
Dual-System Language Models via Next-Action Prediction

Zhehang Du * 1 Weijie Su 1

Abstract

In current Large Language Model (LLM) prac-
tices, each token is appended sequentially to the
output. In contrast, humans are capable of revis-
ing and correcting what we write. Inspired by
this gap, in this position paper, we propose a dual-
system to simultaneously model the thought pro-
cess and the output process via the introduction
of action tokens. This is achieved by (a) main-
taining two sequences of tokens, which include a
thought system simulating the human thought pro-
cess and an output system for storing responses,
and (b) introducing removal tokens as action to-
kens: when a removal token is generated, it is
appended only to the thought system, while si-
multaneously removing certain tokens from the
output system. The model uses both systems for
next-action prediction. This method allows the
retraction of previously generated tokens in the
final response and maintains a record of interme-
diate steps in the thought system. Our framework
enables the training of language models to im-
prove the interaction between the thought and
output systems, mirroring the way humans refine
their thinking for effective written communica-
tion. Moreover, it can be implemented with slight
modifications to existing LLM architectures and
allows for end-to-end training.

1. Prologue
This paper proposes a novel design for LLMs with the po-
tential to improve their reasoning and planning abilities.
We do not present empirical results at this stage. Imple-
menting our dual-system design requires a model capable
of simultaneously processing two sequences and applying
timestamp-based masking – functionalities unsupported by

*Equal contribution 1University of Pennsylvania,
Philadelphia, PA, USA. Correspondence to: Zhehang Du
<duz@wharton.upenn.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

current open-source LLMs. This makes fine-tuning infea-
sible. Training a suitable LLM from scratch exceeds the
computational resources of most researchers. Consequently,
we present this work as a position paper to share the concept
broadly, inspiring and encouraging future research with the
necessary resources to empirically validate the approach.

2. Introduction
In the landscape of artificial intelligence, Large Language
Models (LLMs) have showed remarkable capabilities in un-
derstanding and generating human language. By scaling up
the model size, models such as GPT (Achiam et al., 2023;
Brown et al., 2020), PaLM (Chowdhery et al., 2023; Anil
et al., 2023), and LLaMA (Touvron et al., 2023a;b) have
already shown emergent capabilities that involve reasoning
(Wei et al., 2022a; Huang & Chang, 2022). Despite reach-
ing human-level performance on a wide variety of tasks,
they still lack planning abilities and often make apparent
mistakes in the intermediate reasoning steps that are easily
spotted by humans (Bubeck et al., 2023).

To enhance LLM capabilities, many existing methods fo-
cus on augmenting standard models with separate planning
and reasoning modules, including problem decomposition
(Cobbe et al., 2021), prompting (Luo et al., 2023), self-
consistency (Wang et al., 2022), chain-of-thought and tree-
of-thought (Wei et al., 2022b; Yao et al., 2023; Long, 2023),
self-refinement (Madaan et al., 2023), Reflexion (Shinn
et al., 2024), agentic approaches such as WebGPT (Nakano
et al., 2021) and LangChain (Chase), and optimizing rea-
soning paths by search algorithms (Trinh et al., 2024), some
with reinforcement learning methods (Ma et al., 2023; Zhou
et al., 2023; Liu et al., 2023). Others aim to directly learn
strong policies (Ruoss et al., 2024). However, prompt-based
and search-based methods often rely on external guidance.
While RL is powerful with clear rewards (e.g., in games
like Go (Silver et al., 2017)), defining such rewards for
abstract reasoning remains a challenge. Additionally, com-
mon approaches like RLHF demand extensive human effort
(Ouyang et al., 2022). The ability of LLMs to self-correct
also remains limited (Huang et al., 2023; Pan et al., 2023).

A common method for understanding the limitations of
current LLMs is to compare them with the two-systems
theory of human cognition (Sloman, 1996). System 1 is

1



Dual-System Language Models via Next-Action Prediction

fast, automatic, and instinctive, guiding our quick decisions
and emotional reactions. System 2 is slower, more deliber-
ate, and conscious, used for complex problem-solving and
logical reasoning. In contrast, LLMs generate each token
with nearly a fixed amount of computation, which resemble
System 1. Without the ability to allocate additional compu-
tational resources for complex reasoning tasks, LLMs tend
to quickly produce responses based on statistical language
patterns acquired during training. This “forces” them out-
putting their thoughts directly without any internal planning
process.

Recent works suggest that we can further enhance mod-
els’ capabilities by embedding the search dynamics into
the model weights directly (Lehnert et al., 2024; Gandhi
et al., 2024). In this position paper, We aim to propose a
computational model of reasoning and planning inspired by
analogous processes in humans, where the iterative process
of writing, revising, and editing is a well-established ap-
proach to creating effective written work. We identify two
limitations in prevalent LLM practices: the lack of (a) inter-
action with external states, and (b) the capability to perform
actions. For example, when solving complex problems, hu-
mans can write intermediate steps on paper while mentally
processing the entire sequence of thoughts. We are capable
of erasing incorrect steps on the paper and returning to an
earlier stage, with experience gained from unsuccessful at-
tempts. Such a trial-and-error process is essential for both
intelligent development and practical problem-solving, yet
current LLMs are mostly limited to sequentially appending
tokens to create the final response. In this analogy, the paper
represents the external states, while the process of removing
unsuccessful attempts represents the action.

