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Abstract—Feature pyramids aim to learn multi-scale repre-
sentations for detecting faces over various scales. However, they
often lack adequate context over different scales, especially when
there are many tiny faces in the wild. In this paper, we propose
an attention-guided semantically enriched feature aggregation
framework to learn a feature pyramid with rich semantics
at all scales for face detection. Specifically, high-level abstract
features are directly integrated into low-level representations
by skip connections to retain as much semantic as possible.
In addition, an attention mechanism is employed as a gate to
emphasize relevant features and suppress useless features during
feature fusion. Inspired by human visual perception of tiny
faces [1], we specially design a deep progressive refined loss
(DPRL) to effectively facilitate feature learning. According to
the above principles, we design and investigate various feature
pyramid frameworks through extensive experiments. Finally,
two typical structures named Centralized Attention Feature
(CAF) and Distributed Attention Feature (DAF) are proposed
for face detection, which are in-place and end-to-end trainable.
Extensive experiments across different aggregation architectures
on four challenging face detection benchmarks demonstrate the
superiority of our framework over state-of-the-art methods.

Index Terms—face detection, object detection.

I. INTRODUCTION

FACE detection aims to locate faces in a visual scene,

which is a fundamental step for subsequent face-relevant

tasks, including face tracking [2], face alignment [3], [4] and

face recognition [5], [6]. Although impressive progress has

been made for decades, face detection in the wild continues to

experience various challenges, such as low-resolution imaging,

tiny scale faces, large pose variations and occlusions in video

surveillance.

Recently, with the breakthrough of convolution neural net-

work (CNN) in image classification [7] and object detection

[8], the performance of face detectors has been substantially

improved. As a special case of generic object detection, state-

of-the-art face detection algorithms can be roughly divided

into two groups: two-stage face detector (Faster RCNN-based
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Fig. 1. (a) Classification confidence maps of S3FD, FPN and our method on
conv3 3. The brighter the dots, the higher the confidence level. The red circle
highlights the differences. (b) Large RF containing more context is not always
beneficial to face detection. (c) Visualization of face with different scales of
context. A larger region including head and shoulder is easily identified.

methods) [9] and one-stage face detector (SSD-based meth-

ods) [10]. Faster RCNN generates proposals by RPN in the

first stage and then feeds them into the second stage with

ROI pooling for refinement. Although these methods reach a

high recall and achieve remarkable results, the training and

inference are too time-consuming to be applied in practice.

To find a trade-off between speed and precision, SSD ex-

ploits inherently multi-scale features from different levels of

convolutional outputs in the backbone. With the supervisions
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Fig. 2. Example of face detection with the proposed method. In the above image, our method can find 845 faces out of 1000 facial images present. The
detection confidence scores are also given by the color bar as shown on the right. Best view in color.

of classification and bounding box regression on multi-scale

features, SSD achieves promising performance in real time on

GPUs. Because face detection has a high demand for speed in

real applications, the one-stage face detector attracts increasing

attention [11], [12], [13].

Because Zhang et al[12] demonstrated that the stride size

of the lowest anchor-associated layer in SSD is too large (8
pixels in conv4 3), small faces have been highly squeezed on

these layers and have few features for detection. S3FD [12]

extends the range of layers to conv3 3 with a 4 pixel stride to

guarantee enough spatial features for tiny faces. Unfortunately,

more anchor-associated layers give rise to another problem that

the features of shallower layers are so semantically deficient

that detectors fail to handle tiny faces in some complex

situations.

To enrich semantics at all scales, FPN [14] and DSSD

[15] adopt lateral connections to pass them from high-level

deeper features to low-level shallower features in a top-down

manner. However, we argue here that three problems may

not be well addressed: 1) Semantic diffusion. The top-

down layer-by-layer transmission mode in FPN may cause

semantics decay and even bring harmful noise[13], because

the cues of tiny faces in high-level low-resolution features are

rather weak (724 pixels receptive field in conv7 2 [12]). This

problem has been mentioned in [13], and we also conduct

comparative experiments to reveal this problem. As shown in

Fig. 1(a), the classification confidence maps of vanilla S3FD,

FPN and our method on conv3 3 are visualized for tiny face

detection. Compared with vanilla S3FD and FPN, our method

can not only cover more small faces (more bright points),

but also obtain higher confidence scores (brighter points).

For example, faces in the center region of the 1-st image,

the faces near the top-right area of the 2-nd and the 3-rd

image are undetected by FPN and S3FD. 2) Static fusion

strategy. FPN combines different features in a simply linear

combination without feature selection. [16] stated that the

context is not always beneficial to face detection. For example,

for a 10-pixel tall face, high-level features (conv6 2, conv7 2)

with large receptive fields should not be overconcerned due

to containing too much irrelevant information, as shown in

Fig. 1.(b). The ideal fusing methods should be task-oriented

where more relevant features should be boosted, while the

irrelevant features should be suppressed. 3) Detecting face in

one step. Training a detector with the supervision of face area

does not correspond with human visual perception because

the information inside the tiny face is too little to capture a

discriminative feature shown in Fig. 1.(b) It is intuitive that

extending the region of the face to include more features is a

feasible method as shown in Fig. 1.(c). Some works [1], [17]

have also found that humans first locate a large and rough

region and then refine the accurate position, especially in small

objects.

