

000 SA-LEARNER: SURROGATE-ASSISTED META- 001 002 LEARNER WITH MISSING OUTCOMES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Estimating heterogeneous treatment effects is essential for personalized decision-
012 making across various applications. While existing methods primarily focus on
013 the conditional average treatment effect (CATE) for fully observed outcomes, real-
014 world data often suffer from missingness. Direct CATE estimation using only
015 complete cases can introduce bias and reduce efficiency. To address these chal-
016 lenges, we propose the Surrogate-Assisted Learner (SA-learner), which leverages
017 surrogate outcomes—auxiliary variables expected to predict the effect of a treat-
018 ment on the primary outcome and is more readily observed—to improve CATE
019 estimation. The SA-learner enjoys double robustness, ensuring consistent CATE
020 estimates even under misspecification of certain nuisance functions. We also es-
021 tablish its convergence rate, requiring only slower-rate convergence of nuisance
022 function estimators without restrictive model assumptions. This property enables
023 flexible implementation using off-the-shelf machine learning algorithms. Exten-
024 sive experiments on synthetic data further demonstrate effectiveness of the pro-
025 posed method.

026 027 1 INTRODUCTION

028
029 Heterogeneous treatment effect (HTE), studying the effect of a treatment or intervention on an out-
030 come of interest across different subgroups or individuals within a population, is crucial for per-
031 sonalized decision-making in fields such as medicine (Collins & Varmus, 2015; Kent et al., 2020),
032 economics (Heckman & Vytlacil, 2005; Bitler et al., 2006), and policy design (Ludwig et al., 2011;
033 GREEN & KERN, 2012). A key focus in HTE analysis is the Conditional Average Treatment Ef-
034 fect (CATE), which measures the expected treatment effect given a set of covariates. Most existing
035 work, including Bayesian methods (Hill, 2011; Alaa & van der Schaar, 2017; Hahn et al., 2020),
036 tree-based approaches (Athey & Imbens, 2016; Wager & Athey, 2018), neural networks (Johansson
037 et al., 2016; Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Hassanpour & Greiner, 2020), and
038 meta-learners (Künzel et al., 2019; Nie & Wager, 2020; Kennedy, 2023), assumes complete response
039 data for CATE estimation. However real-world scenarios often involve missing responses due to fac-
040 tors such as nonresponse to survey questions, recording errors, and loss to follow up (Little & Rubin,
041 2019). To address this challenge, we propose a novel method that introduces surrogate outcomes
042 for missing response settings for the estimation of CATE. Our approach advances HTE analysis by
043 providing a surrogate-assisted framework that improves efficiency and reduces estimation bias in
044 the presence of missing data.

045 A central challenge in causal inference is the fundamental problem that, at the individual level, one
046 cannot observe the outcomes of both treatment and control arms simultaneously (Holland, 1986).
047 In this paper, we consider an even more challenging scenario: the outcomes of some individuals
048 are possibly missing. A naive approach is to delete the individuals with missing outcome, but this
049 will lead to efficiency loss and may trigger estimation bias (Hogan et al., 2004), especially when
050 the missing is informative. Recently, Chakrabortty & Dai (2024) considered the settings of missing
051 completely at random (MCAR) and Zhang et al. (2023) studied the settings of the missing at random
052 (MAR), both show that incorporating unlabeled data could improve efficiency. We show in this paper
053 that it is possible to provide further improvements Under the MAR settings, if we incorporate some
auxiliary variables.

054 In practice, the primary outcome of interest may be missing as its collection can often be costly,
 055 impractical, or infeasible. However, some auxiliary variables, that may be highly related to the
 056 outcome, are easier to access. For instance, blood pressure or body weight are strongly related
 057 to cardiovascular disease and are easy and less expensive to collect. These variables are therefore
 058 frequently used in evaluating the effectiveness of new drug treatments targeting cardiovascular risk
 059 factors (Prentice, 1989; Fleming & DeMets, 1996; Psaty et al., 1999). These auxiliary variables
 060 or intermediate outcomes are known as surrogates outcomes and have been used to replace the
 061 missing primary outcome in recent causal inference literature (Li et al., 2010; Alonso et al., 2016;
 062 Bujkiewicz et al.; Buyse et al., 2000; Takagi & Kano, 2019). Specifically, (Takagi & Kano, 2019)
 063 showed the bias reduction when using surrogates outcomes. Therefore, surrogate outcomes can
 064 provide a promising way to resolve the missingness of primary outcome.

065 Surrogate outcomes should be handled with caution since they are post-treatment variables. Misus-
 066 ing them, for example, by including them as covariates, can lead to biased estimates of the treatment
 067 effects (Prentice, 1989; Athey et al., 2019; Cheng et al., 2020). We provide a motivating example
 068 to illustrate this in Section 3. In datasets with limited primary outcomes Kallus & Mao (2024) ex-
 069 amined the role of surrogates and showed efficiency gains after including surrogate outcomes and
 070 unlabeled data in the analysis. Zeng et al. (2024) introduced a doubly robust method for estimating
 071 the average dose-response function using surrogate variables in the context of continuous treat-
 072 ments. In Liu et al. (2024), the information of the surrogate outcomes is adapted to the framework
 073 of proximal causal inference. Recently, Gao et al. (2025) exploited surrogate outcomes to conformal
 074 inference for the individual treatment effect. However, these methods either focus on the average
 075 treatment effect (ATE) estimation or did not provide a theoretical support for the CATE estimation.
 076

We summarize the main contributions of this paper as follows:

- 077 • We introduce a Neyman-orthogonal framework for the CATE estimation in the presence
 078 of missing outcome and surrogate outcomes. We show that the loss function for CATE
 079 satisfies Neyman-orthogonal conditions Chernozhukov et al. (2018); Foster & Syrgkanis
 080 (2023), which shows that the CATE estimator based on this loss function is less sensitive to
 081 the nuisance parameters as the estimation errors of nuisance parameters is only of second
 082 order to the target parameter. This can produce more accurate and reliable results.
- 083 • We provide a theoretical foundation for the CATE estimator with surrogate outcomes.
 084 While existing theory only applies to compete data, we establish formal convergence guar-
 085 antees under a MAR condition. Specifically, we prove that our CATE estimator converges
 086 to the true treatment effect function at oracle rate under a mild condition. The condition
 087 is sufficiently broad to accommodate flexible machine learning methods, including deep
 088 neural networks and random forests, for CATE estimation.
- 089 • The proposed estimation procedure can accommodate flexible methods to learn nuisance
 090 functions. We establish the convergence rate of the CATE estimator without additional
 091 structural restrictions on the nuisance functions beyond a consistency assumption with slow
 092 convergence rates. This model-agnostic feature enables the use of modern, off-the-shelf
 093 machine learning methods, which can handle complex prediction tasks while maintaining
 094 high practical accuracy.

095 2 RELATED WORKS

096 2.1 SEMI-SUPERVISED LEARNING

099 Our work contributes to the growing literature in semi-supervised learning, which contains both
 100 labeled and unlabeled outcomes. A substantial body of research has explored how unlabeled data can
 101 enhance the estimation of various parameters, including regression coefficients (Azriel et al., 2022;
 102 Hou et al., 2023), population means and ATEs (Chakrabortty & Dai, 2024; Zhang et al., 2023; 2019;
 103 Zhang & Bradic, 2021), ITEs (Harada & Kashima, 2020), as well as quantiles and quantile treatment
 104 effects (Chakrabortty et al., 2024). Most of these works assume, either implicitly or explicitly, that
 105 labels are MCAR. In contrast, we relax this assumption by allowing the labeling mechanism to
 106 depend on pre-treatment covariates, the treatment assignment, and even post-treatment variables:
 107 the surrogate outcomes. We emphasize the role of surrogates as an auxiliary source of information.
 Notably, the same framework can also be applied to cases when no surrogate outcomes are available.

