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ABSTRACT

Estimating heterogeneous treatment effects is essential for personalized decision-
making across various applications. While existing methods primarily focus on
the conditional average treatment effect (CATE) for fully observed outcomes, real-
world data often suffer from missingness. Direct CATE estimation using only
complete cases can introduce bias and reduce efficiency. To address these chal-
lenges, we propose the Surrogate-Assisted Learner (SA-learner), which leverages
surrogate outcomes—auxiliary variables expected to predict the effect of a treat-
ment on the primary outcome and is more readily observed—to improve CATE
estimation. The SA-learner enjoys double robustness, ensuring consistent CATE
estimates even under misspecification of certain nuisance functions. We also es-
tablish its convergence rate, requiring only slower-rate convergence of nuisance
function estimators without restrictive model assumptions. This property enables
flexible implementation using off-the-shelf machine learning algorithms. Exten-
sive experiments on synthetic data further demonstrate effectiveness of the pro-
posed method.

1 INTRODUCTION

Heterogeneous treatment effect (HTE), studying the effect of a treatment or intervention on an out-
come of interest across different subgroups or individuals within a population, is crucial for per-
sonalized decision-making in fields such as medicine (Collins & Varmus, 2015; Kent et al., 2020),
economics (Heckman & Vytlacil, 2005; Bitler et al., 2006), and policy design (Ludwig et al., 2011;
GREEN & KERN, 2012). A key focus in HTE analysis is the Conditional Average Treatment Ef-
fect (CATE), which measures the expected treatment effect given a set of covariates. Most existing
work, including Bayesian methods (Hill, 2011; Alaa & van der Schaar, 2017; Hahn et al., 2020),
tree-based approaches (Athey & Imbens, 2016; Wager & Athey, 2018), neural networks (Johansson
et al., 2016; Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Hassanpour & Greiner, 2020), and
meta-learners (Künzel et al., 2019; Nie & Wager, 2020; Kennedy, 2023), assumes complete response
data for CATE estimation. However real-world scenarios often involve missing responses due to fac-
tors such as nonresponse to survey questions, recording errors, and loss to follow up (Little & Rubin,
2019). To address this challenge, we propose a novel method that introduces surrogate outcomes
for missing response settings for the estimation of CATE. Our approach advances HTE analysis by
providing a surrogate-assisted framework that improves efficiency and reduces estimation bias in
the presence of missing data.

A central challenge in causal inference is the fundamental problem that, at the individual level, one
cannot observe the outcomes of both treatment and control arms simultaneously (Holland, 1986).
In this paper, we consider a even more challenging scenario: the outcomes of some individuals
are possibly missing. A naive approach is to delete the individuals with missing outcome, but this
will lead to efficiency loss and may trigger estimation bias (Hogan et al., 2004), especially when
the missing is informative. Recently, Chakrabortty & Dai (2024) considered the settings of missing
completely at random (MCAR) and Zhang et al. (2023) studied the settings of the missing at random
(MAR), both show that incorporating unlabeled data could improve efficiency. We show in this paper
that it is possible to provide further improvements Under the MAR settings, if we incorporate some
auxiliary variables.
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In practice, the primary outcome of interest may be missing as its collection can often be costly,
impractical, or infeasible. However, some auxiliary variables, that may be highly related to the
outcome, are easier to access. For instance, blood pressure or body weight are strongly related
to cardiovascular disease and are easy and less expensive to collect. These variables are therefore
frequently used in evaluating the effectiveness of new drug treatments targeting cardiovascular risk
factors (Prentice, 1989; Fleming & DeMets, 1996; Psaty et al., 1999). These auxiliary variables
or intermediate outcomes are known as surrogates outcomes and have been used to replace the
missing primary outcome in recent causal inference literature (Li et al., 2010; Alonso et al., 2016;
Bujkiewicz et al.; Buyse et al., 2000; Takagi & Kano, 2019). Specifically, (Takagi & Kano, 2019)
showed the bias reduction when using surrogates outcomes. Therefore, surrogate outcomes can
provide a promising way to resolve the missingness of primary outcome.

