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ABSTRACT

The lottery ticket hypothesis (LTH) suggests the possibility of pruning neural net-
works at initialization. Our study revisits LTH in the context of transfer learning,
unveiling novel insights surpassing prior studies limited to LTH’s application in pre-
trained networks. To begin, our study shows that multiple pruning-at-initialization
methods are likely to find worse pruning masks than a simple magnitude-based
pruning method for pre-trained networks, owing to an inaccurate approximation
of the influence of each weight. Iterative magnitude pruning (IMP) can find train-
able subnetworks (winning tickets) even for pre-trained networks, however, IMP
is a costly algorithm that requires multiple training cycles. Given that trainable
subnetworks can be identified only when the initial network withstands the train-
ing’s inherent randomness, and considering the superior resilience of pre-trained
networks to this randomness compared to randomly initialized networks, we empir-
ically demonstrate the enhanced efficiency of identifying trainable subnetworks
within the framework of transfer learning. By challenging conventional wisdom
surrounding gradual magnitude pruning (GMP), we reveal its capability to signifi-
cantly enhance the trade-off between transfer learning performance and sparsity in
terms of pruning-at-initialization. Our experiments, which involve various models
such as convolutional neural networks and transformers, across both vision and
language domains, demonstrate that GMP can identify trainable subnetworks for
pre-trained networks at a significantly lower cost than IMP. For example, for Ima-
geNet pre-trained ResNet-50, at a pruning ratio of 99%, GMP achieves comparable
or superior results to IMP on the CIFAR, Caltech-101, Oxford-IIIT Pets, and Stan-
ford Cars datasets, with 42 times less computation than IMP. Ultimately, we provide
empirical evidence that the methodological distinction between the LTH-based and
conventional pruning methods can be blurred for pre-trained networks.

1 INTRODUCTION

Transfer learning methods (Weiss et al., 2016) learn various features by solving pretext tasks on large
datasets and then using pre-trained models as initialization to learn downstream tasks. Owing to
the increase in model and dataset sizes and the development of pretext tasks, transfer learning has
achieved excellent performance in many tasks; thus, it has become the de facto standard in computer
vision and natural language processing. However, the large number of parameters in pre-trained
models, designed to learn rich features, becomes problematic for end-users with limited memory and
computation budgets when they aim to apply these pre-trained models to their downstream tasks. In a
reality where not all creators of foundation models readily offer highly lightweight versions of their
models, efficient training at the downstream level is essential to address the issue. In parallel with the
increase in the size of deep learning models, studies on pruning-at-initialization (Frankle & Carbin,
2018; Lee et al., 2018) have attracted attention. For example, Frankle & Carbin (2018) established
the lottery ticket hypothesis (LTH), which states that a sparse network that can achieve a performance
similar to that of the full network with the same number of updates exists in a randomly initialized
model. They proposed iterative magnitude pruning (IMP) that repeats train-prune cycles with weight
resetting–resetting weights to initial values–to obtain a sparse trainable network of the target sparsity.

Most studies on pruning-at-initialization have been conducted from the perspective of model training
from scratch (Frankle & Carbin, 2018; Lee et al., 2018). However, as transfer learning has become
more prominent, we explore the LTH in the context of transfer learning. We explore the methodology
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for identifying a trainable subnetwork within a pre-trained network using only a downstream dataset.
This inquiry gains significance given the proliferation of large-scale pre-training datasets that remain
undisclosed (Zhai et al., 2022). We first show that saliency-based pruning-at-initialization methods
are suboptimal for pre-trained networks. Specifically, we prune an ImageNet (Deng et al., 2009)
pre-trained ResNet (He et al., 2016) with SNIP (Lee et al., 2018), GraSP (Wang et al., 2020), SynFlow
(Tanaka et al., 2020), and ProsPr (Alizadeh et al., 2022) using various downstream datasets; the
results show that compared to the sparse network obtained by simply pruning the pre-trained model
based on the magnitude of its weight values (Han et al., 2015b), the pruning-at-initialization methods
lead to models that significantly underperform at all pruning ratios–the percentage of weights that are
pruned–tested. We attribute such failures of the existing methods to the inaccurate approximation of
the influence of each weight (referred to as “synaptic saliency”) and empirically demonstrate that the
synaptic saliency diverges from the true saliency as the pruning ratio increases. Despite the failings of
the pruning-at-initialization methods, we observe that IMP successfully finds trainable subnetworks
even for pre-trained networks. These observations are consistent with the outcomes of Chen et al.
(2020), which validated the application of the LTH by employing IMP on pre-trained BERT networks
(Devlin et al., 2018). However, IMP is a computationally intensive algorithm that requires multiple
training cycles. Moreover, IMP requires significantly more train-prune cycles as the target sparsity
increases because the increase in the pruning ratio between training cycles exponentially decreases.

