tie, creating a clear distinction
between the two samples and enhancing
the overall detection accuracy. For additional examples, detailed sample analysis, and score
distribution visualizations, please refer to Appendices[K] [C] and[M] respectively.

w/ LPDR
Baseline

73.0

Figure 4: AUC comparison of different o for LPDR on log-
likelihood methods (Loss, Ref, Min-k%, Min-k%-++), results
from Pythia-12B model at WikiMIA original dataset of 64
length.

Min-k% Score: -5.859 w/ LPDR Score: -2.554 Min-k% Score: -5.859 w/ LPDR Score: -3.830

>
2.
H
[}
Q -6
3
o
— Mink% [ | | Min-k% | . — Min-k% I e Min-k%
Top-k Positions 7| —— Linear Reweighted | s Top-k Positions —— Linear Reweighted
" Tokenindex " Tokenindex = "7 Tokenindex "7 Token index
(a) Member sample (b) Non-member sample

Figure 5: Token-level score changes for (a) member sample and (b) non-member sample after applying LPDR
to Min-k%. The red dot means the selected token by Min-k%, blue and red line denote the original and
reweighted token-level score, respectively.

6 CONCLUSION

In this paper, we address a critical oversight in likelihood-based MIA methods: the failure to account
for the positional nature of memorization signals. Based on the observation that a model’s predictive
uncertainty decreases as a sequence progresses, we argue that membership signals are strongest in
early tokens. Existing methods dilute these signals by treating all positions equally. We introduce
Positional Decay Reweighting (PDR), a simple, plug-and-play framework that applies a monotoni-
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cally decreasing weight to token scores, enhancing existing MIA methods without requiring model
changes. Extensive experiments validate that PDR significantly improves the performance of strong
baselines like Min-k% and Min-k%-++, both standalone and within advanced frameworks like FSD.
Our work provides a more robust approach to membership inference by systematically prioritizing
more reliable positional signals, contributing to a deeper understanding of privacy risks in LLMs.
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A LIKELIHOOD-BASED SCORE FUNCIONS

This section provides the formal definitions for the baseline likelihood-based MIA score functions
discussed in the main paper. For a given input sequence x = {x1,...,xr} of length T, these
methods compute a score based on the token-level log-probabilities produced by the target model
P.

Loss. (Yeom et al.,|2018) The standard Loss-based method, also known as Negative Log-Likelihood
(NLL), uses the average log-probability of a sequence as its score. A higher score (lower loss) is
indicative of membership. The score is defined as:

T
1
StLoss() = T E log P(x¢|x <) (10)
=1

Ref. (Carlini et al.| 2021)) The Reference-based method (Ref) calibrates the target model’s likelihood
by subtracting the log-likelihood from a smaller reference model (P¢). This helps to normalize for
tokens that are inherently common or easy to predict. The score is:

Skref(x) = Z (log P(z¢|z<t) — log Pret(w¢|T<t)) 1D

Min-£%. (Shi et al.,|2024) The Min-k% method operates on the assumption that member samples
have fewer “outlier” tokens with very low probabilities. It computes the score by averaging only the
lowest k% log-probabilities in the sequence. Let Sy be the set of token positions corresponding to
the lowest k% log-probabilities. The score is:

SMin-k (T) = |S | > log P(wi|r<) (12)
teSk

Min-k %++. (Zhang et al., 2025b) The Min-k%++ method enhances Min-k% by first normalizing
the log-probability at each position ¢ using pre-computed mean (u;) and standard deviation (o)
statistics for that position. This accounts for positional biases in the model’s predictions. Let the
normalized score be z; = (log P(x¢|x<¢) — p1t)/0r. Let Sk be the set of positions corresponding to
the lowest k% normalized scores z;. The final score is:

Shin-ko++ |S | Z 2t (13)

FSD. (Zhang et al.} 2025a) Finetuning-based Score Difference (FSD) is a framework that enhances
any base scoring function S(-). It computes the difference between the score from the original model
(M) and the score from a model fine-tuned on non-member data (M"). A larger difference suggests
membership.

Sesp(x) = S(z; M) — S(x; M) (14)

B VISUALIZATION OF WEIGHT DECAY FUNCTIONS

In this section, we visualize weight decay functions (Linear, Exponential, or Polynomial), with
varying .. We use the following ranges:

* For Linear decay, the range for the coefficient « is: {0.1,0.3,0.5,0.7,1.0}

» For Exponential decay, the range for the coefficient « is:
{0.002, 0.004, 0.006, 0.008,0.01,0.02,0.04, 0.06, 0.08, 0.1}.

* For Polynomial decay, the range for the coefficient « is:
{0.1,0.3,0.5,0.7,1.0,1.2,1.5,1.8,2.0}.

Fig.[6] visualizes how the decay function becomes steeper as the hyperparameter (cv) increases.
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Figure 6: Visualization of different positional weight functions (Linear, Exponential, Polynomial)
with various hyperparameters. The x-axis represents the token position in a sequence of length 150,
while the y-axis shows the corresponding weight applied to that position.

C LIKELIHOOD-BASED SCORE FUNCTIONS WITH PDR

This section details how our Position Difference Reweighting (PDR) method is integrated with var-
ious likelihood-based MIA score functions. For a given input sequence = {1, ...,2r} of length
T, PDR introduces a positional weight w(t) for each token x; at position ¢. The final score is then
computed based on the weighted combination of token-level scores.

PDR-Loss. The standard Loss-based method, often conceptualized as Negative Log-Likelihood
(NLL), uses the average log-probability of a sequence as its score. With PDR, we apply positional
weights to the log-probabilities of each token before averaging. A lower weighted loss (which
corresponds to a higher score) suggests the sequence is a member. The PDR-enhanced score is:

SPDR-Loss ( Zw ~log P(x¢|w<y) (15)
=

PDR-Ref. The Reference-based method (Ref) calibrates the target model’s likelihood by subtracting
the log-likelihood from a smaller reference model (P.f). PDR is applied to the resulting difference
at each position. The score is defined as:

T
SeoR-ret (T) = Z - (log P(¢|v<;) — log Per(i|7<1)) (16)

PDR-Min-k%. Following the standard Min-k% procedure, we first identifies the token posi-
tions corresponding to the lowest k% log-probabilities. Then computes the final score by taking
a weighted average of the log-probabilities at only these selected positions, where each score is
multiplied by its corresponding positional weight w % Let Sy, be the set of token positions corre-
sponding to the lowest k% values of {log P( xt|x<t }i—1. The score is:

SPDR-Min-k% |Sk| > w(t) - log P(wi|z<) a7
teSk

PDR-Min-k %++. Similarly, for Min-k%-++, we first identify the positions of the lowest k% nor-
malized z-scores. The PDR-enhanced score is then the weighted average of these selected z-scores,

with positional weights applied before averaging. Let z; = (log P(x¢|x<t) — pt)/0¢, and let Sy be
the set of positions for the lowest k% values of {zt}thl. The score is:

Seoremin ke () = 7o Sk| Z (18)

PDR-FSD. Finetuning-based Score Difference (FSD) calculates the difference between a score
function S(-) computed before and after fine-tuning the model on non-member data. Our PDR
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method can be applied to the base score function S(-) used within the FSD framework. If we denote
the fine-tuned model as M’, the FSD score using a PDR-enhanced base method S, ppg is:

SPDR»FSD(33) = S+PDR($; M) - S+PDR(33; M/) (19)

where S,ppr (x; M) and S,ppr (x; M’) are the PDR-enhanced scores computed using the original
model M and the fine-tuned model M’, respectively.