108
109

2.2 CAUSAL INFERENCE WITH SURROGATE OUTCOMES

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Numerous surrogate criteria have been proposed to ensure that treatment effects on surrogate outcomes can reliably predict the treatment effects on the primary outcome. The first criterion, introduced in Prentice (1989), requires the primary outcome to be conditionally independent of the treatment given the surrogate outcomes. Since then, many alternative criteria have been proposed, including the principal surrogate criterion (Frangakis & Rubin, 2004), strong surrogate criterion (Lauritzen et al., 2004), and consistent surrogate criterion (Chen et al., 2007; VanderWeele, 2013). While much of this literature focuses on a single surrogate, recent works by Price et al. (2018); Wang et al. (2019) estimated transformations of multiple surrogates to optimally approximate the primary outcome using labeled experimental data. Athey et al. (2019) explored identifying and estimating the ATE in a more complex setting, where the primary outcome and treatment are not observed in the same dataset. Subsequent works, such as Athey et al. (2020); Imbens et al. (2024), aimed to combine experimental short-term data with confounded observational long-term data. The former relies on a latent unconfoundedness assumption, while the latter uses multiple sequential surrogates as proxies. Similarly, Cai et al. (2024) designed a neural network architecture to combine experimental and observational data. Semiparametric inference for ATEs under the frameworks of Athey et al. (2019; 2020) were developed in Chen & Ritzwoller (2023). These works differ from ours as they use surrogates for identification. In contrast, our approach assumes that the primary outcome is MAR and uses surrogates to improve the CATE estimation in already-identified settings, which is close to the frameworks of Cheng et al. (2020); Kallus & Mao (2024).

128

2.3 CONDITIONAL AVERAGE TREATMENT EFFECT ESTIMATION

129
130
131
132
133
134
135
136
137
138
139
140
141

Our approach for CATE draws inspiration from Nie & Wager (2020), who cast the problem as a generic two-step loss minimization that can be implemented by off-the-shelf machine learning methods. The benefit of this decoupling is that it clearly separates the statistical tasks of estimating nuisance components from estimating treatment effects, which can be implemented and optimized (by standard cross-validation) through different machine learning algorithms. The final step of our approach takes the form of a pseudo-outcome regression, where transformed outcomes are regressed on covariates, and this approach dates back to van der Laan (2006); Luedtke & van der Laan (2016), who suggest it for estimating CATEs for complete data, but without explicit error guarantees. The error guarantee is provided in Kennedy (2023); Foster & Syrgkanis (2023); Curth & van der Schaar (2021) under general assumptions on the nuisance components (when estimated using sample splitting). They also derived theoretical properties for this approach to CATE estimation. This approach is extended in Sverdrup & Cui (2023) in the presence of unmeasured confounding.

142
143
144
145
146
147

Notation. We let ξ_i represent Rademacher random variables. The Rademacher complexity of a function class $\mathcal{F} = \{f \mid f : \mathcal{X} \rightarrow \mathbb{R}\}$ is defined as $\text{Rad}_n(\mathcal{F}) = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \xi_i f(x_i) \right|$. For any two functions $f_1, f_2 \in \mathcal{F}$, we define the L_∞ -norm as $\|f_1 - f_2\|_\infty = \sup_{x \in \mathcal{X}} |f_1(x) - f_2(x)|$ and the L^2 norm as $\|f_1 - f_2\|_2 = \sqrt{\int_{x \in \mathcal{X}} |f_1(x) - f_2(x)|^2 dx}$. For a function class \mathcal{F} , we define $\|\mathcal{F}\|_\infty = \sup_{f \in \mathcal{F}} \|f\|_\infty$.

148
149
150

3 PROBLEM FORMULATION

151
152
153
154
155
156
157

Let $A \in \{0, 1\}$ be a binary treatment variable, $Y \in \mathbb{R}$ be an outcome of interest, and $X \in \mathcal{X} \subset \mathbb{R}^p$ be baseline covariates. Under the Neyman-Rubin potential outcome framework (Splawa-Neyman et al., 1990; Rubin, 1974), we assume that $Y(1)$ and $Y(0)$ are the potential outcomes of the treatment and control arm, respectively. The potential outcome $Y(a)$ is the outcome that would have been realized under each treatment option $A = a$. We also assume that the actual observed outcome is the potential outcome corresponding to the actual treatment, i.e., $Y = Y(A)$, which is the conventional consistency assumption in causal inference. Our goal is to estimate CATE, defined as

158
159

$$\tau(x) = \mathbb{E}[Y(1) - Y(0)|X = x].$$

160
161

CATE evaluates the heterogeneous treatment effects of treatment A on the outcome Y given the subject feature $X = x$. If (X, A, Y) is fully observed, one could estimate the CATE from existing methods, such as (Hill, 2011; Alaa & van der Schaar, 2017; Hahn et al., 2020; Athey & Imbens,

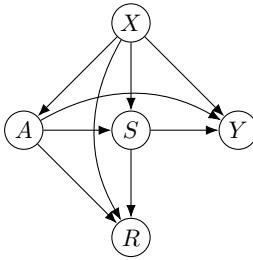


Figure 1: The causal DAG for the variables (X, A, S, Y, R) illustrates the directional causal relationship among them, where each arrow represents the direction of causality.

2016; Wager & Athey, 2018; Johansson et al., 2016; Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Künzel et al., 2019; Nie & Wager, 2020; Kennedy, 2023) and the references therein.

For some individual X , the outcome Y is missing. We denote R the missing indicator, where $R = 1$ when Y is observed, otherwise $R = 0$. In addition to (X, A, Y, R) , we also observe surrogate outcomes $S \in \mathcal{S} \subset \mathbb{R}^q$. We will present the results for $\mathcal{S} \neq \emptyset$ but note that $\mathcal{S} = \emptyset$ can be viewed as a special setting where our methodology still applies. Thus, the observations are: $(X_i, A_i, S_i, Y_i, R_i), i = 1, \dots, n$, which are independent identically distributed copies of (X, A, S, Y, R) . We also denote $S(1)$ and $S(0)$ as the potential outcome of the surrogate outcome S . In this paper, we assume that (X, A, S, Y, R) has the causal relationship in Fig 1, which is a causal DAG of (Pearl, 2009).

In summary, the sample \mathbf{S} contains two subsets, a label subset $\mathbf{L} = \{Z_i = (X_i, A_i, S_i, Y_i, R_i = 1), i = 1, \dots, n_l\}$ and an unlabeled subset $\mathbf{U} = \{Z_i = (X_i, A_i, S_i, Y_i = \text{NA}, R_i = 0), i = n_l + 1, \dots, n\}$, where NA stands for "Not Available", i.e., a missing value. Let the propensity score (PS) function be $\pi(x) = \mathbb{P}(A = 1 | X = x)$ and the observed probability be $\rho(x, a, s) = \mathbb{P}(R = 1 | X = x, A = a, S = s)$. To identify CATE, we need the following standard causal assumptions (Rosenbaum & Rubin, 1983) and missing at random assumptions Kallus & Mao (2024).

Assumption 1. (a) *Consistency*: $(S(a), Y(a)) = (S, Y)$ almost surely when $A = a$;
 (b) *Ignorability*: $Y(a) \perp A | X$ for $a = 0, 1$;
 (c) *Positivity*: there exist a constant $c > 0$, such that $1 - c \geq \pi(x) \geq c$ and $\rho(x, a, s) \geq c$ for all $x \in \mathcal{X}$, $a \in \{0, 1\}$, and $s \in \mathcal{S}$;
 (d) *Missing at Random*: $R \perp Y(a) | X, A, S(a)$, for $a = 0, 1$.

