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Abstract

Quadruped animals are capable of exhibiting a diverse range
of locomotion gaits. While progress has been made in demon-
strating such gaits on robots, current methods rely on mo-
tion priors, dynamics models, or other forms of extensive
manual efforts. People can use natural language to describe5

dance moves. Could one use a formal language to specify
quadruped gaits? To this end, we aim to enable easy gait
specification and efficient policy learning. Leveraging Re-
ward Machines (RMs) for high-level gait specification over
foot contacts, our approach is called RM-based Locomotion10

Learning (RMLL), and supports adjusting gait frequency at
execution time. Gait specification is enabled through the use
of a few logical rules per gait (e.g., alternate between moving
front feet and back feet) and does not require labor-intensive
motion priors. Experimental results in simulation highlight15

the diversity of learned gaits (including two novel gaits), their
energy consumption and stability across different terrains,
and the superior sample-efficiency when compared to base-
lines. We also demonstrate these learned policies with a real
quadruped robot.20

1 Introduction
Legged animals are capable of performing a variety of lo-
comotion gaits, in order to move efficiently and robustly at
different speeds and environments (Hoyt and Taylor 1981).
The same can be said of legged robots, where different loco-25

motion gaits have been shown to minimize energy consump-
tion at different speeds and environments (Fu et al. 2021; Da
et al. 2021; Yang et al. 2022). Still, leveraging the full di-
versity of possible locomotion gaits has not been thoroughly
explored. A larger variety of gaits can potentially expand30

a quadruped’s locomotion skills or even enable traversing
terrains that are not possible before. Unfortunately, learning
specific quadruped locomotion gaits is a challenging prob-
lem. To accomplish this, it is necessary to design a reward
function which can express the desired behavior. Commonly35

used reward functions for quadruped locomotion encourage
maximizing velocity command tracking, while minimizing
energy consumption (Tan et al. 2018; Kumar et al. 2021).
While training over these types of reward functions often-
times yields high quality locomotion policies, they do not40

specify any particular gait.
In order to incentivize the agent to learn a specific gait,

the reward function must be encoded with such gait-specific
knowledge. It is possible to design a naive reward function
which explicitly encourages specific sequences of milestone 45

foot contacts, which we refer to as poses. Unfortunately,
this breaks the Markov property, because historical knowl-
edge of previous poses within the gait is necessary to know
which pose should be reached next in order to adhere to the
specified gait. Quadruped locomotion controllers are com- 50

monly run at 50 Hz or more (Kumar et al. 2021; Miki et al.
2022), which generates a long history of states between each
pose of a gait. Thus, naively satisfying the Markov property
would require including all of these historical states in the
state space, and would make the learning process more chal- 55

lenging as the policy would need to figure out which portion
of this history is relevant.

Some researchers have taken advantage of motion pri-
ors in order to encode gait-specific knowledge in a reward
function. One popular method for encoding such knowledge 60

in a reward function is to maximize the similarity between
the robot’s motion and a reference trajectory (Peng et al.
2020; Smith et al. 2021). While this approach has been suc-
cessfully demonstrated on real robots, it requires significant
manual effort to obtain reference trajectories, and constrains 65

the robot’s motion to the given trajectory.
In this paper, we alleviate the above mentioned prob-

lem of gait specification by leveraging Reward Machines
(RMs) (Icarte et al. 2022), which specify reward functions
through deterministic finite automatons. RMs have been ap- 70

plied to various domains for guiding RL agents (Xu et al.
2020; Neary et al. 2020; Camacho et al. 2021; Dohmen
et al. 2022). In this paper, RM serves as high-level specifica-
tions of gaits for low-level locomotion policy learning. The
RM transition function is defined through Linear Temporal 75

Logic (LTL) formulas over propositional symbols, which in
our case specify foot contacts. Thus, changing the automa-
ton state corresponds to reaching the next pose within the
gait. The reward function is Markovian when considering
the low-level state (robot sensor information), along with 80

the current automaton state, because the automaton state en-
codes the relevant gait-level information needed to deter-
mine the next pose. This approach enables us to easily spec-
ify and learn diverse gaits via logical rules, without the use
of motion priors. 85

We refer to our approach as RM-based Locomotion
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Figure 1: Snapshots of important poses of each of the six gaits learned with six different RMs. Specifying and learning the gaits
require defining an automaton with no more than five automaton states (only two for half of the gaits). Red circles are around
feet making contact with the ground.