In our study, we show that IMP is not essential to identify trainable subnetworks in the context of
transfer learning. Our hypothesis can be derived from related studies (Frankle et al., 2020a; Paul et al.,
2022) that define “stability” for an initial network and show the ease of finding trainable subnetworks
for stable initial networks. After probing whether pre-trained networks are significantly more stable
than randomly initialized networks, we apply various types of pruning algorithms (Han et al., 2015b;
Zhu & Gupta, 2017; You et al., 2019), which present a more economical option than IMP, to identify
winning tickets in the context of transfer learning. Experimental results demonstrate that, in contrast
to the outcomes observed with randomly initialized networks (Frankle & Carbin, 2018), gradual
magnitude pruning (GMP) (Zhu & Gupta, 2017) can obtain competitive subnetworks. Moreover,
building upon the observation that the model update directions of a pre-trained network are more
consistent than those of a randomly initialized network during training, we significantly enhance
GMP’s pruning-at-initialization performance by challenging conventional notions about GMP. We
complement our hypothesis with extensive experiments across various models (convolutional neural
networks (CNNs) (He et al., 2016), transformers (Devlin et al., 2018; Dosovitskiy et al., 2020))
in both vision and language domains and show that GMP alongside large learning rates and short
pruning periods can find pruning masks comparable to or better than those of IMP for initial networks
in the context of transfer learning. Finally, based on our observation that the pruning mask obtained at
the end of a single training run works for LTH, we investigate whether the methodological boundary
between the LTH-based and conventional pruning methods can be removed for pre-trained networks.

In summary, our contributions are as follows: (i) Our research stands as the first to systematically
apply and compare diverse pruning-at-initialization methodologies to pre-trained networks, utilizing
downstream datasets. Our experimental findings cast light on the limitations of saliency-based tech-
niques in contrast to the magnitude-based baseline and IMP; (ii) We showcase that the achievement
of a remarkable sparsity-performance trade-off is feasible when performing pruning-at-initialization
on a network that is initialized with pre-trained weights for downstream tasks, without the necessity
for repetitive train-prune cycles; (iii) Our work introduces the untapped potential of GMP within the
domain of pruning-at-initialization. Our study demonstrates that GMP exhibits efficacy not only in
the conventional scenario but also in the pruning-at-initialization scenario, where masks obtained at
the end of the pruning process are applied to the initial weights. By challenging conventional notions
about GMP, we expose its capability to significantly enhance the performance-sparsity trade-off; (iv)
Our analysis provides empirical validation of the effectiveness of state-of-the-art pruning techniques
in the realm of pruning-at-initialization, marking a pioneering contribution in this area.

2 RELATED WORK

Since the advent of contemporary deep learning models such as AlexNet (Krizhevsky et al., 2017),
which demonstrate significant performance improvements compared to earlier versions, efforts have
been initiated to incorporate pruning techniques (LeCun et al., 1990) to reduce the size of over-
parameterized models. The first substantial breakthrough was achieved by implementing magnitude-
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Figure 1: The results of sparse training on Caltech-101, Stanford Cars, Oxford-IIIT Pets, and CIFAR-
10 for both randomly initialized (top) and ImagNet pre-trained (bottom) ResNets.

based and iterative pruning (Han et al., 2015a). This led to the evolution of an advanced method
that progressively modulates the pruning rate (Zhu & Gupta, 2017). The objective of these pruning
methods is to achieve a combination of fully converged weights and the corresponding pruning mask
by selectively zeroing out weights during or after the training process (Zhang et al., 2022). In our
paper, we will term these pruning methods “conventional pruning” for clarity.
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Figure 2: The average cross-entropy
loss changes resulting from weight
pruning the pre-trained network us-
ing the SNIP, Random, and Magnitude
methods on a set of randomly selected
ImageNet validation samples.

In contrast to conventional pruning, pruning-at-initialization
aims to find a pruning mask for a given initial network that
maximizes the performance that the model can reach. IMP, a
representative pruning-at-initialization method, first (i) trains
the initial network until it converges; (ii) prunes a certain
percentage of the weights with the smallest magnitude; (iii)
returns the remaining weights to their initial values and
repeats the train-prune cycles for the sparse subnetwork up
to the target sparsity. IMP can successfully obtain trainable
subnetworks, but it is a computation-intensive algorithm
that requires many training cycles. On the other hand, the
saliency-based methods measure synaptic saliency scores
for given network parameters with no or a few training steps
and prune based on those scores. Synaptic saliency (S) can
be formulated as S = R ⊙ θt; where ⊙ and θ denote the
Hadamard product and network parameter at training step
t, respectively, and R has different forms for each method.
S is

∣∣∣ ∂L∂θ0
⊙ θ0

∣∣∣ in SNIP (Lee et al., 2018), −
(
H ∂L

∂θ0

)
⊙

θ0 in GraSP (Wang et al., 2020),
∂(⃗1⊤(

∏L
l=1 |θl|)⃗1)
∂θ0

⊙ θ0 in

SynFlow (Tanaka et al., 2020), and
∣∣∣ ∂L
∂θT

⊙ θ0

∣∣∣ in ProsPr
Alizadeh et al. (2022), where L and H denote the training
loss function and Hessian matrix, respectively.

Recent studies on LTH considered pre-trained networks.
Chen et al. (2021) demonstrated that they could find sparse
subnetworks that maintain downstream performances for ImageNet pre-trained CNNs. They applied
IMP to the pre-trained networks using the pre-training dataset. Similarly, Iofinova et al. (2022) ob-
tained sparse subnetworks by pruning during ImageNet pre-training and proved that their downstream
performances were maintained. Our study differs from theirs in that we use downstream datasets
for pruning-at-initialization. While there is a study (Chen et al., 2020) that validated LTH for the
pre-trained BERT model by applying IMP to BERT using downstream datasets, our study yields
comprehensive insights that extend beyond the scope of prior observations.
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3 PRUNING-AT-INITIALIZATION IN TRANSFER LEARNING