Assumption 1 requires the potential outcomes, for both the surrogate and primary outcome of an individual at the actual treatment A , be the same as the actual outcome of that individual. The ignorability assumption implies that there is no other confounders except for covariates X that influence both the potential outcomes and the treatment assignment mechanism. The positivity assumption states that each individual has a positive chance of receiving treatment and has the primary outcome observed. The MAR assumption implies that the surrogate outcomes S is informative to the primary outcome such that the distributions of labeled and unlabeled data are comparable after conditioning on (X, A, S) . These assumptions commonly hold in randomized experiments and well-designed observational studies.

It is worth noting that the MAR assumption above is considerably weaker than MCAR assumption and the MAR assumption in the previous literature (Chakrabortty & Dai, 2024; Zhang et al., 2023; Chernozhukov et al., 2018; Azriel et al., 2022; Hou et al., 2023; Zhang et al., 2019; Zhang & Bradic, 2021; Chakrabortty et al., 2024). Those assumptions restrict the missing mechanism to not depend on the surrogate outcomes $S(a)$. However, such assumptions may fail if the missing mechanism is predictable by the surrogate outcomes. For instance, it is possible that subjects with positive surrogate outcomes are more likely to drop out of the study as they expect themselves to be healthier and more likely to have positive primary outcomes. In this case, estimating CATE without considering the surrogate outcomes triggers a bias from an incorrect target population $\mathbb{E}[Y(1) - Y(0) | R = 1, X]$. Therefore, the surrogate outcomes are necessary for estimating CATE.

Incorporating surrogate outcomes in the estimation of CATE requires special handling, since they play a different role from the covariates and hence cannot be simply included in the model as a co-

216 variate. To demonstrate this, we consider a linear regression model with only one surrogate outcome
 217 and without missing:

$$219 \quad Y = \alpha_0 + \alpha'_x X + \alpha_a A + \alpha_s S + \epsilon_y, \mathbb{E}[\epsilon_y | X, A, S] = 0 \\ 220 \quad S = \beta_0 + \beta'_x X + \beta_a A + \epsilon_s, \mathbb{E}[\epsilon_s | X, A] = 0.$$

222 It is not difficult to verify that the CATE with respect to a covariate X is $\tau(x) = \alpha_a + \alpha_s \beta_a$.
 223 However, if we regress \hat{Y} on (X, A, S) , we will get a biased estimate that targets α_a instead of
 224 $\alpha_a + \alpha_s \beta_a$. Such a phenomenon is analogous to the mediation analysis (Baron & Kenny, 1986;
 225 Robins & Greenland, 1992; Imai et al., 2010; VanderWeele, 2016). The effect of the treatment A
 226 on the primary outcome Y is mediated through the surrogate outcomes S . Regressing the primary
 227 outcome on both the treatment and the mediator leads to the biased estimator of treatment effects.
 228 After all, the surrogate outcomes are post-treatment variables and should not be treated as covariates
 229 when estimating the CATE.

230 4 METHODS

233 We first propose a novel method that can incorporate surrogate outcomes with any existing CATE
 234 estimators (Hill, 2011; Alaa & van der Schaar, 2017; Hahn et al., 2020; Athey & Imbens, 2016;
 235 Wager & Athey, 2018; Johansson et al., 2016; Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019;
 236 Künzel et al., 2019; Nie & Wager, 2020; Kennedy, 2023). We then use this idea to develop the
 237 Surrogate-Assisted Learner (SA-learner).

239 4.1 IMPROVEMENT USING SURROGATE OUTCOMES

241 Let $\mu(x, a, s) = \mathbb{E}[Y | X = x, A = a, S = s, R = 1]$ be the regression outcome of the observed
 242 data. We show the identification result utilizing the surrogate outcomes in Proposition 1.

243 **Proposition 1.** *Under Assumption 1, CATE is identifiable as:*

$$244 \quad \tau(x) = \mathbb{E}_S[\mu(X, 1, S) | X = x, A = 1] - \mathbb{E}_S[\mu(X, 0, S) | X = x, A = 0],$$

246 where \mathbb{E}_S represents the conditional expectation taking over the surrogate outcome S given (X, A) .
 247 For convenience, we denote $\mathbb{E}_S[\mu(X, A, S) | X = x, A = a]$ by $\nu(x, a)$ and its estimator by $\hat{\nu}(x, a)$.

249 Proposition 1 suggests that we can use a two-step procedure to identify CATE when the primary
 250 outcome is missing. This motivates our approach to assist the CATE estimate by the surrogate
 251 outcomes. In the first step, we regress the primary outcome Y on (X, A, S) from the label data
 252 \mathbf{L} and obtain the estimator $\hat{\mu}(x, a, s)$ for $\mu(x, a, s)$. We then evaluate it as a proxy of the primary
 253 outcome on the entire sample \mathbf{S} . In the second step, we regress the proxy $\hat{\mu}(X, A, S)$ on X from the
 254 entire sample \mathbf{S} for both the treated ($A = 1$) and the control ($A = 0$) groups. The CATE estimator
 255 is then obtained by taking the difference $\hat{\tau}(x) = \hat{\nu}(x, 1) - \hat{\nu}(x, 0)$. In fact, we can replace the
 256 second step by many CATE estimators for the complete dataset from the literature as the data is
 257 now completely imputed by the proxy $\hat{\mu}(x, a, s)$. We summarize the procedure in Algorithm 1 and
 258 illustrate it through the meta-learners (Künzel et al., 2019; Kennedy, 2023) in the Supplement and
 259 compare their numerical performance in Section 6.

260 **Algorithm 1.** *(CATE estimators with Surrogate outcomes)*

261 **Step 1.** *Train an appropriate machine learning algorithm of $\mu(x, a, s)$ on the label data \mathbf{L} and get
 262 the evaluation on the entire data \mathbf{S} .*

264 **Step 2.** *Replace the primary outcome Y_i by the proxy $\hat{\mu}(X_i, A_i, S_i)$, regardless of whether the
 265 primary outcome is observed or not, and apply the CATE estimation to the completed data
 266 $\{(X_i, A_i, \hat{\mu}(X_i, A_i, S_i)) : i = 1, \dots, n\}$ to obtain the CATE estimate $\hat{\tau}(x)$.*

268 Although Algorithm 1 offers an estimate for CATE when the primary outcome is not fully available,
 269 it is unsurprising that this CATE estimate is sensitive to the error in Step 1. To address such a
 concern, we propose the SA-learner, a doubly robust estimator, as a solution.

270 4.2 SA-LEARNER
271

272 We utilize the semiparametric theory to improve the CATE estimation. The idea is to find a pseudo-
273 outcome $\zeta(z) := \zeta(z; \mu, \rho, \nu, \pi)$ depending on nuisance functions ideally with second-order de-
274 pendence on nuisance estimation error such that $\mathbb{E}[\zeta(z; \mu, \rho, \nu, \pi)]$ is equal to the ATE. Following
275 Robins et al. (1994); Robins & Rotnitzky (1995); van der Laan & Robins (2003); Tsiatis (2006), we
276 consider the functional $\psi = \mathbb{E}[\tau(X)]$ under the MAR setting, which is pathwise differentiable and
277 admits an efficient influence function. Then the pseudo-outcome $\zeta(z; \mu, \rho, \nu, \pi)$ is a component in
278 the influence function of ψ . We omit the derivation of the influence function and only present the
279 form of pseudo-outcome. Let $(\bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$ be some functions that may not necessarily be equal to the
280 true (μ, ρ, ν, π) , and define a score functions
281

$$\zeta(z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi}) = \bar{\nu}(x, 1) - \bar{\nu}(x, 0) + \varphi(z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi}), \quad (1)$$

282 where
283

$$\varphi(z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi}) = \frac{a - \bar{\pi}(x)}{\bar{\pi}(x)(1 - \bar{\pi}(x))} \left(\frac{r(y - \bar{\mu}(x, a, s))}{\bar{\rho}(x, a, s)} + \bar{\mu}(x, a, s) - \bar{\nu}(x, a) \right).$$

286 The corresponding semiparametric efficient ATE estimate is the sample average of $\zeta(Z_i; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$.
287 The following proposition shows such a characterization of ATE through $\zeta(Z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$.

