
Class-attribute Priors: Adapting Optimization to 1

Heterogeneity and Fairness Objective 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Modern classification problems exhibit heterogeneities across individual classes: Each class 5

may have unique attributes, such as sample size, label quality, or predictability (easy vs 6

difficult), and variable importance at test-time. Without care, these heterogeneities impede 7

the learning process, most notably, when optimizing fairness objectives. We propose an 8

effective and general method to personalize the optimization strategy of individual classes 9

so that optimization better adapts to heterogeneities. Concretely, class-attribute priors (CAP) 10

is a meta-strategy which generates a class-specific strategy based on attributes of that class. 11

This meta approach leads to substantial improvements over naive approach of assigning 12

separate hyperparameters for each class. We instantiate CAP for loss function design and 13

posthoc logit adjustment, with an emphasis on label-imbalanced problems. We show that 14

CAP is competitive with prior art and its flexibility unlocks noticeable improvements for 15

fairness objectives beyond balanced accuracy. Finally, we evaluate CAP on problems with 16

label noise as well as weighted test objectives to showcase how CAP can jointly adapt to 17

different types of heterogeneities. 18

1 Introduction 19

Contemporary machine learning problems arising in natural language processing and computer 20

vision often involve large number of classes to predict. Collecting high-quality training datasets 21

for all of these classes is not always possible, and realistic datasets [25, 10, 11] suffer from class- 22

imbalances, missing or noisy labels (among other application-specific considerations). Optimizing 23

desired accuracy objectives with such heterogeneities poses a significant challenge andmotivates the 24

contemporary research on imbalanced classification, fairness, and weak-supervision. Additionally, 25

besides distributional heterogeneities, we might have objective heterogeneity. For instance, the 26

target test accuracymay be a particular weighted combination of individual classes, where important 27

classes are upweighted. 28

A plausible approach to address these distributional and objective heterogeneities is designing 29

optimization strategies that are tailored to individual classes. To this end, arguably the simplest 30

approach is assigning individual weights to classes during optimization. The recent proposals on 31

imbalanced classification [23, 4] can be viewed as generalization of weighting and can be interpreted 32

as developing unique loss functions for individual classes. More generally, one can use class-specific 33

data augmentation schemes, regularization or even optimizers (e.g. Adam, SGD, etc) to improve 34

target test objective. While promising, this approach suffers when there are a large number of 35

classes 𝐾 : naively learning class-specific strategies would require O(𝐾) hyperparameters (O(1) 36

strategy hyperparameter per class). This not only creates computational bottlenecks but also raises 37

concerns of overfitting for tail classes with small sample size. 38

To overcome such bottlenecks, we introduce the Class-attribute Priors (CAP) approach. Rather 39

than treating hyperparameters as free variables, CAP is a meta-approach that treats them as a 40

function of the class attributes. As we discuss later, example attributes A of a class include its 41

frequency, label-noise level, training difficulty, similarity to other classes, test-time importance, and 42

more. Our primary goal with CAP is building an attribute-to-hyperparameter function A2H that 43

Submitted to AutoML 2023 © 2023 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Full Dataset

Class 1

Class 2

Class n

… …

=
Train

S

Objective

Attributes
Function CAP

Dictionary

Heterogeneous

Class distribution
Accuracy Previous class distribution

Target class distribution

Sample size & Distribution shift Label qualitySample size & Predictability

Instantiations of CAP:
1. Bilevel optimization of loss function

2. Post-hoc optimization of logits

Distinct Heterogeneities (Sec 4.2):

2�Class frequency
2�Prediction difficulty

2�Variable class importance

2�Label noise level

Distinct Fairness Objectives (Sec 4.3):

2�Balanced error

2�Quantiles or Conditional value at Risk
2�Standard deviation of class-conditional errors

2�Weighted error

Figure 1: Left hand side: CAP views the global dataset as a composition of heterogeneous sub-datasets

induced by classes. We extract high-level attributes from these classes and use these attributes

to generate class-specific optimization strategies (which correspond to hyperparameters). Our

proposal is efficiently generating these hyperparameters based on class-attributes through a

meta-strategy. Right hand side: We demonstrate that CAP leads to state-of-the-art strategies

for loss function design and post-hoc optimization. CAP can leverage multiple attributes to

flexibly optimize a variety of test objectives under heterogeneities.

generates class-specific hyperparameters based on the attributes associated with that class. This 44

process infuses high-level information about the dataset to accelerate the design of class-specific 45

strategies. The A2H maps the attributes A to a class-specific strategy S . The primary advantage is 46

robustness and sample efficiency of A2H, as it requires O(1) hyperparameters to generate O(𝐾) 47

strategies. The main contribution of this work is proposing CAP framework and instantiating it for 48

loss function design and post-hoc optimization which reveals its empirical benefits. Specifically, 49

we make the following contributions: 50

1. Introducing Class-attribute Priors (Sec 3). CAP is a meta approach that utilizes the high-level 51

attributes of individual classes to personalize the optimization process. Importantly, CAP is 52

particularly favorable to tail classes which contain too few examples to optimize individually. 53

2. Incorporating CAP improves existing approaches (Sec 4). By integrating CAP with existing 54

label-imbalanced training methods, CAP not only improves their performance but also increases 55

their stability, notably, AutoBalance [23] and logit-adjustment loss [25]. 56

3. CAP adapts to fairness objective (Sec 4.2). CAP’s flexibility is particularly powerful for non- 57

standard settings that prior works do not account for: CAP achieves significant improvement 58

when optimizing fairness objectives other than balanced accuracy, such as standard deviation, 59

quantile errors, or Conditional Value at Risk (CVaR). 60

4. CAP adapts to class heterogeneities (Sec 4.3). CAP can also effortlessly combine multiple at- 61

tributes (such as frequency, noise, class importance) to boost accuracy by adapting to problem 62

heterogeneity. 63

Finally, while we instantiate CAP for the problems of loss-function design and post-hoc optimiza- 64

tion, CAP-style meta-optimization approaches can have far-reaching consequences to the design 65

of optimal augmentations, regularization, and optimizers. This work makes key contributions to 66

fairness and heterogeneous learning problems in terms of methodology, as well as practical impact. 67

An overview of our approach is shown in Fig. 1 68

1.1 Related Work 69

The existing literature establishes a series of algorithms, including sample weighting [21, 35, 4], 70

post-hoc tuning [25, 41, 17, 15, 38], and loss functions tuning [3, 19, 25, 16, 6, 33, 42], etc. This 71

work aims to establish a principled approach for designing a loss function for imbalanced datasets. 72

Traditionally, a Bayes-consistent loss function such as weighted cross-entropy [37, 28] has been 73

used. However, recent work shows it only adds marginal benefit to the over-parameterized model 74

due to overfitting during training. [25, 38, 19] propose a family of loss functions formulated as 75

2

ℓ (𝑦, 𝑓 (𝒙)) = log

(
1 +∑

𝑘≠𝑦 𝑒
𝒍𝑘−𝒍𝑦 · 𝑒𝚫𝑘 𝑓𝑘 (𝒙)−𝚫𝑦 𝑓𝑦 (𝒙)

)
with theoretical insights, where 𝑓 (𝒙) denotes 76

the output logits of 𝒙 and 𝑓𝑦 (𝒙) represents the entry that corresponds to label 𝑦. Above methods 77

determine the value of 𝒍 and 𝚫 to re-weight the loss function so the optimization generates a 78

class-balanced model. In addition to these methods, [23] proposes a bilevel training scheme that 79

directly optimizes 𝒍 and 𝚫 on a sufficient small imbalanced validation data without the prior 80

theoretical insights. However, the theory-based methods require expertise and trial and error to 81

tune one temperature variable, making it time-consuming and challenging to achieve a fine-grained 82

loss function that carefully handles each class individually. Although the bilevel-based method 83

consider each class separately and personalizes the weight using validation data, optimizing the 84

bilevel problem is typically time-consuming due to the computation of the Hessian-vector-product. 85

Bilevel optimization is also brittle, especially when [23] optimizes the inner loss function, which 86

continually changes the inner optima during the training. 87

Concerning the general goal, which is to ensure fairness with respect to protected target classes, 88

several suggestions have been made in the literature [32, 20]. Balanced error and standard deviation 89

[2, 1] between subgroup predictions are widely used metrics. However, they are insensitive to 90

certain types of imbalances. The Difference of Equal Opportunity (DEO) [19, 11] was proposed 91

to measure true positive rates across groups. [39] focus on disparate mistreatment in both false 92

positive rate and false negative rate. Many modern machine learning tasks require models with 93

high tail performance, focusing on certain underrepresented groups that normal machine learning 94

models often neglect. Recent work has designed techniques for learning models with high tail 95

performance instead of merely performing well on average [12, 30, 31, 23, 18]. The worst-case 96

subgroup error is commonly used in recent papers [19, 30, 31]. Another popular metric to evaluate 97

the model’s tail performance is the CVaR (Conditional Value at Risk) [36, 40, 26], which computes 98

the average error over the tails. Previous works [12, 8, 14, 26, 22] also measure tail behaviour using 99

Distributionally Robust Optimization (DRO). 100

2 Problem Setup 101

This paper investigates the advantages of utilizing attribute-based personalized training approaches 102

for addressing heterogeneous classes in the context of class imbalance, label noise, and fairness 103

objective problems. We begin by presenting the general framework, followed by an examination of 104

specific fairness issues, which encompass both distributional and objective heterogeneities. 105