To address the above three issues, this paper proposes an

attention-guided semantically enriched feature aggregation ar-

chitecture to create a feature pyramid with abundant semantics

over all scales for face detection. Instead of a layer-by-layer

transmission mode in FPN, a skip connection is used to di-

rectly pass high-level abstract information to shallower layers,

which can relieve the problem of semantic diffusion. Fur-

thermore, we propose a dynamic adaptive feature aggregation

strategy based on attention mechanisms, which can be treated

as a flexible and task-oriented feature selection where relevant
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Fig. 3. An illustration of our proposed CAF and DAF architectures. We present an example of 6-path feature aggregation with attention mechanisms. Notice
that the upsampling layer is a simple bilinear resize operation in our experiments, which has the low computational complexity.

features are emphasized, and useless features are suppressed

during feature fusion. To simulate the progressive learning

style of humans, we propose a deep progressive refined loss

(DPRL) that sequentially employs multi-scale supervisions in

a coarse-to-fine manner. Based on the analysis above, we

design different feature aggregation structures and conduct

extensive experiments. Finally, two typical attention-guided

feature aggregation structures are proposed: Centralized Atten-

tion Feature (CAF) and Distributed Attention Feature (DAF).

Experiments have been carried on several public face detection

benchmarks, which demonstrate that our proposed CAF and

DAF are superior to the nave FPN for face detection. Fig. 2

shows an image containing a crowd of 1, 000 people with

occlusion, scale, expression and illumination. Our methods

successfully detect 845 faces.

The main contributions are summarized as follows,

• We investigate how to construct feature pyramids with

enriched semantic and spatial information for face detec-

tion. Global attention is integrated into the aggregation

framework, which learns to highlight relevant features

while suppressing redundant ones.

• Inspired by the observation that the whole identification

process of humans is from coarse to fine [1], we present

a deep progressive refined loss to effectively facilitate

feature learning. A large and rough region is located

before finding an accurate face.

• Extensive experimental evaluations on four common face

detection benchmarks, AFW, PASCAL face, FDDB and

WIDER FACE datasets, demonstrate the superiority of

the proposed framework.

II. RELATED WORK

Face detection is a classical but challenging task that has re-

ceived increasing attention in computer vision. Inspired by the

successful applications of CNN in various problems [18], [8],

state-of-the-art results for face detection have changed from

handcrafted feature-based methods [19], [20], [21] to CNN-

based methods [22], [23], [24], [25], [26]. Although CNN

has promoted the growth of face detection, some challenging

scenes containing large-scale variations of faces in practice

have not been well addressed. We briefly categorize some

recent works for handling multi-scale face detection into two

classes: single-scale detector with image pyramid and multi-

scale detector with feature pyramid.

A single-scale detector only utilizes a single layer in the

CNN to detect objects on a specific scale. Faster RCNN [9] is

a representative method that extracts scale-invariant features

by region of interest (ROI) pooling. To remedy the coarse

granularity of the last feature map in the backbone, [27], [28],

[29] attempted to fuse features on different layers to obtain

a semantically rich representation. Additionally, contextual

information has been shown to be effective for face detection,

especially for tiny or occluded faces. Body structure informa-

tion has been successfully incorporated to facilitate estimating

more accurate locations [29], [13]. In addition to a more

powerful representation, more separate detectors are trained

for each scale [1], and multi-level image pyramids are further

utilized during inference. To reduce redundant image pyramids



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

and accelerate the detection pipeline, A scale aware network

[30] is constructed to estimate face sizes in images and then

build a customized and condensed image pyramid according to

the estimated values. However, using image pyramids is very

time-consuming because a set of images is required to pass a

deep backbone many times during inference.

A multi-scale detector aims to learn multiple scale-specific

representations in which different sizes of faces are indepen-

dently detected by different feature maps. The seminal work

of SSD [10] is based on this philosophy. SSD makes full

use of inherently multi-scale features in the CNN and detects

objects of various scales on distinct layers. Inherited from

the SSD framework, carefully designed anchor strategies [12],

[31] are introduced into detection layers that further improve

the performance of finding tiny faces. ScaleFace [32] explicitly

breaks down face detection into three subtasks according

to face size: small, medium, and large. Three scale-variant

detectors are designed to detect faces within a certain range of

scales. Similarly, SSH [11] is also capable of detecting various

faces in a single forward pass, where three detection modules

are jointly trained from the convolutional layers with different

strides. Because those methods only use an individual layer in

a network for prediction, it is difficult for low-level features

with weak semantics to handle tiny and occluded faces. Recent

works [14], [15], [33], [34] show that combining fine-grained

details and high-level semantics is beneficial for providing a

robust prediction. FPN [14] and DSSD [15] adopt a lateral

connection to fuse adjacent layers in a top-down manner. Ex-

periments demonstrate that semantically augmented features

can improve the performance of all ranges of faces. Based on

FPN, RON [33] uses more sophisticated connections to learn

strong representations.