We observe the results of applying existing pruning-at-initialization methods to a pre-trained network.
In particular, we demonstrate why the synaptic saliency-based methods fail. Figure 1 displays the
results of pruning-at-initialization on Caltech-101 (Li et al., 2022), Stanford Cars (Krause et al.,
2013), Oxford-IIIT Pets (Parkhi et al., 2012), and CIFAR-10 (Krizhevsky et al., 2009) for randomly
initialized and ImagNet pre-trained ResNets. Here, ”Random” and ”Magnitude” refer to randomly
selecting weights and selecting weights with the smallest magnitudes for pruning-at-initialization,
respectively. For randomly initialized models (first row), the LTH-based methods exhibit effectiveness
as originally claimed in their respective papers. However, we observe that for the pre-trained network
(second row), those methods underperform a simple baseline, the Magnitude method. To investigate
the reasons for the limitations of saliency-based methods, we examine the precision of the synaptic
saliency used for pruning. Specifically, we compare the results obtained by pruning the pre-trained
network using the SNIP, Random, and Magnitude methods to minimize the average cross-entropy
loss changes (∆L) on a set of randomly selected ImageNet validation samples. In Figure 2, when the
pruning ratio is very small (top), SNIP prunes the model parameters more precisely with almost no
change in loss compared to the Magnitude method. However, as the pruning ratio increases, SNIP
underperforms the Magnitude method, showing that in the vicinity of the pre-trained model on the
loss landscape, the loss gradient allows for a better prediction of ∆L, but when the pruning ratio is
large and the model parameters change significantly, the nonlinearity of the loss landscape hinders the
loss gradient from predicting ∆L. In fact, our observations align with certain papers (Frankle et al.,
2020b; Liu et al., 2022) that questioned the validity of synaptic saliency. However, those studies did
not provide an analysis of pruning-at-initialization for pre-trained networks akin to ours.

4 LIGHTWEIGHT METHODS FOR THE STABLE INITIAL NETWORK

In Figure 1, we can see that while saliency-based pruning-at-initialization methods fail for pre-trained
networks, IMP can successfully find trainable subnetworks. However, IMP is a computationally
intensive algorithm that requires multiple train-prune cycles. In this section, we investigate whether
we can find trainable subnetworks for pre-trained networks more efficiently than IMP. Recent studies
(Frankle et al., 2020a; Paul et al., 2022) have shown that trainable subnetworks can be found if and
only if the subnetworks are “stable”. They define stability as follows:
Definition 1. (Frankle et al., 2020a) A network θ is stable if a pair of networks, trained from θ
using the identical algorithm but with different randomness (e.g., different random seed, minibatch
sampling, data augmentation, etc.), are linearly mode connected with high probability.
Definition 2. (Linear mode connectivity) Two networks θ1 and θ2 are linearly mode connected if
they are connected by a linear path of intermediate networks that have interpolation errors (ϵ) close
to zero. ϵ can be mathematically defined as follows::

ϵ = |λ · E [L(x, y; θ1)] + (1− λ) · E [L(x, y; θ2)]− E [L(x, y;λ · θ1 + (1− λ) · θ2)]|, (1)

where L(x, y; θ) denotes the loss for θ on the input-label pair (x,y), and λ ∈ [0, 1].

First, we compare the stability of randomly initialized and ImageNet pre-trained ResNets on CIFAR-
100 (Krizhevsky et al., 2009) (results for other downstream datasets can be found in Appendix
A). Figure 3 demonstrates that the pre-trained network is significantly more stable than randomly

Algorithm 1 The tested sparse training algorithms

1: Initialize a network θ ∈ Rd with pre-trained weights θ0 ∈ Rd and a mask M ∈ Rd with 1⃗ ∈ Rd

2: for r ∈ {1, . . . , R} do # R : the number of weight resetting
3: for i ∈ {1, . . . , I} do # I : the number of training steps
4: Train the pruned network θ ⊙M
5: if i%π == 0 then # π : the interval between adjacent pruning steps (pruning period).
6: Prune a pre-defined amount of the weights with the smallest magnitude # update M
7: Reset the trained parameters θ to the pre-trained weights θ0
8: Evaluation of the obtained mask: Train the sparse subnetwork θ0 ⊙M

initialized networks. In other words, networks trained from a pre-trained network are highly likely
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to converge to local minima within the same loss basin, which is consistent with previous findings
(Neyshabur et al., 2020). Then, we investigate whether the remarkable stability observed in pre-
trained networks can lead to an algorithm that efficiently identifies trainable subnetworks in the
context of transfer learning. Specifically, we compare various pruning-at-initialization algorithms by
applying them to transfer learning with an ImageNet pre-trained ResNet on CIFAR-100 (see Section
6 for results on other datasets). The tested pruning algorithms can be summarized as Algorithm 1.
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Figure 3: The stability
of randomly initialized
and ImageNet pre-trained
ResNets on CIFAR-100.
The test error rates are em-
ployed to measure inter-
polation errors.

Let I⋆ be the number of steps used to fully train the pre-trained model on
the downstream task. Then, Algorithm 1 can be reduced to the following
four pruning-at-initialization algorithms:

1. IMP (Frankle & Carbin, 2018): R > 1, π = I , and I = I⋆.
2. EB (You et al., 2019): R > 1, π = I , and I < I⋆.
3. One-shot (Han et al., 2015b): R = 1, π = I , and I ≤ I⋆.
4. GMP (Zhu & Gupta, 2017): R = 1, π < I , and I ≤ I⋆.

We use unstructured pruning commonly employed in studies on LTH.
Additionally, we set the computation cost for obtaining the pruning
mask of all other methods except IMP to be equal to I⋆ training steps.
Please note that we do not use the ”rewinding” strategy (Frankle et al.,
2019), which involves rewinding trained weights to an earlier point in
training instead of resetting them to their initial values to stabilize IMP,
when applying IMP to the pre-trained model. This is because such a
strategy does not produce pruning masks for initialized models, which is
the main objective of pruning-at-initialization. Furthermore, a previous
study (Chen et al., 2020) demonstrated that the rewinding strategy is not
essential for the pre-trained network. More details are provided in Appendix C.