288 **Proposition 2.** *Let $(\bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$ be nuisance functions that may not necessarily equal the true
289 (μ, ρ, ν, π) . Assume that $(\bar{\rho}, \bar{\pi})$ satisfies the requirement of (ρ, π) in Assumption 1(c). Then*

$$\mathbb{E}[\zeta(Z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})] = \psi$$

292 if either $(\bar{\mu}, \bar{\nu}) = (\mu, \nu)$ or $(\bar{\rho}, \bar{\pi}) = (\rho, \pi)$.
293

294 Proposition 2 implies the doubly-robustness of our method. It extends previous work for a complete
295 dataset to the missing data setting. If the proxy perfectly represents the primary outcome, i.e.,
296 $\bar{\mu}(a, s, x) = y$ or the data is complete, i.e., $r = 1$ and $\bar{\rho}(x, a, s) = 1$, then the doubly robust score
297 $\zeta(z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$ reduces to the efficient influence function for complete data (van der Laan & Rose,
298 2011). The intuition is that, to efficiently estimate the ATE, the doubly robust estimator averages
299 the pseudo-outcome $\zeta(Z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$, so to estimate the CATE, it suffices to learn the mapping from
300 covariates X to the pseudo-outcome $\zeta(Z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$. This motivates the following procedure:

301 **Algorithm 2. (SA-learner)**

302 **Step 1.** *We first split the data into C equal-size folds, then estimate $\mu(x, a, s)$, $\rho(x, a, s)$, $\nu(x, a)$,
303 $\pi(x)$ with cross-fitting over the C folds, where $\hat{\mu}(x, a, s)$ is obtained from in Algorithm 1,
304 and $\hat{\nu}(x, a)$ is form regressing $\hat{\mu}(x, a, s)$ on covariates X .*

305 **Step 2.** *Form Equation equation 1 using cross-fit plug-in estimates of nuisance components
306 $\hat{\mu}^{(-c(i))}(x, a, s)$, $\hat{\rho}^{(-c(i))}(x, a, s)$, $\hat{\nu}^{(-c(i))}(x, a)$, $\hat{\pi}^{(-c(i))}(x)$, where the notation $c(\cdot)$ maps
307 from sample to fold, and $(-c(i))$ indicates predictions without using the i -th sample for
308 training. Let $\hat{\zeta}^{(-c(i))}(z) = \zeta(z; \hat{\mu}^{(-c(i))}, \hat{\rho}^{(-c(i))}, \hat{\nu}^{(-c(i))}, \hat{\pi}^{(-c(i))})$. We estimate the
309 CATE by minimizing the following empirical loss*

$$\hat{\tau}(\cdot) = \arg \min_{\tau} \hat{L}(\tau), \quad (2)$$

313 where
314

$$\hat{L}(\tau) = \frac{1}{n} \sum_{i=1}^n (\hat{\zeta}^{(-c(i))}(Z_i) - \tau(X_i))^2. \quad (3)$$

317 We can leverage flexible non-parametric learners such as random forests and neural networks to
318 get $\hat{\tau}(\cdot)$ in equation 2. An interesting conceptual connection is that under the completely observed
319 outcome Y , Equation equation 1 reduces to the celebrated Augmented Inverse-Probability Weighted
320 (AIPW) score (Robins et al., 1994; Robins & Rotnitzky, 1995), then $\hat{\tau}(\cdot)$ in equation 2 becomes a
321 Doubly Robust Learner (DR-learner) (Kennedy, 2023).

323 We highlight that the empirical loss equation 3 in Algorithm 2 can be used for learning other es-
324 timates of interest with a minimal adjustment. For instance, we can also investigate the CATE on

324 the unlabeled (CATU), $\tau_{CATU}(x) = \mathbb{E}[Y(1) - Y(0)|R = 0, X = x]$. When the target is CATU,
 325 we are interesting in measuring the heterogenetic treatment effect among the missing subjects. Let
 326 $e(x) = \mathbb{P}(A = 1 | X, R = 0)$ be the PS function among the unlabeled. In this case, Assump-
 327 tion 1 (b) can be weakened by Ignorability of the unlabeled: $Y(a) \perp A | X, R = 0$ for $a = 0, 1$.
 328 Assumption 1 (c) needs to be replaced by Positivity for both missing and observed: there exist a
 329 constant $c > 0$, such that $c \leq e(x) \leq 1 - c$ and $c \leq \rho(x, a, s) \leq 1 - c$ for all $x \in \mathcal{X}, a \in \{0, 1\}$,
 330 and $s \in \mathcal{S}$. Under the refined assumptions, we define the doubly robust score for the ATE on the
 331 unlabeled population as

$$332 \quad \zeta_{CATU}(z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{e}) = \frac{1 - r}{\mathbb{P}(R = 0)} (\bar{\nu}(x, 1) - \bar{\nu}(x, 0)) + \varphi_{CATU}(z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{e}),$$

334 where

$$335 \quad \varphi_{CATU}(z; \bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{e}) = \frac{A - \bar{e}(x)}{\bar{e}(x)(1 - \bar{e}(x))} \left(\frac{1 - \bar{\rho}(x, a, s)}{\mathbb{P}(R = 0)} \frac{r(y - \bar{\mu}(x, a, s))}{\bar{\rho}(x, a, s)} + \frac{(1 - r)(\bar{\mu}(x, a, s) - \bar{\nu}(x, a))}{\mathbb{P}(R = 0)} \right).$$

336 To define the empirical loss, we replace the probability measure \mathbb{P} by the empirical
 337 measure \mathbb{P}_n , and the nuisance functions $(\bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{e})$ by their cross-fitted estimators
 338 $(\hat{\mu}^{(-c(i))}, \hat{\rho}^{(-c(i))}, \hat{\nu}^{(-c(i))}, \hat{e}^{(-c(i))})$. Let $\hat{\zeta}_{CATU}^{(-c(i))}(z) = \zeta_{CATU}(z; \hat{\mu}^{-c(i)}, \hat{\rho}^{-c(i)}, \hat{\nu}^{-c(i)}, \hat{e}^{-c(i)})$.
 339 The loss function is as follows

$$340 \quad \hat{L}_{CATU}(\tau) = \frac{1}{n} \sum_{i=1}^n (\hat{\zeta}_{CATU}^{(-c(i))}(Z_i) - \tau(X_i))^2.$$

341 The rest of the learning procedure follows Algorithm 2. The theory below for CATE can be derived
 342 analogously.

343 5 THEORY

344 We present the rate of converge of the SA-learner using empirical processes theory (van der Vaart
 345 & Wellner, 1996). Similar to the empirical loss in Equation equation 3, we define the oracle loss
 346 function: $\tilde{L}(\tau) = \frac{1}{n} \sum_{i=1}^n (\zeta(Z_i) - \tau(X_i))^2$, and the oracle estimator: $\tilde{\tau} = \arg \min_{\tau \in \Gamma} \tilde{L}(\tau)$, where
 347 Γ is a function space of the CATE.

348 We use $(\bar{\mu}, \bar{\rho}, \bar{\nu}, \bar{\pi})$ to denote fixed functions to which $(\hat{\mu}^{(-c(i))}, \hat{\rho}^{(-c(i))}, \hat{\nu}^{(-c(i))}, \hat{\pi}^{(-c(i))})$ con-
 349 verges to in the L_∞ -norm, i.e., $\|\hat{f} - \bar{f}\|_\infty = o_p(1)$, where f represents the nuisance functions. We
 350 denote $\mathcal{U}, \mathcal{V}, \mathcal{P}$ and \mathcal{Q} as the function space in which $\hat{\mu}^{(-c(i))}, \hat{\nu}^{(-c(i))}, \hat{\rho}^{(-c(i))}, \hat{\pi}^{(-c(i))}$ lies.