Learning (RMLL), and train policies for six different gaits
in simulation without the use of reference trajectories. Each
policy is trained over a range of gait frequencies, which
we can dynamically adjust during deployment. The reward90

function of each gait is defined through an automaton over
desired foot contacts. We conduct an ablation study to evalu-
ate the sample efficiency of RMLL in training the six differ-
ent gaits, measure energy consumption and stability of each
gait in different terrains, and deploy all gaits on a real Uni-95

tree A1 quadruped robot (see Figure 1). We compare RMLL
to three baselines, each of which is designed to evaluate
whether knowledge of the automaton state during training
is actually beneficial in terms of sample efficiency. Results
show that RMLL improves sample efficiency over its abla-100

tions for all gaits, more substantially for more complex gaits.

2 Related Work
In this section, we discuss prior work on RMs, and legged
locomotion via Reinforcement Learning (RL). We then fo-
cus on existing methods of gait specification and learning105

for legged locomotion, with and without motion priors.

2.1 Reward Machine
Since the introduction of Reward Machines (RMs) (Icarte
et al. 2018), there have been various new research direc-
tions such as learning the RM structure (Xu et al. 2020),110

RM for partially observable environments (Toro Icarte et al.
2019), multi-agent intention scheduling (Dann et al. 2022),
and probabilistic RMs (Dohmen et al. 2022) to name a few.
While these works primarily focused on RM algorithmic im-
provements and theoretical analysis, their applications did115

not go beyond toy domains. RMs have also been used for
simulated robotic arm pick-and-place tasks, which learn RM

structures from demonstrations (Camacho et al. 2021). How-
ever, their approach was not implemented or evaluated in
real-world robotic continuous control problems with high- 120

dimensional action spaces. A recent journal article formally
described the RM framework as well as a few algorithms for
RM-based reinforcement learning (Icarte et al. 2022). We
use RMs for robot locomotion learning in this work.

2.2 RL-based Locomotion Learning 125

There are numerous works on applications of RL for
quadruped robot locomotion policy learning (Tan et al.
2018; Kumar et al. 2021; Smith et al. 2021; Rudin et al.
2022; Miki et al. 2022; Zhuang et al. 2023). Approaches
of this type often lead to robust locomotion gaits, some of 130

which can transfer to real robots. However, the above men-
tioned approaches generally focus on learning robust loco-
motion policies, and do not support the specification of par-
ticular gaits. Other works that support diverse locomotion
gaits are described next. 135

2.3 Diverse Locomotion Gaits
With Motion Priors: Various works have learned diverse
locomotion gaits for quadruped robots with the use of mo-
tion priors. For example, trajectory generators (Iscen et al.
2018) and motion references (Smith et al. 2021; Peng et al. 140

2020) have been leveraged for learning specified gaits. Ob-
taining these priors require extensive human (and sometimes
even animal) effort, and restricts the robot to following the
specified trajectory with little variation. While motion ref-
erences can be generated, it requires highly tuned foot tra- 145

jectory polynomials and phase generation functions (Shao
et al. 2021). Our approach does not require such motion pri-
ors and can easily specify different gaits via a few logical
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Figure 2: Overview of RM-based Locomotion Learning (RMLL). We consider propositional statements specifying foot con-
tacts. We then construct an automaton via LTL formulas over propositional statements for each locomotion gait (left side). To
train gait-specific locomotion policies, we use observations which contain information from the RM, proprioception, velocity
and gait frequency commands, and variables from a state estimator (right side).

rules. Our policies also have freedom to explore variations
of the specified gait on its own and is not restricted by a150

predefined trajectory.

MPC-based: Various MPC-based approaches have suc-
cessfully demonstrated diverse locomotion gaits without the
use of motion priors (Di Carlo et al. 2018; Kim et al. 2019).
However, these methods require accurate dynamics models,155

and significant manual tuning for each gait.