The detailed process of applying our PDR method to various likelihood-based MIA methods is
outlined in Algorithm|I] This algorithm specifically illustrates the computation for combining PDR
with Loss, Ref, Min-k£%, and Min-k %++.

Algorithm 1 Overall algorithm for applying PDR to different logit-based MIA methods

1: Input:
Test dataset D = {x!, ..., zV};
Target model’s predictive distribution P(x¢|x<y);
A chosen decay function fyecay € {Linear, Exponential, Polynomial};
Decay hyperparameter « or p;
A base MIA scoring method M € {Loss, Ref, Min-K %, Min-K %++};
(Optional) Reference model Preg(x¢|x<1);
(Optional) Positional normalization stats {j;, o4} ;.
2: Output: A list of PDR-enhanced scores Sppr = {s1,..., SN}
3: Initialize an empty list Sppr.
4: fori=1to N do > Iterate over all sequences in the dataset
52 xt={zl,... xb}
// Step 1: Compute Positional Weights for the current sequence
6 fort =1to T do > Iterate over all positions in the sequence
7 if fyecay is Linear then
8: wt) 1 —a-+=+
9 else if fqccay is Exponential then
0 w(t) « exp(—a - (t —1))
1 else if fjccay is Polynomial then

P
I w(t) (1 - ;;_11)
13: end if
14: end for
// Step 2: Apply PDR to the chosen base MIA method

10:
1

N

15: Initialize current score s* < 0.

16: if M is Loss theg o

17: R f% Yoo w(t) - log P(z}|a,)

18: else if M is ReTf then o o

19: st &> w(t) - (log P(zilal,) — log Per(zilz,))

20: else if M is Min-k% then

21: Let Sy, be the set of token positions with the smallest k% log-probabilities.
22: s" ISilk\ > ies, w(t) - log P(xy|zt,)

23: else if M is Min-k%-++ then o

24: For each ¢, compute normalized score z; = M.

25: Let Sy be the set of token positions with the smallest k% normalized scores z;.
26: R ISilk\ D oies, Wt) - 2

27: endif

28: Append s* to Sppg.

29: end for

30: return Sppr
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D EXPERIMENTS SETTING DETAILS

D.1 BENCHMARKS

We focus on two commonly-used benchmarks for pre-training data detection. (1) WikiMIA (Shi
et al.l 2024) is the first benchmark for pre-training data detection, comprising texts from Wikipedia
events. The distinction between training and non-training data is established based on temporal
timestamps. To enable fine-grained evaluation, WikiMIA organizes data into splits according to
sentence length. It also includes two evaluation settings: the original setting evaluates the detec-
tion of verbatim training texts, while the paraphrased setting uses ChatGPT to paraphrase training
texts and evaluates on paraphrased inputs. (2) MIMIR (Duan et al., [2024)) is built upon the Pile
dataset (Gao et al., [2020). This benchmark poses greater challenges compared to WikiMIA, as
the shared dataset origin between training and non-training texts eliminates substantial distribution
shifts and temporal discrepancies (Duan et al., [2024).

D.2 BASELINES
We consider several representative methods as our baselines:
* Loss (Yeom et al., 2018) is a general technique that directly uses the loss of the model as

the detection score.

e Ref (Carlini et al., 2021) employs an additional, typically smaller, language model as a
reference to calibrate the likelihood of the input text.

« zlib and lowercase (Carlini et al., 2021)) use the compression entropy of zlib and the likeli-
hood of the lowercase text as references to calibrate the likelihood.

* Min-k% (Shi et al., |2024)) examines the exact probabilities of the token and averages a
subset of the lowest token scores from the input sequence.

* Min-k%++ (Zhang et al., [2025b) extends Min-k% by standardizing the log-probability
of each token using the mean and standard deviation of log-probabilities at that specific
position, making scores more comparable across different positions before applying the
Min-k% selection.

* FSD (Zhang et al.l 2025a)) involves fine-tuning the model on non-member samples and
using the difference in logit-based scores before and after fine-tuning for detection.

D.3 ENVIRONMENT

All experiments were conducted on the Ubuntu 20.04.4 LTS operating system, Intel(R) Xeon(R)
Gold 5220 CPU @ 2.20GHz with a single NVIDIA A40 48GB GPU and 512GB of RAM. The
framework is implemented with Python 3.9.0 and PyTorch 2.6.0. Other key packages include trans-
former 4.40.1, numpy 1.24 and accelerate 0.26.0.

D.4 MODELS

This section details the specific models used in our experiments. For the Ref method, the choice
of reference model depends on the dataset following (Carlini et al., 2021} [Shi et al., 2024} [Zhang
et al., [2025b)).On the WikiMIA dataset, we used the following reference models for different model
families:

* For the Pythia family, we used Pythia—-70M.

* For the Llama family, we used L1ama—-"7B.

¢ For the GPT family, we used GPT-Neo—-125M.

* For the Mamba family, we used Mamba—-130M.

For the OPT family, we used OPT—-350M.
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D.5 HYPERPARAMETER

For Min-k% and Min-k%-++, we consistently use & = 20% following common practice. In our
experiments, settings are as follows:

* LPDR: on the WikiMIA dataset, we generally set a = 1.0 for sequence lengths of 64 and
128. For the shorter length of 32, a smaller weight was preferred like 0.1 or 0.5. On the
Mimir dataset, we set o« = 1.0.

 EPDR: on the WikiMIA dataset, Ref and Min-k%++ set o = 0.02, where as Loss and
Min-£% set o« = 0.002. On Mimir, o = 0.002 was used.

* PPDR: on the WikiMIA dataset, we used p = 0.1 for length 32, but a much steeper decay
of p = 2.0 for lengths 64 and 128. On Mimir, we set a gentler p = 0.1.

A clear trend emerges from these results. On the WikiMIA dataset, longer sequences tend to benefit
from more aggressive, steeper weight functions, while shorter sequences and the more challenging
Mimir dataset favor gentler, more gradual decay.

D.6 FSD SETTINGS

For the Finetuning-based Score Difference (FSD) experiments, we follow the implementation details
from the original paper. To construct the non-member dataset for fine-tuning, we first randomly
sample 30% of the entire dataset. All non-member samples within this subset are then used as the
fine-tuning dataset. The remaining 70% of the data is reserved for testing. We use LoRA (Hu et al.,
2022al) to fine-tune the base model for 3 epochs with a batch size of 8. The initial learning rate is set
to 0.001 and is adjusted using a cosine scheduling strategy.

E WIKIMIA RESULTS

E.1 WIKIMIA RESULTS ON FIXED «

This section presents the comprehensive results on the WikiMIA benchmark. We report detailed AU-
ROC and TPR scores across all models and sequence lengths under both the original and paraphrased
settings. The AUROC results are shown in Tab. ] and Tab. [5] respectively, while the corresponding
TPR results are reported in Tab. [6 and Tab.[7]

Table 4: AUC-ROC on WikiMIA benchmark under original setting. w/ LPDR utilizes linear weights
for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polyno-
mial weights for reweighting.'Neighbor results are from Zhang et al.| (2025b).