Consider a multi-class classification problem for a dataset (𝒙𝑖 , 𝑦𝑖)𝑁𝑖=1
sampled i.i.d from a dis- 106

tribution with input space X and 𝐾 classes. Let [𝐾] denote the set {1..𝐾} and for the training 107

sample (𝒙, 𝑦), 𝒙 ∈ X is the input and 𝑦 ∈ [𝐾] is the output. 𝑓 : X → R𝐾 represents the model and 108

𝒐 is the output logits. 𝑦𝑓 (𝒙) = arg max𝑘∈[𝐾]𝒐𝑘 is the predicted label of the model 𝑓 (𝒙). We also 109

denote 𝐾 × 𝐾 identity matrix by 𝑰𝐾 . Moreover, in the post-hoc setup, a logit adjustment function 110

𝑔 : R𝐾 → R𝐾 is employed to modify the logits, resulting in adjusted logits �̂� = 𝑔(𝒐). 111

The primary objective is to train amodel that minimizes a specific classification errormetric. The 112

class-conditional errors are calculated over the data distribution as Err𝑘 = P
[
𝑦 ≠ 𝑦𝑓 (𝒙) | 𝑦 = 𝑘

]
. 113

The standard misclassification error is denoted by Errplain = P
[
𝑦 ≠ 𝑦𝑓 (𝒙)

]
. In situations with label 114

imbalance, Errplain might be dominated by the majority classes. To this end, balanced classification 115

error Errbal = (1/𝐾)∑𝐾
𝑘=1

Err𝑘 is widely employed as a fairness metric. We will later introduce 116

various objectives that aim to achieve different fairness goals. A comprehensive list of the objectives 117

examined in this study can be found in Appendix A. 118

3 Proposed Approach: Class-attribute Priors (CAP) 119

3.1 Class Attributes and Adaptation to Heterogeneity 120

We start by introducing the CAP approach at a conceptual level and provide concrete applications of 121

CAP to loss function design in Section 3.2. Recall that our high-level goal is designing a map from 122

3

Train dataset

Attributes

…
…
…

… … … ……

𝐾

𝑛

Feature dictionary

…

Hyperparameter

𝑀

𝑠

=

Bi-
level

Post-
hoc

A2H

Evaluate

Test
dataset

Train
dataset

… …

𝑀

𝐾

…
…

…
…

M ≪ 𝐾

…
…

…
…

𝑀

𝐾

……… …

…
…
…

𝑠

𝐾

…

⟹

Figure 2: The overview of CAP approach. CAP is the overall framework proposed in our paper, withA2H
being the core algorithm. A2H is a meta-strategy that transforms the class-attribute prior

knowledge into hyper-parameter S for each class through a trainable matrixW, forming

a training strategy that satisfies the desired fairness objective. The left half of the figure

specifically illustrates how our algorithm calculates and trains the weights. In the first stage,

we collect class-related information and construct an attribute table of 𝑛 ×𝐾 dimension. This

is a general prior, which is related to the distribution of training data, the training difficulty

of each class, and other factors. Then, he first step of A2H is to compute a 𝐾 ×𝑀 Feature

Dictionary D = F (A) by applying a set of functions F . We remark that 𝑀 << 𝐾 and 𝑀

is only related to the number of attributes 𝑛 and |F |, making it a constant. Therefore, the

search space is O(1). Then, in the second step, the weight matrix W is trained through

bi-level or post-hoc methods to construct the hyperparameter S .

A2H that takes attributes A𝑘 of class 𝑘 and generates the hyperparameters of the optimization 123

strategy S𝑘 . Each coordinate A𝑘 [𝑖] characterizes a specific attribute of class 𝑘 such as label 124

frequency, label noise ratio, training difficulty shown in Table 1. To model A2H, one can use any 125

hypothesis space including deep nets. However, since A2H will be optimized over the validation 126

loss, depending on the application scenario, it is often preferable to use a simpler linearized model. 127

Linearized approach. Suppose each class has 𝑛 attributes with A𝑘 ∈ R𝑛 . We will use a nonlinear 128

feature map F (·) : R𝑛 → R𝑀 where𝑀 is the embedding space. Suppose the class-specific strategy 129

S𝑘 ∈ R𝑠 . Then, A2H can be parameterized by a weight matrix𝑾 ∈ R𝑠×𝑀 so that 130

S𝑘 = A2H(A𝑘) :=𝑾F (A𝑘) . (1)

Our goal becomes finding𝑾 so that the resulting strategies maximize the target validation objective. 131

Observe that𝑾 has 𝑠 ×𝑀 parameters rather than 𝑠 × 𝐾 parameters which is the naive approach 132

that learns individual strategies. In practice, 𝐾 can be significantly large, so for typical problems, 133

𝑀 ≪ 𝐾 . Moreover,𝑾 ties all classes together during training through weight-sharing whereas the 134

naive approach would be brittle for tail classes that contain very limited data. The approach are 135

summarized in Fig. 2 136

3.2 CAP for Loss Function Design 137

Consider the generalized cross-entropy loss 138

ℓ (𝑦, 𝑓 (𝒙)) = 𝜔𝑦 log(1 +
∑︁
𝑘≠𝑦

𝑒 𝒍𝑘−𝒍𝑦 · 𝑒𝚫𝑘 𝑓𝑘 (𝒙)−𝚫𝑦 𝑓𝑦 (𝒙)) .

Here, (𝜔𝑘 , 𝒍𝑘 ,𝚫𝑘)𝐾𝑘=1
are hyperparameters that can be tuned to optimize the desired test objective. 139

For class 𝑘 , we get to choose the tuple S𝑘 := [𝜔𝑘 , 𝒍𝑘 ,𝚫𝑘] which can be considered as its training 140

strategy. Here elements of S𝑘 arise from existing imbalance-aware strategies, namely weighting 141

𝜔𝑘 , additive logit-adjustment 𝒍𝑘 and multiplicative adjustment 𝚫𝑘 . 142

Example: LA and CDT losses viewed as CAP. For label imbalanced problems, [25, 38] propose to 143

set hyperparameters 𝒍𝑘 and 𝚫𝑘 as a function of frequency 𝜋𝑘 = P(𝑦 = 𝑘). Concretely, they propose 144

4

Attributes Definition Notation Application scenario

Afreq Class frequency 𝜋𝑘 = P(𝑦 = 𝑘) Imbalanced classes

Adiff Class-conditional error P(𝑦 ≠ 𝑦) Difficult vs easy classes

Aweights Test-time class weights 𝜔 test

𝑘
of (3) Weighted test accuracy

Anoise Label noise ratio P(𝑦clean ≠ 𝑦
��𝑦clean = 𝑘) Datasets with label noise

Anorm Norm of classifier weights See [3] Imbalanced classes

Table 1: Definition of example attributes and associated application scenarios. Attributes Adiff and

Anorm are computed during the training (for post-hoc optimization, it is pre-training). For

bilevel training they are computed at the end of warm-up. The upper attributes in red color

are those we utilize in our experiments. Also we use Aall to denote combined attributes.

𝒍𝑘 = −𝛾 log(𝜋𝑘) [25] and 𝚫𝑘 = 𝜋
𝛾

𝑘
[38] for some scalar 𝛾 . These can be viewed as special instances 145

of CAP where we have a single attribute A𝑘 = 𝜋𝑘 and A2H(𝑥) is −𝛾 log(𝑥) or 𝑥𝛾 respectively. 146

Our approach can be viewed as an extension of these to attributes beyond frequency and general 147

class of A2H. In light of (1), hyperparameters of a specific element of S𝑘 = [𝜔𝑘 , 𝒍𝑘 ,𝚫𝑘] correspond 148

to a particular row of𝑾 ∈ R3×𝑀
since𝑾 = [𝒘𝝎,𝒘𝒍 ,𝒘𝚫]⊤. Our goal is then tuning the𝑾 matrix 149

over validation data. In practical implementation, we define a feature dictionary 150

D =
[
F (A1) · · · F (A𝐾)

]⊤ ∈ R𝐾×𝑀 . (2)

Each row of this dictionary is the features associated to the attributes of class 𝑘 . We generate the 151

strategy vectors 𝚫, 𝒍,𝝎 ∈ R𝐾 (for all classes) via 𝝎 = D𝒘𝝎 , 𝚫 = sigmoid(
√
𝐾

D𝒘
𝚫

∥D𝒘
𝚫
∥), 𝒍 = D𝒘𝒍 . 152

For both loss function design and posthoc optimization, we use a decomposable feature map 153

F . Concretely, suppose we have basis functions (F𝑖)𝑚𝑖=1
. These functions are chosen to be poly- 154

logarithms or polynomials inspired by [25, 38]. For 𝑖th attributeA𝑘 [𝑖] ∈ R, we generateF (A𝑘 [𝑖]) ∈ 155

R𝑚 obtained by applying (F𝑖)𝑚𝑖=1
. We then stitch them together to obtain the overall feature vector 156

F (A𝑘) = [F (A𝑘 [1])⊤ · · · F (A𝑘 [𝑚])⊤] ∈ R𝑀 :=𝑚×𝑛
. We emphasize that prior approaches are 157

special instances where we choose a single basis function and single attribute 𝜋𝑘 . 158

Which attributes to use and why multiple attributes help? Attributes should be chosen to reflect 159

the heterogeneity across individual classes. These include class frequency, how difficult it is to 160

predict that class, noisy level and more. We list such potential attributesA in Table 1. The frequency 161

Afreq is widely used to mitigate label imbalance, and Anorm is inspired by the imbalanced learning 162

literature [3]. However, these may not fully summarize the heterogenous nature of the problem. 163