Surrogate outcomes should be handled with caution since they are post-treatment variables. Misus-
ing them, for example, by including them as covariates, can lead to biased estimates of the treatment
effects (Prentice, 1989; Athey et al., 2019; Cheng et al., 2020). We provide a motivating example
to illustrate this in Section 3. In datasets with limited primary outcomes Kallus & Mao (2024) ex-
amined the role of surrogates and showed efficiency gains after including surrogate outcomes and
unlabeled data in the analysis. Zeng et al. (2024) introduced a doubly robust method for estimating
the average dose-response function using surrogate variables in the context of continuous treat-
ments. In Liu et al. (2024), the information of the surrogate outcomes is adapted to the framework
of proximal causal inference. Recently, Gao et al. (2025) exploited surrogate outcomes to conformal
inference for the individual treatment effect. However, these methods either focus on the average
treatment effect (ATE) estimation or did not provide a theoretical support for the CATE estimation.

We summerize the main contributions of this paper as follows:

• We introduce a Neyman-orthogonal framework for the CATE estimation in the presence
of missing outcome and surrogate outcomes. We show that the loss function for CATE
satisfies Neyman-orthogonal conditions Chernozhukov et al. (2018); Foster & Syrgkanis
(2023), which shows that the CATE estimator based on this loss function is less sensitive to
the nuisance parameters as the estimation errors of nuisance parameters is only of second
order to the target parameter. This can produce more accurate and reliable results.

• We provide a theoretical foundation for the CATE estimator with surrogate outcomes.
While existing theory only applies to compete data, we establish formal convergence guar-
antees under a MAR condition. Specifically, we prove that our CATE estimator converges
to the true treatment effect function at oracle rate under a mild condition. The condition
is sufficiently broad to accommodate flexible machine learning methods, including deep
neural networks and random forests, for CATE estimation.

• The proposed estimation procedure can accommodate flexible methods to learn nuisance
functions. We establish the convergence rate of the CATE estimator without additional
structural restrictions on the nuisance functions beyond a consistency assumption with slow
convergence rates. This model-agnostic feature enables the use of modern, off-the-shelf
machine learning methods, which can handle complex prediction tasks while maintaining
high practical accuracy.

2 RELATED WORKS

2.1 SEMI-SUPERVISED LEARNING

Our work contributes to the growing literature in semi-supervised learning, which contains both
labeled and unlabeled outcomes. A substantial body of research has explored how unlabeled data can
enhance the estimation of various parameters, including regression coefficients (Azriel et al., 2022;
Hou et al., 2023), population means and ATEs (Chakrabortty & Dai, 2024; Zhang et al., 2023; 2019;
Zhang & Bradic, 2021), ITEs (Harada & Kashima, 2020), as well as quantiles and quantile treatment
effects (Chakrabortty et al., 2024). Most of these works assume, either implicitly or explicitly, that
labels are MCAR. In contrast, we relax this assumption by allowing the labeling mechanism to
depend on pre-treatment covariates, the treatment assignment, and even post-treatment variables:
the surrogate outcomes. We emphasize the role of surrogates as an auxiliary source of information.
Notably, the same framework can also be applied to cases when no surrogate outcomes are availalble.
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2.2 CAUSAL INFERENCE WITH SURROGATE OUTCOMES