351 **Assumption 2.** (a) *There exists a constant c , such that $1 - c \geq \hat{\pi}^{(-c(i))}(x) \geq c, \hat{\rho}^{(-c(i))}(x, a, s) \geq c$,
 352 $\|\mathcal{U}\|_\infty < \infty$, and $\|\mu\|_\infty < \infty$; for all $(x, a, s) \in \mathcal{X} \times \{0, 1\} \times \mathcal{S}$, $\hat{\rho}^{(-c(i))} \in \mathcal{P}$ and $\hat{\pi}^{(-c(i))} \in \mathcal{Q}$,*
 353 (b) *Either $(\bar{\mu}, \bar{\nu}) = (\mu, \nu)$ or $(\bar{\rho}, \bar{\pi}) = (\rho, \pi)$;*
 354 (c) *For some constant $\gamma > 0$, the oracle estimator $\tilde{\tau}$ satisfies $\|\tilde{\tau} - \tau\|_2 = O_p(n^{-\gamma})$ with the
 355 corresponding function space Γ satisfying $\text{Rad}_n(\Gamma) = O(n^{-\eta})$ for some $0 < \eta \leq 1/2$.*

356 Assumption 2 (a) requires the boundedness of the function spaces, which is standard for nonpara-
 357 metric regression. Assumption 2 (b) requires at least one of the pair, regression outcome estimation
 358 or the conditional probability estimation, be consistent. Such an assumption allows for model mis-
 359 specification in the nuisance function estimation. Assumption 2 (c) concerns the rate of convergence
 360 of the oracle estimator. In the literature, the convergence rates have been extensively investigated.
 361 For example, the rate is of order $n^{-\alpha/(2\alpha+d)}$ for nonparametric regression (Wasserman, 2006) and of
 362 order $n^{-\alpha/(2\alpha+t)} \log^{3/2} n$ for a regularized ReLU neural network (Schmidt-Hieber, 2020), where α
 363 is the degree of smoothness of a d -dimensional true regression function in the CATE function space
 364 Γ , and $t \leq d$ is the intrinsic dimension of the space Γ .

365 Before presenting the convergence rate of the SA-learner, we refine Proposition 2 in terms of the
 366 nuisance estimators $(\hat{\mu}^{(-c(i))}, \hat{\nu}^{(-c(i))}, \hat{\rho}^{(-c(i))}, \hat{\pi}^{(-c(i))})$.

367 **Proposition 3.** *Under Assumption 1 and 2, we can derive that*

$$368 \quad |\mathbb{E}[\hat{\zeta}^{(-c(i))}(Z)] - \psi| = O_p(\max(r_\mu(n)r_\rho(n), r_\nu(n)r_\pi(n))),$$

369 where ψ is the ATE and $\|\hat{f} - f\|_\infty = O_p(r_f(n))$ with f representing the nuisance functions
 370 (μ, ρ, ν, π) .

378 Proposition 3 further characterizes the error from nuisance function estimation. The product terms
 379 $r_\mu(n)r_\rho(n)$ and $r_\nu(n)r_\pi(n)$ resemble the error terms associated with doubly robust scores in a
 380 complete dataset. Let $r(n) = \max(r_\mu(n)r_\rho(n), r_\nu(n)r_\pi(n))$. In the complete dataset, $\mu(x, a, s) =$
 381 y and $\rho(x, a, s) = 1$; thus $r_\mu(n) = r_\rho(n) = 0$. The error term $r(n)$ reduces to $r_\nu(n)r_\pi(n)$, which is
 382 identical to the known error bound for the doubly-robustness in CATE estimation when there is no
 383 missing data (Kennedy, 2023). We are now ready to present the convergence rate of the SA-learner.

384 **Theorem 1.** *Under Assumption 1 and 2, we have*

$$385 \quad \|\hat{\tau} - \tau\|_2 = O_p(n^{-\gamma} + r(n)).$$

387 Furthermore, if $r(n) > n^{-\gamma}$, then $\|\hat{\tau} - \tau\|_2 \asymp \|\tilde{\tau} - \tau\|_2$.

389 Theorem 1 ensures that, by suitably controlling model complexity and under some mild assumptions
 390 on the nuisance estimators, the SA-learner is doubly robust in the sense that as long as one of
 391 the pair of the nuisance function estimations is consistent, then the SA-learner is also consistent.
 392 It also implies that the cross-fitted SA-learner can attain performance comparable to that of the
 393 oracle learner, which has prior knowledge of all nuisance functions (μ, ρ, ν, π) . Moreover, when
 394 all nuisance function estimators are consistent, the SA-learner converges to the truth at a rate faster
 395 than the rates of the nuisance estimators. Therefore, employing the SA-learner theoretically leads to
 396 a better estimator of the CATE. The proof of Theorem 1 is given in the Supplement.

397 6 EXPERIMENTS

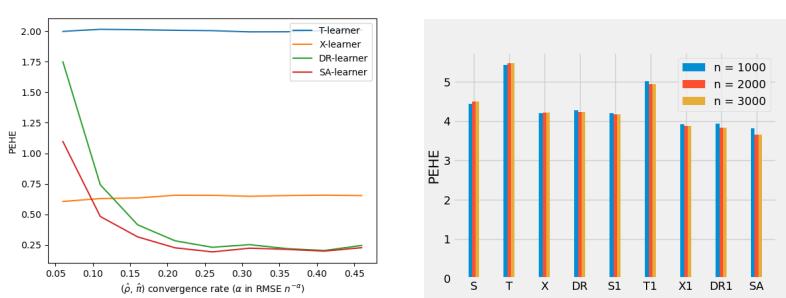
400 For empirical evaluation, we conduct two experiments and follow prior work on treatment effect
 401 estimation to examine the performance on synthetic dataset.

402 **Datasets.** In the first dataset, we consider a simple MCAR setting such that the missing rate is
 403 approximately 50%. We adapt the mean function from Györfi et al. (2002) and the treatment mech-
 404 anism from Kennedy (2023). The synthetic data contains 1000 observations with one covariates and
 405 two surrogate outcomes. The details of the simulation are provided in the Appendix. In the second
 406 dataset, we construct a MAR setting such that the missingness mechanism is conditionally indepen-
 407 dent of the primary outcome Y , given the surrogate outcomes S . The marginal missing rate is about
 408 30%. For the rest of settings, We follow the simulation of “Setup A” in Wager & Athey (2018).
 409 The synthetic dataset are generated across three different sample sizes: $n = 1000, 2000, 3000$ with
 410 5 covariates and 2 surrogate outcomes. Again, the details of the simulation are provided in the
 411 Appendix.

412 **Baseline Methods.** We compare the performance of the SA-learner to four well-established meta
 413 learner algorithms: S-learner (Künzel et al., 2019), T-learner (Künzel et al., 2019), X-learner
 414 (Künzel et al., 2019) and DR-learner (Kennedy, 2023). Since these four baseline meta-learners,
 415 are designed for complete data and cannot handle missing values, we exclude the observations with
 416 missing outcomes and train the baseline methods solely on the labeled sample \mathbf{L} .