Emergent Gaits: Different gaits can naturally emerge
through minimizing energy (Fu et al. 2021), or selected from
a high-level policy which selects foot contact configurations
or contact schedules (Da et al. 2021; Yang et al. 2022). More160

generally, diverse exploration strategies have been shown to
improve policy performance and encourage learning differ-
ent behaviors (Cohen, Yu, and Wright 2018). While these
approaches lead to diverse locomotion gaits and behaviors,
it does not provide the ability to learn any arbitrary gait or165

gait frequency specified beforehand.

Most Similar to ours: There are recent works that aim
to learn locomotion gaits based on high-level gait descrip-
tions – RMLL (ours) shares the same spirit. LLMs have
been leveraged to specify and perform diverse locomotion170

behaviors (Yu et al. 2023; Tang et al. 2023). While the work
of Tang et al. is useful in converting natural language to low-
level control on hardware, they require extensive prompt en-
gineering, and additional manual effort in defining a random
pattern generator for each desired gait. Thus, this approach175

has only been demonstrated on two-beat gaits, and can be
less effective to uncommon gaits, while our RMLL ap-
proach supports specifying and learning the two novel gaits
of Three-One and Half-Bound. Other similar works involve
specifying and learning diverse locomotion gaits through ex- 180

plicitly defining swing and stance phases per leg (Siekmann
et al. 2020; Margolis and Agrawal 2023). The former ap-
proach is designed for a bipedal robot, while the later only
supports two-beat quadruped gaits. In contrast, RMLL only
needs foot contact sequences (instead of leg-specific tim- 185

ings), and can specify and learn arbitrary quadrupedal gaits
well beyond the set of two-beat gaits.

The main contribution of this research is a novel paradigm
for gait specification. We focus on demonstrating the com-
plete pipeline of this new paradigm using a real robot. This 190

research paves the way for future research, e.g., on improv-
ing the efficiency of policy learning, developing novel gaits
for quadrupedal robots, and intelligently transitioning be-
tween gaits.

3 RM-based Locomotion Learning 195

We present our RM-based reinforcement learning approach
for learning quadruped locomotion policies below. Figure 2
presents an overview of how we use RMs to specify a di-
verse set of quadruped locomotion gaits and facilitate effi-
cient policy learning. 200



3.1 Reinforcement Learning
RL algorithms expect environments to be modeled as an
MDP of form M = (S,A, T,R, γ). S refers to the state
space, A is the set of actions the agent can take, T : S ×
A × S → [0, 1] is the transition function which outputs the205

probability of reaching state s′ given state s and action a,
R : S ×A× S → R is the reward received by taking action
a from state s and ending up in state s′, and γ is the discount
factor which determines how valuable future reward should
be considered in comparison to immediate reward.210

The goal in RL is to find a policy π : S → A which
selects actions that maximizes expected future discounted
reward, given a state. Importantly, the agent does not have
knowledge of transition or reward functions, and can only
learn through trial and error experiences in the environment.215

3.2 Reward Machines: Concepts and
Terminologies

Reward Machines are typically used in settings where there
is a set of “milestone” sub-goals to achieve in order to com-
plete some larger task. Reward functions which do not en-220

code these subgoals are oftentimes too sparse, while reward
functions which explicitly reward sub-goal completion can
be non-Markovian. An RM allows for specification of these
sub-goals through an automaton, which can be leveraged to
construct an MDP. Thus, through an RM, the reward func-225

tion can give positive feedback for completing sub-goals,
while also defining an MDP with a Markovian reward func-
tion.

Formally, an RM is defined as the tuple
(U, u0, F, δu, δr) (Icarte et al. 2018), where U is the230

set of automaton states, u0 is the start state, F is the set of
accepting states, δu : U × 2P → U ∪ F is the automaton
transition function, while δr : U × 2P → [S ×A× S → R]
is the reward function associated with each automaton
transition. This RM definition assumes the existence of235

set P, which contains propositional symbols that refer to
high-level events from the environment that the agent can
detect. A labelling function L : S×A×S → 2P determines
the truth values of each symbol in P at each environment
step. Then, the agent evaluates which automaton state240

transition to take via δu, and receives reward via δr.
Reward machines are defined alongside state space S,

which describe the low-level observations the agent receives
after each step in the environment. In order to construct an
MDP from the non-Markovian reward defined by the RM,245

the agent considers its own observations from S, along with
its current RM state from U . Training over state space S×U
no longer violates the Markov property, because knowledge
of the current RM state indicates which sub-goal was previ-
ously completed. The inclusion of this subsection is simply250

for the completeness of this paper. More details are available
in the RM article (Icarte et al. 2022).