For example, some classes are more difficult to learn (e.g. due to noise or inherent predictability) 164

and requiremore upweighting despite containing sufficient training examples. This can be addressed 165

by introducing Adiff, which characterizes the predictability of classes. In Appendix F, we provide 166

theoretical justification for how joint use ofAdiff andAfreq is needed for a Gaussian Mixture model. 167

Moreover, rather than balanced accuracy, we may wish to optimize general test objectives including 168

weighted accuracy with variable class importance. We can declare these test-time weights as an 169

attribute Aweights. In Appendix E, we provide theoretical justification for incorporating Aweights 170

by showing CAP can accomplish Bayes optimal logit adjustment for weighted error. More broadly, 171

any class-specific meta-feature can be declared as an attribute within CAP. 172

Reduced search space and increased stability. Searching 𝒍 and 𝚫 on R𝐾 with very few validation 173

samples raises the problem of unstable optimization. [23] indicates the bilevel optimization is brittle 174

and hard to optimize. They introduce a long warm-up phase and aggregate classes with similar 175

frequency into 𝑔 groups, reducing the search space to 𝑘/𝑔 dimensions. However, to achieve a 176

fine-grained loss function, 𝑔 cannot be very large, so the search space remains large. In our method, 177

5

with a good design of D (normally 𝑛 ≈ 2 and𝑚 ≈ 3), we can utilize a constant 2𝑚𝑛 ≪ 𝐾 that 178

efficiently reduces the search space and provides better convergence and stability. 179

We remark that dictionary is a general and efficient design that can recover multiple existing 180

successful imbalanced loss function design algorithms. For example, [25] and [38] both utilize the 181

frequency asA and apply logarithm and polynomial functions asF on frequency to determine 𝒍 and 182

𝚫 respectively. Moreover, letA = 𝑰𝑘 andF be an identity function, then training𝒘𝒍 ,𝒘𝚫 is equivalent 183

to train 𝒍,𝚫 which recovers the algorithm of [23]. Despite the ability to generalize, the dictionary is 184

more flexible and powerful since the attributes can be chosen based on the scenarios. For example, 185

naturally, class frequency is a critical criterion in an imbalanced dataset, but classification error 186

in early training can also be a good criterion for evaluating class training difficulty. Furthermore, 187

some specific attributes can be introduced to noisy or partial-labeled datasets to help design a better 188

loss function. Our empirical study elucidates the benefit of combining multiple attributes and the 189

dictionary performance on the noisy imbalanced dataset. 190

3.3 Class-specific Learning Strategies: Bilevel Optimization and Post-hoc optimization 191

To instantiate CAP as a meta-strategy, we focus on two important class-specific optimization 192

problems: loss function design via bilevel optimization and post-hoc logit adjustment. We describe 193

them in this section and demonstrate that both methods outperform the state-of-the-art approaches. 194

Fig. 4 illustrates how CAP is implemented under bi-level optimization and post-hoc optimization in 195

detail. 196

• Strategy 1: Loss function design via bilevel optimization. Inspired by [23] and following our 197

exposition in Section 3.1, we formalize the meta-strategy optimization problem as 198

min

𝒘𝒍 ,𝒘𝚫

Lval(𝒘𝒍 ,𝒘𝚫, 𝑓) s.t. min

𝑓
Ltrain(𝒘𝒍 ,𝒘𝚫, 𝑓)

where 𝑓 is the model and Lval, Ltrain are validation and training losses respectively. Our goal is 199

finding CAP parameters𝒘𝒍 ,𝒘𝚫 that minimize the validation loss which is the target fairness objective. 200

Following the implementation of [23], we split the training data to 80% training and 20% validation 201

to optimize Ltrain and Lval. The optimization process is split to two phases: the search phase that 202

finds CAP parameters𝒘𝒍 ,𝒘𝚫 and the retraining phase that uses the outcome of search and entire 203

training data to retrain the model. We note that, during initial search phase, [23] employs a long 204

warm-up phase where they only train 𝑓 while fixing𝒘𝒍 ,𝒘𝚫 to achieve better stability. In contrast, 205

we find that CAP either needs very short warm-up or no warm-up at all pointing to its inherent 206

stability (due to small hyperparameter search space, as discussed in the Appendix C). 207

• Strategy 2: Post-hoc optimization. In [25, 9, 11], the author displays that the post-hoc logit 208

adjustment can efficiently address the bias when training with imbalanced datasets. Formally, 209

given a model 𝑓 , a post-hoc function 𝑔 : R𝐾 → R𝐾 adjusts the output of 𝑓 to minimize the fairness 210

objective. Thus the final model of post-hoc optimization is 𝑔 ◦ 𝑓 (𝒙). 211

Transferability from post-hoc optimization to loss function design. In parametric cross entropy 212

loss ℓ (𝑦, 𝑓 (𝒙)) = log

(
1 +∑

𝑘≠𝑦 𝑒
𝚫𝑘 𝑓𝑘 (𝒙)+𝒍𝑘−𝚫𝑦 𝑓𝑦 (𝒙)−𝒍𝑦

)
, the output logits are adjusted by 𝚫𝑓 (𝒙) − 𝒍 213

which paves the path of searching a post-hoc A2H′
and transfer to CAP A2H. [25] provides the post- 214

hoc optimization 𝒍 ′ by flipping the sign of 𝒍 in loss adjustment. In our approach, we search a post-hoc 215

A2H′
with very marginal computation cost to obtain post-hoc 𝒍 ′ and 𝚫

′
, the training loss function 216

can be transferred from post-hoc as ℓ (𝑦, 𝑓 (𝒙)) = log

(
1 +∑

𝑘≠𝑦 𝑒
𝚫
′−1

𝑘 𝑓𝑘 (𝒙)−𝒍 ′𝑘−𝚫′−1

𝑦 𝑓𝑦 (𝒙)+𝒍 ′𝑦
)
. 217

4 Experiments and Main Results 218

In this section, we present our experiments in the following way. Firstly, we demonstrate the per- 219

formance of CAP on both loss function design via bilevel optimization and post-hoc logit adjustment 220

6

Method CIFAR10-LT CIFAR100-LT ImageNet-LT

Cross entropy 30.45(±0.49) 61.94(±0.28) 55.59(±0.26)
Logit adjustment (LA)[25] 21.29†(±0.43) 58.21†(±0.31) 52.46♯

CDT[38] 21.57†(±0.50) 58.38†(±0.33) 53.47♯

PlainBilevel (AutoBalance[23]) 21.15♯ 56.70♯ 50.91♯

CAPBilevel : Aall 20.22(±0.35) 56.38(±0.19) 49.31(±0.34)
CAPPost-hoc : Aall 20.87(±0.38) 57.63(±0.26) 51.46(±0.20)

Table 2: Balanced error on long-tailed data using loss function designed via bilevel optimization. ♯:

best reported results taken from [23].†: Reproduced results.

in Sec. 4.1. We further highlight the connection between bilevel CAP and post-hoc optimization 221

by transferring the learned hyper-parameters. Sec. 4.2 demonstrates that CAP provides noticeable 222

improvements for fairness objectives beyond balanced accuracy. Then Sec. 4.3 discusses the ad- 223

vantage of utilizing attributes and how CAP leverages them in noisy, long-tailed datasets through 224

perturbation experiments. Lastly, we defer the experiment details including hyper-parameters, 225

number of trails, and other reproducibility information to appendix. 226

Dataset. In line with previous research [25, 38], we conduct the experiments on CIFAR-LT and 227

ImageNet-LT datasets. The CIFAR-LT modifies the original CIFAR10 or CIFAR100 by reducing 228

the number of samples in tail classes. The imbalance factor, represented as 𝜌 = 𝑁𝑚𝑎𝑥/𝑁𝑚𝑖𝑛 , is 229

determined by the number of samples in the largest (𝑁𝑚𝑎𝑥) and smallest (𝑁𝑚𝑖𝑛) classes. To create a 230

dataset with the imbalance factor, the sample size decreases exponentially from the first to the last 231

class. We use 𝜌 = 100 in all experiments, consistent with previous literature. The ImageNet-LT, 232

a long-tail version of ImageNet used in various fairness research [25, 23], has 1000 classes with 233

an imbalanced ratio of 𝜌 = 256. The maximum and minimum samples per class are 1280 and 5, 234

respectively. During the search phase for bilevel CAP and post-hoc transferability experiments 235

(Sec. 4.1), we split the training set into 80% training and 20% validation to obtain the optimal loss 236

function design. We remark that the validation set is imbalanced, with tail classes containing very 237

few samples, making it challenging to find optimal hyper-parameters without overfitting. For all 238

other post-hoc experiments (Sec. 4.2 and 4.3), we follow the setup of [25, 11] by training a model 239

on entire training dataset as the pre-train model, and optimizing a logit adjustment 𝑔 on a balanced 240

validation dataset. Additionally, all CIFAR-LT experiments use ResNet-32 [13], and ImageNet-LT 241

experiments use ResNet-50, in accordance with literature. 242

4.1 CAP Improves Prior Methods Using Post-hoc or Bilevel Optimization 243

This section presents our loss function design experiments on imbalanced datasets by incorporating 244