Table 1 surprisingly demonstrates that it is feasible to identify pruning masks that are comparable to
the IMP mask in terms of pruning-at-initialization while incurring significantly lower computational
costs for pre-trained networks. Notably, the GMP method outperforms EB and One-shot methods for
all tested pruning ratios. However, the EB, One-shot, and GMP methods exhibit noticeably inferior
performance compared to IMP at the highest pruning ratio (0.99). To overcome this limitation, in
the following section, we explore ways to improve the GMP method, which exhibits the closest
pruning-at-initialization performance to IMP.

5 THE UNTAPPED POTENTIAL OF GRADUAL MAGNITUDE PRUNING

GMP (Zhu & Gupta, 2017) gradually prunes a certain percentage of network parameters based
on their magnitudes at each pruning step. The gradual nature of GMP helps mitigate the sudden
loss of accuracy that can occur with aggressive pruning methods. In other words, it allows for a
smoother transition and provides the network with the opportunity to recover during the training
phase between successive pruning steps. Therefore, it is important to appropriately set the interval
between adjacent pruning steps (pruning period) and the learning rate for GMP. For instance, pruning
with an excessively small pruning period enables a seamless model transition. However, it also poses
challenges for the interval training steps to recover effectively from the accuracy loss incurred by
zeroing out the weights. Conversely, pruning with a disproportionately high learning rate may lead to
a premature pruning of weights before they fully converge to an optimal solution.

In this study, based on the consistent gradients observed during the training of pre-trained models,
we propose the use of a large learning rate and a small pruning period for GMP in the context of
pruning-at-initialization (the analysis regarding conventional pruning is deferred for future work). In
Figure 4, we plot the Gram matrix of normalized gradients acquired during the training of randomly
initialized and ImageNet pre-trained ResNets on CIFAR-100 (we provide the Gram matrix for other
datasets in Appendix B); if we denote Gij as the element in the i-th row and j-th column of the
Gram matrix, a positive value of Gij indicates that the i-th and j-th update directions are similar.
Figure 4 demonstrates that pre-trained networks, in contrast to random initialization, exhibit smoother
changes in update directions and positive correlations among adjacent update directions. Based on
these observations, we posit that for pre-trained networks, employing a larger learning rate can
alleviate the problem encountered during the interval training steps of GMP when using a smaller
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Table 1: Performance comparison of the IMP, EB, One-shot, GMP and GMP methods on CIFAR-100
when applied to an ImageNet pre-trained ResNet. For each method, we conduct three runs and report
both the average accuracy achieved and its relative cost for identifying the winning ticket, denoted as
“accuracy (cost)”. The best and second-best accuracies are highlighted in bold and underlined.

Method Pruning ratio
0.00 0.68 0.84 0.92 0.96 0.98 0.99

IMP

84.75 (0)

83.94 (6) 82.81 (9) 82.14 (12) 81.24 (15) 80.47 (18) 79.53 (21)
EB 84.06 (1) 83.57 (1) 82.55 (1) 81.38 (1) 79.55 (1) 76.01 (1)

One-shot 83.93 (1) 83.64 (1) 82.39 (1) 80.28 (1) 75.38 (1) 65.53 (1)
GMP 84.33 (1) 83.91 (1) 83.36 (1) 81.98 (1) 81.10 (1) 78.66 (1)

GMP 84.75 (0) 84.13 (1) 83.83 (1) 83.19 (1) 82.53 (1) 81.49 (1) 80.02 (1)

Table 2: Improvements in pruning-at-initialization performance on
various vision datasets resulting from the application of GMP to an
ImageNet pre-trained ResNet at a pruning ratio of 0.99.

Method Downstream dataset
CIFAR-10 CIFAR-100 Caltech-101 Pets Cars

IMP 95.29 79.53 78.17 78.39 87.34
GMP 95.43 78.66 53.12 67.48 89.78
GMP 95.66 80.02 81.32 80.46 90.22

Table 3: The GMP results on
CIFAR-100 with respect to
different learning rates (LR)
and pruning periods (π).

LR π Acc.

10−2.5 100 78.66
10−2.5 2 77.76
10−2 2 80.02

pruning period. Specifically, while the original GMP paper (Zhu & Gupta, 2017) suggested using
pruning periods between 100 and 1000, we propose using pruning periods below 100. Note that in
our paper, we label the GMP with a large learning rate and a small pruning period, a departure from
conventional wisdom regarding GMP usage, as GMP. To demonstrate the effectiveness of GMP in
terms of pruning-at-initialization, we compare the outcomes achieved through the application of
GMP with the results presented in Table 1.

������ �����������

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Figure 4: The Gram matrix of normalized gradients
acquired during the training of randomly initialized
and ImageNet pre-trained ResNets on CIFAR-100.

Table 1 demonstrates that GMP inherits the com-
parable or superior results achieved by GMP
over IMP, while also addressing the limitations
of GMP at high pruning ratios. Notably, in Ta-
ble 2, we can observe substantial performance
improvements brought about by employing a
large learning rate and a small pruning period.
For instance, regarding Caltech-101 and Oxford
Pets datasets, at a pruning ratio of 0.99, GMP
converges to degenerate solutions with pruning-
at-initialization performances of 53.12% and
67.48%, respectively. In contrast, GMP achieves
performances of 81.32% and 80.46% for each
respective dataset at the same pruning ratio. Furthermore, Table 3 provides empirical support for our
hypothesis that, for pre-trained networks, the loss incurred by using a smaller pruning period can be
compensated for by employing a larger learning rate. Please be aware that, as we adapt GMP for the
purpose of pruning-at-initialization, a larger learning rate is exclusively used during the generation of
pruning masks for the initialized model, whereas the original learning rate is employed when training
the identified sparse subnetwork for downstream tasks.

