
KGCW2023 Challenge Report
RDFProcessingToolkit / Sansa
Simon Bin, Claus Stadler and Lorenz Bühmann

Institute for Applied Informatics (InfAI), Leipzig

Abstract
This is the report of our participation in the KGCW2023 Challenge @ ESWC 2023 with our RDFProcessing-
Toolkit/Sansa system which won the “fastest” tool award. The challenge was about the construction of
RDF knowledge graphs from RML specifications with varying complexity in regard to the mix of input
formats, characteristics of the data and the needed join operations. We detail how we integrated our
tool into the provided benchmark framework. Thereby we also report on the issues and shortcomings
we encountered as a base for future improvements. Furthermore, we provide an analysis of the data
measured with the benchmark framework.

Keywords
RML, SPARQL, RDF, Knowledge Graph, Big data, Semantic Query Optimisation, Apache Spark, Challenge

1. Introduction

This is the report of participating in the KGCW2023 Challenge1 using the RDF Processing Toolkit
(RPT) / Sansa execution engine [1].2 The challenge was divided into two main parts, called
“Knowledge Graph Construction Parameters” and “GTFS-Madrid-Bench” [2]. The challenge
description and possible results (“ground truth”) are also published on Zenodo [3]. The remainder
of this report is structured as follows: In Section 2 we describe how we set up our tool with the
benchmark environment. In Section 3 we present an analysis of the results obtained with the
benchmark system. Finally, in Section 4 we conclude this report.

2. Setting up RPT/Sansa with the KGCW Challenge Tool

Accompanying the challenge, a pipeline tool3 was provided. The tool is built on Python,
JSON, and Docker. It was strongly encouraged to use the tool and of course, the promise of its
provisioning is to ease the evaluation of the system under test and have a common ground for
comparing results.

KGCW’23: 4th International Workshop on Knowledge Graph Construction, May 28, 2023, Crete, GRE

$ sbin@informatik.uni-leipzig.de (S. Bin); cstadler@informatik.uni-leipzig.de (C. Stadler);
buehmann@informatik.uni-leipzig.de (L. Bühmann)
� 0000-0001-9948-6458 (C. Stadler)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://kg-construct.github.io/workshop/2023/challenge.html
2https://github.com/SmartDataAnalytics/RdfProcessingToolkit
3https://github.com/kg-construct/challenge-tool

mailto:sbin@informatik.uni-leipzig.de
mailto:cstadler@informatik.uni-leipzig.de
mailto:buehmann@informatik.uni-leipzig.de
https://orcid.org/0000-0001-9948-6458
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://kg-construct.github.io/workshop/2023/challenge.html
https://github.com/SmartDataAnalytics/RdfProcessingToolkit
https://github.com/kg-construct/challenge-tool


After installing the tool, first we had some issues getting it to work. One major point of
critique, which was also shared by other challenge participants, is that the provided version
of the tool proceeded to delete all Docker containers on the system, even those that were not
related to the challenge. For this reason, we had to patch our own fork of the tool such that
only containers that were also created by it were removed. Additionally, the included MySQL
component caused several troubles: — Amongst others, the tool created a MySQL database
setup in the host computer’s /tmp directory which was not cleaned up, leading to hard-to-
debug version conflicts later on; — MySQL failed to start unless the file bench_executor/
config/mysql/mysql-secure-file-prive.cnf was made read-only — the Python package
cryptography was missing from the provided requirements.txt, leading to another exception
in the MySQL adaptor.

Then, it was needed to integrate RPT/Sansa. The steps involved were:

1. Creation of a Docker image for RPT. As RPT already ships with several packaging options,
including Docker,4 there was no additional work needed.

2. Writing of a Python file that connects RPT tothe tool. The file is bench_executor/rpt.py
and was sufficiently easy to create by copying and adapting the rmlmapper.py file. How-
ever, there were some difficulties: — Class names must not start with lowercase, otherwise
it is silently ignored. — The tool did not support running multiple steps with the same
tool. However, RPT/Sansa required multiple invocations of the RPT tool for converting
RML to a SPARQL workload, optimising the SPARQL workload and finally executing it.
We had to add a hack with a global instance counter; — our container required configuring
a working directory (Docker command line flag -w); this was not supported by the tool
so we had to extend the base ContainerManager class.

3. Setting up the pipeline files (metadata.json) for the 63 test cases that execute the case
using RPT.

The challenge dataset comes with 63 metadata.json files which use RMLMapper as the
reference to implement the necessary steps. At first, we pondered if a search and replace
operation on these files would be sufficient to run RPT, however it is easy to make mistakes in
the process, which would have been detrimental to our challenge run. So instead we examined
all files and identified the common patterns. On this basis, we reverse-extracted two YAML
templates from those 63 files, one for each major part of the challenge. Then we continued to
implement a template-to-metadata.json program which generates all 63 files from those two
templates as required.5

Because we also wanted to be able to run and compare multiple tools using the tool, we
furthermore opted to change the pipeline filename from metadata.json to my-tool.json, and
added a command line switch to the tool to change the filename that it will read.