III. THE PROPOSED APPROACH

In this section, we present our attention-guided semantically

enriched feature aggregation framework to learn a semantic

feature pyramid for face detection. The overall architecture

is introduced first, and then, two typical feature aggregation

structures and DPRL are described in detail.

A. Overall Architecture

Face detection requires both spatial details and abstract

information for face or nonface probability estimation and

bounding box regression. SSD-based methods depend on high-

resolution but semantically weak features to detect tiny faces,

making the face detection pipeline suboptimal. A feasible way

is to transmit high-level semantics to all detection layers.

Inspired by ResNet [35], U-Net [36] and FPN [14], we

employ skip connections to directly pass multi-level semantic

information to different layers, aiming at preserving as much

as possible during transmission.

In addition, recent work shows that introducing gates into

the standard model can facilitate optimization and improve the

performance [37], [38]. The attention mechanism is generally

employed as a gate, which has been widely used in machine

translation [39] and visual recognition [40], [41]. Therefore,

it is intuitive to embed attention into our model to control the

aggregation of different layers. A reasonable explanation is

that irrelevant regions (or channels) are implicitly suppressed

while more relevant features are highlighted during feature

aggregation. When detecting extremely small faces, high-level

features in the top layer may be very weak and contain a

mostly irrelevant background. For example, the receptive field

in conv7 2 is 724 pixels that is much greater than 10-pixel

tall faces.

In summary, the proposed framework consists of three

key components: multi-level semantic feature aggregation,

attention-based gates and DPRL. We introduce two typical

feature aggregation structures as shown in Fig. 3: a Centralized

Attention Feature (CAF) and a Distributed Attention Feature

(DAF).

B. Centralized Attention Feature

The CAF first learns a feature tower that combines a multi-

level context by spanning hierarchical features with element-

wise sum aggregation. Benefiting from these operations, the

feature tower has discriminability and contains abundant multi-

scale semantic information, which leads to stronger feature

pyramids for various scales of faces, especially tiny faces.

Fig. 3 shows an example of the proposed CAF with 6-path

feature aggregation.

Feature hierarchy in the backbone. Given a single

image x, we denote the CNN feature extraction process

as [φ1, φ2, ..., φL] = Conv(x), where Conv(.) is

defined by the convolution neural network with L
prediction layers for detection in the backbone, and

φi is the output of i-th prediction layer. Assume that

VGG16 is a backbone where [φ1, ..., φL] corresponds to

[conv3 3, conv4 3, conv5 3, fc7, conv6 2, conv7 2]. SSD

adopts multiple feature maps as the prediction layers /

anchor-associated layers Φpred.

Φpred = {φp, φp+1, ..., φq}, (1)

where p = q = L in Faster RCNN, p = 2 (conv4 3) and

q = L in SSD and p = 1 (conv3 3) and q = L in S3FD.

Generally, the shallower layers with higher resolution are used

to detect the small objects, and deeper layers are used to detect

large objects.

Feature aggregation with attention. To enrich semantics

in shallower layers and augment details in deeper layers

simultaneously, CAF creates a feature tower that aggregates

multi-level representations.

Ψtower = Agg(φp, φp+1, ..., φq), (2)

where Agg(.) is the aggregation function of the prediction

layers. In the implementation of Agg(.), we simply upsample

the low-resolution layers and then concatenate them. q−p+1
is the number of layers for aggregation. As shown in [1],

the contributions of diverse level feature maps for detecting a

certain range of faces are different. To promote more relevant

features and suppress useless features, an attention mechanism

is imposed into Agg(.). Thus, feature aggregation can be

further formulated as follows:

Ψtower = Agg(φp, ..., φq, Att(φp, ..., φq)), (3)
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where Att(.) is the attention function. In this paper, we present

a global cross-layer channel-wise attention that is expansion of

vanilla channel-wise attention [40]. A mathematical descrip-

tion of the attention function is presented as follows:

Att(φp, ..., φq) = [Wp, ...,Wq], (4)

where Wp ∈ Rcp has the same number of channels cp as

φp. Att(.) generates a vector [Wp, ...,Wq] ∈ Rcp+...+cq as

weights for each channel of all layers. We adopt the SEBlock

in [40], which consists of squeeze and excitation. The first

stage squeeze imposes a global pooling operation on each

channel of φp. For kth-channel φk
p ∈ RW×H in φp:

zkp =
1

W ×H

W∑

i=1

H∑

j=1

φk
p(i, j) (5)

where φk
p(i, j) is the element on the kth channel, ith col-

umn and jth row. The excitation stage contains two fully-

connection layers fc2 and a sigmoid function to obtain the

attention weights on each channel with input zp:

Wp = sigmoid(fc2(zp)) (6)

Finally, feature aggregation Agg(.) rescales the input features

of all layers:

Ψtower = Agg(φp, ..., φq, Att(φp, ..., φq)), (7)

= [Wp ⊗ φp, ...,Wq ⊗ φq] (8)

where ⊗ denotes channel-wise multiplication. A more detailed

desciption can be found in [40].

The weights across different channels among all layers are

learned in a global view, which makes the feature aggrega-

tion dynamic and self-adaptive. Similar to feature selection,

relevant features are emphasized and the useless features are

suppressed.

The attention function Att(.) in our model is flexible. It can

be channel-wise [40] or pixel-wise [41] attention. Here, we

take the proposed global cross-layer channel-wise attention as

an example. The motivation is to learn to select more relevant

features instead of learning the dependent relation between

layers.

Feature pyramid generation. Our target is to generate a

feature pyramid for classification and bounding box regression.

After feature fusing with attention, the obtained feature tower

contains multi-scale features with multi-level semantics, lead-

ing to high discriminative abilities, especially for tiny faces.

CAF generates a new feature hierarchy based on the feature

tower representation Ψtower.

φ′

i = Ti(Ψtower) i = p+ 1, p+ 2, ..., q, (9)

where φ′

i denotes the generated i-th level representation. Ti(.)
is the transformation function for the i-th level. In this paper,

multiple convolution operations with stride=2 are utilized to

generate the feature pyramid.

C. Distributed Attention Feature

Different from CAF, DAF generates multiple towers with

different resolutions composed of feature pyramids by aggre-

gating multi-level features.

For the i-th layer of feature hierarchy in backbone, different

hierarchies of features are generated through a series of

ampling functions. Notice that the upsampling layer is a simple

bilinear resize operation in our experiments, which has low

computational complexity.

φk
i = U×2(φ

k−1

i ) k = 2, 3, .., q, (10)

φk
i = φi k = 1, (11)

where U×2(.) is the upsampling function to extend the feature

map by 2 times, and k is the hierarchy of the feature maps.

To learn a feature tower for the j-th level in the feature

pyramid, all features after the j-th layer are combined with

the j-th features. Attention is also applied such as CAF.

Ψj
tower = Agg(φj , ..., φ

q−j+1
q , Att(φj , ..., φ

q−j+1
q )), (12)

where Ψj
tower(j ∈ {p, ..., q}) is the aggregated feature tower

that is used as prediction layer. Fig. 3 depicts the DAF with

6 paths for aggregation, i.e., p = 1, q = 6.
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Fig. 4. The deep progressive refined loss (DPRL) sequentially employs
different scopes of supervision from coarse to fine.

D. Deep Progressive Refined Loss

At present, most face detectors utilize face regression and

classification as the only loss function, where there is no

supervision in the middle layers. The singleness of supervision

affects the detection of faces with different scales. This issue

seems unimportant in normal and large face detection because

they have adequate pixels and salient features. Nevertheless,

little information is available to represent small faces as shown

in Fig. 1(b) and (c). Their features are further squeezed with

the increase of stride. Consequently, finding tiny faces based

on few features is difficult.

To address this issue, we propose a deep progressive refined

loss (DPRL) to utilize more context beyond the face extent.

Inspired by deeply supervised learning [42], we sequentially

employ different scopes of supervision from coarse to fine.

The structure of DPRL is shown in Fig. 4. Our DPRL adopts

a three-branch structure, where a shallower branch is used

to locate a larger region (including the head and shoulder)

and a deeper branch is used to locate a finer face. This

learning process from easy to difficult is similar to curriculum

learning [43], which is consistent with human learning style

in a meaningful order. In particular, we design three sets of
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anchors with different sizes that correspond to three scopes of

face (large, middle and normal region). The Multi-task losses

[9], [12] including classification loss (softmax) and bounding

box regressions are defined as follows:

L({pi},{ti})=
λ

Ncls

∑

i

Lcls(pi,p
∗

i )+
1

Nreg

∑

i

p∗iLreg(ti,t
∗

i ),

where i is the index of the anchor and pi is the predicted

classification probability of anchor i. p∗i is the ground-truth

label of anchor i, where i = 0 represents a negative anchor and

i = 1 represents a positive anchor. ti is a vector representing

the 4 parameterized coordinates of the predicted bounding box

and t∗i is the ground truth coordinates. Softmax loss is adopted

in Lcls(pi, p
∗

i ). The bounding box regression loss Lreg(ti, t
∗

i )
is the smooth L1 loss defined in [44]. Ncls and Nreg are

normalized terms, and λ is a balancing parameter.