CAP into the training scheme of [23, 25, 38], as discussed in Sec. 3.3. Table 2 demonstrates our 245

results. The first part displays the outcomes of various existing methods with their optimal hyper- 246

parameters. It is worth noting that the original best results for single-level methods ([25, 38]) 247

are obtained from grid search on the test dataset, which leads to much better performance than 248

our reproduced results using validation grid search in Table. 2. Moreover, both of the grid search 249

methods demand substantial computation budgets. As illustrated in the second part of Table 2, 250

bilevel and post-hoc CAP significantly improve the balanced error across all datasets. We also 251

conduct experiments to further bridge the connection between post-hoc and bilevel loss function 252

design, as discussed in Sec.3.1, which can be found in Appendix D. 253

4.2 Benefits of CAP for Optimizing Distinct Fairness Objectives 254

Recent works on label-imbalance places a significant emphasis on the balanced accuracy evaluations 255

[25, 23, 3]. However, in practice, there are many different fairness criteria and balanced accuracy is 256

only one of them. In fact, as we discuss in (3), we might even want to optimize arbitrary weighted 257

test objectives. In this section, we demonstrate the flexibility and merits of CAP when optimizing 258

7

0.00 0.25 0.50 0.750

5

10

15

20
Plain
LA
CAP

Q
u
a
n
t
𝑎
i
m
p
r
o
v
e
m
e
n
t

𝑎

(a) Errors of quantile classes

0.00 0.25 0.50 0.750

5

10

15 Plain
LA
CAP

C
V
a
R
𝑎
i
m
p
r
o
v
e
m
e
n
t

𝑎

(b) Conditional value of errors

15 20 25
40

50

60

70
Plain
LA
CAP

S
t
a
n
d
a
r
d
e
r
r
o
r
(
E
r
r
p
l
a
i
n
)

Standard deviation (ErrSDev)

(c) Aggregation of errors

Figure 3: Benefit of CAP for optimizing different Fairness Objectives. We compare among plain post-

hoc, LA post-hoc and CAPpost-hoc. (a): Results of optimizing quantile class performance

Quant𝑎 = P
[
𝑦 ≠ 𝑦𝑓 (𝒙) | 𝑦 = K𝑎

]
, where K𝑎 denotes the class index with the worst ⌈K × 𝑎⌉-

th error. (b): Results of optimizing tail performance CVaR𝑎 . (c): Results of optimizing

R(Err) = _ · Errplain + (1 − _) · ErrSDev. The plot shows the trade-off between standard

deviation of class-conditional errors ErrSDev and Standard misclassification error Errplain as _

varies. See Sec.4.2 for detailed definition and discussions.

Post-hoc methods Errbal ErrSDev CVaR0.2 Quant
0.2 Errweighted

Pretrained 61.94 (±0.28) 27.13(±0.35) 96.95(±0.15) 93.01(±0.58) 62.53(±0.53)
PlainPost-hoc -1.62(±0.36) -8.51(±0.75) -11.48(±0.81) -12.79(±0.43) -2.82(±0.56)
LAPost-hoc -3.73(±0.29) -8.72(±0.66) -12.21(±0.50) -15.01(±0.35) -3.62(±0.37)
CAPPost-hoc -4.36(±0.25) -13.92(±0.24) -14.75(±0.87) -18.34(±0.47) -6.21(±0.49)
Table 3: The error difference between other approaches compared to pre-trained model. The first line

shows the performance of Pretrained model, and the following line shows the error difference

of other methods (smaller is better). For objectives with 𝑎, we set 𝑎 = 0.2. This is commonly

used for difficult or few classes in other papers[40, 24].

fairness objectives other than balanced accuracy. The experiments are conducted on the CIFAR100- 259

LT dataset using the post-hoc approaches. For the fairness objectives, we mainly focus on three 260

objectives: quantile class error Quant𝑎 , conditional value at risk (CVaR) CVaR𝑎 , and the combined 261

risk R(Err), which consists of standard deviation of error and the regular classification error. 262

To begin with, we first demonstrate the performance on quantile class error Quant𝑎 = 263

P
[
𝑦 ≠ 𝑦𝑓 (𝒙) | 𝑦 = K𝑎

]
, where K𝑎 denotes the class index with the worst ⌈K × 𝑎⌉-th error. For 264

instance, in CIFAR100-LT, where 𝐾 = 100, Quant
0.2 denotes the test error of the worst 20 percentile 265

class. That is, we sort the classes in descending order of test error and return the error of the class 266

20%th class ID. Thus, each selection of 𝑎 raises a new objective. Fig. 3a shows the improvement 267

over the pre-trained model when optimizing Quant𝑎 with multiple selections of 𝑎. We observe that 268

CAP significantly outperforms both logit adjustment and plain post-hoc. 269

Moreover, the CVaR𝑎 = E
[
Err𝑘 | Err𝑘 > Quant𝑎

]
measures the average error of ⌈K×𝑎⌉ classes 270

with worst errors. Instead of Quant𝑎 , which only focuses on the specific quantile class error, opti- 271

mizing the CVaR𝑎 tend to improve the tail behavior of the classifier, which is a more general fairness 272

objective. Fig. 3b shows the test improvements over three approaches, and CAP is consistently better 273

than all other methods. 274

Finally, for the combined risk R(Err), we define R(Err) = _ · Errplain + (1 − _) · ErrSDev where 275

Errplain is the regular classification error and ErrSDev denotes the standard deviation of classification 276

errors. We plot the error-deviation curve by varying _ from 0 to 1 with stepsize 0.1 on three 277

approaches in Fig. 3c, each point corresponds to a different _. We observe that plain post-hoc 278

8

CIFAR100-LT ImageNet-LT CIFAR10-LT+Noise

Errbal ErrSDev Errbal ErrSDev Errbal ErrSDev

Cross entropy 61.94(±0.28) 27.13(±0.35) 55.59(±0.26) 29.10(±0.64) 43.76(±0.74) 31.69(±0.81)
PlainBilevel (AutoBalance [23]) 56.70(±0.32) 20.13(±0.68) 50.93(±0.16) 26.06(±0.61) 40.04(±0.79) 36.30(±0.89)
CAPBilevel: Afreq 56.64 (±0.21) 19.10(±0.67) 50.82(±0.13) 24.36(±0.49) 39.91(±0.66) 26.54(±0.80)
CAPBilevel: Adiff 58.27(±0.24) 17.62(±0.65) 52.97(±0.30) 21.28(±0.58) 40.61(±0.61) 14.49(±0.72)
CAPBilevel: Afreq+Adiff 56.38(±0.19) 18.53(±0.63) 49.31(±0.34) 22.14(±0.46) 38.36(±0.79) 19.78(±0.75)
Table 4: Attributes help optimization adapt to dataset heterogeneity. We conduct experiments using

bilevel loss design and report the balanced misclassification error,and standard deviation of

class-conditional errors with different class-specific attributes.

cannot achieve a small standard deviation, and post-hoc LA degrades when achieving smaller 279

ErrSDev, CAP accomplish the best performance and are flexible to adapt to different objectives. 280

Regarding the plain post-hoc in Fig. 3, we find that without class-specific attribute prior 281

information, the parameter of each class is updated individually. Optimizing towards a specific 282

objective (e.g., Quant𝑎) may dramatically hurt the performance of other classes and cause the 283

changing of under-represented classes. Thus, the plain post-hoc optimization is unstable, and 284

hard to achieve good results. On the other hand, although post-hoc LA outperforms plain post- 285

hoc, optimizing only one temperature variable lacks fine-grained adaptation to various objectives. 286

In contrast, CAP exhibits a noticeably better performance on all objectives since CAP takes both 287

class-specific attribute and fine-grained control into consideration. 288

Table 3 shows more results. Errweighted denotes a weighted test objective induced by weights 289

𝝎test

𝑘
∈ R𝐾 given by 290

Errweighted =

𝐾∑︁
𝑘=1

𝝎test

𝑘
Err𝑘 where

𝐾∑︁
𝑘=1

𝝎test

𝑘
= 𝐾. (3)

Overall, Table 3 shows that CAP consistently achieves the best results on multiple fairness 291

objectives. An important conclusion is that, the benefit of CAP is more significant for objectives 292

beyond balanced accuracy and improvements are around 2% or more (compared to [25] or plain 293

post-hoc). This is perhaps natural given that prior works put an outsized emphasis on balanced 294

accuracy in their algorithm design [25, 23]. 295

4.3 Benefits of CAP for Adapting to Distinct Class Heterogeneities 296

Continuing the discussion in Sec. 3.1, we investigate the advantage of different attributes in 297

the context of dataset heterogeneity adoption. In Table 4, we conduct loss function design CAP 298

experiments on CIFAR-LT and ImageNet-LT dataset. Specifically, besides using regular CIFAR100- 299

LT and ImageNet-LT, we introduce label noise into CIFAR10-LT following [34, 29] to extend the 300

heterogeneity of the dataset. To add the label noise, firstly, we split the training dataset to 80% 301

train and 20% validation to accommodate bilevel optimization. Then we randomly generate a 302

noise ratio 𝒓 ∈ R𝐾 , 𝒓𝑖 ∼ 𝑈 (0, 0.5) that denotes the label noise ratio for each class. Finally, keeping 303

the validation set clean, we add label noise into the train set by randomly flipping the labels of 304

selected training samples (according to the noise ratio) to all possible labels, which is the same as 305

literature[34, 29]. As a result, all classes contain an unknown fraction of label noise in the noisy 306

CIFAR10-LT dataset, which raises more heterogeneity and challenge in optimization. Through 307

bilevel optimization, we optimize the balanced classification loss and report the balanced test error 308

and its standard deviation after the retraining phase in Table 4. As shown in Table 4, we employ 309

label frequency Afreq which is designed for sample size heterogeneity and Adiff which is designed 310

for class predictability as the attributes in CAP approach. Table 4 highlights that CAP consistently 311

outperforms other methods while different attributes can shape the optimization process differently. 312