Length Models Lowercase  Zlib 'Neighbor Loss w/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR w/EPDR w/PPDR Min-k% ++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 609 619 641 |60 615 609 612 |62 622 627 622 633 635 63.2 638 664 674 666 67.1
Mamba-2.88B 636 647 670 | 641 645 640 642|670 669 67.1 66.7 66.1 662 660 66.1 69.0 69.4 689 69.1
Pythia-2.8B 609 621 642 | 614 617 612 614 613 613 624 610 617 619 61.6 61.9 640 64.7 642 644
Pythia-6.9B 622 644 658 | 638 640 63.7 638 | 636 635 646 632 663 663 66.1 654 703 708 70.1 705

2 648 658 666 | 654 654 65.2 654 | 651 651 66.1 647 68.1 680 618 674 722 723 73 720
640 678 658 | 675 617 615 615 |579 578 572 576 668 668 668 66.6 844 859 862 850
641 698 676 | 694 696 694 605 635 635 628 632 693 69.4 69.3 692 844 854 855 84.6
OPT-66B 628 658 682 | 656 656 655 657 | 686 686 693 684 615 617 674 615 69.7 702 69.4 700
GPT:NeoX-20B | 683 693 702 | 69.1 689 689 690 | 676 674 66.7 67.0 722 720 718 711 75.1 752 744 750

T Average | 635 657 666 | 653 654 650 653 | 641 640 643 638 | 668 669 667 665 | 728 735729 I
Mamba-1.4B 570 604 606 | 582 597 582 607 | 606 611 619 603 617 629 620 628 612 68.2 679 682
Mamba-2.8B 617 630 636 | 612 630 612 636 | 643 661 666 655 65.1 662 654 653 706 704 700 696

Pythia-2 8B 578 606 613 | 584 601 584 608 596 605 622 600 612 633 614 6238 6438 659 65.1 656

Mamba-1.4B 585 656 648 | 633 636 629 642 | 620 641 66.7 65.4 66.8 655 669 648 617 702 69.8 705

Mamba-2.8B 624 685 677 | 663 667 65.9 669 669 694 77 702 703 693 704 68.0 719 734 711 723
Pythia-2.8B 595 650 652 628 631 626 633 596 614 635 622 669 643 66.6 632 663 668 66.4 66.9
605 676 675 | 651 656 648 661 | 633 651 675 657 695 6738 692 66.7 698 724 712 727
128 614 678 671 658 662 656 667 | 639 651 672 66.0 707 700 705 689 718 735 719 735
a 606 697 683 678 687 6138 691 626 649 622 64.1 715 712 721 709 8338 884 89.1 89.1
Llama-30B 590 718 722|703 710 703 72 (719 704 66.0 68.0 737 725 738 716 827 859 874 87.0
OPT-66B 589 673 617 | 655 667 65.6 616 | 669 686 703 69.0 706 70.6 713 703 711 729 719 724
GPT-NeoX-20B | 680 723 716 | 707 707 704 70 683 695 693 69.6 756 745 5.7 726 754 5.7 739 5.1

T Average | 610 684 680 | 664 669 662 674 | 650 665 6712 667 | 706 695 707 685 | 734 755 47755
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Table 5: AUC-ROC on WikiMIA benchmark under paraphrased setting. w/ LPDR utilizes linear
weights for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes
polynomial weights for reweighting. "Neighbor results are from Zhang et al.| (2025b).

Length Models Lowercase  Zlib  'Neighbor Loss w/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR w/EPDR w/PPDR Min-k% ++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 606 623 636 |613 618 613 615 623 623 627 624 629 63.1 629 634 657 663 653 662
Mamba-2.8B 635 648 663 | 645 6438 643 646 | 666 665 667 662 653 654 652 649 613 615 666 672
Pythia-2.8B 603 623 645 | 616 618 614 615 612 612 623 609 609 611 608 60.6 613 617 610 614
Pythia-6.9B 617 642 655 | 641 642 639 641 635 635 644 63.1 65.1 65.1 649 644 676 617 666 617

B Pythia-12B 644 659 668 | 656 657 654 657 | 649 649 645 612 672 669 662 694 694 68.1 69.1
Llama-138 632 683 650 682 | 562 561 662 662 663 65.6 827 843 833
Llama-30B 613 704 663 702|624 624 68.5 684 6.3 617 812 826 81.6
OPT-66B 623 653 667 653 | 680 680 658 6538 65.5 649 670 66.0 669

666 6.7
Aveage | 627 658 659 | 655 656 633 655 | CERE TTesa B
Mamba-1.4B 596 608 580 618 584 61.6 658
Mamba-2.8B 645 663 624 65.1 62.7 640 675
Pythia-2.8B 502 608 62.1
Pythia-6.9B 629 640 680

o Pythia-12B 632 645 675
Llama-13B 609 579 850
Llama-30B 653 628 824
OPT-66B 618 691 664

GPT-NeoX-20B 60 612 675
T Average | 633 B T
Mamba-1.4B 61.1
Mamba-2.8B 666
Pythia-2.8B 595
Pythia-6.9B 629

128 Pythia-12B 639
Llama-13B 563 696 640 699 | 597
Llama-308 553 715 672 720 | 698
OPT-66B 5716 669 634 619 | 670

GPT-NeoX-20B | 676 720 696 719 | 684
T Avernge | BCERCE o 643 B

Table 6: TPR on WikiMIA benchmark under original setting. w/ LPDR utilizes linear weights for
reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polynomial
weights for reweighting. TNeighbor results are from |Zhang et a1.| (]2025b[).

Length Models Lowercase Zlib Neighbor Loss W/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR w/EPDR w/PPDR Min-k% ++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 1.1 15.5 11.9 142 152 14.0 14.0 78 78 8.8 72 14.2 14.7 150 134 11.4 11.6 14.0 1.6
Mamba-2.8B 16.8 16.3 16.0 147 17.6 15.8 15.2 98 10.1 10.9 10.1 17.3 16.3 150 16.5 11.4 114 14.0 1.4
Pythia-2.8B 111 15.8 15.0 14.7 17.6 150 155 6.2 62 114 54 16.5 17.3 16.5 17.6 10.6 10.9 142 109
Pythia-6.9B 10.6 163 165 142 152 145 134 6.7 6.5 12.1 57 178 18.1 18.1 18.1 145 152 173 152

» Pythia-12B 163 171 194 (171 178 176 155 |90 88 11 98 2.0 27 233 2338 165 173 199 158
Liama-138 96 16 16 | 140 142 140 147 |47 49 52 49 189 199 202 212 331 0.1 434 382
Llama-30B 14 145 93 183178 183 189 [101 109 72 93 20 27 2.0 212 318 357 370 295
OPT-66B 1.4 16.5 21.7 142 152 15.2 16.0 1.1 10.6 10.1 217 21.7 209 20.2 11.9 14.0 152 147

227 19.1

2 T B REAY
Mamba-1.4B 173 |46 67 42 158 155 137 127 123 99
Mamba-2.8B 16.2 92 99 99 19.0 19.7 18.7 144 16.5 127
Pythia-2.8B 16.2 10.6 5.6 35 18.3 222 13.4 14.1 14.4 123
Pythia-6.9B 15.5 120 6.3 4.9 19.0 18.7 16.2 20.1 19.7 18.7

64 Pythia-12B 16.2 13.0 74 16.9 222 232 19.4
Llama-13B 144 42 49 313 419 447
Llama-308 187 106 88 338 37 451
OPT-66B 169 134 95 194 165 183

GPT-NeoX-20B 215|148 137 25 211

- gc’ii B o - TTa7 T -
Mamba-1.4B 115 10.1 9.4 10.1 137 122 115
Mamba-2.88 165|101 158 194 266 187 180
Pythia-2.88 144 101 100 144 173 137 165
Pythia-6.9B 158 [ 137 150 201 2 180 201

128 Pythia-12B 13.0 12.2 1.5 18.0 26.6 259 259
Llama-13B 15.8 10.8 58 38.1 56.8 576 547
Llama-30B 18.7 10.8 122 23 36.0 576 468
OPT-66B 20.1 158 20.1 165 18.0 19.4 18.0

GPT-NeoX-20B 165 173 245 216 26.6 18.7
T Average 34 X 3 174 157 1227 T30 T 85 266 205 244 204 7 217 256

Table 7: TPR on WikiMIA benchmark under paraphrased setting. w/ LPDR utilizes linear weights
for reweighting, w/ EPDR utilizes exponential weights for reweighting, w/ PPDR utilizes polyno-
mial weights for reweighting. TNeighbor results are from|Zhang et a1.| 2025b|).