To bridge this gap, we propose a novel framework that em-
powers language models to utilize and interact with external
states and execute actions. Our goal is twofold: firstly, to
refine the architecture design; and secondly, to optimize
the training pipeline. Our dual-system framework mainly
exhibits two differences compared to current LLMs:

1. Dual Token Sequences: Unlike current LLMs that
rely on a single sequence of tokens, our framework
uses multiple sequences collaboratively to generate the
final response. One sequence acts like a fast, intuitive
thought process, mirroring System 1 thinking. This
sequence can be seen as the internal generation of
ideas. Simultaneously, another sequence accumulates
the refined output, similar to how we translate thoughts
into coherent language.

2. Next-Action Prediction: In standard LLMs, the gen-
eration process is linear, with each token being ap-
pended sequentially to the final output. Our framework
expands the role of tokens to include control, modi-
fication, and decision-making within the model, and

each token defines how the states of these token se-
quences transition to the next state. This mirrors how
humans review their writing and combine it with in-
ternal thoughts to decide the next action. Therefore,
in our framework, “next-token prediction” can also be
called “next-action prediction”.

In this paper, we mainly focus on removal tokens as action
tokens, which are used to delete previously generated tokens
from the end of the output sequence while retaining them in
the thought process. Similar concepts, such as the backtrack
token, have been explored empirically (Cundy & Ermon,
2023). Expanding on this concept, we also introduce addi-
tional action tokens. For instance, by using cursor tokens,
the model has the ability to control a cursor within the out-
put, facilitating the insertion or deletion of tokens at any
point in the output. By strategically using learning tokens at
the end of dialogues, the model can autonomously trigger
back-propagation, adjusting its own parameters whenever it
encounters particularly insightful dialogues. By introducing
a global state that dictates whether a newly generated token
is appended to the final output and alter tokens to alter this
global state, the model can now decide on its own whether
a newly generated token belongs in the thought system or
the final response. By using highlight tokens, the model can
focus on important points and make more accurate predic-
tions or decisions based on the highlighted information. By
using comment tokens, the model can output a more detailed
thought process. By using asking-a-simpler-question tokens,
the model is encouraged to decompose complex questions
into simpler, more manageable parts. By using pause tokens
(Goyal et al., 2023), the model can strategically delay the
response.

Training language models within our framework is not easy,
in part due to the lack of existing datasets that accurately
reflect the process underlying the text production. However,
in Appendix A, we will provide several possible strategies
to overcome this hurdle and several avenues that could be
readily implemented within our new framework. We be-
lieve that our approach holds the potential to improve the
capabilities of language models.

3. The Dual-System Model
3.1. Preliminaries

Tokens. Tokens are the building blocks that language mod-
els use to understand and generate text. Modern language
models typically employ subword units as tokens to repre-
sent words, along with various special tokens for specific
functions. These special tokens are traditionally used for lan-
guage construction, and we refer to them as language tokens.
However, this paper introduces a novel category, action to-
kens, designed for decision-making and control within the

2



Dual-System Language Models via Next-Action Prediction

model. In this paper, we use the following special tokens:
end of a sentence <EOS>, end of model response <END>,
and markers differentiating user input <USER> from model
output <MODEL>. We also allow language models to in-
teract with code environments using the <PYTHON> token.
Additionally, we will introduce removal tokens as action
tokens. It is important to note that the specific special to-
kens might vary in actual LLM implementations; the tokens
outlined here are defined only for the sake of demonstration.

Next-Token Prediction. In an autoregressive language
model, each token is predicted based on the tokens that
precede it. For instance, the i-th token xi is sampled from
Pθ(xi|x1, x2, . . . , xi−1), where θ denotes the model param-
eters.

3.2. Approach

We showcase a straightforward implementation of language
models within our framework, utilizing a dual-system model
and removal tokens. First, we introduce our dual-system
model. This model comprises two systems: the thought
system, denoted by T , which simulates the human thought
process by keeping the complete sequence of intermediate
steps, and the output system, denoted by S, which stores
the final response, similar to written communication. Each
system holds a sequence of tokens that are dynamically
updated based on user input and model inference. We de-
fine a set of removal tokens as action tokens: {<RMV-T>,
<RMV-S>, <RMV-R>, . . . }. The functionalities of these
removal tokens are as follows:

• <RMV-T> (Removal of Generated Tokens): This token
triggers the removal of the last n tokens in the output
system S.

• <RMV-S> (Removal of Sentence): This token leads
to the removal of the most recent sentence in the out-
put system S, identified by the <EOS> token (or the
<MODEL> token for the first sentence).

• <RMV-R> (Removal of Current Response): This token
is used to remove the current response tokens generated
by the model in the ongoing conversation in the output
system S, identified from the last occurrence of the
<MODEL> token to the present point, while preserving
previous completed dialogs.