In the following sections, we validate our findings through a series of experiments conducted in
diverse settings. Specifically, we assess the effectiveness of GMP when applied to an ImageNet
pre-trained ResNet on various vision benchmarks. Additionally, we demonstrate the efficacy of
GMP in pruning-at-initialization using vision transformers (ViTs) (Dosovitskiy et al., 2020), which
have garnered significant attention in the field of computer vision. Furthermore, we establish the
effectiveness of GMP not only in the vision domain but also in the language domain by conducting
experiments on pre-trained transformers. Lastly, drawing upon the observation that a pruning mask
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obtained at the end of a single training without weight resetting can yield favorable results for LTH,
we apply a state-of-the-art pruning method (Zhang et al., 2022) to pruning-at-initialization for pre-
trained networks; as a result, we reveal that the methodological distinction between the LTH-based
and conventional pruning can become indistinct.

6 EXPERIMENTAL RESULTS AND DISCUSSION

6.1 EXPERIMENTAL SETUP

For vision domain experiments, we use CIFAR-10, CIFAR-100, Caltech-101, Oxford-IIIT Pets, and
Stanford Cars. To assess the effectiveness of the GMP method on these vision datasets, we employ
ResNet-50, ViT-B-32, and ViT-L-32 pre-trained on ImageNet. Within the natural language domain,
we leverage seven datasets (CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI) from the GLUE
benchmark (Wang et al., 2018), in addition to the SQuAD v1.1 QA dataset (Rajpurkar et al., 2016).
BERTBASE (Devlin et al., 2018) and RoBERTaBASE (Liu et al., 2019) are selected as the pre-trained
models for these natural language tasks. For the ImageNet pre-trained models, we explore a grid
consisting of seven logarithmically spaced learning rates ranging from 0.0001 to 0.1, along with seven
logarithmically spaced values of weight decay between 0.00001 and 0.01, including the option of zero
weight decay. In addition, GMP demonstrates no performance degradation when the computational
cost for mask generation is reduced by half compared to the original training cost (I⋆ = 20, 000
training steps). As a result, we use only half of the computational cost from the original training for
the GMP method in the visual domain. The hyper-parameters for the natural language tasks are set
following Chen et al. (2020). Note that all values presented in the figures and tables of this paper are
the average results over three runs. Further experimental details are provided in Appendix C.

6.2 THE EFFECTIVENESS OF GMP ON CNNS IN THE VISION DOMAIN
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Figure 5: Comparison results of GMP with EB, One-shot, and IMP on various vision datasets in
terms of pruning-at-initialization when applied to the ImageNet pre-trained ResNet-50.

In Figure 5, we present the comparison results of GMP with other methods in terms of LTH when
applied to ImageNet pre-trained ResNet-50. For the ResNet-50 model, we prune all convolution
layers. The results in Figure 5 align consistently with the results presented in Tables 1 and 2 for
various downstream datasets. Specifically, GMP demonstrates comparable or superior outcomes
compared to those of IMP, while also using much less computational costs than IMP. Additionally,
it is observed that EB occasionally outperforms IMP, which can be attributed to the use of larger
learning rates in EB (EB compensates for the loss arising from smaller training steps I by employing
larger learning rates). However, an in-depth analysis of the benefits of using larger learning rates for
other pruning-at-initialization methods within the context of transfer learning falls outside the scope
of our study. Thus, we defer further analysis in this direction to future research.

6.3 THE EFFECTIVENESS OF GMP ON TRANSFORMERS IN THE VISION DOMAIN

In this section, we evaluate the effectiveness of the GMP method on ViTs. Specifically, we prune
all attention heads and MLP layers of the ViT models. Figure 6 displays the results of pruning-at-
initialization for ImageNet pre-trained ViT-B-32 at a pruning ratio of 0.8. The findings exhibit similar
trends to those observed for CNNs. In other words, when searching for trainable subnetworks for
pre-trained ViT models, GMP achieves comparable or superior performance compared to IMP, while
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Figure 6: The results of pruning-at-initialization for ImageNet pre-trained ViT-B-32 at a pruning ratio
of 0.8. The dashed line in each plot represents the performance of the original (unpruned) model.

demanding significantly lower computational costs. We provide the results of pruning-at-initialization
for ImageNet pre-trained ViT-L-32 in Appendix E.

6.4 THE EFFECTIVENESS OF GMP ON TRANSFORMERS IN THE LANGUAGE DOMAIN

Table 4: Pruning-at-initialization result on four datasets from the GLUE benchmark and the SQuAD
v1.1 dataset using pre-trained BERT model, with the best results highlighted in bold. The experimental
results on SST-2, STS-B, and MRPC can be found in Appendix D.