Length Models Lowercase  Zlib  'Neighbor Loss w/LPDR w/EPDR w/PPDR Ref w/LPDR w/EPDR w/PPDR Min-k% w/LPDR w/EPDR w/PPDR Min-k%++ w/LPDR w/EPDR w/PPDR
Mamba-1.4B 132 132 72 142 160 129 155 | 59 59 96 62 19 14.0 124 150 78 14 116 98
Mamba-2.8B 150 127 93 165 178 163 173 | 10.1 93 1.9 106 19.9 202 204 152 11 129 11 98
Pythia-2.8B 1.6 145 85 42 155 15.0 142 | 72 72 129 75 163 168 152 158 10.9 10.6 109 1.4
Pythia-6.9B 119 127 9.6 150 140 142 145 | 62 57 129 57 217 220 27 18.1 145 165 155 150

B Pythia-12B 165 155 98 173 168 17.8 189 | 80 83 103 83 19.9 204 207 183 155 134 14.0 134
Llama-138 96 150 85 163 165 16.0 168 | 54 59 44 62 142 152 145 155 339 317 339 359
Llama-30B 132 152 93 147176 155 168 | 83 75 59 78 18.1 17.8 178 194 258 292 318 248
OPT-66B 129 168 121 152 176 155 155 | 93 96 109 85 168 183 18.1 147 163 163 17.1 134

GPT-NeoX-20B 145 196 152 189 199 152 150 142 140 19.1 19.4 194 19.6 134 132 19 11
Mamba-1.4B 127 | 81 109 63 77 148 92 162 70 8.5
Mamba-2.8B 158 | 113 148 95 116 19.7 123 183 95 14.1

151 | 130 127 74 9.9 183 13 187 8.1 99

144 | 162 155 56 127 183 13.0 173 102 127

o Pythia-12B 120 | 144
Llama-13B 148 | 46
Llama-30B 158 | 85
OPT-66B 141|137

GPT-NeoX-20B 187 | 155
144|115

A 158 | 108

Pythia-2.8B 130 | 72

Pythia-6.9B 130 | 86

128 Pythia-12B 122 | 86
Llama-13B 237 216 259 | 43
Llama-30B 259 15.1 230|173
OPT-66B 158 18.0 158 | 165

GPT-NeoX-20B
T Average | o )
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Table 8: Best AUROC results cross different o on WikiMIA benchmark 2024). w/
LPDR(Ours) utilizes linear weights for reweighting. Ori. and Para. denote the original and para-
phrased settings. For each method pair, the higher score is in bold. The performance gains of our
method on the average results are highlighted in purple.

Mamba-1.4B  Pythia-6.9B LLaMA-13B GPT-NeoX-20B OPT-66B Average
Len. Method Ori.  Para.  Ori. Para. Ori. Para. Ori. Para. Ori.  Para. Ori. Para.
Loss 61.0 613 638 641 675 680 69.1 68.6 65.6 653 65.4 65.5
w/LPDR (Ours) 619 62.0 640 642 677 682 69.1 68.6 656 652 65710 65.6101
Ref 622 623 63.6 635 579 562 67.6 66.7 68.6  68.0 64.0 63.3
3 w/LPDR (Ours) 622 624 635 635 578 561 674 66.6 68.6  68.1 63.9 63.3
Min-k% 633 629 663 651 668 662 722 69.6 67.5 658 67.2 65.9
w/LPDR (Ours) 640 635 663 651 670 663 720 69.4 677 658 674792 66.070!
Min-k%++ 664 657 703 676 844 827 751 69.7 69.7 67.0 732 70.5
w/LPDR (Ours) 67.6 663 70.8 67.8 863 845 752 69.7 702 67.1 74.010%  71.1%06
Loss 582 564 60.7 593 636 63.1 66.6 64.4 623 60.3 62.3 60.7
w/LPDR (Ours) 59.7 595 62.6 624 650 662 67.6 67.2 642 63.1 638110 637130
Ref 60.6 596 624 629 634 609 66.0 66.0 66.9 67.8 63.9 63.4
o4 w/LPDR (Ours) 61.1 60.8 633 640 633 609 66.8 67.2 68.2 69.1 645700 64.4710
Min-k% 61.7 580 650 61.1 660 635 722 66.1 66.5 62.5 66.3 62.2
w/LPDR (Ours) 63.5 61.8 672 651 674 672 729 69.1 68.5 660 67970 658736
Min-k%++ 672 622 716 642 843 788 765 66.2 69.8  63.3 739 66.9
w/LPDR (Ours) 683 655 72.7 683 872 843 772 68.2 706 66.6 752+'%  70.637
Loss 633 627 651 647 678 672 707 69.7 65.5 64.5 66.5 65.8
w/LPDR (Ours) 63.7 641 65.6 66.6 687 69.1 70.9 71.4 66.7 669 67.1100 67.671%
Ref 620 61.1 633 629 626 597 683 68.4 66.9 67.0 64.6 63.8
128 w/LPDR (Ours) 64.1 64.6 651 659 649 617 69.5 70.2 68.6 69.5 6647°% 66.472°
Min-k% 66.8 644 695 670 715 686 756 73.0 70.6  67.2 70.8 68.0
w/LPDR (Ours) 67.4 665 698 693 722 714 764 75.8 721 706 71.61%% 707727
Min-k%++ 677 633 698 659 838 762 754 70.6 71.1  67.0 73.6 68.6

w/LPDR (Ours) 702 682 724 722 884 843 759 72.6 733 695 76011 734%48

E.2 WIKIMIA RESULTS ON BEST «

In this subsection, we present the best-performing results for our LPDR method on the WikiMIA
benchmark. These results were obtained by selecting the optimal hyperparameter « for the linear
decay function from the search space detailed in Section [B] Table[8]showcases these results.

E.3 ROC CURVE VISUALIZATION

This section provides ROC curve visualizations to offer a more detailed view of our method’s per-
formance. Figure[7] plots the ROC curves for several baseline methods and their LPDR-enhanced
counterparts on the WikiMIA benchmark (length 128). Specifically, we show results for (a) Llama-
13B on the paraphrased setting and (b) Pythia-6.9B on the original setting. As illustrated, the PDR-
enhanced methods consistently offer a more favorable trade-off, achieving a higher True Positive
Rate (TPR) for any given False Positive Rate (FPR). This enhanced discriminative capability helps
to explain the AUROC gains reported throughout the paper.