The removal tokens are generated during the model’s in-
ference step. For user inputs and all tokens, except for the
removal tokens, they are appended to both the thought sys-
tem T and the output system S. Removal tokens, however,
are appended only to T and are responsible for triggering
the removal of tokens in S. The removal tokens play a dual
role: in the thought system T , they add context and depth to

the ongoing internal deliberation of the model; in the output
system S, they act as a corrective mechanism. During infer-
ence, the generation of the next token xi is determined by
both T and S, with the model parameters xi ∼ Pθ(xi|T, S).
At the end of a model’s response, only the newly generated
tokens in the output system S are converted into text and
subsequently presented to the user.

3.3. Example

To demonstrate, here is an example of the model’s intended
behavior when prompted by a user to solve the equation
6x = 4(x+ 3) step-by-step.

User: Can you solve 6x = 4(x+ 3) step-by-step?

Thought system T :
<USER> Can you solve 6x = 4(x+ 3) step-by-step?
<EOS>
<MODEL> Let’s solve it step-by-step. First, expand the
right-hand side: 6x = 4x+ 12. <EOS>
Next, subtract 4x from both sides to get 2x = 4.
<EOS>
Dividing both sides by 2 gives x = 2. <EOS>
Checking the solution: Substituting x = 2 into the
equation, we get 6× 2 = 12 and 4× (2 + 3) = 20, so
6× 2 ̸= 4× (2 + 3). <EOS>
This seems incorrect. Let me try again. <EOS>
<RMV-R>
Let’s solve it step-by-step. First, expand the right-hand
side: 6x = 4x+ 12. <EOS>
Subtract 4x from both sides to get 2x = 12. <EOS>
Now, divide both sides by 2 to find x = 6. <EOS>
Checking the solution: Substituting x = 6 into the
equation, we get 6× 6 = 36 and 4× (6 + 3) = 36, so
6× 6 = 4× (6 + 3). This seems correct. <EOS>
<RMV-S>
Therefore, the solution is x = 6. <EOS>
<END>

Output system S:
<USER> Can you solve 6x = 4(x+ 3) step-by-step?
<EOS>
<MODEL> Let’s solve it step-by-step. First, expand the
right-hand side: 6x = 4x+ 12. <EOS>
Subtract 4x from both sides to get 2x = 12. <EOS>
Now, divide both sides by 2 to find x = 6. <EOS>
Therefore, the solution is x = 6. <EOS>
<END>

Model: Let’s solve it step-by-step. First, expand the right-
hand side: 6x = 4x+ 12. Subtract 4x from both sides
to get 2x = 12. Now, divide both sides by 2 to find
x = 6. Therefore, the solution is x = 6.

3



Dual-System Language Models via Next-Action Prediction

In this dialogue, a user asks the model to solve the equation
6x = 4(x + 3) step by step. Initially, the model correctly
expands the equation but makes an error in subsequent steps,
leading to an incorrect solution of x = 2. Upon verifying
its solution and finding a discrepancy, the model uses the
<RMV-R> token to remove its incorrect response. It then
correctly solves the equation on a second attempt, arriving at
x = 6, which is verified and confirmed to be accurate. Then,
the <RMV-S> token is used to remove the sentences that
checked the answer before the conversation is concluded.

3.4. Architecture

To construct the neural network within our dual-system
framework using the transformers architecture (Vaswani
et al., 2017), we propose two architectural designs, as shown
in Figure 1.

The Dual Architecture. This architecture first feeds the
token sequences T and S into two separate decoders. To
effectively learn the interaction between these systems, we
recommend selectively applying cross-attention between
the decoders. Specifically, in the output-priority architec-
ture (Figure 1 on the left), the output system’s decoder
integrates information from the thought system’s decoder.
This may benefit tasks where the final output needs to be
highly refined and informed by complex thought processes.
Conversely, in the thought-priority architecture (Figure 1
on the right), the process is inverted, with the output sys-
tem’s decoder providing context to the thought system’s
decoder. This approach may be advantageous where cre-
ative responses are required, as it emphasizes the role of
internal thought processes in shaping the output. Further
decoder blocks are used to synthesize the information from
both systems to compute the final output probability.

S T

Decoder Decoder

Decoder

S T

Decoder

Decoder

Decoder

Next Action Next Action

Figure 1. A simple illustration of the two architectures. Left: the
output-priority architecture; right: the thought-priority architec-
ture.

Masking. In the decoder blocks, we need to ensure that
each token only depends on the tokens generated before it by
applying masking. We can implement masking by assigning

a timestamp to every token added to S and T , starting the
count from one. Since T logs all tokens, its timestamp
consistently increments from one. However, due to the
potential removal of tokens in S, there may be jumps in its
counter. The mask is then set based on these timestamps.

Potential Limitations. The proposed architectures have
not yet been empirically tested, so further experiments are
necessary to evaluate their performance. Additionally, al-
ternative architectural designs are also open for exploration,
such as using a single encoder to model both S and T . How-
ever, it should be noted that in our system, the length of the
sequence in the output system S can vary significantly due
to removal tokens. A sudden deletion of tokens in S dur-
ing inference time can potentially cause distribution shifts,
potentially impacting its performance. Therefore, these po-
tential issues might require additional engineering efforts to
resolve.