2.1. Fixing the mapping files

Unfortunately, the RML mappings provided in the challenge have some issues. As part of our
pipeline, we first ran some SPARQL Update queries to fix the mappings: — replace invalid usage
4Maven artifact rdf-processing-toolkit-pkg-docker-cli
5https://github.com/SimonBin/kgc-challenge-tool-template

https://github.com/SimonBin/kgc-challenge-tool-template


of string constant with IRI type by proper IRI,6 — replace invalid JSON iterator [*] with $.[*].7

Next, we also replaced R2RML in the mappings with RML and changed the table names to
the CSV file names, as RPT / Sansa did not support relational databases (RDB) at the time of the
challenge. It is noteworthy that this adaption was also made by at least one more participant.
In this case, separate tasks for RDB and CSV would have been desirable.

2.2. Verifying the results

The results produced by our tool were then compared to the ground truth provided on [3] by
sorting all the produced triples and comparing them one by one. It quickly became clear that
some triples did not match up. However, it turned out that the issues lay with the ground truth.

• Many numbers in the ground truth are replaced with 999.999, one example from GTFS-
Madrid-Bench, scale_100:

<http://transport.linkeddata.es/madrid/metro/shape_point/0000000000000000
0001-1000803>

<http://www.w3.org/2003/01/geo/wgs84_pos#long>
"999.999999999999999"ˆˆ<http://www.w3.org/2001/XMLSchema#double> .

(correct answer: "3971182"ˆˆ<http://www.w3.org/2001/XMLSchema#double>)
• Data types are suddenly present in the ground truth where none are specified in the

mapping files, one example from GTFS-Madrid-Bench, heterogeneity_files:
<http://transport.linkeddata.es/madrid/metro/trips/000000000000000009kc>

<http://vocab.gtfs.org/terms#direction>
"1"ˆˆ<http://www.w3.org/2001/XMLSchema#integer> .

(correct answer: "1")

2.3. Data quality issues

There is one more caveat with the GTFS benchmark: wrong use of data types. The arrival_time
and departure_time are mapped to xsd:duration, however their values are not a valid duration.
(Example: 0000000000000000006l; valid duration example: PT2M10S). This causes systems that
validate RDF terms, such as ours which is based on Apache Jena, to spend a significant amount
of time emitting warning messages. Thus, a recommendation for the future would be to improve
the benchmark with only well-formed RDF terms and/or have dedicated tasks for mappings
that produce malformed ones.

3. Performance results

In this section we present the results which we obtained for RPT/Sansa using the tool.
Unfortunately for this challenge it was not possible to evaluate all participating tools on the

same hardware. Each participant executed their own tool on their own system. Our system

6https://github.com/oeg-upm/gtfs-bench/issues/142#issuecomment-1453784200
7https://rml.io/specs/rml/#examples

https://github.com/oeg-upm/gtfs-bench/issues/142#issuecomment-1453784200
https://rml.io/specs/rml/#examples


was an AMD Ryzen 9 5950X with 128 GB RAM, of which Java was allowed to use 50% of the
RAM.
the tool generated 126 CSV files when giving the command ./exectool stats. To that

end, we wrote a program to first extract these files in an automated way and then to draw plots
of the measured values of RPT. Otherwise it would be laborious and error-prone to create the
charts. We also calculated the number of triples resulting from the mapping as well as the input

sizes of the source files processed by the mapping (these values are not present in the CSV files
created by the tool).

For a comparison of RPT to other systems please refer to our system paper [1].

How to read the plots. Each of the following plots captures all of the following information.
In order to assist the reader, we added circled numbers to Figure 1 which correspond to the
numbers of this list:

1. The challenge was organised into multiple directories with different tasks. The parent
directory/task is displayed on the left outer legend, the left y-axis shows the directory/dif-
ferent parameter configurations for this task.

2. The thick bar next to the parameter configuration is the main bar. It records the run-time

of RPT. The total run-time in seconds is also printed at the end of the bar, and the run-time
is also displayed on the bottom x-axis.

3. Each task “pipeline” can be configured to consist of multiple steps. We configured RPT to
use six steps, the duration of each step corresponding to the different coloured segments on
the main bar. (1) fix the mappings (see section 2.1), (2) configure the CSV “NULL” value
(meaning unbound in SPARQL), (3) run the XML mappings (not parallelised), (4) convert
the RML mapping into an equivalent SPARQL SERVICE query (see [1]), (5) run source
optimisation on the SPARQL query, (6) execute the SPARQL query mapping description
using RPT/Sansa.