Dataset Metric Method Pruning ratio
0.0 0.2 0.4 0.6 0.8

MNLI Accuracy

Random

84.32

81.98 78.42 71.41 61.46
Magnitude 83.98 83.71 82.24 74.22

IMP 83.80 82.90 82.46 79.00
GMP 84.60 84.10 83.54 81.52

QQP Accuracy

Random

90.99

90.52 88.28 83.70 77.04
Magnitude 90.83 90.52 89.61 85.83

IMP 90.84 90.32 90.13 89.51
GMP 91.19 91.09 90.89 90.30

QNLI Accuracy

Random

91.50

89.31 83.58 62.80 60.79
Magnitude 91.21 90.89 88.83 76.61

IMP 91.30 90.67 89.66 86.73
GMP 91.55 91.20 90.53 88.37

STS-B Accuracy

Random

89.00

87.34 60.20 20.24 10.45
Magnitude 88.87 88.51 86.64 45.12

IMP 88.65 88.18 88.03 83.65
GMP 88.50 87.88 87.23 84.68

SQuAD F1 score

Random

88.65

85.82 77.24 26.41 11.72
Magnitude 88.19 87.38 84.98 32.24

IMP 88.73 88.07 87.04 82.22
GMP 88.81 88.62 87.44 84.00

In this section, we provide evidence of the effectiveness of GMP not only in the visual domain but
also in the language domain. To demonstrate this, we prune all linear layers within the transformer
encoder, including the attention heads. Table 4 presents the results of pruning-at-initialization on
four datasets (STS-B, QQP, MNLI, QNLI) from the GLUE benchmark, along with the SQuAD v1.1
question-answering dataset, using the pre-trained BERT model (the results on SST-2, CoLA, and
MRPC, and those obtained using the pre-trained RoBERTa model can be found in Appendices D and
E). The table includes the corresponding evaluation metrics for each dataset. Notably, we observe
the exceptional pruning-at-initialization performance of GMP for pre-trained networks not only in
the visual domain, as previously mentioned, but also in the field of natural language. Specifically,
GMP consistently demonstrates superior performance across nearly all datasets and pruning ratios.
However, there are instances where it exhibits slightly poorer performance compared to the Magnitude
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method, particularly on relatively small datasets. For example, at a pruning ratio of 0.4, the accuracy
of GMP for STS-B lags that of the Magnitude method by 0.63 percentage points. We attribute these
results to the limitation of the criterion used by GMP to select weights to prune, and we investigate
whether improvements in this criterion lead to improved pruning-at-initialization performance.

6.5 REPURPOSING A CUTTING-EDGE PRUNING METHOD TOWARDS LTH

Table 5: Performance improvements in pruning-at-
initialization achieved by leveraging PLATON, ap-
plied to the pre-trained BERT model. Better results
are indicated in bold. The full version of this table
can be found in Appendix D.

Dataset Method Pruning ratio
0.2 0.4 0.6 0.8

MNLI GMP 84.60 84.10 83.54 81.52
PLATON 84.72 84.47 84.44 83.15

QQP GMP 91.19 91.09 90.89 90.30
PLATON 91.29 91.16 91.12 90.57

QNLI GMP 91.55 91.20 90.53 88.37
PLATON 91.52 91.70 90.91 89.75

CoLA GMP 58.11 54.88 50.12 35.07
PLATON 57.07 56.66 56.09 48.93

STS-B GMP 88.50 87.88 87.23 84.68
PLATON 89.36 89.30 89.08 87.75

MRPC GMP 86.03 85.05 82.43 74.59
PLATON 85.38 86.76 85.54 83.82

Thus far, our observations in the context of
transfer learning have revealed that it is pos-
sible to identify unimportant weights from
the perspective of the initialized network for
the purpose of discovering trainable subnet-
works, without the need for iterative weight
resetting. Remarkably, a single training ses-
sion alone allows us to identify these insignif-
icant weights selectively. Based on these mo-
tivating findings, we provide evidence sup-
porting the feasibility of seamless integration
between pruning-at-initialization and conven-
tional pruning, particularly in the context of
transfer learning. Specifically, we are the first
to demonstrate that a cutting-edge pruning
method can also achieve state-of-the-art per-
formance in the LTH domain.

PLATON (Zhang et al., 2022) is a recently
proposed pruning method. The authors ad-
dressed the issue of increasing uncertainty
in the score used as a criterion for selecting
weights to prune, which stems from the unsta-
ble training dynamics of networks. They ob-
served significant fluctuations in these scores
during training and proposed a pruning algo-
rithm that considers the uncertainty of these scores and employs exponential moving average to
mitigate the instability of the scores. We denote PLATON incorporating a short pruning period
and a large learning rate similar to GMP, as PLATON. Table 5 presents the results of pruning-at-
initialization when applying PLATON to the pre-trained BERT model across five datasets from the
GLUE benchmark. Remarkably, we observe that PLATON surpasses GMP by a substantial margin.
Of particular significance is the conspicuous performance of PLATON on small datasets, demonstrat-
ing the transferability of the characteristics of PLATON witnessed in the original PLATON study
(Table 1 in Zhang et al. (2022)) to the realm of pruning-at-initialization.