3.5. Generalization

In a high-level overview, our dual-system model can be
viewed as a coordinated structure consisting of two sys-
tems, T and S. These systems interact at each model
inference step, with new actions xi generated based on
the states of both T and S, and the model parameters θ:
xi ∼ Pθ(xi|T, S). The actions, represented by xi, are no
longer confined to the task of constructing text; they now
facilitate communication and interaction between systems
T and S, conveying instructions, feedback, and decisions.
Since S is a sequence of tokens, the same as T , we can inte-
grate both T and S in the next-action prediction with only
slight modifications to current LLM architectures. During
training, this integration enhances language generation and
also improves the coordination and control between the two
systems.

In our dual-system model, S functions as a simple text edi-
tor, limited to only appending and removing characters at the
end of the string. To extend the applicability of our frame-
work, one could incorporate a varying number of systems
(for example, using a summary system to address long-range
dependency issues), diverse types of action (such as enabling
copy, paste, insert, search, and substitute functions), and the
inclusion of external tools (like integrating search engine
data retrieval, code execution, or interfacing with a storage
system).

4. Potential Benefits of the Dual-System
Our framework shares similarities with Scratchpad (Nye
et al., 2021) that utilizes a scratchpad to showcase inter-
mediate computations and Self-Notes (Lanchantin et al.,
2024), which generates multiple internal reasoning notes
incorporating both the input context and question. Similar

4



Dual-System Language Models via Next-Action Prediction

to our approach of modeling the thought process and final
response separately, these methods also interleave input and
reasoning steps. A key difference lies in our proposed ar-
chitecture, which leverages two separate token sequences
instead of the conventional one-sequence approach.

Synergistic Environment. Our framework enables train-
ing that improves synergy between multiple token se-
quences, mirroring the refinement of internal thought (one
sequence) for better output (the other sequence). This ex-
panded environment has the potential to improve model
behavior. Our core belief is that an agent’s intelligence is
intrinsically connected to the environment in which it learns.

Focus on Thought Process. We prioritize predicting the
internal thought process rather than the final output. Since
neural networks are better at fitting functions of lower com-
plexity, modeling fast-thinking (i.e., the thought process) is
generally simpler than directly modeling deliberate, com-
plex reasoning. Therefore, our framework has the potential
to achieve reasoning capabilities equal to those of larger
current LLMs. Additionally, this thought sequence acts as
a latent space where the model can plan internally before
generating the final response.

Unified Approach. Our framework offers a unified model
capable of self-planning, self-evaluation, and learning from
mistakes. All components are integrated, requiring only
minor modifications to existing LLM architectures and al-
lowing for end-to-end training.

4.1. Advantages of Dual-Sequence over Single-Sequence

While it is true that the output S can be uniquely derived
from T , maintaining only T for final output generation
presents limitations. We believe a dual-system offers more
advantages over single-sequence approaches. Here is how
single-sequence models might handle deleted tokens, and
the potential drawbacks:

Masking Deleted Tokens Leads to Repetition of Errors.
If we ignore the deleted tokens by setting masking to the
deleted tokens, it limits the model’s ability to learn from
its mistakes. Newly generated tokens won’t see the deleted
portions, potentially leading the model to repeat the same
wrong path. Our dual-system approach prevents this by
maintaining the history of the thought process in sequence
T . This history informs attention calculations, allowing the
model to use past experiences to guide new trials and avoid
repeating incorrect paths.

Including All Tokens Leads to Information Overload.
Including all tokens without masking deleted tokens, along
with positional embeddings in one sequence, means the

model has to process a large amount of information. Po-
sitional embeddings tell the model something about the
order of tokens. In this case, a previously generated but
now discarded token might still have an embedding repre-
senting an earlier position in the sequence. This can lead
to confusion about which parts are relevant to the current
problem-solving step and which should be ignored, espe-
cially when the problem is complex and requires multiple
trial-and-error attempts. Our dual-system approach pro-
vides a cleaner problem-solving environment by separating
the sequences. This mirrors how humans separate drafts
from formal solutions when working on complex problems,
making the thought process easier to follow.

5. Conclusions and Future Work
In this work, (a) we revised the architecture design to allow
language models to think and plan internally, selectively
output their thoughts, and remove inappropriate content
during inference time; and (b) we suggest that intelligent de-
velopment should focus on teaching models both language
and action simultaneously in an interactive way, rather than
modeling language alone. Future research could build upon
this framework by integrating more types of actions and
exploring multi-modal interactions. The ultimate goal is to
achieve more human-like capabilities in AI through richer,
more interactive learning processes.

Limitations
However, our framework also has its limitations. The
biggest concern is the lack of training data that integrates
both language and action, which is essential for the frame-
work’s effectiveness. Additionally, the introduction of com-
plex internal mechanisms, such as action tokens and multi-
ple token sequences, complicates the training process, which
may present challenges that we are unable to address at
this moment. Despite these limitations, we encourage re-
searchers to explore training methods that reflect the devel-
opment of human intelligence, as our framework offers a
potential pathway for addressing several existing challenges
on the path to artificial general intelligence.

Impact Statement
Our proposed framework introduces a new way of concep-
tualizing and developing intelligent systems by integrating
action with language. This framework aims to simulate
human cognition and narrow the gap between human and
machine intelligence. It offers the possibility of reducing
model sizes, addressing computational resource intensity,
and enhancing global model accessibility. The framework
can be potentially beneficial to various industries and sets a
foundation for future research.