417 **Implementation Details.** To demonstrate the performance of two estimators under varying nui-
 418 sance estimation errors, we will manually assign the estimation error in the first dataset, which
 419 is suitable for simulation purposes. For a fixed $\alpha > 0$, we set $\hat{\mu} = \mu + N(1, 1)$, $\hat{\nu} =$
 420 $\nu + N(1, 1)$, $\text{logit}(\hat{\rho}) = \text{logit}(\rho) + N(n^{-\alpha}, n^{-2\alpha})$, and $\text{logit}(\hat{\pi}) = \text{logit}(\pi) + N(n^{-\alpha}, n^{-2\alpha})$
 421 so that $RMSE(\hat{\rho}) \approx RMSE(\hat{\pi}) \approx n^{-\alpha}$, and the error rate of $(\hat{\rho}, \hat{\pi})$ is dominated than that of
 422 $(\hat{\mu}, \hat{\nu})$. In this case, S-learner and T-learner are analogous as a plug-in estimator so we only present
 423 the T-learner in the first dataset. In the second dataset, we also implement Algorithm 1. Algorithm
 424 1 takes 4 different Baseline Methods as its default learners. We employ a flexible machine learning
 425 model to estimate the nuisance functions, but use a simple linear regression to estimate the CATE.
 426 For estimation of the nuisance function, the outcome models, such as $\mu(x, a, s)$ and $\nu(x, a)$, are
 427 implemented using XGBoost; while the probability models, such as $\rho(x, a, s)$ and $\pi(x)$, are imple-
 428 mented using logistic regression. All methods are trained and evaluated using cross-validation in
 429 each dataset.

430 **Metrics.** We measure the precision in the estimation of heterogeneous effect (PEHE) by $\epsilon_{PEHE} =$
 431 $\sqrt{\frac{1}{n} \sum_{i=1}^n (\hat{\tau}(X_i) - \tau(X_i))^2}$, and visualize the averaged PEHE across 200 replicates in Figure 2a
 432 and Figure 2b.



(a) PEHE with respect to the rate of convergence from the nuisance function estimation across different sample sizes
(b) PEHE for selected meta-learners across different sample sizes

Figure 2: Simulation results

Result. From Figure 2a, the results indicate that the plug-in estimator, T-learner, inherits the large errors from estimating the individual regression functions, whereas the SA-Learner achieves substantially smaller errors and adapts to the smoothness of the CATE. The X-Learner attains an MSE that lies between the two. The DR-Learner exhibits a trend similar to that of the SA-Learner, but with a higher PEHE and a slower convergence rate, possibly due to sample inefficiency. Consistent with Theorem 1, the MSE of the SA-Learner approaches that of the oracle as the propensity score estimation error diminishes (i.e., as the convergence rate increases).

From Figure 2b, we observe that all meta learners utilizing surrogate outcomes outperform those that do not, for instance S versus S1. This confirms the effectiveness of Algorithm 1 for the benefits of surrogate outcomes. Moreover, the SA-learner performs best among all methods. The relative performance of the SA-Learner appears to improve as the sample size increases.

7 CONCLUSION

This paper introduces the SA-Learner, a novel method for estimating heterogeneous treatment effects in the presence of missing outcomes. By leveraging surrogate outcomes, the SA-Learner effectively addresses the challenges of bias and efficiency loss commonly encountered in real-world data with missing responses. The SA-Learner enjoys double robustness, ensuring consistent CATE estimates even under misspecification of certain nuisance functions. Additionally, we also establish its convergence rate, requiring only slower convergence rate for the nuisance function estimators without restrictive model assumptions. This property enables flexible implementation using off-the-shelf machine learning algorithms. Through extensive experiments on synthetic data, we empirically validates the effectiveness of the proposed method and demonstrates its superiority over competing meta-learners. Our methods thus constitute valuable additions to the CATE estimation toolkit. Their broader impact will likely be to improve estimation accuracy in existing HTE applications.

In the future, practical adaptations of the SA-learner may be explored to accommodate multiple and continuous treatments. Multiple treatments arise in various applications; for example, waiting time before follow-up, percent of discount in marketing studies, and drug dosage in clinical trials (Imai & van Dyk and, 2004; Hirano & Imbens, 2004; Bretz et al., 2005; Cattaneo, 2010). Analyzing multiple treatments provides valuable insights into causal effects across different treatment levels but poses great challenges for CATE estimation, as additional assumptions are required for identification. Recently, Acharki et al. (2023) extended the meta-learner methods to the multiple-treatment setting. Therefore, a natural future direction is to extend our SA-learner to this context. Another direction is to extend the framework to the Missing Not At Random (MNAR) setting. Strictly speaking, our MAR setting corresponds to an MNAR scenario in the classical causal inference framework, as missingness may depend on external randomness through surrogate outcomes. Nonetheless, concerns about potential unmeasured confounding may still be raised. A potential solution is to leverage tools from proximal causal inference to address unmeasured confounders associated with the missingness (Liu et al., 2024; Sverdrup & Cui, 2023; Cui et al., 2024; Mastouri et al., 2023).

486 REFERENCES
487

488 Naoufal Acharki, Ramiro Lugo, Antoine Bertoncello, and Josselin Garnier. Comparison of meta-
489 learners for estimating multi-valued treatment heterogeneous effects. *Journal of Machine Learn-
490 ing Research*, (6):42, 2023.

491 Ahmed M. Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
492 using multi-task gaussian processes. *Advances in Neural Information Processing Systems*, 30,
493 2017.

494 Ariel Alonso, Wim Van der Elst, Geert Molenberghs, Marc Buyse, and Tomasz Burzykowski. An
495 information-theoretic approach for the evaluation of surrogate endpoints based on causal infer-
496 ence. *Biometrics*, 72(3):669–677, 2016.

497 Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects. *Proceed-
498 ings of the National Academy of Sciences*, 113(27):7353–7360, 2016.

499 Susan Athey, Raj Chetty, Guido W Imbens, and Hyunseung Kang. The surrogate index: Combining
500 short-term proxies to estimate long-term treatment effects more rapidly and precisely. *National
501 Bureau of Economic Research*, (26463), 2019.

502 Susan Athey, Raj Chetty, and Guido Imbens. Combining experimental and observational data to
503 estimate treatment effects on long term outcomes. *arXiv preprint*, 2020.

504 David Azriel, Lawrence D. Brown, Michael Sklar, Richard Berk, Andreas Buja, and Linda Zhao
505 and. Semi-supervised linear regression. *Journal of the American Statistical Association*, 117
506 (540):2238–2251, 2022.

507 R M Baron and D A Kenny. The moderator-mediator variable distinction in social psychological
508 research: conceptual, strategic, and statistical considerations. *J Pers Soc Psychol*, 51(6):1173–
509 1182, 1986.

510 Marianne P. Bitler, Jonah B. Gelbach, and Hilary W. Hoynes. What mean impacts miss: Distri-
511 butional effects of welfare reform experiments. *American Economic Review*, 96(4):988–1012,
512 2006.

513 F. Bretz, J. C. Pinheiro, and M. Branson. Combining multiple comparisons and modeling techniques
514 in dose-response studies. *Biometrics*, 61(3):738–748, 2005.

515 Sylwia Bujkiewicz, John R. Thompson, Richard D. Riley, and Keith R. Abrams. Bayesian meta-
516 analytical methods to incorporate multiple surrogate endpoints in drug development process.
517 *Statistics in Medicine*, 35(7):1063–1089.

518 M. Buyse, G. Molenberghs, T. Burzykowski, D. Renard, and H. Geys. The validation of surrogate
519 endpoints in meta-analyses of randomized experiments. *Biostatistics*, 1(1):49–67, 2000.

520 Ruichu Cai, Weilin Chen, Zeqin Yang, Shu Wan, Chen Zheng, Xiaoqing Yang, and Jiecheng Guo.
521 Long-term causal effects estimation via latent surrogates representation learning. *Neural Net-
522 works*, 176:106336, 2024.

523 Matias D. Cattaneo. Efficient semiparametric estimation of multi-valued treatment effects under
524 ignorability. *Journal of Econometrics*, 155(2):138–154, 2010.

525 Abhishek Chakrabortty and Guorong Dai. A general framework for treatment effect estimation in
526 semi-supervised and high dimensional settings. *arXiv preprint*, 2024.