E.4 STATIC ANALYSIS

To rigorously assess the statistical significance of our method’s improvements, we performed a non-
parametric bootstrap analysis based on the model prediction scores and ground-truth labels. Our
procedure is as follows: To rigorously assess the statistical significance of our method’s improve-
ments, we performed a non-parametric bootstrap analysis based on the model prediction scores and
ground-truth labels. Our procedure is as follows:

* Bootstrap Resampling: For each method, we generated N = 1000 bootstrap replicates.
Each replicate was created by sampling indices from the original test set with replacement,
forming a new dataset of the same size. A random seed was fixed to ensure reproducibility.
If a replicate happened to contain samples from only one class, it was discarded for that
specific calculation.

e Metrics and Confidence Intervals: For each of the IV bootstrap replicates, we calculated
the AUROC and TPR@0.5%FPR. After generating all replicates, we computed the mean
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ROC Curves ROC Curves
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(a) Llama-13B (WikiMIA-128 Para.) (b) Pythia-6.9B (WikiMIA-128 Ori.)

Figure 7: ROC curve comparison for various baseline methods and their PDR-enhanced versions on
the WikiMIA-128 benchmark.

and standard deviation of these metrics. The 95% confidence intervals were then derived
empirically from the 2.5th and 97.5th percentiles of the resulting distribution of 1000 metric
values.

* Paired Significance Testing: To evaluate if the improvements of our PDR-enhanced meth-
ods over their respective baselines are statistically significant, we conducted a paired boot-
strap test. This approach is crucial for reducing variance caused by the sampling process.
For each of the N = 1000 replicates, we used the exact same set of resampled indices
to evaluate both the baseline method and the PDR-enhanced method. We then calculated
the performance difference for that replicate: § = AUROCppgr — AUROCg,seline- A one-
sided P-value was subsequently derived by calculating the proportion of replicates where
this difference was not positive (§ < 0). This P-value directly tests the null hypothesis
Hy : AUROCppr < AUROCg,celine- A P-value less than 0.05 is considered to indicate a
statistically significant improvement.

The analysis reveals a clear trend: the effectiveness of PDR is strongly correlated with sequence
length. For short sequences (e.g., 32 tokens), the performance gains are marginal and not always
statistically significant. However, as the sequence length increases to 64 and 128, PDR’s improve-
ments become both substantial and statistically significant (p-value < 0.05) for most baselines. For
instance, on Pythia-6.9B with length 128, PDR boosts the AUROC of Min-k%++ from 65.9 to 72.2
(p-value < 0.001). This demonstrates that the positional prior becomes a more robust and discrim-
inative signal as more context becomes available in longer sequences, confirming that the observed
gains are not due to random noise.

21



Under review as a conference paper at ICLR 2026

Table 9: Performance comparison on Pythia-6.9B across different sequence lengths. We report AU-
ROC and TPR@0.5%FPR (mean =+ std). w/ LPDR denotes our method using linear weights. The
p-value indicates the statistical significance of the improvement of LPDR over the corresponding
baseline.

Length Method AUROC AUROCStd TPR@0.5%FPR TPRStd p-value

Zlib 64.2 2.0 12.7 2.6 -
Lowercase 61.7 2.1 11.9 32 -
Loss 64.1 2.0 15.0 2.8 -
w/ LPDR 64.2 2.0 15.0 2.8 0.275
o Ref 63.5 2.0 6.2 3.0 -
w/ LPDR 63.5 2.0 5.7 32 0.785
Min-k% 65.1 2.0 21.7 35 -
w/ LPDR 65.1 2.0 22.0 4.0 0.342
Min-k%-++ 67.6 2.0 14.5 32 -
w/ LPDR 67.8 2.0 14.5 2.6 0.218
Zlib 61.6 2.5 15.8 35 -
Lowercase 57.7 25 11.3 22 -
Loss 59.3 2.5 10.6 3.7 -
w/ LPDR 62.4 2.5 13.0 5.4 0.001
o4 Ref 62.9 2.4 16.2 2.8 -
w/ LPDR 64.0 23 7.7 3.6 0.152
Min-k% 61.1 2.5 12.7 3.0 -
w/ LPDR 65.1 2.4 18.3 52 0.019
Min-k%++ 64.2 24 10.2 32 -
w/ LPDR 68.3 24 12.7 4.6 0.006
Zlib 67.4 34 20.9 5.8 -
Lowercase 59.9 3.6 11.5 42 -
Loss 64.7 35 16.5 6.8 -
w/ LPDR 66.6 34 15.1 49 0.061
128 Ref 62.9 35 8.6 5.7 -
w/ LPDR 65.9 3.4 10.8 5.0 0.016
Min-k% 67.0 34 16.5 6.1 -
w/ LPDR 68.9 33 23.0 9.4 0.270
Min-k%-++ 65.9 35 18.0 7.1 -
w/ LPDR 72.2 33 18.7 6.9 0.001

F FSD RESULTS

This section presents the detailed results of combining our method with the Finetuning-based Score
Difference (FSD) framework on the WikiMIA dataset. Please refer to Tab. [I0] and Tab. [IT] for the
full experimental results.

Table 10: AUROC results on WikiMIA benchmark, compare with FSD

GPT-J-6B OPT-6.7B Pythia-6.9B LLaMA-7B NeoX-20B Average
Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD

Min-k% 67.9 93.4 62.5 89.4 66.7 91.9 65.4 88.4 73.4 90.1 67.2 90.6
w/ LPDR 68.1 94.0 62.9 89.6 67.0 92.6 66.7 88.8 73.5 91.0 67.6 91.2
w/ EPDR 67.1 94.1 62.1 90.0 66.0 92.8 65.8 89.1 72.1 91.3 66.6 91.4
w/ PPDR 67.9 93.8 62.9 89.5 66.9 922 66.6 88.9 73.3 90.7 67.5 91.0
Min-k%++ 67.6 81.6 63.0 83.3 68.1 81.5 79.9 91.1 74.4 77.8 70.6 83.1
w/ LPDR 68.3 84.8 63.6 84.5 69.4 85.0 80.8 92.1 74.8 81.7 71.4 85.6
w/ EPDR 68.2 83.7 63.3 84.5 69.2 83.6 80.8 91.8 74.8 81.2 71.2 85.0
w/ PPDR 68.3 85.5 63.7 84.6 69.5 85.8 80.7 92.1 74.6 82.4 71.4 86.1

Dataset Method

WikiMIA

Table 11: TPR results on WikiMIA benchmark, compare with FSD

GPT-J-6B OPT-6.7B Pythia-6.9B LLaMA-7B NeoX-20B Average
Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD Base w/FSD

Min-k% 17.2 55.6 13.9 40.6 17.2 57.6 14.7 32.6 24.7 36.2 17.5 445
w/ LPDR 18.0 61.9 16.4 419 18.2 61.1 16.4 33.7 27.7 52.9 19.3 50.3
w/ EPDR 16.5 60.1 13.5 45.4 16.5 59.8 17.0 33.6 21.5 50.8 17.0 49.9
w/ PPDR 17.9 59.9 15.4 39.9 19.9 61.9 18.5 31.6 27.0 50.3 19.7 48.7
Min-k%++ 15.9 242 11.7 29.0 19.0 25.0 20.4 39.1 17.5 10.5 16.9 25.6
w/ LPDR 18.9 322 12.9 35.7 19.0 37.4 222 48.4 19.7 155 18.5 339
w/ EPDR 19.0 39.6 12.2 324 19.4 349 20.2 46.4 19.0 18.7 18.0 34.4
w/ PPDR 18.9 34.9 12.9 36.7 17.0 40.4 24.0 51.6 19.7 17.4 18.5 36.2

Dataset Method

WikiMIA
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G MIMIR RESULTS

This section presents the complete AUROC and TPR results on the challenging MIMIR benchmark,
which is known for its minimal distribution shift and increased difficulty compared to WikiMIA.
The results in Tab. T2 and Tab. [T3] comprehensively demonstrate the performance of our proposed
PDR methods (LPDR, EPDR, PPDR) and all baselines on MIMIR, across different models and sub

datasets.