4. The right y-axis shows the CPU time scale factor. This shows the distributedness of the
execution (higher = more distributed). It was calculated by dividing the CSV column
cpu_user_system_diff by the duration.

5. A red �mark shows the value of the memory_ram_max CSV column (memory consumption).
The memory consumption is also displayed on the top x-axis. Note, that the measurement
has very limited informative value because the tool captures the initial virtual memory
claimed by the Java Virtual Machine (JVM, 28 GiB) and not the actually used memory.
We have no reason to suspect that less memory would be a problem for RPT.

6. The small bar above the main bar and . . .
7. the small bar below the main bar are to be read from top to bottom. They display the

relative size of the input data on top and the relative size of the output triple count on
the bottom of the main bar (blue). In the case of heterogeneous input formats, the top bar
is colour coded for the size of the XML, JSON and CSV input. Note that while the raw
numbers are absolute, the plot only gives a relative perception of the input and output
sizes, with a size of 0% on the far left.

The tasks join 1-1, join 1-N, join 1-10, join N-1, and join 10-1 (which are supposed to test
scaling the number of joins) as well as empty-values (which should test the handling of empty



Figure 1

28 32 36 40 44 48 52 56 60 64

×6.5

×5.1

×4.2

×2.9

0 5 10 15 20 25 30 35

1TM 15POM

3TM 5POM

5TM 3POM

15TM 1POM

50% 100%

memory consumption in GiB

cp
u

ti
m

e
sc

al
e

19.56

19.96

21.07

28.52

run-time in sec.

m
ap

pi
ng

—— i/o size ——

�
�
�
�

fix sparql opt. map step triples

csv input size �mem

Figure 2

— unbound — values in the dataset) do not exhibit much variation. RPT requires roughly
20 seconds to complete them, with a CPU time scale of ×4.4. (Of these, approx. 12 seconds
are start-up overhead of Docker/the system.) None of the parameter variations seem to have
much influence here which might suggest the data/size/test case is too small for RPT. For
the tasks join N-M, with N, M ̸= 1, we can detect a slight increase in run-time depending on
the number of joining triples and thus also the resulting triple count (see Figure 1). For the
duplicated-values, RPT gets slightly faster the more duplicates, as it can eliminate them. This is
not observed for empty-values, because there are always 100 000 unique id values whereas in
the duplicated-values task 𝑥% of the IDs are duplicates.



28 32 36 40 44 48 52 56 60 64

×18

×16

×16

×16

0 20 40 60 80 100 120 140 160

tabular

mixed

files

nested

50% 100%

memory consumption in GiB

cp
u

ti
m

e
sc

al
e

92.38

124.98

126.83

129.67

run-time in sec.

G
TF

S
B

en
ch

,h
et

er
og

en
ei

ty

—— i/o size ——

�
�
�
�

fix xml sparql opt. map step triples

xml json csv input size �mem

Figure 3

The mappings task sought to evaluate the balance between multiple triple maps (TM) and
property-object maps (POM). Before running the task, we assumed that the resulting graphs
should be equivalent and thus the run-time of RPT identical, since the source CSV and the
triple counts are identical. However, the mappings provided are quite different. In the case of
15TM 1POM there are 1.5 mio. entities with exactly the same property :p1 generated whereas
in the 1TM 15POM case, we have only 100 000 entities with 15 properties each. Hence for
15TM 1POM the distinct operation is more expensive and cannot be parallelised well, as is
evident in Figure 2.

For the scaling of the number of records (n.b. this task is in mismatch to the description of the
challenge provided on [3]) and properties we can see that RPT scales exceptionally well. In the
scaling of records, 1 mio. rows are processed in 45 seconds whereas ten times as many rows are
processed in 425 seconds (×10), and for the properties 20 columns are processed in 46 seconds
whereas 30 columns (+50%) are processed in 65 seconds (+41%).

The second part of the challenge was the GTFS-Madrid-Bench. We have also used this
benchmark in [1], but we did not test RPT with heterogeneous GTFS Bench (n.b. there seems to
be a mismatch between the description of the challenge and the actual content, we found the
composition to be: csv+sql (tabular), xml,json,csv+sql (mixed), xml,json,csv (files), and xml,json
(nested)). From Figure 3 we can see that CSV (tabular) has a much smaller input size. This
benefits RPT two-fold, making it the fastest configuration of this task group. JSON files take the
majority of the input data for all the other cases. In the nested configuration there is three times
more XML than in the other two cases. Here, we can also observe that our XML processing
time (second step) takes 6.5 seconds as compared to 4.2 seconds or 2.9 seconds (when no XML
is present; start-up overhead). Additionally, with this data size the parallelism can be utilised,
leading to a CPU time scale of ×16.