7 CONCLUSION

Our study is centered around the goal of exploring LTH or pruning-at-initialization on a network
that is initialized with pre-trained weights, as outlined in Chen et al. (2020) and Chen et al. (2021),
utilizing the provided downstream dataset. We present novel discoveries not documented in previous
research, as follows: (i) Various pruning-at-initialization methods, with the exception of IMP, yield
suboptimal solutions when applied to a pre-trained model using a downstream dataset in comparison
to magnitude-based pruning; (ii) The resource-intensive IMP algorithm is not a necessity to obtain
trainable subnetworks in the context of transfer learning; (iii) Pruning-at-initialization through
GMP, using a downstream dataset, demonstrates an impressive trade-off between transfer learning
performance and sparsity. Specifically, deviating substantially from the conventional usage levels
of GMP, the application of large learning rates and short pruning periods significantly bolsters
GMP’s performance in pruning-at-initialization, particularly for high pruning ratios; (iv) In contrast to
randomly initialized models, pre-trained models do not require repeated train-prune cycles for prune-
at-initialization, enabling the direct application of conventional pruning methods for performance
improvement in the LTH context. In Appendix F, we address the limitations of our study.
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8 REPRODUCIBILITY

We provide our code in the supplementary material. The code enables the reproduction of the results
presented in Figures 1, 5, 6, and 9, as well as the results in Tables 1, 2, 3, 4, 5, 6, and 7.
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Appendices
A STABILITY COMPARISON OF RANDOMLY INITIALIZED AND IMAGENET

PRE-TRAINED RESNETS
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Figure 7: Stability comparisons of randomly initialized and ImageNet pre-trained ResNets on Caltech-
101, Stanford Cars, Oxford-IIIT Pets, and CIFAR-10. We can see that the ImageNet pre-trained
ResNet is more significantly stable than randomly initialized ResNets with respect to all tested vision
benchmarks.

B THE GRAM MATRIX FOR OTHER DATASETS

������ �����������

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

(a) Caltech-101

������ �����������

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

(b) Cars
������ �����������

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

(c) Pets

������ �����������

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

(d) CIFAR-10

Figure 8: The Gram matrices of normalized gradients acquired during the training of randomly
initialized and ImageNet pre-trained ResNets on Caltech-101, Stanford Cars, Oxford-IIIT Pets, and
CIFAR-10.
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Figure 8 demonstrates that pre-trained initialization, in contrast to random initialization, exhibits
smoother changes in update directions and positive correlations among adjacent update directions
on Caltech-101, Stanford Cars, Oxford-IIIT Pets, and CIFAR-10. In order to visually contrast the
positive and negative correlations in the figures, the hyperbolic tangent function was applied.

C EXPERIMENTAL DETAILS

Datasets and architectures. For vision domain experiments, we used the following downstream
datasets: CIFAR-10, CIFAR-100, Caltech-101, Oxford-IIIT Pets, and Stanford Cars. To assess the
effectiveness of the GMP method on these vision datasets, we employed ResNet-50, ViT-B-32, and
ViT-L-32 pre-trained on the ImageNet dataset. Within the natural language domain, we leveraged
seven datasets (CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI) from the GLUE benchmark
(Wang et al., 2018), in addition to the SQuAD v1.1 QA dataset (Rajpurkar et al., 2016). BERTBASE
(Devlin et al., 2018) and RoBERTaBASE (Liu et al., 2019) were specifically selected as the pre-trained
models for these natural language tasks.

Implementation details. For the ImageNet pre-trained models, we trained for 20,000 steps (I⋆),
employing a batch size of 256 and using stochastic gradient descent with a momentum parameter
of 0.9. The learning rate and weight decay were carefully chosen by performing a grid search.
Specifically, we explored a grid consisting of seven logarithmically spaced learning rates ranging
from 0.0001 to 0.1, along with seven logarithmically spaced values of weight decay between 0.00001
and 0.01, including the option of zero weight decay. The hyper-parameters for the natural language
tasks were set following Chen et al. (2020) and Liu et al. (2019). In our experiments, we used
unstructured pruning, specifically targeting different layers in different models. For the ResNet-50
model, we pruned all convolution layers. For the ViT models, we pruned all attention heads and
MLP layers. Furthermore, in the case of BERT and RoBERTa, we pruned all linear layers, including
the attention heads of the encoder. In the IMP method, we pruned 20% of the remaining weights at
the end of each training cycle (Frankle & Carbin, 2018; Chen et al., 2021). On the other hand, the
GMP method employed a cubic schedule (Zhu & Gupta, 2017; Zhang et al., 2022) for pruning. We
conducted cross-validation to determine the optimal hyperparameters for GMP. For instance, in our
experiments with vision datasets, we executed GMP using multiple hyperparameter sets, limiting the
training to only 2% to 5% of the full training (400 to 1000 steps), and chose the set that delivered
satisfactory performance. This demonstrates that even when accounting for such a cross-validation
process, GMP still incurs significantly lower computational costs compared to IMP. The identified
hyperparameters are integrated into the provided code. In the visual domain, GMP demonstrated
no performance degradation when the computational cost for mask generation was reduced by half
(10,000 training steps) compared to the original training cost (20,000 training steps). As a result, in
Section 6, we used only half of the computational cost from the original training for the GMP method
in the visual domain.

D THE FULL VERSION OF TABLE 4 AND 5

Table 6 presents the results for the pre-trained BERT model, which include those omitted from Tables
4 and 5 due to space limitations.

E THE RESULTS OF PRUNING-AT-INITIALIZATION FOR OTHER PRE-TRAINED
MODELS

Figure 9 and Table 7 show the results of pruning-at-initialization for ImageNet pre-trained ViT-L-32
and pre-trained RoBERTa model, respectively. The findings exhibit similar trends to those observed
in Section 6. In other words, when searching for trainable subnetworks for pre-trained initialization,
GMP achieves comparable or superior performance compared to IMP, despite requiring significantly
lower computational costs. Note that, for ViT-L-32, a pruning ratio of 0.8 did not adequately illustrate
the performance disparity among the compared methods. Consequently, we employed a pruning ratio
of 0.9 for the results presented in Figure 9.
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Table 6: Pruning-at-initialization result on seven datasets from the GLUE benchmark and the SQuAD
v1.1 dataset using pre-trained BERT model, with the best results highlighted in bold.