5



Dual-System Language Models via Next-Action Prediction

However, it is also crucial to address the potential risks of
our framework. As AI systems become more advanced in
their decision-making processes, there is an increased re-
sponsibility to prevent biases, misinformation, or harmful
behaviors. Using diverse, ethically sound datasets and con-
ducting rigorous testing are essential to mitigate these risks.
From a security standpoint, more complex and interactive
AI systems could be more vulnerable to malicious exploita-
tion. Robust security measures are necessary to ensure they
are not used harmfully. Additionally, when collecting train-
ing data, utmost care must be taken to prevent bias in the
data, protect individual privacy, and ensure compliance with
data protection regulations.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Arora, K., Asri, L. E., Bahuleyan, H., and Cheung, J. C. K.
Why exposure bias matters: An imitation learning per-
spective of error accumulation in language generation.
arXiv preprint arXiv:2204.01171, 2022.

Azar, M. G., Rowland, M., Piot, B., Guo, D., Calandriello,
D., Valko, M., and Munos, R. A general theoretical
paradigm to understand learning from human preferences.
arXiv preprint arXiv:2310.12036, 2023.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Chase, H. Langchain. URL https://github.com/
langchain-ai/langchain. Software available
from https://github.com/langchain-ai/langchain.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cundy, C. and Ermon, S. Sequencematch: Imitation learn-
ing for autoregressive sequence modelling with backtrack-
ing. arXiv preprint arXiv:2306.05426, 2023.

Dong, H., Xiong, W., Goyal, D., Pan, R., Diao, S., Zhang,
J., Shum, K., and Zhang, T. Raft: Reward ranked fine-
tuning for generative foundation model alignment. arXiv
preprint arXiv:2304.06767, 2023.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning
to search in language. arXiv preprint arXiv:2404.03683,
2024.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar,
S., and Nagarajan, V. Think before you speak: Train-
ing language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Guo, S., Zhang, B., Liu, T., Liu, T., Khalman, M., Llinares,
F., Rame, A., Mesnard, T., Zhao, Y., Piot, B., et al. Direct
language model alignment from online ai feedback. arXiv
preprint arXiv:2402.04792, 2024.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. arXiv preprint arXiv:2305.14992,
2023.

Huang, J. and Chang, K. C.-C. Towards reasoning in
large language models: A survey. arXiv preprint
arXiv:2212.10403, 2022.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Lanchantin, J., Toshniwal, S., Weston, J., Sukhbaatar, S.,
et al. Learning to reason and memorize with self-notes.
Advances in Neural Information Processing Systems, 36,
2024.

6

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain


Dual-System Language Models via Next-Action Prediction

LeCun, Y. A path towards autonomous machine intelligence
version 0.9. 2, 2022-06-27. Open Review, 62(1), 2022.

Lehnert, L., Sukhbaatar, S., Mcvay, P., Rabbat, M., and
Tian, Y. Beyond a*: Better planning with transform-
ers via search dynamics bootstrapping. arXiv preprint
arXiv:2402.14083, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas,
J., and Stone, P. Llm+ p: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Long, J. Large language model guided tree-of-thought.
arXiv preprint arXiv:2305.08291, 2023.

Luo, Y., Tang, Y., Shen, C., Zhou, Z., and Dong, B. Prompt
engineering through the lens of optimal control. arXiv
preprint arXiv:2310.14201, 2023.

Ma, Q., Zhou, H., Liu, T., Yuan, J., Liu, P., You, Y., and
Yang, H. Let’s reward step by step: Step-level reward
model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
Webgpt: Browser-assisted question-answering with hu-
man feedback. arXiv preprint arXiv:2112.09332, 2021.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Pan, L., Saxon, M., Xu, W., Nathani, D., Wang, X.,
and Wang, W. Y. Automatically correcting large lan-
guage models: Surveying the landscape of diverse self-
correction strategies. arXiv preprint arXiv:2308.03188,
2023.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model, 2023.

Ruoss, A., Delétang, G., Medapati, S., Grau-Moya, J.,
Wenliang, L. K., Catt, E., Reid, J., and Genewein, T.
Grandmaster-level chess without search. arXiv preprint
arXiv:2402.04494, 2024.

Schaeffer, R., Miranda, B., and Koyejo, S. Are emergent
abilities of large language models a mirage? arXiv
preprint arXiv:2304.15004, 2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Sloman, S. A. The empirical case for two systems of rea-
soning. Psychological bulletin, 119(1):3, 1996.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

7



Dual-System Language Models via Next-Action Prediction

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022b.

Xiang, J., Tao, T., Gu, Y., Shu, T., Wang, Z., Yang, Z., and
Hu, Z. Language models meet world models: Embodied
experiences enhance language models. arXiv preprint
arXiv:2305.10626, 2023.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yuan, W., Pang, R. Y., Cho, K., Sukhbaatar, S., Xu, J., and
Weston, J. Self-rewarding language models, 2024.