DPRL contains three sets of anchors with different sizes,

i.e., large anchors lai, middle anchors mai and normal anchors

nai. Their predicted classification probabilities of anchor i are

lpi,mpi, npi, and the coordinates of the predicted bounding

box are lti,mti, nti. Thus, DPSL is formulated as follows:

LDPRL = Ll({lpi},{lti}) + Lm({mpi},{mti})

+ Ln({npi},{nti})
(13)

Notice that we only use the output of normal anchors in

inference, which means no additional computational cost is

introduced.

E. Training

In the following sections, we describe the implementation

details including the training dataset, data augmentation and

other significant techniques for the overall framework training.

1) Training data and data augmentation.: All models are

trained on the WIDER FACE training dataset [45]. Following

data augmentation in [10], [12], color distortion and horizontal

flipping are adopted in this paper. A random crop is also used

to generate training images [12]. In addition, we utilize data-

anchor-sampling [13] in our final face detector to compare

with various state-of-the-art detectors.

2) Hard negative mining.: To alleviate a significant im-

balance between positive and negative samples after anchor

matching, an online hard negative mining strategy [10] is

employed during training. Specifically, all negative anchors

are sorted by the classification loss, and the top ones are

selected for training to ensure that the ratio between negative

and positive anchors is at most 3 : 1.

3) Other implementation details.: We use VGG16 and

ResNet-50 as backbone networks, which are initiated by

the pre-trained model [46][35]. The newly added layers are

initialized with Xavier. To obtain the same resolution of layers

for aggregation, a simple bilinear resize operation is utilized as

an upsampling method. The sizes of large and middle anchors

are 2.0× and 1.5× than those of the normal anchors. We use

mini-batch SGD with the momentum of 0.9 and weight decay

of 0.0005. The batch size is set to 12 on four GPUs. The initial

learning rate is 0.001 and decreases 10 times at iteration 80k
and 100k, and the training ends at 120k iterations.

Methods

mAP(%) Subsets

Easy Medium Hard

S3FD + CF / CAF-3path 94.2 / 94.2 92.9 / 92.9 86.5 / 86.6

S3FD + CF / CAF-4path 94.4 / 94.4 92.9 / 93.0 86.6 / 86.6

S3FD + CF / CAF-5path 94.2 / 94.3 92.8 / 93.1 86.4 / 86.7

S3FD + CF / CAF-6path 94.0 / 94.3 92.9 / 93.0 86.4 / 86.6

S3FD + DF / DAF-3path 94.4 / 94.4 93.2 / 93.3 86.7 / 86.7

S3FD + DF / DAF-4path 94.4 / 94.4 93.1 / 93.2 86.4 / 86.9

S3FD + DF / DAF-5path 94.2 / 94.4 93.0 / 93.1 86.4 / 86.6

S3FD + DF / DAF-6path 94.0 / 94.2 92.9 / 93.1 86.4 / 86.5

TABLE I
THE COMPARATIVE RESULTS OF OUR CF AND DF ALONG WITH THEIR

ATTENTION VERSIONS, CAF AND DAF ON WIDER FACE VALIDATION

SUBSET. XXX-nPATH MEANS THAT THE FIRST n PREDICTION LAYERS ARE

USED FOR FEATURE AGGREGATION.

IV. EXPERIMENT

In this section, an ablation study is first conducted to analyze

the effectiveness and significance of each part in our methods,

including different feature aggregation structures, attention-

based gates and DPRL, and then we evaluate the final models

on four widely used face detection benchmarks.

A. Model analysis

We conduct extensive experiments on the WIDER FACE

validation set to analyze our model. The WIDER FACE

validation dataset is a comprehensive and challenging dataset

that contains easy, medium and hard levels.

1) Baseline: Our proposed CAF and DAF are general-

purpose and applicable to arbitrary detection models, so we

simply adopt S3FD [12] as a baseline in this paper. Because

our method is inspired by FPN [14], S3FD and FPN are

combined as a baseline (S3FD + FPN) to compare with our

methods.

Inference time. We measure the speed of FPN and our DAF

with batch size 1 on a Tesla P40, CUDA 8.0 and cuDNN v6.

For the 640x384 input size, FPN runs at 21 PFS, while our

DAF achieves 28 FPS. Our DAF is 7 FPS faster than FPN. The

underlying reasons include two aspects: 1) DAF uses fewer

channels (256 for all layers) than FPN (same as the backbone)

during feature aggregation. 2) The strategies employed in the

training stage do not increase the computational complexity in

reference, such as DPRL. Thus, our DAF achieves both faster

running speed and higher performance.