Table 12: AUROC results on the challenging MIMIR benchmark."Neighbor results are from Zhang
et al.| (2025b), induces significant extra computational cost than others (25X in this case), for which
reason we don’t run on the 12B model.

Method

Wikipedia

Github

Pile CC

PubMed Central

160M

1.4B

2.8B

6.9B

12B

160M

1.4B

2.8B

6.9B 12B

160M

1.4B

2.8B

12B

160M

1.4B

2.8B

6.9B

12B

Lowercase
Zlib
Neighbor

50.1
511
50.7

51.3
52.0
51.7

51.7
524
522

535
535
532

54.3
54.3

67.2
67.5
65.3

70.3
71.0
69.4

71.3
72.3
70.5

729 737
73.9 749

47.8
49.6
49.6

48.6
50.1
50.0

49.5
50.3
50.1

50.6
51.1

49.5
49.9
479

50.4
50.0
49.1

51.5
50.1
49.7

515
50.6
50.1

52.7
51.2

Loss

w/ LPDR
w/ EPDR
w/ PPDR

50.2
51.2
50.5
50.4

51.3
52.0
51.5
514

51.8
52.6
51.9
51.9

52.8
53.7
53.0
52.9

53.5

65.7
66.0
65.7
66.0

69.8
70.0
69.9
70.0

713
71.5
713
715

73.0 74.0

49.6
49.9
49.6
49.6

50.0
50.4
50.0
50.1

50.1
50.5
50.1
50.2

51.1

49.9
50.1
49.7
49.9

49.8
49.9
49.6
49.8

49.9
50.0
49.7
49.9

50.6
50.6
50.3
50.6

51.3

Min-k%

w/ LPDR
w/ EPDR
w/ PPDR

48.8
52.7
50.4

51.0
533

51.7
54.1
52.5

53.1
55.0
539
53.5

65.7
65.9
65.7
66.1

70.0
70.2
70.0
70.3

714
71.7
71.5
71.8

50.1
50.2
50.4
50.2

50.5
51.0

50.5
511
50.7
50.6

50.3
50.7
50.1
50.4

50.3
50.7

50.5
50.6

51.2
51.1
50.8
51.2

Min-k%++
w/ LPDR
w/ EPDR
w/ PPDR

64.7
64.6
64.7
64.8

69.6
69.5
69.7
69.8

70.9
70.6
70.8
71.0

49.7
49.7
49.9
49.7

50.2
50.4
50.0
50.2

52.8
53.6
52.8
53.1

Method

DM Mathematics

HackerNews

Average

160M

160M

1.4B

2.8B

6.9B 12B

160M

1.4B

2.8B

6.9B

160M

1.4B

2.8B

6.9B

Lowercase
Zlib
fNei ghbor

50.8
50.1
50.7

48.9
48.1
49.0

49.0
482
47.0

49.0
48.0
46.8

49.1 482
48.1 48.1
46.6 /

49.0
49.7
50.9

50.4
50.3
51.7

51.1
50.8
51.5

51.6
51.2
51.9

52.4
52.7
52.0

53.4
53.7
529

54.1
54.1
53.2

54.8
54.9
53.8

Loss

w/ LPDR
w/ EPDR
w/ PPDR

51.0
50.4
50.7

48.8
48.7
48.5
48.8

48.5
48.6
483

48.4
484
48.2
48.4

48.5 485
48.5 48.6
48.3 483
48.5 485

494
49.7
49.5
49.4

50.5
50.6
50.3
50.5

51.3
51.3
51.0
51.3

52.1
522
51.6
52.1

52.5
52.7
52.4
52.6

53.5
53.7
53.4
53.6

539
54.1
53.8
54.0

54.7
54.9
54.6

Min-k£%

w/ LPDR
w/ EPDR
w/ PPDR

49.3
49.5

493

49.1
49.3
49.1
49.2

492 492
49.5 495
49.2 492
49.3 493

50.6
50.3
50.5
50.5

535
52.4
529
53.5

524
53.0
52.6
52.6

53.7
54.3
53.8

54.2
54.6
54.3
544

Min-k%++
w/ LPDR
w/ EPDR
w/ PPDR

50.1
50.1

50.2

50.7
50.7
50.6
50.5

522
52.6
523
52.3

54.9
55.1
54.9
55.0

23



Under review as a conference paper at ICLR 2026

Table 13: TPR results on the challenging MIMIR benchmark. Neighbor results are from
(2025b), induces significant extra computational cost than others (25x in this case), for which
reason we don’t run on the 12B model.

Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B

Lowercase 4.6 45 49 52 56 244 322 343 381 386 34 53 53 62 64 35 5 53 6 52

Zlib 42 57 59 63 68 251 328 362 40.1 408 4 51 54 62 6.6 38 3.6 35 43 44
fNeighbor 4.0 45 49 58 /247 31.6 298 341 / 39 36 40 53 /39 37 45 45 /
Loss 42 47 47 51 5 226 321 33.6 385 407 31 5 48 49 5.1 44 43 49 5

w/LPDR 46 46 54 57 6 21 30.8 324 347 364 24 34 4 48 58
w/EPDR 45 48 51 55 57 215 31.6 326 366 387 32 45 46 47 52
w/PPDR 42 47 49 49 53 227 321 35 388 398 3 43 47 53 6.1

46 45 49 55

42 41 44 52

4
4.1
3.7
4.1
Min-k% 48 56 5 6.1 58 226 315 34 39 407 35 45 48 5 48 4.7
w/LPDR 55 64 62 62 72 214 309 327 36 367 23 29 31 24 36 6 K . .
w/ EPDR 5 59 59 58 68 204 31 329 37.1 384 33 44 44 41 52 4 46 49 55 58
w/PPDR 53 53 54 56 56 229 319 346 39.1 402 38 45 42 47 52 53
4.8
4.2
4.9
5.1

Min-k%++ 52 53 59 7 78 252 33 342 382 401 5 37 37 48 46
w/LPDR 46 6 63 75 79 226 306 327 35 397 47 29 34 4 5

w/EPDR 51 59 6.6 7.8 82 24 33 335 374 407 46 34 36 43 49
w/PPDR 52 5 55 7.7 75 262 342 349 388 40 52 35 33 43 46

ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 6.9B 12B 160M 14B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B
Lowercase 5.1 47 54 56 52 56 62 55 68 58 52 52 63 66 64 78 97 101 113 111

Zlib 29 43 41 46 47 41 5 46 43 43 5 55 58 56 58 74 94 100 110
TNeighbor 47 48 44 41 /5.6 44 45 45 / 65 52 53 57 /76 83 82 Ol /
Loss 4 48 46 54 56 38 43 41 41 4 5 48 55 59 68 70 92 94 105 109

w/LPDR 34 38 28 41 38 36 37 37 35 36 48 56 55 6 52 65 85 88 96 102
w/EPDR 35 39 4 43 46 48 45 47 46 45 58 6.1 6 6 62 69 90 93 10.1 10.6
w/PPDR 44 42 48 55 53 39 42 38 41 38 55 56 54 59 61 71 90 9.6 105 109