Yuan, Z., Yuan, H., Tan, C., Wang, W., Huang, S., and
Huang, F. Rrhf: Rank responses to align language mod-
els with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and
Liu, P. J. Slic-hf: Sequence likelihood calibration with
human feedback. arXiv preprint arXiv:2305.10425, 2023.

Zhou, A., Yan, K., Shlapentokh-Rothman, M., Wang, H.,
and Wang, Y.-X. Language agent tree search unifies
reasoning acting and planning in language models. arXiv
preprint arXiv:2310.04406, 2023.

8



Dual-System Language Models via Next-Action Prediction

A. Model Training
A.1. Training Objective

In our dual-system model with removal tokens, S is uniquely determined by T . We define the compression operator Comp
as the transformation of the token sequence in T to the token sequence in S.

Consider a specific token sequence in T , represented as x1, x2, . . . , xN . We define the compressed output of the text in S
as x̂1, . . . , x̂n, obtained through the compression operator: x̂1 · · · x̂n = Comp(x1x2 · · ·xN ). Our dual-system language
model formally takes the form:

hw3
(fw1

(x1x2 · · ·xN ), gw2
(x̂1 · · · x̂n)),

where fw1
processes the input sequence in T , gw2

processes the compressed sequence in S, and hw3
synthesizes both to

produce the final output. Each function is parameterized by w1, w2, and w3 respectively. The loss for this token sequence is
defined as:

N−1∑
m=1

L(hw3
(fw1

(T1:m), gw2
(Comp(T1:m))), xm+1),

where T1:m denotes the subsequence of the first m tokens of T , and L denotes a specified loss function. The training
objective is to find the parameters w1, w2, w3 that minimize the sum of the above loss across all token sequences in the
training data.

Apart from training the model using supervised learning (by directly collecting the desired dataset and optimizing the loss
above), we can also employ preference data in both offline (Ouyang et al., 2022) and online (Bai et al., 2022) regimes.
For instance, reinforcement learning can be used within the classical RLHF framework (Christiano et al., 2017) with PPO
(Schulman et al., 2017). Additionally, recently developed methods like DPO (Rafailov et al., 2023; Guo et al., 2024), IPO
(Azar et al., 2023), SLiC (Zhao et al., 2023), Raft (Dong et al., 2023), and RRHF (Yuan et al., 2023) are also applicable.

A.2. Training Data

The dual-system model requires data that incorporate reasoning and thought processes, which are absent in standard LLM
training datasets. We propose several data sources.

Mathematical Reasoning and Puzzle Data. Synthetic data derived from mathematical problem-solving can effectively
simulate logical reasoning and thought processes. Additionally, we can also generate data include strategic board games
like Chess, numerical challenges like Sudoku and 24 points game, spatial reasoning tasks such as solving a Rubik’s Cube,
and logic puzzles like crosswords and Nonograms. Moreover, non-mathematical language logic puzzles are also valuable,
enabling the use of removal tokens to remove unsuccessful attempts. Not only are these puzzle data easy to obtain, but they
also have the potential to enhance the models’ planning abilities. An interesting aspect to explore is whether training on
such puzzle-based data can transfer and enhance performance in language reasoning tasks.

Synthetic Language Data. We can leverage existing LLMs to generate synthetic datasets for training a dual-system model.
The growing body of research on reasoning and planning provides a basis for this. We can create datasets by concatenating
different trials and using removal tokens to mark incorrect sequences. Additionally, we can prompt LLMs to describe their
reasoning process along with providing answers. These outputs will include both the final answer and intermediate steps,
allowing us to construct synthetic datasets that capture the thought process. During this process, we should ensure that the
generated data is free of biases and inaccuracies and aligns with ethical guidelines.

Version Control Data. Code repositories like GitHub often include commit histories and pull requests, which can
showcase the revision process in code development. Collaborative writing platforms such as Wikipedia and Overleaf, with
their edit histories and discussion pages, also provide data on how written content is developed and revised. The version
history in Dropbox and Google Drive provides iterative process of text creation and modification.

Similarly, websites like Stack Overflow reveal the thought process behind problem-solving or explaining complex concepts.
Online forums can also display the evolution of ideas and opinions. Using these datasets requires additional processing to
effectively extract the thought process. Furthermore, it is essential to follow ethical guidelines, particularly concerning user
privacy and the permissions for using their data. If the datasets contain personal data from users, getting clear permission
from them is key for ethical and legal considerations.

9



Dual-System Language Models via Next-Action Prediction

A.3. Fine-tuning

In a training approach that involves initial pre-training followed by fine-tuning, the best practice for pre-training would be to
directly use data annotated with the human thought process. However, such data sources are relatively scarce compared to the
data used for training state-of-the-art large language models. Therefore, we suggest using these thought process-annotated
datasets for fine-tuning. In the future, there is potential to construct high-quality datasets annotated with thought processes
that are large enough for pre-training. Achieving this, however, is beyond the scope of individual efforts and requires a
collaborative effort within the research community.