2) Ablation study: We perform an ablation study to validate

the efficacy of each proposed component in this paper, as

well as various choices in designing the network. Our model

is evaluated under three different settings: (i) CF and DF

that mean CAF and DAF w/o attention: they only employ

our proposed frameworks to aggregate feature maps without

attention mechanisms. (ii) CF n-path and DF n-path: the first

n layers are used to aggregate multi-level feature maps. (iii)

CAF n-path and DAF n-path: attention is incorporated when

aggregating n layers.

Tab. I and Tab. II show the results of different methods

under different settings. Some promising conclusions can be

summarized as follows:
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TABLE II
THE COMPARATIVE RESULTS OF OUR METHODS WITH

DIFFERENT BACKBONE NETWORKS AND BASELINES

(VANILLA S3FD AND FPN) ON THE WIDER FACE
VALIDATION SUBSET.

Backbone Method
AP

Easy Medium Hard

VGG-16 S3FD 94.0 92.7 84.2

S3FD + FPN 93.9 92.9 85.9

S3FD + CF 94.4 92.9 86.6

S3FD + CAF 94.3 93.1 86.7

S3FD + DF 94.4 93.2 86.7

S3FD + DAF 94.4 93.2 86.9

ResNet-50 S3FD 94.5 93.1 85.1

S3FD + FPN 94.5 93.6 87.0

S3FD + CF 95.1 93.9 88.4

S3FD + CAF 95.5 94.1 88.7

S3FD + DF 95.3 93.9 88.5

S3FD + DAF 95.6 94.3 88.9
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Fig. 5. Evaluation on the AFW dataset.

Low-level feature aggregation for CF and DF is crucial

for detecting hard faces. We conduct some experiments to

explore whether the more layers of fusion, the better the effect

we obtain. From Tab. I, we can see that the performance

of CF is improved with the number of layers increasing

in the beginning. However, when aggregating more layers,

the performance no longer increases or even declines. Our

DF shows similar behaviors. Finally, CF-4path and DF-3path

achieve the best results. This phenomenon may be attributed

to two reasons: 1) features with a large gap in scale may

not help each other, which also exists in FPN [13]; 2)

other scales of features may dominate the main scale. For

example, detecting tiny faces mainly depends on conv3 3,

but incorporating more scales of features may drown out the

effect of conv3 3. Therefore, introducing gates to adaptively

modulate the aggregation of different layers is significant.
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Fig. 6. Evaluation on the PASCAL face dataset.
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Fig. 7. Evaluation on the FDDB dataset.

Attention-based gates boost the performance of detec-

tion. We add an attention mechanism to our CF and DF. Tab. I

shows that the performances of all the methods are improved

when attention is introduced. It is interesting to observe that

there is only a small improvement in the small number of

aggregation layers (such as 3-path and 4-path). With increas-

ing aggregation layers, the channel-wise attention mechanism

highlights its importance. Most models have approximately

0.2 ∼ 0.3% improvement (such as CAF/DAF-6path on the

easy subset, CAF/DAF-5path on the hard subset), which means
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Fig. 8. Precision-recall curves on the WIDER FACE validation set and testing set.

that attention is more beneficial for large layer aggregation

and is mainly because large amount of layers require dynamic

modulation by attention. These results further validate the

effectiveness of attention.

The structures of CAF and DAF are beneficial for

detection. Tab. II shows the mAP of the baselines for different

backbone networks and our proposed methods. Methods with

ResNet-50 as the backbone consistently perform better than

those with VGG-16 as the backbone. Due to the deficiency

semantics on shallow layers, S3FD yields inferior performance

at all scales of faces compared to FPN, especially for the hard

setting from 84.2% to 85.9% on VGG-16 and from 85.1% to

87.0% on ResNet-50. Our proposed two structures (CF, DF,

CAF and DAF) can be treated as an alternative method to

FPN. The experimental results clearly show that all of our

proposed methods significantly outperform S3FD, especially

on small faces (increasing by 2.7% and 4.8% on VGG-16 and

ResNet-50 respectively). To demonstrate the weak semantic

problem for tiny face detection, we visualize the classification

confidence maps on conv3 3 of S3FD and our method. From

Fig. 1, we can see that our approach can not only cover more

tiny faces than S3FD but also obtain higher confidence. When

incorporating the attention mechanism into our models, the

performance of face detection can be further improved; espe-

cially 1.0% and 1.9% improvement are achieved compared to

FPN in the hard set. This underlines that CAF and DAF can

further enhance the semantics on low-level feature maps (like

conv3 3, conv4 3), which make it more robust to tiny faces.

In addition, the performance on the medium and easy set is

also better than FPN, which validates the effectiveness of CAF

and DAF.