3.3 RM for Quadruped Locomotion
We use RMs to specify the sequence of foot con-
tacts expected of the gait. In our domain, we consider255

P = {PFL, PFR, PBL, PBR}, where p ∈ P is a Boolean

Term Description Definition Scale
Linear Velocity x exp(−∥cx − vx∥2/0.25) 1.0
Linear Velocity z vz

2 −2.0
Angular Velocity x, y ∥ωx,y∥2 −0.05

Angular Velocity z exp(−(cω − ωz)
2/0.25) 0.5

Joint Torques ∥τ∥2 −0.0002
Joint Accelerations ∥(q̇last − q̇)/dt∥2 −2.5e−7

Feet Air Time
∑4

f=1(tair,f − 0.5) 1.0

Action Rate ∥alast − a∥2 −0.01

Table 1: All terms of Rwalk. v refers to base velocity, c refers
to commanded linear and angular base velocity, ω refers to
base angular velocity, τ refers to joint torques, q̇ refers to
joint velocities, tair refers to each foots air time, and a refers
to an action.

variable. These indicate whether the front-left (FL), front-
right (FR), back-left (BL), and back-right (BR) feet are mak-
ing contact with the ground. Labelling function L evaluates
whether a foot makes contact with the ground via the foot 260

force sensors on the robot. Automaton states in U corre-
spond to different poses in the gait, where u0 corresponds
to the last pose. Meanwhile, δu changes the automaton state
when the next pose in the gait is reached. We define δr as:

δr(ut, a) =

{
Rwalk(s) ∗ b δu(ut, a) ̸= ut

Rwalk(s) otherwise

where Rwalk encourages maximizing velocity command 265

tracking while minimizing energy consumption (Rudin et al.
2022), and is fully defined in Table 1. Reward function δr
encourages taking RM transitions which correspond to the
specified gait, because Rwalk is scaled by bonus b when
such transitions occur. We leave F empty for all gaits, as 270

quadruped locomotion is an infinite-horizon task.
We define our state space

S = (u, ϕ, q, q̇, at−1, cx, cω, cf , v̂, f̂), where u is the
current RM state, ϕ is the number of time steps which
occurred since the previous RM state changed, q and q̇ are 275

the 12 joint angles and joint velocities respectively, at−1 is
the previous action, cx and cω are base linear and angular
velocity commands respectively, cf is the gait frequency
command, and v̂, f̂ is estimated base velocity and foot
heights. The RM state is encoded as a one-hot vector, 280

making the dimensions of S ∈ [49, 52] based on the number
of RM states defining the gait.

Gait Frequency: Aside from gait specification, we also
leverage RMs to specify gait frequency. Our definition of
δr naturally encourages high frequency gaits, because max- 285

imizing the number of pose transitions maximizes total ac-
cumulated reward. Thus, we introduce gait frequency com-
mand cf , which denotes the minimum number of environ-
ment steps which must be taken until the agent is allowed to
transition to a new RM state. When the agent maximizes the 290

number of RM transitions it takes, while being restricted by
cf , then the commanded gait frequency is followed. Adding
cf on its own would cause the reward function to be non-
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Figure 3: Reward Machine for Trot gait, where we want to synchronize lifting the FL leg with the BR leg, and the FR leg with
the BL leg. Trot is one of the six gaits considered in this work.

Markovian, because the agent needs to remember how many
environment steps have occurred since the RM state last295

changed. Thus, we also add timing variable ϕ to our obser-
vations, which keeps track of how many environment steps
have occurred since the RM state has changed last. At every
environment time step, we compare ϕ with cf , and do not
allow an RM transition to take place if ϕ < cf . Adding cf300

and ϕ to the state enables gait frequency to be dynamically
adjusted during policy deployment, and is demonstrated on
hardware in our supplementary video.