Importantly, CAP is particularly favorable to tail classes which contain too few examples to optimize 313

individually. Only usingAdiff achieves smallest ErrSDev demonstrating that optimization withAdiff 314

9

tends to keep better class-wise fairness because Adiff is directly related to class predictability. The 315

combination ofAfreq andAdiff shows that incorporating multiple class-specific attributes provides 316

additional information about the dataset and jointly enhances performance. Overall, the results 317

indicate that CAP establishes a principled approach to adapt to multiple kinds of heterogeneity. 318

5 Conclusions 319

This paper proposed a new meta-strategy CAP to tackle class heterogeneities and general fairness 320

objectives. CAP achieves high-validation performance by efficiently generating class-specific 321

strategies based on various class attributes. Applications and experiments on posthoc optimization 322

and loss function design demonstrate that CAP substantially improves multiple types of fairness 323

objectives as well as general weighted test objectives. We also demonstrate the transferability 324

across our strategies: Posthoc CAP can be plugged in as a loss function to further boost accuracy. 325

Broader impacts. Although our approach and applications primarily focus on loss function design 326

and posthoc optimization, CAP approach can also help design class-specific data augmentation, 327

regularization, and optimizers. Additionally, rather than heterogeneities across classes, one can 328

extend CAP-style personalization to problems in multi-task learning and recommendation systems. 329

Limitations. Observe that, if we have infinite training data, we can search for optimal strategies 330

for each class. Thus, the primary limitation of CAP is its multi-task design space that shares the 331

same meta-strategy across classes. However, as experiments demonstrate, in practical finite data 332

settings, CAP achieves better data efficiency and test performance compared to individual tuning. 333

References 334

[1] Daniel Alabi, Nicole Immorlica, and Adam Kalai. Unleashing linear optimizers for group-fair 335

learning and optimization. In Conference On Learning Theory, pages 2043–2066. PMLR, 2018. 336

[2] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and 337

Kush R Varshney. Optimized pre-processing for discrimination prevention. Advances in neural 338

information processing systems, 30, 2017. 339

[3] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced 340

datasets with label-distribution-aware margin loss. arXiv preprint arXiv:1906.07413, 2019. 341

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: 342

synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321– 343

357, 2002. 344

[5] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings 345

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758, 346

2021. 347

[6] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based 348

on effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision 349

and Pattern Recognition, pages 9268–9277, 2019. 350

[7] Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for 351

high-dimensional binary linear classification. arXiv preprint arXiv:1911.05822, 2019. 352

[8] John C Duchi and Hongseok Namkoong. Learning models with uniform performance via 353

distributionally robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021. 354

[9] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata- 355

subramanian. Certifying and removing disparate impact. In proceedings of the 21th ACM 356

SIGKDD international conference on knowledge discovery and data mining, pages 259–268, 2015. 357

10

[10] Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In 358

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 359

954–959, 2020. 360

[11] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. 361

arXiv preprint arXiv:1610.02413, 2016. 362

[12] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness 363

without demographics in repeated loss minimization. In International Conference on Machine 364

Learning, pages 1929–1938. PMLR, 2018. 365

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image 366

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 367

pages 770–778, 2016. 368

[14] Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust 369

supervised learning give robust classifiers? In International Conference on Machine Learning, 370

pages 2029–2037. PMLR, 2018. 371

[15] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and 372

Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. arXiv 373

preprint arXiv:1910.09217, 2019. 374

[16] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and Roberto 375

Togneri. Cost-sensitive learning of deep feature representations from imbalanced data. IEEE 376

transactions on neural networks and learning systems, 29(8):3573–3587, 2017. 377

[17] Byungju Kim and Junmo Kim. Adjusting decision boundary for class imbalanced learning. 378

IEEE Access, 8:81674–81685, 2020. 379

[18] Ganesh Kini and Christos Thrampoulidis. Analytic study of double descent in binary classifi- 380

cation: The impact of loss. arXiv preprint arXiv:2001.11572, 2020. 381

[19] Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oymak, and Christos Thrampoulidis. 382

Label-imbalanced and group-sensitive classification under overparameterization. accepted to 383

the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), 2021. 384

[20] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair 385

determination of risk scores. arXiv preprint arXiv:1609.05807, 2016. 386

[21] Miroslav Kubat, StanMatwin, et al. Addressing the curse of imbalanced training sets: one-sided 387

selection. In Icml, volume 97, pages 179–186. Citeseer, 1997. 388

[22] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, 389

and Ed Chi. Fairness without demographics through adversarially reweighted learning. 390

Advances in neural information processing systems, 33:728–740, 2020. 391

[23] Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet Oymak. Au- 392

tobalance: Optimized loss functions for imbalanced data. In A. Beygelzimer, Y. Dauphin, 393

P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 394

2021. 395

[24] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large- 396

scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on 397

Computer Vision and Pattern Recognition, pages 2537–2546, 2019. 398

11

[25] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, 399

and Sanjiv Kumar. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314, 400

2020. 401

[26] Paul Michel, Tatsunori Hashimoto, and Graham Neubig. Modeling the second player in 402

distributionally robust optimization. arXiv preprint arXiv:2103.10282, 2021. 403

[27] Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of 404

max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. 405

arXiv preprint arXiv:1911.01544, 2019. 406

[28] Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Combining statistical learning 407

with a knowledge-based approach: a case study in intensive care monitoring. Technical report, 408

Technical Report, 1999. 409

[29] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew 410

Rabinovich. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint 411

arXiv:1412.6596, 2014. 412

[30] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally 413

robust neural networks for group shifts: On the importance of regularization for worst-case 414

generalization. arXiv preprint arXiv:1911.08731, 2019. 415

[31] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of 416

why overparameterization exacerbates spurious correlations. In International Conference on 417

Machine Learning, pages 8346–8356. PMLR, 2020. 418

[32] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia 419

Smith. On the convergence of federated optimization in heterogeneous networks. arXiv 420

preprint arXiv:1812.06127, 3, 2018. 421

[33] Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and 422

Junjie Yan. Equalization loss for long-tailed object recognition. In Proceedings of the IEEE/CVF 423

conference on computer vision and pattern recognition, pages 11662–11671, 2020. 424

[34] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint optimization 425

framework for learning with noisy labels. In Proceedings of the IEEE conference on computer 426

vision and pattern recognition, pages 5552–5560, 2018. 427

[35] Byron C Wallace, Kevin Small, Carla E Brodley, and Thomas A Trikalinos. Class imbalance, 428

redux. In 2011 IEEE 11th international conference on data mining, pages 754–763. Ieee, 2011. 429

[36] Robert Williamson and Aditya Menon. Fairness risk measures. In International Conference on 430

Machine Learning, pages 6786–6797. PMLR, 2019. 431

[37] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture 432

search. arXiv preprint arXiv:1812.09926, 2018. 433

[38] Han-Jia Ye, Hong-You Chen, De-Chuan Zhan, and Wei-Lun Chao. Identifying and compen- 434

sating for feature deviation in imbalanced deep learning. arXiv preprint arXiv:2001.01385, 435

2020. 436

[39] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. 437

Fairness beyond disparate treatment & disparate impact: Learning classification without 438

disparate mistreatment. In Proceedings of the 26th international conference on world wide web, 439

pages 1171–1180, 2017. 440

12

[40] Runtian Zhai, Chen Dan, Arun Suggala, J Zico Kolter, and Pradeep Ravikumar. Boosted cvar 441

classification. Advances in Neural Information Processing Systems, 34, 2021. 442

[41] Junjie Zhang, Lingqiao Liu, Peng Wang, and Chunhua Shen. To balance or not to balance: 443

A simple-yet-effective approach for learning with long-tailed distributions. arXiv preprint 444

arXiv:1912.04486, 2019. 445

[42] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. Range loss for deep face 446

recognition with long-tailed training data. In Proceedings of the IEEE International Conference 447

on Computer Vision, pages 5409–5418, 2017. 448

6 Submission Checklist 449

1. For all authors. . . 450

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 451

contributions and scope? [Yes] 452

(b) Did you describe the limitations of your work? [Yes] See Section 5. 453

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 5 454

(d) Have you read the ethics author’s and review guidelines and ensured that your paper 455

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] 456

2. If you are including theoretical results. . . 457

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix 458

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix 459

3. If you ran experiments. . . 460

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 461

tal results, including all requirements (e.g., requirements.txt with explicit version), an 462

instructive README with installation, and execution commands (either in the supplemental 463

material or as a url)? [Yes] See Section G and Section 4 464

(b) Did you include the raw results of running the given instructions on the given code and 465

data? [Yes] See Section G and Section 4 466

(c) Did you include scripts and commands that can be used to generate the figures and tables 467

in your paper based on the raw results of the code, data, and instructions given? [Yes] 468

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 469

code is properly documented? [Yes] 470

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed 471

hyperparameter settings, and how they were chosen)? [Yes] See Section G and Section 4 472

(f) Did you ensure that you compared different methods (including your own) exactly on 473

the same benchmarks, including the same datasets, search space, code for training and 474

hyperparameters for that code? [Yes] See Section G and Section 4 475

(g) Did you run ablation studies to assess the impact of different components of your approach? 476

[No] 477

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] 478

(i) Did you compare performance over time? [Yes] 479

13

https://automl.cc/ethics-accessibility/

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] 480

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 481

multiple times)? [Yes] 482

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] 483

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 484

gpus, internal cluster, or cloud provider)? [Yes] See Section G 485

(n) Did you report how you tuned hyperparameters, and what time and resources this required 486

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 487

also hyperparameters of your own method)? [Yes] See Section G 488

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 489

(a) If your work uses existing assets, did you cite the creators? [N/A] 490

(b) Did you mention the license of the assets? [N/A] 491

(c) Did you include any new assets either in the supplemental material or as a url? [N/A] 492

(d) Did you discuss whether and how consent was obtained from people whose data you’re 493

using/curating? [N/A] 494

(e) Did you discuss whether the data you are using/curating contains personally identifiable 495

information or offensive content? [N/A] 496

5. If you used crowdsourcing or conducted research with human subjects. . . 497

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 498

cable? [N/A] 499

(b) Did you describe any potential participant risks, with links to Institutional Review Board 500

(irb) approvals, if applicable? [N/A] 501

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 502

on participant compensation? [N/A] 503

14

Train Dataset

20% Validation 80% Training

Search phase Retrain phase

Train Dataset

Evaluation phase

Test Dataset

Optimal 𝑾⋆by A2H Optimal model

𝑾⋆
Network trained
using 𝑺 = 𝑾𝑫"

Network trained
using optimal hyper-
parameter 𝑺∗ Fairness-focused

network

Optimize 𝑾 to
meet fairness

objectives.