When scaling the GTFS Bench, we can see RPT shine. The GTFS Bench can generate input



28 32 36 40 44 48 52 56 60 64

×5.8

×7

×18

×25

100 101 102 103

1

10

100

1000

10% 100%

memory consumption in GiB

cp
u

ti
m

e
sc

al
e

25.41

34.73

91.74

727.74

run-time in sec. (log-scale)

G
TF

S
B

en
ch

,s
ca

le
d

—— i/o size ——

�
�

�
�

fix xml sparql opt. map step triples(log)

csv input size(log) �mem

Figure 4

28 32 36 40 44 48 52 56 60 64

×18

×16

×16

×16

×2.7

×2.4

×2.6

×2.2

0 500 1,000 1,500 2,000 2,500 3,000 3,500

tabular

mixed

files

nested

memory consumption in GiB

cp
u

ti
m

e
sc

al
e

92.38

124.98

126.83

129.67

447.92

1,348.06

1,360.41

3,102.88

run-time in sec.

G
TF

S
B

en
ch

,h
et

er
og

en
ei

ty

�
�
�
�

�
�
�
�

RPT/Sansa RPT/ARQ run-time

RPT/Sansa RPT/ARQ cpu time (÷2)

� Sansa � ARQ mem

Figure 5

data for multiples of 395 953 output triples. For scale 1000 that amounts to almost 400 mio.
triples. The performance of RPT can be seen in Figure 4. We changed to a logarithmic x scale
to make it easier to compare differences in the order of magnitude. Similar to the scaling of
records, the GTFS Bench at scale 100 takes 91.7 seconds, and at ten times it takes 727 seconds
(an increase of only ×8). The parallelism also increased once more from a CPU time scale of
×18 for GTFS scale 100 to ×25 for GTFS scale 1000. That means in number of CPU seconds, for
a ten-fold increase in output triples we have a still satisfactory eleven-fold increase.

Figure 5 shows a bonus plot comparing the execution time of RPT/Sansa to that of RPT/ARQ,



another execution engine which is running on the same infrastructure as RPT/Sansa but with
Jena ARQ instead of Apache Spark as the execution engine. This is a single-process execution
engine without distributed/parallel computation.

The complete PDF of all plots, as well as the raw data, can be found in the RPT supplements
repository.8

4. Conclusions and Future Work

We assumed that maybe all contenders in the challenge would use the tool to run their code,
so that in the end we might have a collection of Docker containers to easily run different
Knowledge Graph Construction tools. However, this effort has yet to happen. It would have
been stellar if the tool were capable of generating a statistics report similar to the one we
described automatically (ideally even with support for comparing multiple systems). So far
the tool only collected data in a set of CSV files but all further interpretation had to be done
individually by each participant. Finally, as apparent in the results, RPT/Sansa executes most
tasks in around 20 seconds. As such, by comparing RPT only to itself there are not many
interesting differences to be seen from which insights could be derived - besides that RPT
executes those tasks in a stable and reliable way. Still, for future challenge runs, it may be
worthwhile to refine the tasks further such as by scaling them up to larger sizes in order to see
whether this leads to differences.

Acknowledgments

The authors acknowledge the financial support by the German Federal Ministry for Economic Af-
fairs and Energy in the project CoyPu (project number 01MK21007A) and by the German Federal
Ministry of Education and Research in the project StahlDigital (project number 13XP5116B).

References

[1] C. Stadler, L. Bühmann, L.-P. Meyer, M. Martin, Scaling RML and SPARQL-based knowledge
graph construction with Apache Spark, in: Proceedings of the 4th International Workshop
on Knowledge Graph Construction, ESWC, 2023.

[2] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, O. Corcho, GTFS-Madrid-
Bench: A benchmark for virtual knowledge graph access in the transport domain, Journal
of Web Semantics 65 (2020) 100596.

[3] D. Van Assche, D. Chaves-Fraga, A. Dimou, U. Şimşek, A. Iglesias, KGCW 2023 Challenge
@ ESWC 2023, 2023. doi:10.5281/zenodo.7837289.

8https://github.com/AKSW/RdfProcessingToolkit-Resources/tree/main/2023-05-28-KGCW-at-ESWC

http://dx.doi.org/10.5281/zenodo.7837289
https://github.com/AKSW/RdfProcessingToolkit-Resources/tree/main/2023-05-28-KGCW-at-ESWC

	1 Introduction
	2 Setting up RPT/Sansa with the KGCW Challenge Tool
	2.1 Fixing the mapping files
	2.2 Verifying the results
	2.3 Data quality issues

	3 Performance results
	4 Conclusions and Future Work