Illustrative Gait: We now discuss specifying a well
known quadruped locomotion gait, Trot, via RM. Figure 3305

shows the RM associated with this gait. In this Trot au-
tomaton, we want to synchronize lifting the FL leg with
the BR leg, and the FR leg with the BL leg. LTL formula
PFL ∧ ¬PFR ∧ ¬PBL ∧ PBR evaluates to true when only
the FR and BL feet are in the air simultaneously, while310

¬PFL ∧ PFR ∧ PBL ∧ ¬PBR evaluates to true when only
the FL and BR feet are in the air simultaneously. The
two RM states correspond to which combination of feet
were previously in the air. If the agent is in state q1, then
PFL ∧ ¬PFR ∧ ¬PBL ∧ PBR must have been evaluated as315

true at some point earlier. Note that when the agent does not
achieve the desired pose, then the agent takes a self-loop to
remain in the current RM state. 1

Remark It is an intuitive idea of training a gait-specific
locomotion policy via RM, because along with low-level320

sensor information, the policy also has access to the current
RM state, which is an abstract representation of the histor-
ical foot contacts relevant to the current pose in the gait.
Rather than attempting to learn this from a long history of
world states, the RM state explicitly encodes the previously325

reached gait pose. Thus, the policy can learn different gaits
in a sample-efficient manner, because at each time step it can
reference the RM state to indicate which pose within the gait
to reach next.

1We provide the RMs for all other gaits we trained in Supple-
mentary Materials.

Figure 4: Isaac Gym simulation environment.

4 Experiments 330

We train six different locomotion gaits via RMLL in sim-
ulation, and perform an ablation study to evaluate whether
knowledge of the RM state improves sample efficiency when
compared to ablations which do not access the RM state
during training. After that, we compare energy consumption 335

and stability of each gait across different terrains. Finally,
we demonstrate all learned gaits on a Unitree A1 robot.

4.1 Training Details
State, Action, Reward We estimate base velocity v̂ and
foot heights f̂ concurrently with the policy, via supervised 340

learning (Ji et al. 2022). Note that during training we only
consider a foot in the air if it is higher than 0.03 me-
ters. Actions include the target joint positions of each joint.
These are input to a PD controller which computes the joint
torques. The PD controller has a proportional gain Kp = 20 345

and derivative gain Kd = 0.5. The policy is queried at 50
Hz, and control signals are sent at 200 Hz. We set bonus
b = 1000 in δr for all gaits.

Environment Details We use the Isaac Gym (Makoviy-
chuk et al. 2021) physics simulator and build upon 350

a legged locomotion environment (Rudin et al.
2022) to train our policies. We use a terrain called
random uniform terrain, which includes hilly
perturbations on the surface (see Figure 4). The robot
traverses more challenging versions of this terrain based 355

on a curriculum which increases terrain difficulty after the
robot learns to traverse flatter versions of the terrain. Each
episode lasts for 20 seconds, and ends early if the robot
makes contact with the ground with anything other than a
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Figure 5: Reward curves for all gaits. RMLL more efficiently accumulates reward for each gait, particularly for the gaits with
more complex foot contact sequences Walk, Three-One, and Half-Bound.

foot, if joint angle limits are exceeded, or if the base height360

goes below 0.25 meters. After each training episode, we
sample a new velocity and gait frequency command for the
robot to track. To facilitate sim-to-real transfer, we perform
domain randomization over surface frictions, add external
pushes, and add noise to observations (Rudin et al. 2022).365

Model Training We train our policy via PPO (Schulman
et al. 2017), with actor and critic architectures as 3-layer
multi-layer perceptrons (MLPs) with hidden layers of size
256. Each policy is trained for 100 million time steps (ex-
cept for Half-Bound), where parameters are updated every370

100,000 time steps. Data is collected from 4096 agents run-
ning simultaneously.

4.2 Ablation Study
We run an ablation study to determine whether knowledge of
the RM state actually improves sample efficiency. We design375

the following baselines which we compare RMLL against:
1. No-RM: Remove the RM state from the state space,

keeping everything else the same.
2. No-RM-Foot-Contacts: Remove the RM state from the

state space, and add a boolean vector of foot contacts.380

3. No-RM-History: Remove the RM state from the state
space, and add a boolean vector of foot contacts. Expand
the state space to include states from the past 12 time
steps.