DPRL is beneficial for face detection. We investigate

various configurations of DPRL, including two granularities,

large and middle scopes. DAF is our baseline, mc and lc
represent middle and large scopes of supervision. p means

deploying supervisions in parallel. As shown in Table III,

employing a middle level mc boosts the performance. When

two scopes are introduced sequentially, the performance is

further improved with 0.7%, 0.7% and 1.1% AP improvements

on VGG-16. When the backbone changes to ResNet-50, the

improvement is more obvious. Additionally, experiments show

that the sequential learning strategy performs better than the

parallel strategy. The underlying reasons are that this coarse-

to-fine training strategy is helpful for learning discriminative

features. In addition, locating rough regions is easier and can

narrow the search range for tiny face detection. In addition,

we also evaluate the impact of DPRL on S3FD + FPN, and

Table III shows that DPRL boosts its performance by 1.1%,

1.0% and 1.4% on VGG-16 and 0.8%, 1.0% and 1.9% on

ResNet-50.

B. Evaluation on Benchmarks

We evaluate our proposed CAF and DAF on four face

detection benchmarks, including Annotated Faces in the Wild

(AFW)[47], PASCAL Face[48], the Face Detection Dataset
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and Benchmark (FDDB) [49] and WIDER FACE [45]. For a

fair comparison, we follow the testing protocols in S3FD[12].

All methods are only trained on the WIDER FACE training

dataset and are directly tested on these four face detection

benchmarks without fine-tuning.

1) AFW Dataset: It has 205 images with 473 labeled

faces, which were collected from Flickr. Its challenge is due

to large variations in appearance and viewpoint. To verify

the performance of the proposed methods, we evaluate them

against other works, including deep learning methods, tradi-

tional methods and some commercial face detectors.

The commercial face detectors include Face.com, Face++

and Picasa. For traditional methods, we compare the

Deformable Parts Model (DPM)[50], Headhunter [20],

SquaresChnFtrs-5, Structured Models [48], Shen et al. [51],

and TSM [47]. The deep learning methods contain S3FD [12].

All of the compared methods are from their released results.

Fig. 5 shows the precision-recall curves of different meth-

ods. We make the following observations. Due to the powerful

representation of CNN, three deep learning methods (S3FD,

CAF and DAF) are significantly better than the traditional

face detectors. The improvements are particularly apparent

when the recall is high. Although S3FD achieves a near-

perfect performance, our CAF and DAF further improve AP

from 99.85% to 99.89% and from 99.85% to 99.90%. Some

qualitative results on the AFW dataset are presented in Fig.9.

Note that the state-of-the-art methods on this dataset have

performed well, and even a small improvement is difficult.

These results highlight the effectiveness of our methods.

2) PASCAL face Dataset: It contains 1, 335 labeled faces

in 851 images with large face appearance and pose variations.

They were collected from the test set of the PASCAL person

layout dataset. Thus, it is a subset of PASCAL VOC[52].

Compared to the AFW dataset, the PASCAL face contains

more images under various conditions. We compare our meth-

ods with commercial face detectors (Picasa, Face++ and Sky-

Biometry) and other face detectors (DPM[50], Headhunter

[20], SquaresChnFtrs-5, Structured Models [48] and TSM

[47]).

The precision-recall curves of different methods are shown

in Fig. 6. The three deep learning methods (S3FD, CAF

and DAF) perform significantly better than the traditional

methods. Compared with DPM, S3FD raises performance

from 90.29% to 98.49%. Although S3FD has achieved very

high performance, our methods further improve the AP from

98.49% to 99.11%, which is mainly because our CAF and

DAF can build a semantic-enriched feature pyramid, which is

effective in dealing with hard face detection. We also present

some qualitative results on the PASCAL face dataset in Fig.10.

3) FDDB Dataset: The Face Detection Data Set and

Benchmark (FDDB) [49] is a well-known benchmark that

contains 5, 171 faces in 2, 845 images collected from the

Yahoo! News website. It is a challenging dataset due to

arbitrary poses, occlusions, various lighting, expressions, low-

resolution and out-of-focus faces. All faces in this dataset

are annotated with ellipses. Following the evaluations in [49],

there are two metrics based on ROC. The discrete score metric

is similar to previous evaluations, which is a coarse match

TABLE III
EFFECTIVENESS OF DPRL ON THE AP PERFORMANCE.

Backbone Method
AP

Easy Medium Hard

VGG-16 S3FD + FPN 93.9 92.9 85.9

S3FD + FPN-mc-lc 94.5 93.4 87.1

DAF 94.4 93.2 86.9

DAF-mc 95.1 93.8 87.6

DAF-mc-p 94.8 93.6 87.3

DAF-mc-lc 95.1 93.9 88.0

ResNet-50 S3FD + FPN 94.5 93.6 87.0

S3FD + FPN-mc-lc 95.3 94.6 88.9

DAF 95.6 94.3 88.9

DAF-mc 95.9 94.9 89.7

DAF-mc-p 95.8 94.7 89.4

DAF-mc-lc 96.3 95.5 90.4

between prediction and the ground truth. Another metric is a

precise one.