Bi-
level

Post
-hoc

Pre-train phase

ValidationTraining

Network trained
without hyper-
parameters

Optimize the post-hoc
function g for fairness

objectives

Post-hoc
training phase

Evaluation phase

Test Dataset

Fairness-focused network
with post-hoc function

Transferring from
post-hoc to loss
function design

Optimal model Optimal g

Figure 4: CAP framework for detailed implementation. This figure illustrates how CAP is implemented

under bi-level optimization and post-hoc optimization. Throughout the entire figure, the

only trainable parameters areW and the network (in the green box). In the search phase of

bilevel optimization, we first conduct an 80-20% train-val split. Then, we train the network

with parametric loss function for inner optimization on 80% training dataset and train W to

achieve fairness objective for outer optimization on 20% validation dataset. And in post-hoc

implementation, we first train the network without hyperparameters on the training dataset

and do the post-hoc optimization on the validation set. Both bilevel and post-hoc yield

optimal fairness weightW∗
, for bi-level and post-hoc transferring, we use the optimalW∗

to

retrain a fairness-focused model on the entire training dataset. If only post-hoc adjustments

are conducted, we directly modify the pre-trained model’s logit with a post-hoc function.

A List of fairness objectives 504

We list all the notation of objectives we used in the main paper in this section. 505

Symbol Meaning

ℓ, 𝑓 Loss function (specifically cross-entropy), predictor

Err(𝑓) Error of 𝑓 on entire population

Err𝑘 Class-conditional error of 𝑓 on class K = k

Errplain Standard misclassification error

Errbal Balanced misclassification error, average of class-conditional errors

Errweighted Weighted misclassification error

ErrSDev Standard deviation of class-conditional errors

Quant𝑎 Errors of quantile classes at level 𝑎

CVaR𝑎 Conditional value of errors at level 𝑎

R(Err) Aggregation of class-conditional errors

506

B Framework overview. 507

C Extended Discussion of Warm-up and Training Stability 508

In Sec. 3.2, we discuss how CAP stabilizes the training and eases the necessarily of warm-up. Now, 509

we extend the discussion and provide more experiments to demonstrate further the benefit of the 510

CAP strategy in this section. In Table 5, we conduct experiments on bilevel loss function design on 511

CIFAR10-LT. Firstly, we investigate the performance of the default initialization (DI) of Plain𝐵𝑖𝑙𝑒𝑣𝑒𝑙 512

15

DI, 100 epoch DI, 120 epoch DI, 200 epoch LA , 120 epoch Self-sup[5]

ErrSDev when search phase begin 0.23 0.20 0.28 0.17 0.13

Errbal 24.58 21.39 23.36 21.15 20.57

Table 5: Bilevel training with different warm-up lead to different result on CIFAR10-LT. We investigate

the performance of the default initialization (DI) of Plain𝑏𝑖𝑙𝑒𝑣𝑒𝑙 where 𝒍 = 0 and 𝚫 = 1 with
100,120 and 200 warm-up epochs, and we also provide the result where 𝒍 starts with logit

adjustment prior. We implement the self-supervision pre-trained model by SimSiam [5]. We

remark that 120 epochs Warm-up with DI or LA loss are used in [23].

CIFAR10-LT CIFAR100-LT

search phase retrain search phase retrain

Post-hoc LA[25] 21.43(±0.30) 22.34(±0.34) 58.48(±0.23) 57.65(±0.25)
Post-hoc CDT[38] 23.58(±0.37) 21.79(±0.40) 58.60(±0.26) 57.86(±0.27)

PlainPost-hoc

𝒍 20.90(±0.28) 21.71(±0.29) 57.98(±0.22) 57.82(±0.19)
𝚫 23.74(±0.34) 24.06(±0.36) 58.61(±0.29) 58.80(±0.31)
𝒍&𝚫 23.41(±0.30) 23.38(±0.33) 57.80(±0.24) 58.57(±0.23)

CAPPost-hoc

𝒘𝒍 20.81 (±0.15) 20.65(±0.36) 57.73(±0.25) 57.15(±0.30)
𝒘𝚫 22.31(±0.38) 21.06(±0.43) 58.07(±0.32) 57.26(±0.35)
𝒘𝒍 &𝒘𝚫 20.87(±0.38) 20.32(±0.64) 57.63(±0.26) 57.08(±0.21)

Table 6: Balanced error on long-tailed data using post-hoc logits adjustment. The search phase results

reveal the test accuracy of post-hoc adjustment, which is searched on a 20% validation set.

The retrain results show the transferability from post-hoc logits adjustment to loss function

design.

where 𝒍 = 0 and 𝚫 = 1 with 100,120 and 200 warm-up epochs. Then we provide the result where 𝒍 513

starts with logit adjustment prior. Finally, we implement the self-supervision pre-trained model by 514

SimSiam [5]. Table 5 presents the relationship between the ErrSDev of the pre-trained model and 515

the final Errbal after bilevel training. One direct observation is that ErrSDev highly correlates with 516

Errbal. Considering ErrSDev measures the fairness of the pre-trained model, we believe that a better 517

pre-trained model promotes the test performance accordingly. 518

Moreover, regarding LA initialization, one can conclude that initializing the training with a 519

designed loss such as LA loss can significantly improve the result. Still, it requires additional effort 520

and expertise in designing that specific loss, especially when the fairness objective is not only 521

balanced error and various heterogeneities exist in the data. While the self-supervised pre-trained 522

model achieves the best ErrSDev and Errbal among all methods, training the self-supervision model 523

requires a long time. Our proposed CAP𝐵𝑖𝑙𝑒𝑣𝑒𝑙 , which utilizes the attributes, not only ensures to 524

take advantage of prior knowledge but also stabilizes the optimization by simultaneously updating 525

weights of all classes thanks to the dictionary design. CAP𝐵𝑖𝑙𝑒𝑣𝑒𝑙 achieves 20.16 Errbal on CIFAR10- 526

LT and 56.55 Errbal on CIFAR100-LT with only 5 epochs of warm-up, which improves on both 527

computation efficiency and test performance. 528

D Further post-hoc discussion 529

Connection to post-hoc adjustment To better understand the potential of CAP and the connection 530

between loss function design and post-hoc adjustment, we design an experiment with results shown 531

in Table 6. In this experiment, we use the same dictionary , split the original training data to 80% 532

train and 20% validation, and train a model 𝑓 using regular cross-entropy loss on the 80% train 533

set as the pre-trained model, which is biased toward the imbalanced distribution. Our goal is to 534

16

find a post-hoc adjustment 𝑔 so that 𝑔 ◦ 𝑓 achieves minimum balanced loss on the 20% validation 535

set. In Table 6, the searching phase displays the test error of adjusted model 𝑔 ◦ 𝑓 . Following the 536

transferability discussion in Sec. 3.3, we use the searched post-hoc adjustment as the loss function 537

design to retrain the model from scratch on the entire training dataset. Interestingly, retraining 538

further improves the post-hoc performance. As post-hoc adjustment requires only about 1/5 of 539

the time and fewer computational resources than loss function design, it provides a simple and 540

efficient approach for loss function design. 541

We also observe that training𝒘𝒍 along with𝒘𝚫 leads to performance degradation compared to 542

only training𝒘𝒍 , and training only𝒘𝚫 also performs worse than𝒘𝒍 . We conduct more experiments 543

and provide explanations for this. In each part of the Table 6, we compare the performance of 544

optimizing 𝒍 and 𝚫 in the similar setup, for example, LA provides a design of 𝒍 while CDT adjusts 545

the loss by design a specific 𝚫. Among all the methods, optimizing 𝒍 or𝒘𝒍 always achieve the best 546

result. We observe a degeneration when optimizing only 𝚫 or both 𝒍&𝚫. Through this section, 547

Fig. 5 and 6 exhibit some insights and intuitions towards this phenomenon. 548

Fig. 5 shows the logits value before and after post-hoc adjustment. Without proper early- 549

stopping or regularization, 𝚫 in Fig. 5c will keep increasing and result in a stretched logits distribu- 550

tion, where the logits become larger and larger. Note that Fig 5c stops after 500 epochs, but longer 551

training will even further enlarge the logits. Furthermore, because the data is not linear separable, 552