Min-k% 44 43 45 54 53 39 41 46 43 46 42 46 57 63 61 73 91 9.6 108 11.0
w/ LPDR 4 41 37 46 46 4 41 46 39 36 47 63 41 6 57 72 90 93 98 10.1
w/EPDR 35 35 4 42 5 43 42 45 45 47 48 55 5 55 54 68 89 94 102 11.0
w/PPDR 46 38 44 5 6.1 38 34 39 41 38 45 47 55 68 57 176 90 95 106 11.2

Min-k%++ 54 47 62 68 7 44 48 54 45 54 44 35 46 57 57 83 96 100 112 119
w/LPDR 46 52 68 7.6 86 44 44 44 45 47 53 39 48 68 72 75 93 99 111 120
w/EPDR 51 5 7.1 73 64 46 48 48 45 5 43 47 54 62 64 81 9.6 102 114 118
w/PPDR 55 46 64 73 67 43 48 52 46 51 43 37 51 66 58 86 98 101 114 118
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H COMPARE WITH FITTED LOSS SLOPE

Inspired by Context-Aware MIA (CAMIA) (Chang et al.} 2025)), which designs multiple dynamic
signals for detection, we explore a variant based on one of its key signals: the loss decreasing rate.
Specifically, for each sample x, we compute a slope by performing a linear regression of its token-
level losses L (x+) against their positions ¢. The slope is calculated as:

_ Sy (t = ) (Le(ze) — L)
23:1(75 - 62

fSlope(m) (20)

witht =TH and L = 1 S Li(zy).

We then use this dynamically computed slope as the decay parameter « in our reweighting scheme,
referring to this method as “w/ fitted slope PDR”. We compare this dynamic approach with our
fixed-hyperparameter LPDR. Table [T4]shows the results on the WikiMIA benchmark across Pythia-
2.8B, 6.9B, and 12B models, while Table ﬂjl presents results on the MIMIR (DM Mathematics,
Github, Pile CC) datasets.

The analysis reveals a consistent trend: while the sample-fitted slope method is dynamic, it often
provides only marginal or inconsistent improvements over the baselines. This is because the slopes
learned from individual samples tend to be relatively gentle or “smooth,” resulting in weights that
do not provide a strong enough reweighting signal to significantly enhance the distinction between
member and non-member samples. In contrast, our LPDR, which often employs a steeper, pre-
defined decay, more effectively amplifies the memorization signals present in the initial tokens.
As shown in the tables, our LPDR method consistently and more substantially outperforms both the
original baselines and the dynamic “w/ fitted slope PDR” approach across most settings, highlighting
the effectiveness of a robust, albeit simpler, positional prior.

Table 14: AUROC comparison on the WikiMIA benchmark. For each group of three methods,“w/ fitted
LPDR” denotes applying LPDR with slope fitted on single test sample loss, while “LPDR” uses a fixed default
hyperparameter. The highest score per column is in bold. Our method’s rows are highlighted in gray.

Pythia-2.8B Pythia-6.9B Pythia-12B Average

Len. Method Ori.  Para.  Ori. Para. Ori. Para. Ori. Para.
Loss 6137 61.57 63.83 6407 6544 65.60 63.55 63.75
wifitted slope PDR  61.42 61.60 63.79 64.06 6533 65.60 63.52 63.75
w/LPDR 61.73 61.83 6397 64.20 6545 6570 63.71 63.91
Ref 61.34 61.17 6357 63.52 6512 6486 63.34 63.19
wifitted slope PDR 6122 61.11 63.44 6331 6495 64.69 6320 63.04

0 w/LPDR 6134 61.18 63.55 6347 65.09 6490 63.33 63.18
Min-k% 61.68 60.89 66.28 6509 68.07 6720 6535 64.39
wifitted slope PDR ~ 61.56 60.81 66.19 6498 6788 67.00 6521 64.26
w/LPDR 6191 61.12 6633 65.15 68.02 6720 6542 64.49
Min-k%++ 6397 6133 7027 6756 7224 6940 68.83 66.10
wifitted slope PDR  64.08 61.48 70.37 6770 7232 69.56 6892 66.24
w/LPDR 64.74 61.66 7085 67.74 7226 69.36 69.28 66.25
Loss 5844 5649 60.74 5928 61.86 60.02 60.35 58.60
wifitted slope PDR  58.59 56.78 60.89 59.60 6197 60.23 6048 5887
w/LPDR 60.09 59.35 62.58 62.41 6347 6297 62.05 61.57
Ref 59.62 5922 62.38 6289 63.04 63.18 61.68 61.76
wi/fitted slope PDR  59.77 59.34 6251 63.10 63.16 6333 61.81 61.92

64 w/LPDR 60.52 60.82 6334 64.00 64.05 64.51 62.64 63.11
Min-k% 6120 56.68 64.97 61.07 66.50 6249 6422 60.08
wifitted slope PDR ~ 61.39 57.03 65.19 6140 66.69 62.79 64.42 60.41
w/LPDR 63.26 61.59 66.67 65.07 67.94 66.08 6595 64.25
Min-k%++ 64.79 5771 71.64 6423 7262 6509 69.68 62.34
wifitted slope PDR 6491 57.90 71.82 64.53 7275 6534 69.83 62.59
w/LPDR 6594 6195 72.08 68.30 72.76 6822 70.26 66.16
Loss 6281 6231 65.08 64.66 6577 6540 6455 64.12
wifitted slope PDR ~ 62.85 62.32 65.07 64.82 6581 6547 64.58 64.20
w/LPDR 63.12 63.97 65.64 66.63 66.25 67.01 65.00 65.87
Ref 59.57 59.54 6327 6292 6393 6391 6226 62.12
wifitted slope PDR  59.84 59.80 63.47 6329 64.02 64.06 62.44 6238

128 w/LPDR 6142 62.56 65.07 6590 65.05 66.16 63.85 64.87
Min-k% 66.86 64.74 69.47 67.03 70.68 68.54 69.00 66.77
wifitted slope PDR  66.90 64.87 69.46 6721 70.71 68.71 69.02 66.93
w/LPDR 64.27 6346 67.83 68.88 6995 69.08 67.35 67.14
Min-k%-++ 66.32 62.67 69.77 6588 7183 67.70 69.31 6542
wifitted slope PDR ~ 66.40 62.75 69.82 66.09 7197 67.81 69.40 6555
w/LPDR 66.80 6577 7239 7220 73.50 7219 7090 70.05
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Table 15: AUROC results on sub MIMIR datasets (DM Mathematics, Github, Pile CC). “w/ fitted
LPDR” denotes applying LPDR with slope fitted on single test sample loss, while “LPDR” uses
a fixed default hyperparameter. Results are bolded if they improve upon their respective baseline
(Loss, Min-k%, or Min-k++).