A.4. Mathematical Reasoning

Mathematical reasoning is a crucial part of language model capabilities (Trinh et al., 2024). It is interesting to study whether
models can self-improve their mathematical reasoning abilities. For instance, we can use techniques like Self-Rewarding
(Yuan et al., 2024) or STaR (Zelikman et al., 2022). A key premise for this method is that the model is able to provide
high-quality reward signals. However, current models often suffer from hallucinations in mathematical reasoning, and
therefore, the rewards provided by the model may not be reliable. Therefore, we should strictly control the hallucination
rate, and then we can use Self-Rewarding that could potentially lead to self-improvement.

We propose that the ratio of incorrect to correct answers can serve as an effective surrogate metric for the model’s
hallucination rate if the model is capable of generating three types of responses: (a) correct answers, (b) incorrect answers,
and (c) acknowledgment of its inability to solve a problem. If this ratio falls below a specific threshold, such as 2%, this
would indicate a low hallucination rate. This is because frequent hallucinations would make it unlikely for the model to
achieve over a 98% correct percentage within the problems it claims to be able to solve, since incorrect intermediate steps
are likely to cause an incorrect final answer.

In assigning reward values to answers, it is crucial to consider a diverse range of factors. For instance, we should not
only reward the correct steps that lead to correct answers but also reward responses that successfully remove failed trials.
However, if a simple problem is solved correctly but with many error trials, it should be penalized. It is also important to
reward models for recognizing and admitting their inability to solve certain challenging math problems that are beyond the
model’s ability, rather than allowing them to arrive at an incorrect answer. This would otherwise indicate a hallucination,
which should definitely be prohibited in our framework.

Then, we propose gradually introducing the model to problems of increasing difficulty, while closely maintaining this ratio
of incorrect to correct answers under a specific threshold. The most challenging aspect of this method is to ensure a low
hallucination rate, particularly in the context of mathematical reasoning. However, we can apply a similar pipeline to simpler
tasks where the hallucination rate is more manageable, especially in tasks governed by simple rules yet requiring significant
planning abilities. For instance, we could initially train the model in games like the Game of 24, where the objective is to
reach 24 using basic arithmetic operations given four numbers, or in constructing crosswords, where the challenge lies in
fitting words into a grid based on clues and intersecting letter patterns.

B. Potential Benefits of the Dual-System
B.1. Practical Considerations

In this subsection, we argue that the current limitations in LLMs stem largely from the absence of human-like thought
process data in the training dataset: while these texts result from deliberate human thinking, they fail to capture the thought
process itself that leads to the production of these texts. Consider, for example, the phenomena of hallucinations and
arithmetic operations in LLMs.

Current LLMs are pre-trained on large text corpora. This approach aims to expose the model to the vast diversity of human
language. However, this exposure can be a double-edged sword, as it may lead to issues such as hallucinations. In these
texts, factual information is typically written by humans who know it to be valid, often involving verification of information
resources before text production. However, this internal verification mechanism is not captured in the training data itself.
Therefore, LLMs might not learn to question the veracity of their information or to express when they “do not know”
something. This could lead to overconfidence in their responses and hallucinations.

One potential mitigation strategy is to extract all factual information from training datasets, link it to its sources, and annotate
it to indicate the acquisition or internal verification process, followed by the use of removal tokens to remove the verification

10



Dual-System Language Models via Next-Action Prediction

process. Ideally, when faced with a query involving factual information, the model could then discern whether the query is
related to factual information and attempt to verify its source.

A similar principle applies to basic mathematical arithmetic. The model should be trained to discern, as humans do, the
complexity of arithmetic operations. For instance, humans can easily recognize that while calculating 3×3 is straightforward,
computing 33333 × 33333 is far more complex and typically requires external tools like calculators. Yet, this kind of
contextual understanding is absent in the training data for LLMs. For example, existing training data might include:

33333× 33333 = 1111088889. <EOS>

However, ideal training data would reflect the thought process:

33333× 33333 =? <EOS> This calculation would be quite challenging. I need to use the calculator. <EOS> <RMV-S>
<PYTHON> <RMV-T>1 1111088889. <EOS>

These examples highlight a significant limitation in the text data currently used for training LLMs. The data is typically
produced after thorough deliberation, or it represents outcomes derived from using external tools for complex arithmetic
tasks. Generating such texts accurately in current LLM practice already proves to be a challenging task. Therefore, we
hypothesize that the large size of current LLMs partially results from their design, which focuses on directly outputting the
desired answers without generating an internal thought process. Unlike these models, humans can gauge the complexity
of reasoning tasks and generate deeper thought processes for more challenging tasks before starting responding. Current
LLMs do not have this adaptive mechanism, and to compensate for this, they may only depend on increased sizes—more
parameters and more data—to directly and statistically model the final response. This aligns with our current observations
that larger models have better reasoning capabilities, and emergent abilities follow a predictable pattern as the model size
increases, provided that continuous and linear metrics are used (Schaeffer et al., 2023).

Consequently, our framework aims to address this issue by incorporating this “missing part” of internal thought, enabling
models to engage in thorough “thinking” before responding. Moreover, it requires the model to predict the next token with a
difficulty similar to fast-thinking, in contrast to the final response required by current LLMs. Since our framework’s training
objectives are less complex, we expect that models developed within it could achieve reasoning capabilities on par with
those of larger, existing LLMs.