Comparing against No-RM indicates whether385

the RM state is useful at all. Comparing against

No-RM-Foot-Contacts indicates whether RM state is
only useful because it contains information about foot
contacts. Comparing against No-RM-History indicates
whether the information provided by the RM state can be 390

easily learned when given sufficient history.
It should be noted that there are no existing methods sup-

porting the specification and learning of arbitrary gaits with-
out using motion priors, dynamics models, or significant
manual efforts such as prompt engineering and random pat- 395

tern generators. Furthermore, highly customized gaits such
as Three-One and Half-Bound are new to the literature, and
to the best of our knowledge, there are no existing methods
which support learning such gaits. Thus, we focus on eval-
uating how knowledge of the RM state contributes to the 400

overall performance of RMLL.
We experiment over six different locomotion gaits: Trot,

Pace, Bound, Walk, Three-One, and Half-Bound. See
Supplementary Materials for the RMs defining each gait.
Gaits Trot, Bound, Pace, Three-One, and Half-Bound 405

sample linear and angular velocity commands from [-1, 1]
meters per second, and a gait frequency command from [6,
12] time steps. Meanwhile, Walk samples from [-0.5, 0.5]
meters per second and [5, 10] respectively. This is because
quadruped animals naturally use Walk gait for slower loco- 410

motion speeds.
For each approach (ablation or not), we trained over five

different random seeds per gait. For each training run, we
save the policy after every 5 million steps. We then deploy
each of those saved policies for 100 episodes, and average 415
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Figure 6: Visualization of each terrain we measured energy consumption and stability on.

Gait Flat Uphill Uphill (Steep) Downhill Downhill (Steep) Stepping Stones

Trot Energy 2165.04 2628.88 5232.26 2137.38 2606.82 3149.81
Stability 0.00 1.49 5.51 0.10 6.35 2.30

Bound Energy 4657.94 4962.13 5118.81 4091.22 3187.78 5099.17
Stability 0.00 3.09 5.70 2.77 6.79 2.16

Pace Energy 2998.95 3023.70 3489.12 2811.13 2243.44 3493.30
Stability 0.00 1.65 3.09 0.69 5.02 1.33

Walk Energy 4271.82 4828.25 6048.98 3747.29 2828.21 4354.12
Stability 0.00 0.70 2.73 0.56 4.54 1.28

Three-One Energy 3145.81 3573.74 4118.70 3096.75 2509.71 3871.34
Stability 0.00 1.45 3.22 1.79 5.27 1.89

Half-Bound Energy 4873.29 5568.86 5935.81 4399.62 3594.13 5308.95
Stability 0.00 3.56 7.87 3.18 6.76 3.25

Table 2: Comparing average energy consumption per meter (rows labelled as Energy) and stability (rows labelled as Stability)
across different gaits and terrains.

the accumulated reward over the five runs per approach. We
report the resulting reward curves in Figure 5, where the
shaded region indicates the standard deviation of the total
accumulated reward across the five training runs.

The results indicate that knowledge of the RM state im-420

proves sample efficiency for all gaits when compared with
the ablations. We believe this is the case, because the RM
state can efficiently inform the policy of gait-relevant histor-
ical foot contacts, whereas the ablations either do not have
access to historical foot contacts, or must learn the relevant425

contacts from a history of world states.
The results also show that No-RM-History does not per-

form better than the other ablations without history, indi-
cating that it is challenging to learn gait-relevant informa-
tion directly from 12 time steps of historical states. We430

also notice that No-RM performs similarly to No-RM-Foot-
Contacts, which indicates No-RM learns to implicitly esti-
mate foot contacts from the state. Finally, we notice a large
performance gap between RMLL and all other ablations for
Half-Bound. We believe this is the case due to the addi-435

tional complexity in the RM structure of this gait, which can
be seen in Supplementary Materials.