DM Mathematics Github Pile CC
Method 160M 14B 2.8B 69B 12B 160M 14B 2.8B 69B 12B 160M 14B 2.8B 6.9B 12B
Loss 48.84 48.53 48.36 48.47 4847 65.75 69.82 71.29 73.01 73.99 49.56 50.01 50.09 50.69 51.07
w/ fitted LPDR 48.84 48.53 4836 48.47 48.47 65.76 69.83 71.29 73.01 74.00 49.56 50.02 50.09 50.69 51.07
LPDR 48.72 48.60 48.40 48.51 48.57 66.04 70.04 71.50 72.99 73.94 49.91 50.43 50.49 51.05 51.39
Min-k% 49.27 49.29 49.10 49.16 49.21 65.65 69.96 71.44 73.26 74.24 50.10 50.47 50.46 51.20 51.48
w/ fitted LPDR  49.28 49.29 49.09 49.16 49.21 65.68 69.99 71.46 73.27 74.25 50.09 50.48 50.46 51.21 51.48
LPDR 49.52 49.70 49.25 49.47 49.54 65.93 70.20 71.66 73.16 74.09 50.24 51.00 51.07 51.65 51.94

Min-k%++ 50.12 50.17 50.21 50.52 50.42 64.66 69.63 70.88 72.80 74.18 49.67 50.04 49.78 51.19 51.75
w/ fitted LPDR  50.12 50.17 50.21 50.52 50.43 64.67 69.64 70.89 72.81 74.19 49.68 50.05 49.77 51.20 51.76
LPDR 50.11 50.32 50.16 50.37 50.50 64.59 69.46 70.57 7229 73.69 49.69 50.63 49.94 51.84 51.87

I ENTROPY ANALYSIS WITH VARYING PREFIX LENGTH

To provide a more rigorous theoretical foundation for our work, we analyze the entropy of the same
token conditioned on prefixes of varying lengths. According to the principles of information theory,
conditioning on more information cannot increase entropy. This implies that for a given token z,
its predictive entropy should monotonically decrease as the length of its conditioning prefix
increases:

H(zrlrr—1) > H(zp|ler—o,x7-1) > -+ > H(zp|zy, ... 27-1). 2D

As visualized in Figure[8] we plot the entropy of z1 against the context length & of member samples
and non-member samples. We observe that as the prefix length grows, the entropy for predicting the
final token decreases for both member and non-member samples. Besides, member samples exhibit a
rapid entropy drop-off in the early context window (k£ < 10), while Non-member samples maintain
higher entropy for longer. This discriminative gap in the early positions provides the empirical
justification for PDR’s decay weighting scheme.
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Figure 8: Visualization of last token entropy changes by given different length prefix on WiliMIA-
32 benchmark based on Pythia-6.9B for (a) member sample and (b) non-member sample.

J TRUNCATION ANALYSIS

We compare PDR to a simple Truncation baseline, which discards a suffix of the sequence before
scoring. We varied the truncation percentage (the portion of the sequence retained) to find the
optimal performance for each base method. As shown in Figure[9] the optimal truncation percentage
is highly inconsistent across different methods, making it difficult to find a single best setting. In
contrast, our LPDR method (with a fixed @ = 1.0, shown as dashed lines) robustly outperforms
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even the best possible truncation result for all base methods. This demonstrates that PDR’s “’soft”
reweighting is more effective and reliable than the "hard” cutoff of truncation.

Loss Ref
—— Truncated
64 c 66
------ Baseline
--- w/LPDR e s (S
62
60
58 —— Truncated
Baseline
--- w/LPDR
56
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Min-k% Min-k++
70
68
[ - e it (3 e
64
66
> 62
§ ol N
o © 64
258
56 62
54 Truncated —— Truncated
52 Baseline 607 X e Baseline
--- w/LPDR --- w/LPDR
50
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Truncation Ratio Truncation Ratio

Figure 9: Performance comparison between the Truncation baseline and our LPDR method (o =
1.0) on the WikiMIA dataset (length 64, Pythia-12B). The x-axis represents the percentage of the
sequence retained for the truncation method. Solid lines show the performance of base methods
with truncation, while dashed lines show the performance of the same base methods enhanced with
LPDR.

K SAMPLE REWEIGHTED ANALYSIS

This section presents additional visualizations of its effect on individual samples. We specifically
select pairs of member and non-member samples that are challenging for the baseline Min-k%
method, meaning their original scores are very close and difficult to distinguish.

Figures 10} [TT] and[T2]illustrate how applying our LPDR, EPDR, and PPDR methods, respectively,
alters the token-level scores for these ambiguous pairs. In each case, the reweighting process am-
plifies the scores of the member samples more significantly than the non-member samples by em-
phasizing the low-probability tokens that appear early in the sequence. This creates a more distinct
separation between them, demonstrating how PDR enhances detection accuracy at the individual
sample level.

Min-k% Score: -5.899 w/ LPDR Score: -2.719 Min-k% Score: -5.900 w/ LPDR Score: -3.852
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Figure 10: Visualization of token-level score changes for (a) member sample and (b) non-member
sample after applying LPDR to the Min-k% method.
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Figure 11: Visualization of token-level score changes for (a) member sample and (b) non-member
sample after applying EPDR to the Min-k% method.
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Figure 12: Visualization of token-level score changes for (a) member sample and (b) non-member
sample after applying PPDR to the Min-k% method.

L. ANALYSIS OF SELECTED TOKEN DISTRIBUTION AND CASE STUDY

We analyze token-level probability distributions to explain PDR’s effectiveness. Non-member sam-
ples often feature high-surprise factual tokens (e.g., dates) early in the sequence, whereas member
samples, being memorized, show low surprise on these tokens. Standard methods dilute this early
signal by averaging across the sequence. PDR, by assigning higher weights to the prefix, acts as
a "matched filter”: it amplifies the informative early tokens while suppressing the noise from later
function words.

Error Study (Figure [I5): While PDR shows consistent improvements in most cases, examining
failure cases provides valuable insights into its limitations. Figure[T3]shows challenging examples:
(a) amember sample that remains misclassified after PDR, and (b) a non-member incorrectly pushed
towards a higher score. A key observation is that the highlighted Top-k tokens (yellow background)
are distributed uniformly across the sequence rather than concentrated at the start. This anomaly
suggests weak memorization—the model encountered the text but formed no strong memory trace,
possibly due to low training frequency, generic content (common function words lacking distinctive
features), or sentence fragmentation where the dataset’s fixed-length segmentation splits sentences
mid-stream, causing the “new sentence start” in the latter half to carry unexpectedly high informa-
tiveness and scatter the Top-k tokens. When such positional patterns are absent, PDR’s monotonic
decay assumption becomes less effective or even counterproductive. These cases highlight poten-
tial improvements: adaptive weighting that detects weak memorization or sentence boundaries, and
sentence-aware segmentation to preserve natural information flow.
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Figure 13: Top k token frequency comparison between member and non-member samples on
LLaMA-13B model with 64-token input length on WikiMIA dataset.
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sample and (b) non-member sample after applying PPDR to the Min-k% method.
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Figure 15: isualization error case about token-level score changes and highlight top & tokens for (a)
member sample and (b) non-member sample.

M SCORE DISTRIBUTION.

To visually demonstrate the effectiveness of our method, we analyze the score distributions of mem-
ber and non-member samples before and after applying PDR. Figure. [I6]illustrates this comparison
for the Min-k%++ method on the LLaMA-13B model, using the WikiMIA dataset with a sequence
length of 64. For a clearer visualization, the scores are normalized to a range of [0,1]. As the figure
shows, the original Min-k%++ method already provides some separation between the two distribu-
tions. However, after applying our Linear PDR (LPDR), the distributions are pushed further apart.
The member sample distribution shifts noticeably towards higher scores, while the non-member dis-
tribution remains relatively stable. This increased separation makes it easier to distinguish between
member and non-member samples, directly contributing to the improved AUROC performance we
observe in our experiments.
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Figure 16: Member and non-member score distribution comparison between Min-k% and LPDR-
Min-k% on LLaMA-13B model with 64-token input length on WikiMIA dataset. Our PDR method
enhances the separation between member and non-member distributions.
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N LLM USE

LLMs were used solely for polishing the writing, e.g., improving clarity and readability. All research
ideas, methods, and results were entirely developed and conducted by the authors. The authors take
full responsibility for the content of the manuscript.
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