527 Abhishek Chakrabortty, Guorong Dai, and Raymond J. Carroll. Semi-supervised quantile estima-
528 tion: Robust and efficient inference in high dimensional settings. *arXiv preprint*, 2024.

529 Hua Chen, Zhi Geng, and Jinzhu Jia. Criteria for surrogate end points. *Journal of the Royal Statis-
530 tical Society. Series B (Statistical Methodology)*, 69(5):919–932, 2007.

531 Jiafeng Chen and David M. Ritzwoller. Semiparametric estimation of long-term treatment effects.
532 *Journal of Econometrics*, 237(2, Part A):105545, 2023.

540 David Cheng, Ashwin N. Ananthakrishnan, and Tianxi Cai. Robust and efficient semi-supervised
 541 estimation of average treatment effects with application to electronic health records data. *Biomet-
 542 rics*, 77(2):413–423, 2020.

543

544 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
 545 Newey, and James Robins. Double/debiased machine learning for treatment and structural pa-
 546 rameters. *The Econometrics Journal*, 21(1):C1–C68, 2018.

547 Francis S. Collins and Harold Varmus. A new initiative on precision medicine. *New England Journal
 548 of Medicine*, 372(9):793–795, 2015.

549

550 Yifan Cui, Hongming Pu, Xu Shi, Wang Miao, and Eric Tchetgen Tchetgen. Semiparametric prox-
 551 imal causal inference. *Journal of the American Statistical Association*, 119(546):1348–1359,
 552 2024.

553 Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment
 554 effects: From theory to learning algorithms. *Proceedings of Machine Learning Research*, 2021.

555 Thomas R. Fleming and David L. DeMets. Surrogate end points in clinical trials: Are we being
 556 misled? *Annals of Internal Medicine*, 125(7):605–613, 1996.

557

558 Dylan J. Foster and Vasilis Syrgkanis. Orthogonal statistical learning. *The Annals of Statistics*, 51
 559 (3):879 – 908, 2023.

560

561 Constantine E. Frangakis and Donald B. Rubin. Principal stratification in causal inference. *Biomet-
 562 rics*, 58(1):21–29, 2004.

563

564 Chenyin Gao, Peter B. Gilbert, and Larry Han. On the role of surrogates in conformal inference of
 565 individual causal effects. *arXiv preprint*, 2025.

566

567 DONALD P. GREEN and HOLGER L. KERN. Modeling heterogeneous treatment effects in survey
 568 experiments with bayesian additive regression trees. *The Public Opinion Quarterly*, 76(3):491–
 569 511, 2012.

570

571 László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. *A Distribution-Free Theory of
 572 Nonparametric Regression*. Springer New York, 2002.

573

574 P. Richard Hahn, Jared S. Murray, and Carlos M. Carvalho. Bayesian Regression Tree Models for
 575 Causal Inference: Regularization, Confounding, and Heterogeneous Effects (with Discussion).
 576 *Bayesian Analysis*, 15(3):965, 2020.

577

578 Shonosuke Harada and Hisashi Kashima. Counterfactual propagation for semi-supervised individ-
 579 ual treatment effect estimation. *Machine Learning and Knowledge Discovery in Databases*, pp.
 580 542–558, 2020.

581

582 Negar Hassanpour and Russell Greiner. Learning disentangled representations for counterfactual
 583 regression. *International Conference on Learning Representations*, 2020.

584

585 James J. Heckman and Edward Vytlacil. Structural equations, treatment effects, and econometric
 586 policy evaluation. *Econometrica*, 73(3):669–738, 2005.

587

588 Jennifer L. Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational
 589 and Graphical Statistics*, 20(1):217–240, 2011.

590

591 Keisuke Hirano and Guido W. Imbens. *Applied Bayesian Modeling and Causal Inference from
 592 Incomplete-Data Perspectives*. John Wiley & Sons, Ltd, 2004.

593

594 Joseph W. Hogan, Jason Roy, and Christina Korkontzelou. Handling drop-out in longitudinal stud-
 595 ies. *Statistics in Medicine*, 23(9):1455–1497, 2004.

596

597 Paul W. Holland. Statistics and causal inference. *Journal of the American Statistical Association*,
 598 81(396):945–960, 1986.

599

600 Jue Hou, Zijian Guo, and Tianxi Cai. Surrogate assisted semi-supervised inference for high dimen-
 601 sional risk prediction. *Journal of Machine Learning Research*, 24(265):1–58, 2023.

594 Kosuke Imai and David A van Dyk and. Causal inference with general treatment regimes. *Journal*
 595 *of the American Statistical Association*, 99(467):854–866, 2004.
 596

597 Kosuke Imai, Luke Keele, and Dustin Tingley. A general approach to causal mediation analysis.
 598 *Psychol Methods*, 15(4):309–334, 2010.

599 Guido Imbens, Nathan Kallus, Xiaojie Mao, and Yuhao Wang. Long-term causal inference under
 600 persistent confounding via data combination. *Journal of the Royal Statistical Society Series B:*
 601 *Statistical Methodology*, 87(2):362–388, 2024.

602

603 Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
 604 ence. *International Conference on Machine Learning*, pp. 3020–3029, 2016.

605

606 Nathan Kallus and Xiaojie Mao. On the role of surrogates in the efficient estimation of treatment
 607 effects with limited outcome data. *Journal of the Royal Statistical Society Series B: Statistical*
 608 *Methodology*, 87(2):480–509, 2024.

609

610 Edward H. Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
 611 *Electronic Journal of Statistics*, 17(2):3008 – 3049, 2023.

612

613 David M Kent, Jessica K Paulus, David van Klaveren, Ralph D’Agostino, Steve Goodman, Rodney
 614 Hayward, John P A Ioannidis, Bray Patrick-Lake, Sally Morton, Michael Pencina, Gowri Raman,
 615 Joseph S Ross, Harry P Selker, Ravi Varadhan, Andrew Vickers, John B Wong, and Ewout W
 616 Steyerberg. The predictive approaches to treatment effect heterogeneity (path) statement. *Annals*
 617 *of Internal Medicine*, 172(1):35–45, 2020.

618

619 Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating het-
 620 erogeneous treatment effects using machine learning. *Proceedings of the National Academy of*
 621 *Sciences*, 116(10):4156–4165, 2019.

622

623 Steffen L. Lauritzen, Odd O. Aalen, Donald B. Rubin, and Elja Arjas. Discussion on causality [with
 624 reply]. *Scandinavian Journal of Statistics*, 31(2):189–201, 2004.

625

626 Yun Li, Jeremy M.G. Taylor, and Michael R. Elliott. A bayesian approach to surrogacy assessment
 627 using principal stratification in clinical trials. *Biometrics*, 66(2):523–531, 2010.

628

629 Roderick J. A. Little and Donald B. Rubin. *Statistical Analysis with Missing Data, Third Edition*.
 630 John Wiley & Sons, Ltd, 2019.

631

632 Jizhou Liu, Eric J. Tchetgen Tchetgen, and Carlos Varjão. Proximal causal inference for synthetic
 633 control with surrogates. *Proceedings of Machine Learning Research*, 2024.

634

635 Jens Ludwig, Jeffrey R. Kling, and Sendhil Mullainathan. Mechanism experiments and policy eval-
 636 uations. *Journal of Economic Perspectives*, 25(3):17–38, 2011.

637

638 Alexander R. Luedtke and Mark J. van der Laan. Super-learning of an optimal dynamic treatment
 639 rule. *The International Journal of Biostatistics*, 12(1):305–332, 2016.

640

641 Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur
 642 Gretton, and Krikamol Muandet. Proximal causal learning with kernels: Two-stage estimation
 643 and moment restriction. *arXiv preprint*, 2023.

644

645 X Nie and S Wager. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*, 108
 646 (2):299–319, 2020.

647

648 J Pearl. *Causality*. Cambridge university press, 2009.

649

650 Ross L. Prentice. Surrogate endpoints in clinical trials: Definition and operational criteria. *Statistics*
 651 *in Medicine*, 8(4):431–440, 1989.