𝚫 may reduce the loss in unexpected ways. The mismatch between test loss and balanced test error 553

in Fig. 6b verified this conjecture. The loss decreases at the end of the training while the balanced 554

error increases. That might happen because 𝚫 performs a multiplicative update on logits as shown 555

in Fig. 5c. Finally, the logits value becomes much larger, but the improvement is limited. Lemma 1 556

in paper [23] also offers possible explanation by proving loss function is not consistent for standard 557

or balanced errors if there are distinct multiplicative adjustments i.e. Δ𝑖 ≠ Δ 𝑗 for some 𝑖, 𝑗 ∈ [𝐾]. 558

In sum, the main difference between using the two different hyperparameters for post-hoc logit 559

adjustment is that 𝒍 performs an additive update on logits, however, 𝚫 performs a multiplicative 560

update. That will leads to different behaviors. For example, if there is a true but rare label 𝑘 = 𝑖 561

with negative logits value 𝒐𝑖 ; meanwhile, there are other labels with positive or negative values, 562

multiplicative update using 𝚫 couldn’t help label 𝑘 changes the class because the logits is already 563

negative. For post-hoc logit adjustment using 𝒍 , it can eliminate the influence of the original value. 564

Smaller values of 𝒍𝑖 could always make �̂�𝑖 = 𝒐𝑖 − 𝒍𝑖 have a larger boost than �̂�𝑘≠𝑖 Fig.5 indeed shows 565

that there exist many samples like this. 566

E Proofs of Fisher Consistency on Weighted Loss 567

For more insight of the weighted test loss we discussed in Sec. 4.3, [25] proposes a family of Fisher 568

consistent pairwise margin loss as 569

ℓ (𝑦, 𝑓 (𝑥)) = 𝛼𝑦 · log[1 +
∑︁
𝑦′≠𝑦

𝑒Δ𝑦𝑦′ · 𝑒 𝑓𝑦′ (𝑥)−𝑓𝑦 (𝑥)]

where pairwise label margins Δ𝑦𝑦′ denotes the desired gap between scores for 𝑦 and 𝑦′. Logit 570

adjustment loss [25] corresponds to the situation where 𝛼𝑦 = 1 and Δ𝑦𝑦′ = log

𝜋𝑦′
𝜋𝑦

where 𝜋𝑦 = P(𝑦). 571

They establish the theory showing that there exists a family of pairwise loss, which Fisher consistent 572

with balanced loss when Δ𝑦𝑦′ = log

𝛼𝑦′𝜋𝑦′
𝛼𝑦𝜋𝑦

for any 𝛼 ∈ R𝐾+ . However, Sec. 4.3 focuses on the 573

weighted loss which is more general and formulated as following. 574

ℓ𝜔 (𝑦, 𝑓 (𝑥)) = 𝛼𝑦 · 𝜔𝑡𝑒𝑠𝑡𝑦 log[1 +
∑︁
𝑦′≠𝑦

𝑒Δ𝑦𝑦′ · 𝑒 𝑓𝑦′ (𝑥)−𝑓𝑦 (𝑥)] (4)

Following [25], Thm. 1 deduces the family of Fisher-consistent loss with weighted pairwise loss. 575

The followed discussion demonstrates that CAP using Afreq and Aweights is able to recover Fisher- 576

consistent loss for any 𝜔𝑡𝑒𝑠𝑡 . 577

17

M
i
n
o
r
i
t
y
l
o
g
i
t
s
v
a
l
u
e
(
𝑓 𝑦

=
9
(𝑥
))

Majority logits value (𝑓𝑦=0(𝑥))

D
e
c
is
io
n
b
o
u
n
d
a
r
y

(a) Pretrain

Majority logits value (𝑓𝑦=0(𝑥))

D
e
c
is
io
n
b
o
u
n
d
a
r
y

(b) CAPPost-hoc:𝒘𝒍

Majority logits value (𝑓𝑦=0(𝑥))

D
e
c
is
io
n
b
o
u
n
d
a
r
y

(c) CAPPost-hoc:𝒘𝚫

Figure 5: The evolution of logits in post-hoc logits adjustment CAP when optimizing𝒘𝒍 and𝒘𝚫 indi-

vidually. In this experiment, we train a ResNet-32 as the pre-trained model on CIFAR10-LT,

where the class 𝑦 = 0 has the largest sample size and 𝑦 = 9 has the smallest sample size

when training. In Fig. 5a, we plot the logits value 𝑓 𝑡𝑒𝑠𝑡𝑦 (𝑥) of test dataset. Specifically, for
better visualization and understanding, we only pick two classes, the largest class (𝑦 = 0) as

majority and the smallest class (𝑦 = 9) as minority. The x-axis is the logit value of majority

class 𝑓𝑦=0 (𝑥) and the y-axis is the logit value of minority class 𝑓𝑦=9 (𝑥). Thus, the blue line
(𝑦 = 𝑥) can be treated as the decision boundary between the two classes. In Fig. 5b shows the

logits after CAPPost-hoc with only optimizing𝒘𝒍 and Fig. 5b shows the logits after CAPPost-hoc
that only optimizing𝒘𝚫. For clarification, the logits are directly picked from CIFAR10-LT

classification problem which are not binary classification logits. We also remark that any

choice of majority and minority that satisfies 𝑁 train

majority
> 𝑁 train

minority
shows the similar result

even under another training distribution differed from CIFAR10-LT (e.g. flipping the minority

and majority).

B
a
l
a
n
c
e
d
e
r
r
o
r

L
o
s
s

Epoch

(a) CAPPost-hoc:𝒘𝒍

B
a
l
a
n
c
e
d
e
r
r
o
r

L
o
s
s

Epoch

(b) CAPPost-hoc:𝒘𝚫

Figure 6: Test error and loss during CIFAR10-LT post-hoc training. In Fig. 6a we only optimize𝒘𝒍 and

we observe that balanced test error decreases with test loss simultaneously. However, in

Fig. 6b where we only optimize𝒘𝚫, the test loss (the orange curve) is keeping decreasing,

but test balanced error (the blue curve) first reaches minimum and then increases. This

mismatch together with Fig. 5 further explain the reason of degeneration when optimize𝒘𝚫

by post-hoc.

18

Theorem 1. For any 𝛿 ∈ R𝐾+ , the weighted pairwise loss (4) is Fisher consistent with weights and

margins

𝛼𝑦 =
𝛿𝑦

𝜋𝑦
Δ𝑦𝑦′ = 𝑙𝑜𝑔(𝛿 ′𝑦/𝛿𝑦)

Proof. Suppose we use margin Δ𝑦𝑦′ = log

𝛿𝑦′
𝛿𝑦

, the weighted loss become 578

ℓ𝜔 (𝑦, 𝑓 (𝑥)) = −𝜔𝑡𝑒𝑠𝑡𝑦 log

𝛿𝑦𝑒
𝑓𝑦 (𝑥)∑

𝑦′∈[𝐾] 𝛿𝑦′𝑒
𝑓𝑦′ (𝑥)

= −𝜔𝑡𝑒𝑠𝑡𝑦 log

𝑒 𝑓𝑦 (𝑥)+log(𝛿𝑦)∑
𝑦′∈[𝐾] 𝑒

𝑓𝑦′ (𝑥)+log(𝛿𝑦′)

Let P𝜔 (𝑦 | 𝑥) ∝ 𝜔𝑦P(𝑦 | 𝑥) denote the distribution with weighting 𝜔 . The Bayes-optimal 579

score of the weighted pairwise loss will satisfy 𝑓 ∗𝑦 (𝑥) + log(𝛿𝑦) = log P𝜔 (𝑦 | 𝑥), which is 𝑓 ∗𝑦 (𝑥) = 580

log
P𝜔 (𝑦 |𝑥)
𝛿𝑦

. 581

Suppose we have a generic weights 𝛼 ∈ R𝐾+ , the risk with weighted loss can be written as 582

E𝑥,𝑦
[
ℓ𝜔,𝛼 (𝑦, 𝑓 (𝑥))

]
=

∑︁
𝑦∈[𝐿]

𝜋𝑦 · E𝑥 |𝑦=𝑦
[
𝛼𝑦ℓ𝜔 (𝑦, 𝑓 (𝑥))

]
=

∑︁
𝑦∈[𝐿]

𝜋𝑦𝛼𝑦 · E𝑥 |𝑦=𝑦 [ℓ𝜔 (𝑦, 𝑓 (𝑥))]

∝
∑︁
𝑦∈[𝐿]

𝜋𝑦 · E𝑥 |𝑦=𝑦 [ℓ𝜔 (𝑦, 𝑓 (𝑥))]

where 𝜋𝑦 ∝ 𝜋𝑦𝛼𝑦 . That means by modify the distribution base to 𝜋 , learning with the 𝜔 and 𝛼

weighted loss 4 is equivalent to learning with the 𝜔 weighted loss. Under such a distribution, we

have class-conditional distribution.

P(𝑦 | 𝑥) =
P𝜔 (𝑥 | 𝑦) · 𝜋𝑦

P(𝑥)
= P𝜔 (𝑦 | 𝑥) ·

𝜋𝑦

𝜋𝑦
· P𝜔 (𝑥)

P(𝑥)
∝ P𝜔 (𝑦 | 𝑥) · 𝛼𝑦𝜔𝑡𝑒𝑠𝑡𝑦

Then for any 𝛿 ∈ R𝐾+ , let 𝛼 =
𝛿𝑦

𝜋𝑦
, the Bayes-optimal score will satisfy 𝑓 ∗𝑦 (𝑥) = 583

log
P(𝑦 |𝑥)
𝛿𝑦

= log
P𝜔 (𝑦 |𝑥)
𝜋𝑦

+ 𝐶 (𝑥) where 𝐶 (𝑥) does not depend on 𝑦. Thus, argmax𝑦∈[𝐿] 𝑓
∗
𝑦 (𝑥) = 584

argmax𝑦∈[𝐿]
P𝜔 (𝑦 |𝑥)
𝜋𝑦

, which is the Bayes-optimal prediction for the weighted error. 585

In conclusion, there is a consistent family of weighted pairwise loss by choose any set of 𝛿𝑦 > 0

and letting

𝛼𝑦 =
𝛿𝑦

𝜋𝑦

Δ𝑦𝑦′ = log

𝛿𝑦′

𝛿𝑦
.