B.2. Necessity for Trial-And-Error

Lightman et al. (2023) showed that reward models were used to improve mathematical reasoning capabilities through either
outcome supervision (Uesato et al., 2022), which provides feedback for the final result, or process supervision (Uesato et al.,
2022), which provides feedback for each intermediate reasoning step. It was found that process supervision significantly
outperformed outcome supervision.

In our framework, we can go one step further than process supervision. Note that when humans solve problems, whether
mathematical or puzzles like Sudoku, it involves trying various options, discarding incorrect paths, and iterating toward the
correct solution. We argue that this trial-and-error process is a crucial aspect of intelligence development since it is nearly
impossible to solve every complex puzzle correctly in one attempt. However, if this process is not explicitly presented in
LLM training, it may lead to overconfidence in generated solutions and a tendency for error accumulation (Arora et al.,
2022). This limitation may contribute to errors cascading from early mistakes to incorrect final answers. Therefore, our
proposed framework is designed to accommodate this trial-and-error process. We can adjust parameters through reference
optimization by ranking the candidate answers. In this way, the model can learn from different attempts and understanding
their effectiveness, rather than only relying on correct answers. This method mirrors human learning, where understanding
and correcting mistakes are integral to developing knowledge and skills.

Prevalent methods guide models towards better planning but don’t directly teach them iterative problem-solving. Our
framework embeds this learning process within the model itself. For true artificial general intelligence, models must
seamlessly plan, generate, and revise outputs as a unified process, not as separate steps. Therefore, our framework has the
potential to reduce the dependence on external methods for guiding the models’ reasoning steps.

1The <RMV-T> token is used to remove the question mark and the subsequent <EOS> token.

11



Dual-System Language Models via Next-Action Prediction

B.3. Connections with the World Model

The long-standing goal in AI research has been to achieve human-level intelligence. However, the complete operational
mechanism of the human brain is still not fully understood. Since we lack the capability to model the brain directly, we turn
to language as an accessible and powerful interface, focusing on modeling linguistic structures as a reflection of human
intelligence. Current successes in AI are largely attributed to the ability of language models to recognize patterns in vast
amounts of text data, leveraging word embedding to represent words as vectors in high-dimensional space. This allows
words to be processed by neural networks.

However, language is indeed not the only interface machines can use. Human intelligence is deeply rooted in the ability to
interact with and learn from the environment through various senses (LeCun, 2022). Thus, the idea of a world model (Hao
et al., 2023; Xiang et al., 2023; Zhou et al., 2023) in AI is to to form a mental representation of the environment. This allows
the model to explore different actions, evaluate potential outcomes, and select the most effective strategies.

However, creating a perfect world model is indeed a complex and currently unattained goal. So, why not start with a simpler
one? By embedding actions into vectors (action embedding) and incorporating them into language models, the model can
now utilize another proxy of human intelligence: actions. Our dual-system model and removal tokens can be seen as an
initial step within this framework, where a textual agent is provided with access to external states presented in textual form,
allowing it to interact and make decisions based on text-based information.

A study (Hao et al., 2023) suggests that current LLMs do not incorporate a world model. Specifically, these models (a) lack
a representation of the world’s state, (b) do not possess a reward mechanism to direct the model’s actions, and (c) struggle
to strike a balance between exploration and exploitation. In our framework, the model itself functions as a prototype of a
world model and has the potential to address these limitations. Specifically, (a) the thought system T can be seen as the
language model agent, and the output system S represents the observation of the environment. The agent T can interact with
the environment S by adding or removing tokens in S. (b) The model serves as its own reward model: at each inference
step, it has full access to both the environment observation S and the internal state T . The model can explore various
paths and then revert to the previous state of the environment in S using removal tokens, while keeping the exploration
information in T . This is the same as planning. The model navigates through all steps and makes decisions based on S, T ,
and its own parameters, thereby forming its own reward mechanism. (c) The model balances exploration and exploitation on
its own. While Monte Carlo Tree Search (MCTS) is an effective algorithm for balancing exploration and exploitation, it
might not be as necessary in our framework. Humans can plan and explore efficiently without understanding mathematical
concepts like MCTS and Markov Decision Processes, as these abilities can be acquired non-mathematically. Considering
that current LLMs can obtain reasonable reasoning skills when trained only to produce the desired answer, our framework
further enables models to be trained to improve the internal thought and planning processes. We therefore hypothesize that a
model well-trained in our framework is likely to possess high-level planning abilities.

In conclusion, a model within our framework functions analogously to a world model. Although learning to generate
removal tokens seems very hard at this moment, we believe our dual-system approach has the potential to address this
challenge. Consider the analogy to human problem-solving: verifying the correctness of a solution and backtracking to
a previous state are often much easier than generating the correct solution in the first place. We hypothesize that current
LLMs may struggle with this because they lack an environment that supports backtracking and may rely too heavily on
correct answers during training. Our dual-system creates a more suitable environment. If we train models in this type of
environment, learning to generate removal tokens may become less difficult than currently assumed. Moreover, the model’s
vast parameter space can collectively contribute to the planning process. Although the success of such a model would
depend heavily on its implementation and the effectiveness of its training regime, it certainly opens up exciting possibilities
for the future of artificial intelligence.

12