4.3 Gait Comparisons
In order to further motivate learning different gaits, we com-
pare energy consumption and stability for each gait across440

different terrains. We deploy each of our trained policies in

simulation, over four different types of terrains: {Flat, Up-
hill, Downhill, Stepping Stones} (See Figure 6). We also ex-
periment with a version of Uphill and Downhill with steeper
slopes, referred to as Uphill (Steep) and Downhill (Steep) re- 445

spectively. Each policy (five policies over five random seeds
per gait) is run for 20000 seconds per terrain type, and sam-
ples a base velocity command from [0.5, 1.0] meters/sec-
ond ([0.25, 0.5] meters/second for Walk) and gait frequency
command from the same range used during training. We 450

measure energy consumption by multiplying motor torques
by motor velocities, in the same manner as related work (Fu
et al. 2021; Margolis and Agrawal 2023). We consider the
robot to have fallen over when the base touches the ground,
and reset the episode on a fall. Results are reported in Ta- 455

ble 2. We find that Trot consumes the least energy on most
terrains, although Pace consumes the least energy on steeper
slopes. Meanwhile, Walk is the most stable on all terrains
except for Downhill, where Trot is the most stable.

4.4 Qualitative Results 460

Foot Contacts In order to better highlight the behavior of
each of the six gaits we learned, we report foot contact plots
for each gait. In simulation, we deploy each of our six gaits
at a constant linear velocity, while setting cf = 6 for all
gaits. We record the foot contacts of each gait in Figure 7, 465

which shows that each of our gaits follows the expected foot
contact sequence and gait frequency. For example, green and



Figure 7: Foot contact plots for each gait learned using RMLL. We report foot contacts from trials in simulation where we
deploy each gait with a constant forward velocity command, zero angular velocity command, and constant gait frequency
command. The colored horizontal bars indicate when the specified foot makes contact with the ground. The red highlighted
region in each subplot denotes a full cycle of the gait.

orange bars in Trot are synchronized, indicating BR/FL feet
are coordinated.

Hardware Demonstration We transfer our learned poli-470

cies from simulation to a real Unitree A1 robot, without any
additional fine-tuning. Each trial is on an outdoor concrete
walkway, where we increase and decrease gait frequency
throughout the trial. The robot is sent velocity commands
in real time via a joystick, operated by a human. We find475

that RMLL policies from all gaits successfully transfer to
hardware, and the intended foot contact sequence is realized.
We also find the robot is capable of dynamically adjusting
gait frequency according to the gait frequency command. A
video capturing each of these trials is included in the supple-480

mentary video.2

5 Discussion
Limitations and Future Work While our approach can
be used to easily specify and learn customized locomotion
gaits and gait frequencies, we have not studied how to op-485

timally leverage these different gaits to efficiently traverse
various terrains, nor have we studied how to smoothly tran-
sition between gaits. In future work, researchers can train
a wide variety of gaits, and learn how and when to tran-
sition between gaits and gait frequencies to most quickly490

or efficiently traverse different terrains. This can involve a
2Supplementary materials can be seen at our anonymous site:

https://sites.google.com/view/rm-locomotion-learning/home

two-stage procedure which trains a high-level policy to se-
lect pre-trained RM policies based on current terrain condi-
tions, or an end-to-end approach which concurrently trains
RM-based locomotion policies and a gait selector. Another 495

interesting direction is to specify and dynamically adjust
other gait parameters such as stride length, base height, or
foot height. Finally, another avenue for future research is to
investigate extracting descriptions of novel gaits from pre-
trained large language models (Tang et al. 2023; Yu et al. 500

2023), and to convert the descriptions to formal representa-
tions from which RL agents can learn locomotion policies.

Conclusion We leverage reward machines to easily learn
and specify different quadruped locomotion gaits and gait
frequencies. This is done via automatons over simple logical 505

rules which specify desired foot contact sequences. We ef-
ficiently train locomotion policies in simulation which learn
these specified gaits over a range of gait frequencies, with-
out the use of motion priors, dynamics models, or signif-
icant manual efforts when compared to existing work. We 510

evaluate the sample efficiency of our approach in simulation
through ablation studies. We also evaluate the stability and
energy consumption of each of our learned gaits over vary-
ing terrains. Finally, we demonstrate policies of each of our
six gaits on hardware, and find that our robot can perform 515

a variety of different gaits, while dynamically adjusting gait
frequency.
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