652

653 Brenda L. Price, Peter B. Gilbert, and Mark J. van der Laan. Estimation of the optimal surrogate
 654 based on a randomized trial. *Biometrics*, 74(4):1271–1281, 2018.

648 Bruce M. Psaty, Noel S. Weiss, Curt D. Furberg, Thomas D. Koepsell, David S. Siscovick, Frits R.
 649 Rosendaal, Nicholas L. Smith, Susan R. Heckbert, Robert C. Kaplan, Danyu Lin, Thomas R.
 650 Fleming, and Edward H. Wagner. Surrogate end points, health outcomes, and the drug-approval
 651 process for the treatment of risk factors for cardiovascular disease. *JAMA*, 282(8):786–790, 08
 652 1999.

653 James M. Robins and Sander Greenland. Identifiability and exchangeability for direct and indirect
 654 effects. *Epidemiology*, 3(2):143–155, 1992.

655 James M. Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression mod-
 656 els with missing data. *Journal of the American Statistical Association*, 90(429):122–129, 1995.

657 James M. Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients
 658 when some regressors are not always observed. *Journal of the American Statistical Association*,
 659 89(427):846–866, 1994.

660 Paul r. Rosenbaum and Donald B. Rubin. The central role of the propensity score in observational
 661 studies for causal effects. *Biometrika*, 70(1):41–55, 1983.

662 Donald Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 663 *Journal of Educational Psychology*, 66(5):688–701, 1974.

664 Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU acti-
 665 vation function. *The Annals of Statistics*, 48(4):1875–1897, 2020.

666 Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: general-
 667 ization bounds and algorithms. *International Conference on Machine Learning*, pp. 3076–3085,
 668 2017.

669 Claudia Shi, David M. Blei, and Victor Veitch. Adapting neural networks for the estimation of
 670 treatment effects. *Advances in Neural Information Processing Systems*, 32, 2019.

671 Jerzy Splawa-Neyman, D. M. Dabrowska, and T. P. Speed. On the application of probability theory
 672 to agricultural experiments. Essay on principles. Section 9. *Statistical Science*, 5(4):465–472,
 673 1990.

674 Erik Sverdrup and Yifan Cui. Proximal causal learning of conditional average treatment effects.
 675 *Journal of Machine Learning Research*, 2023.

676 Yoshiharu Takagi and Yutaka Kano. Bias reduction using surrogate endpoints as auxiliary variables.
 677 *Annals of the Institute of Statistical Mathematics*, 71(4):837–852, 2019.

678 Anastasios A. Tsiatis. *Semiparametric Theory and Missing Data*. Springer New York, 2006.

679 Mark J. van der Laan. Statistical inference for variable importance. *The International Journal of
 680 Biostatistics*, 2(1), 2006.

681 Mark J. van der Laan and James M. Robins. *Unified Methods for Censored Longitudinal Data and
 682 Causality*. Springer New York, 2003.

683 Mark J. van der Laan and Sherri Rose. *Targeted Learning: Causal Inference for Observational and
 684 Experimental Data*. Springer New York, 2011.

685 Aad W. van der Vaart and Jon A. Wellner. *Weak Convergence and Empirical Processes: With
 686 Applications to Statistics*. Springer New York, 1996.

687 Tyler J. VanderWeele. Surrogate measures and consistent surrogates. *Biometrics*, 69(3):561–569,
 688 2013.

689 Tyler J VanderWeele. Explanation in causal inference: developments in mediation and interaction.
 690 *International Journal of Epidemiology*, 45(6):1904–1908, 2016.

691 Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
 692 random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018.

702 Xuan Wang, Layla Parast, Lu Tian, and Tianxi Cai. Model-free approach to quantifying the proportion
 703 of treatment effect explained by a surrogate marker. *Biometrika*, 107(1):107–122, 2019.
 704

705 Larry Wasserman. *All of Nonparametric Statistics*. Springer New York, 2006.

706 Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GANITE: Estimation of individualized
 707 treatment effects using generative adversarial nets. *International Conference on Learning Representations*, 2018.
 708

710 Zhenghao Zeng, David Arbour, Avi Feller, Raghavendra Addanki, Ryan A. Rossi, Ritwik Sinha,
 711 and Edward Kennedy. Continuous treatment effects with surrogate outcomes. *Proceedings of Machine Learning Research*, 235:58306–58328, 2024.
 712

713 Anru Zhang, Lawrence D. Brown, and T. Tony Cai. Semi-supervised inference: General theory and
 714 estimation of means. *The Annals of Statistics*, 47(5):2538 – 2566, 2019.

715 Yuqian Zhang and Jelena Bradic. High-dimensional semi-supervised learning: in search of optimal
 716 inference of the mean. *Biometrika*, 109(2):387–403, 2021.

718 Yuqian Zhang, Abhishek Chakrabortty, and Jelena Bradic. Double robust semi-supervised inference
 719 for the mean: selection bias under mar labeling with decaying overlap. *Information and Inference: A Journal of the IMA*, 12(3):2066–2159, 2023.
 720

722 A APPENDIX

724 The first dataset is simulated as follows:

$$726 \quad X_i \sim U(-1, 1), \quad A_i \sim \text{Bernoulli}(0.5 + 0.4 \text{sign}(X_i)), \\ 727 \quad S_i \sim N_2(0, I_2), \quad R_i \sim \text{Bernoulli}(0.5), \\ 729 \quad Y_i = b(X_i, A_i, S_i) + A_i \tau(X_i) + \epsilon_i(X_i), \quad \epsilon_i(X_i) \sim N(0, (0.2 - 0.1 \cos(2\pi X_i))^2),$$

730 where the base line function is $b(X_i, A_i, S_i) = \mu(X_i) + A_i \tau(X_i) + 0.1S_{i1} - 0.1S_{i2}$ with

$$732 \quad \mu(x) = \begin{cases} (x+2)^2/2 & \text{if } -1 \leq x < -0.5; \\ 733 \quad x/2 + 0.875 & \text{if } -0.5 \leq x < 0; \\ 734 \quad -5(x-0.2)^2 + 1.075 & \text{if } 0 \leq x < 0.5; \\ 735 \quad x + 0.125 & \text{if } 0.5 \leq x \leq 1, \end{cases}$$

737 and the underlying CATE function is $\tau(X_i) = 1$. Note that the observed indicator R_i is independent
 738 of Y_i .

739 Next, we generate the second dataset. Let $\text{trim}_\eta(x) = \max(\eta, \min(x, 1 - \eta))$ and $\text{sigmoid}(x) =$
 740 $1/(1 + e^{-x})$. We have

$$742 \quad X_i \sim U(0, 1)^5, \quad A_i \sim \text{Bernoulli}(\text{trim}_{0.1}(\sin(\pi X_{i1} X_{i2}))), \\ 743 \quad S_i \sim N_2((1 - 2A_i)\mathbf{1}, I_2), \quad R_i \sim \text{Bernoulli}(\text{sigmoid}(S_{i1}/2 + S_{i2}/2 + 1)), \\ 744 \quad Y_i = b(X_i, A_i, S_i) + (A_i - 0.5)\tau(X_i) + \epsilon_i, \quad \epsilon_i \sim N(0, 1),$$

746 where the base line function is $b(X_i, A_i, S_i) = \sin(\pi X_{i1} X_{i2}) + 2(X_{i3} - 0.5)^2 + X_{i4} + 0.5X_{i5} +$
 747 $(1 - 2A_i)(S_{i1} + S_{i2})$, and the underlying CATE function is $\tau(X_i) = (X_{i1} + X_{i2})/2$. Note that
 748 the observed indicator R_i is conditional independent of the primary outcome Y_i given the surrogate
 749 outcomes S_i .

750
 751
 752
 753
 754
 755