We compare the proposed CAF and DAF with other pub-

lished state-of-the-art methods, including [17], [1], [53], [25],

[54], [55], [56]. The results of the compared methods are from

the FDDB website1. The ROC curves of the discrete score

metric and the continuous score metric are depicted in Fig. 7(a)

and Fig. 7(b), respectively. It can be observed that our CAF

and DAF achieve state-of-the-art performance and outperform

others on discontinuous and continuous ROC curves. Note that

the FDDB dataset uses ellipses as the ground truth of face.

Although several methods also predict special detections, our

methods still perform better. Fig.11 shows several qualitative

results on the FDDB dataset. The results demonstrate that the

proposed methods are robust to various scales, extreme pose

(profile face), heavy occlusion and blur conditions.

4) WIDER FACE Dataset: The WIDER FACE Dataset

[45] is widely used in face detection evaluations because

it is the most challenging face detection database. It con-

tains 393,703 faces in 32,203 images with a high degree

of variability in scale, pose, illumination and occlusion. It

has three levels of difficulty (easy, medium and hard) ac-

cording to the difficulty of detection. Samples in the dataset

are split into training (40%), validation (10%) and testing

(50%) sets. Our CAF and DAF are trained only on the

training set and tested on the validation set and the testing

set. We compare the proposed methods with recent state-

of-the-art methods, including Zhu. et al.[31], MSCNN[57],

Face R-FCN[55], S3FD[12], SSH[11], ScaleFace[32], Face

R-CNN[58], HR[1], LDCF+[54], CMS-RCNN[29], Multitask

Cascade CNN[25], Faceness-WIDER[24], ACF-WIDER[53],

Two-stage CNN[45], Multiscale Cascade CNN[45], FAN[58],

FANet[59], SFDet[60], FDNet[61] and Pyramidbox[13]. The

Precision-Recall (PR) curves and average precisions (AP) are

1http://vis-www.cs.umass.edu/fddb/results.html
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Fig. 9. Qualitative results on the AFW dataset. The green bounding box represents the detector confidence above 0.8.

Fig. 10. Qualitative results on the PASCAL face dataset. The green bounding box represents the detector confidence above 0.8.

used for comparison among different methods. Fig. 8 shows

the results on both validation and testing datasets. We make

the following observations:

The performances of all methods follow the difficulties of

three subsets where they perform the best on the easy subset.

The first row of Fig. 8 is the results on the validation set.

Although the baseline model S3FD obtains 93.7% AP on

the easy subset, our CAF and DAF still outperform it by

approximately 2.4% and 2.6%. In addition, our methods yield

superior performance on the medium subset and the perfor-

mance gap have been further increased (3.0% AP increase

compared with S3FD), which demonstrates that our methods

are also beneficial for detecting middle-scale faces. The main

reason is that the low-level layers with enough spatial details

can be spread directly to the high-level layers. Hence, high-

level features have more abundant information to accurately

detect bigger faces. On the hard subset, our CAF and DAF

also achieve state-of-the-art performance. In particular, DAF

and CAF outperform S3FD by approximately 4.2% and 4.5%
on the validation set, respectively. The second row shows the

results on the testing set. Since the testing set contains more

samples with a large variance of scale, pose, occlusion, etc,

all methods perform inferior on it. On the easy subset, our

proposed CAF and DAF almost surpass all other methods but

are marginally inferior to Pyramidbox (only 0.1% gap). The

underlying reason is that our methods focus on improving

the performance on hard face detection, especially for tiny

faces. Thus, our proposed methods achieve state-of-the-art

performances on the medium and hard subsets of the testing

sets. Particularly, our DAF and CAF outperform the S3FD by

2.0%/1.6%, 2.9%/2.5% and 4.5%/4.3% on three subsets of

the testing set. It further validates the generalization ability of

our models.

Fig.12 and Fig. 13 show some examples of detected faces

in the WIDER FACE dataset by our methods. Many tiny

faces in very crowded scenes have been successfully detected.

Our face detector can also address other hard conditions,

such as variations in pose, occlusion, expression, makeup and

illumination.

V. CONCLUSION

In this paper, we propose a novel feature aggregation

framework based on attention gates for face detection. Two

typical structures named CAF and DAF are constructed to

learn a feature pyramid with semantics at all layers, which

are more effective for tiny faces. In addition, attention has
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Fig. 11. Qualitative results on the FDDB dataset. The green bounding box represents the detector confidence above 0.8.

Fig. 12. Our methods can handle faces with a wide range of face scales. The green bounding box represents the detector confidence above 0.8.

been studied to adaptively control the information flow of

each layer during feature aggregation. DPRL, which utilizes

more context, is presented to detect faces in a coarse-to-

fine manner. Experimental results across four structures on

challenging face detection databases show that our CAF and

DAF significantly outperform state-of-the-art face detection

methods. In our future work, we intend to extend our methods

to generic object detection.
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