□ 586

Corollary 1.1. In CAP, setting attributes as [Afreq,Aweights], F = [𝑙𝑜𝑔(·)]. When𝒘𝒍 = [1,−1], CAP 587

fully recovers a loss (5), which is Fisher-consistent with weighted pairwise loss. 588

19

Proof. This result can be directly deduced by setting 𝛿𝑦 =
𝜋𝑦

𝜔𝑡𝑒𝑠𝑡
𝑦

. We have

𝛼𝑦 = 1/𝜔𝑡𝑒𝑠𝑡𝑦 and Δ𝑦𝑦′ =
𝜋𝑦′𝜔

𝑡𝑒𝑠𝑡
𝑦

𝜋𝑦𝜔
𝑡𝑒𝑠𝑡
𝑦′

Then the corresponding logit-adjusted loss which is Fisher-consistent with weighted pairwise loss 589

is 590

ℓ (𝑦, 𝑓 (𝑥)) = −𝛼𝑦𝜔𝑡𝑒𝑠𝑡𝑦 log

𝛿𝑦 · 𝑒 𝑓𝑦 (𝑥)∑
𝑦′∈[𝐿] 𝛿𝑦′ · 𝑒 𝑓𝑦′ (𝑥)

= − log

𝑒 𝑓𝑦 (𝑥)+log𝜋𝑦−log𝜔𝑡𝑒𝑠𝑡
𝑦∑

𝑦′∈[𝐿] 𝑒
𝑓𝑦′ (𝑥)+log𝜋𝑦′−log𝜔𝑡𝑒𝑠𝑡

𝑦′
. (5)

For aforementioned CAP setup, we haveD=[log(𝜋), log(𝜔𝑡𝑒𝑠𝑡𝑦)], so the CAP adjusted loss with 591

𝒘𝒍 = [1,−1] is 592

ℓCAP(𝑦, 𝑓 (𝑥)) = − log

𝑒 𝑓𝑦 (𝑥)+log𝜋𝑦−log𝜔𝑡𝑒𝑠𝑡
𝑦∑

𝑦′∈[𝐿] 𝑒
𝑓𝑦′ (𝑥)+log𝜋𝑦′−log𝜔𝑡𝑒𝑠𝑡

𝑦′
. (6)

Which is exactly the same as 5. 593

□ 594

F Multiple Attributes Benefit Accuracy in GMM 595

In this section, we give a simple theoretical justification why multiple attributes acting syner- 596

gistically can favor accuracy. To illustrate the point, we consider a binary Gaussian mixture 597

model(GMM), where data from the two classes are generated as follows: 598

𝑦 =

{
+1 ,with prob. 𝜋

−1 ,with prob. 1 − 𝜋
and x|𝑦 ∼ N (𝑦𝝁, 𝜎𝑦I𝑑) . (7)

Note here that the two classes can be imbalanced depending on the value of 𝜋 ∈ (0, 1), which 599

models class frequency. Also, the two classes are allowed to have different noise variances 𝜎±1. This 600

is our model for the difficulty attribute: examples generated from the class with highest variance are 601

“more difficult" to classify as they fall further apart from their mean. Intuitively, a “good" classifier 602

should account for both attributes. We show here that this is indeed the case for the model above. 603

Our setting is as follows. Let 𝑛 IID samples (x𝑖 , 𝑦𝑖) from the distribution defined in (7). Without 604

loss of generality, assume class 𝑦 = +1 is minority, i.e. 𝜋 < 1/2. We train linear classifier (w, 𝑏) by 605

solving the following cost-sensitive support-vector-machines (CS-SVM) problem: 606

(ŵ𝛿 ,
ˆ𝑏𝛿) := arg min

w,𝑏
∥w∥2 sub. to 𝑦𝑖 (x𝑇𝑖 w + 𝑏) ≥

{
𝛿 𝑦𝑖 = +1

1 𝑦𝑖 = −1

. (8)

Here, 𝛿 is a hyperparameter that when taking values larger than one, it pushes the classifier towards

the majority, thus giving larger margin to the minorities. In particular, setting 𝛿 = 1 recovers the

vanilla SVM. The reason why CS-SVM is particularly relevant to our setting is that it relates closely

to the VS-loss. Specifically, [19] show that in linear overparameterized (aka 𝑑 > 𝑛) settings the

VS-loss with multiplicative weights Δ±1 leads to same performance as the CS-SVMwith 𝛿 = Δ+/Δ− .
Finally, given CS-SVM solution (ŵ𝛿 ,

ˆ𝑏𝛿), we measure balanced error as follows:

Rbal(𝛿) := P(x,𝑦)∼(7)
{
𝑦 (x𝑇 ŵ𝛿 + ˆ𝑏𝛿) > 0

}
.

20

(a) (b)

Figure 7: The optimal hyperparameter depends on both attributes: frequency (𝜋) and difficulty (𝜎+/𝜎−).

We ask: How does the optimal CS-SVM classifier (i.e, the optimal hyperparameter 𝛿) depend on 607

the data attributes, i.e. on the frequency 𝜋 and on the difficulty 𝜎+1/𝜎−1? To answer this we 608

consider a high-dimensional asymptotic setting in which 𝑛,𝑑 → ∞ at a linear rate 𝑑/𝑛 =:
¯𝑑 . This 609

regime is convenient as previous work has shown that the limiting behavior of the balanced error 610

Rbal(𝛿) can be captured precisely by analytic formulas [7, 27]. Specifically, [19] used that analysis 611

to compute formulas for the optimal hyperparameter 𝛿 . However, they only discussed how 𝛿 varies 612

with the frequency attributed and only studied scenarios where both classes are equally difficult, i.e. 613

𝜎+1 = 𝜎−1. Our idea is to extend their study to investigate a potential synergistic effect of frequency 614

and difficulty. 615

Figure 7 confirms our intuition: the optimal hyperparameter 𝛿∗ depends both on the frequency 616

and on the difficulty. Specifically, we see in both Figures 7(a,b) that the easier the minority class 617

(aka, the smaller ratio 𝜎+1/𝜎−1), 𝛿 decreases. That is, there is less need to favor much larger margin 618

to the minority. On the other hand, as 𝜎+1/𝜎−1 increases and minority becomes more difficult, 619

even larger margin is favored for it. Finally, comparing Figures 7(a) to Figure 7(b), note that 𝛿∗ 620

takes larger values for larger imbalance ratio (i.e., smaller frequency 𝜋), again aggreeing with our 621

intuition. 622

G Experiment details and reproducibility 623

The functions are always fixed regardless of the datasets and objectives change F = 624

[log(A),A,A𝛽 ,A2𝛽 ,A4𝛽]. In our experiments, we set 𝛽 = 0.075. 625

For reproduced result in Table 2, we grid search on validation dataset and retrain for fair 626

comparison, so the result is worse than the value reported in [25, 38] which are grid searched on 627

whole test dataset. 628

For bilevel training, following the training process in [23], we start the validation optimization 629

after 120 epochs warmup and training 300 epochs in total. The learning rate decays at epochs 630

220 and 260 by a factor 0.1. The lower-level optimization use SGD with an initial learning rate 631

0.1, momentum 0.9, and weight decay 1𝑒 − 4, over 300 epochs. At the same time, the upper-level 632

hyper-parameter optimization also uses SGD with an initial learning rate 0.05, momentum 0.9, and 633

weight decay 1𝑒 − 4. To get better results, we initialize 𝒍 using LA loss in experiments in Table 2. 634

For a fair comparison, there is no initialization in other experiments. For LA and CDT results in 635

Table 2, we do grid search on the imbalanced validation dataset and retrain for a fair comparison. 636

For most of the experiments, except Errweighted in Table 3, we plot or report the average result of 637

3 runs. For Errweighted where the target weight 𝜶 was generated randomly, we repeat ten times with 638

different random seeds. We report the average result of 10 trails of different 𝝎test
for Errweighted. 639

At each trial, weights 𝝎test

𝑘
are generated i.i.d. from the uniform distribution over [0, 1] and then 640

normalized. 641

21

All the experiments are run with 2 GeForce RTX 2080Ti GPUs. 642

22

	Introduction
	Related Work

	Problem Setup
	Proposed Approach: Class-attribute Priors (CAP)
	Class Attributes and Adaptation to Heterogeneity
	CAP for Loss Function Design
	Class-specific Learning Strategies: Bilevel Optimization and Post-hoc optimization

	Experiments and Main Results
	CAP Improves Prior Methods Using Post-hoc or Bilevel Optimization
	Benefits of CAP for Optimizing Distinct Fairness Objectives
	Benefits of CAP for Adapting to Distinct Class Heterogeneities

	Conclusions
	Submission Checklist
	List of fairness objectives
	Framework overview.
	Extended Discussion of Warm-up and Training Stability
	Further post-hoc discussion
	Proofs of Fisher Consistency on Weighted Loss
	Multiple Attributes Benefit Accuracy in GMM
	Experiment details and reproducibility