Dataset Metric Method Pruning ratio
0.0 0.2 0.4 0.6 0.8

MNLI Accuracy

Random

84.32

81.98 78.42 71.41 61.46
Magnitude 83.98 83.71 82.24 74.22

IMP 83.80 82.90 82.46 79.00
GMP 84.60 84.10 83.54 81.52

PLATON 84.72 84.47 84.44 83.15

QQP Accuracy

Random

90.99

90.52 88.28 83.70 77.04
Magnitude 90.83 90.52 89.61 85.83

IMP 90.84 90.32 90.13 89.51
GMP 91.19 91.09 90.89 90.30

PLATON 91.29 91.16 91.12 90.57

QNLI Accuracy

Random

91.50

89.31 83.58 62.80 60.79
Magnitude 91.21 90.89 88.83 76.61

IMP 91.30 90.67 89.66 86.73
GMP 91.55 91.20 90.53 88.37

PLATON 91.52 91.70 90.91 89.75

SST-2 Spearman
correlation

Random

92.70

91.13 87.27 83.10 81.84
Magnitude 92.74 92.24 91.17 84.06

IMP 92.66 92.39 91.17 88.11
GMP 92.66 92.43 92.20 89.53

PLATON 92.74 92.66 92.39 90.44

CoLA
Matthews
correlation
coefficient

Random

57.28

41.02 13.49 08.59 00.00
Magnitude 56.88 54.32 42.56 03.87

IMP 56.84 53.51 51.60 34.19
GMP 58.11 54.88 50.12 35.07

PLATON 57.07 56.66 56.09 48.93

STS-B Accuracy

Random

89.00

87.34 60.20 20.24 10.45
Magnitude 88.87 88.51 86.64 45.12

IMP 88.65 88.18 88.03 83.65
GMP 88.50 87.88 87.23 84.68

PLATON 89.36 89.30 89.08 87.75

MRPC Accuracy

Random

85.29

73.69 70.26 69.04 68.87
Magnitude 85.84 81.13 74.43 69.61

IMP 84.89 85.13 82.76 72.30
GMP 86.03 85.05 82.43 74.59

PLATON 85.38 86.76 85.54 83.82

SQuAD F1 score

Random

88.65

85.82 77.24 26.41 11.72
Magnitude 88.19 87.38 84.98 32.24

IMP 88.73 88.07 87.04 82.22
GMP 88.81 88.62 87.44 84.00
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Table 7: Pruning-at-initialization results on seven datasets from the GLUE benchmark and the SQuAD
v1.1 dataset using pre-trained RoBERTa model, with the best results highlighted in bold.

Dataset Metric Method Pruning ratio
0.0 0.2 0.4 0.6 0.8

MNLI Accuracy

Random

87.43

84.01 77.76 73.04 61.19
Magnitude 87.52 86.83 80.36 69.72

IMP 87.05 86.33 85.36 81.48
GMP 87.04 86.66 85.99 83.69

QQP Accuracy

Random

91.74

90.38 88.36 84.36 79.18
Magnitude 91.58 91.09 89.14 84.15

IMP 91.67 91.36 90.77 89.57
GMP 91.79 91.52 90.60 90.37

QNLI Accuracy

Random

92.72

87.72 82.88 65.87 61.49
Magnitude 92.59 91.48 85.51 73.09

IMP 92.58 91.92 90.82 86.29
GMP 92.06 91.23 90.98 88.02

SST-2 Spearman
correlation

Random

94.84

91.06 86.58 83.49 83.22
Magnitude 94.30 93.35 88.57 82.30

IMP 94.76 94.38 93.54 87.04
GMP 94.11 94.00 92.89 89.64

CoLA
Matthews
correlation
coefficient

Random

60.74

27.49 13.17 10.17 00.00
Magnitude 58.63 43.52 13.68 00.00

IMP 60.59 58.97 44.57 12.36
GMP 61.11 62.32 53.03 15.58

STS-B Accuracy

Random

90.62

83.23 55.67 24.84 19.07
Magnitude 90.33 89.11 81.43 41.27

IMP 90.56 89.73 87.24 77.64
GMP 90.45 89.63 88.71 83.98

MRPC Accuracy

Random

89.05

80.60 74.92 76.44 67.16
Magnitude 87.99 86.27 80.00 71.92

IMP 89.79 87.66 81.29 65.11
GMP 88.56 86.85 82.52 71.57

SQuAD F1 score

Random

92.05

87.52 73.94 26.44 14.61
Magnitude 92.05 91.12 87.04 23.18

IMP 92.25 91.54 89.74 81.82
GMP 92.35 91.56 89.53 83.92
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Figure 9: The results of pruning-at-initialization for ImageNet pre-trained ViT-L-32 at a pruning ratio
of 0.9. The dashed line in each plot represents the performance of the original (unpruned) model.

F LIMITATIONS

Transfer learning employs a small learning rate during downstream task learning to mitigate knowl-
edge loss from pre-training. However, from the perspective of GMP, the use of such a small learning
rate hinders smooth transitions to sparse networks due to the slow recovery between consecutive
pruning steps. In other words, as evidenced in Table 3, finding the optimal learning rate and pruning
period is crucial for attaining satisfactory pruning-at-initialization outcomes when implementing the
GMP method. While our experiments identified the optimal hyperparameters through cross-validation,
this approach limits the full realization of the benefits offered by GMP. An alternative approach that
adjusts hyperparameters based on training statistics between adjacent pruning steps holds promise in
resolving this issue. We leave further investigation in this direction for future work.
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