Numerous surrogate criteria have been proposed to ensure that treatment effects on surrogate out-
comes can reliably predict the treatment effects on the primary outcome. The first criterion, in-
troduced in Prentice (1989), requires the primary outcome to be conditionally independent of the
treatment given the surrogate outcomes. Since then, many alternative criteria have been proposed,
including the principal surrogate criterion (Frangakis & Rubin, 2004), strong surrogate criterion
(Lauritzen et al., 2004), and consistent surrogate criterion (Chen et al., 2007; VanderWeele, 2013).
While much of this literature focuses on a single surrogate, recent works by Price et al. (2018); Wang
et al. (2019) estimated transformations of multiple surrogates to optimally approximate the primary
outcome using labeled experimental data. Athey et al. (2019) explored identifying and estimating
the ATE in a more complex setting, where the primary outcome and treatment are not observed in
the same dataset. Subsequent works, such as Athey et al. (2020); Imbens et al. (2024), aimed to
combine experimental short-term data with confounded observational long-term data. The former
relies on a latent unconfoundedness assumption, while the latter uses multiple sequential surrogates
as proxies. Similarly, Cai et al. (2024) designed a neural network architecture to combine experi-
mental and observational data. Semiparametric inference for ATEs under the frameworks of Athey
et al. (2019; 2020) were developed in Chen & Ritzwoller (2023). These works differ from ours as
they use surrogates for identification. In contrast, our approach assumes that the primary outcome
is MAR and uses surrogates to improve the CATE estimation in already-identified settings, which is
close to the frameworks of Cheng et al. (2020); Kallus & Mao (2024).

2.3 CONDITIONAL AVERAGE TREATMENT EFFECT ESTIMATION

Our approach for CATE draws inspiration from Nie & Wager (2020), who cast the problem as
a generic two-step loss minimization that can be implemented by off-the-shelf machine learning
methods. The benefit of this decoupling is that it clearly separates the statistical tasks of estimating
nuisance components from estimating treatment effects, which can be implemented and optimized
(by standard cross-validation) through different machine learning algorithms. The final step of our
approach takes the form of a pseudo-outcome regression, where transformed outcomes are regressed
on covariates, and this approach dates back to van der Laan (2006); Luedtke & van der Laan (2016),
who suggest it for estimating CATEs for complete data, but without explicit error guarantees. The
error guarantee is provided in Kennedy (2023); Foster & Syrgkanis (2023); Curth & van der Schaar
(2021) under general assumptions on the nuisance components (when estimated using sample split-
ting). They also derived theoretical properties for this approach to CATE estimation. This approach
is extended in Sverdrup & Cui (2023) in the presence of unmeasured confounding.

Notation. We let ξi represent Rademacher random variables. The Rademacher complexity of a
function class F = {f | f : X → R} is defined as Radn(F) = supf∈F

∣∣ 1
n

∑n
i=1 ξif(xi)

∣∣ . For
any two functions f1, f2 ∈ F , we define the L∞-norm as ∥f1 − f2∥∞ = supx∈X |f1(x)− f2(x)|
and the L2 norm as ∥f1 − f2∥2 =

√∫
x∈X |f1(x)− f2(x)|2 dx. For a function class F , we define

∥F∥∞ = supf∈F∥f∥∞.

3 PROBLEM FORMULATION

Let A ∈ {0, 1} be a binary treatment variable, Y ∈ R be an outcome of interest, and X ∈ X ⊂ Rp

be baseline covariates. Under the Neyman-Rubin potential outcome framework (Splawa-Neyman
et al., 1990; Rubin, 1974), we assume that Y (1) and Y (0) are the potential outcomes of the treatment
and control arm, respectively. The potential outcome Y (a) is the outcome that would have been
realized under each treatment optionA = a. We also assume that the actual observed outcome is the
potential outcome corresponding to the actual treatment, i.e., Y = Y (A), which is the conventional
consistency assumption in causal inference. Our goal is to estimate CATE, defined as

τ(x) = E[Y (1)− Y (0)|X = x].

CATE evaluates the heterogeneous treatment effects of treatment A on the outcome Y given the
subject feature X = x. If (X,A, Y ) is fully observed, one could estimate the CATE from existing
methods, such as (Hill, 2011; Alaa & van der Schaar, 2017; Hahn et al., 2020; Athey & Imbens,
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A S Y

X

R

Figure 1: The causal DAG for the variables (X,A, S, Y,R) illustrates the directional causal rela-
tionship among them, where each arrow represents the direction of causality.

2016; Wager & Athey, 2018; Johansson et al., 2016; Shalit et al., 2017; Yoon et al., 2018; Shi et al.,
2019; Künzel et al., 2019; Nie & Wager, 2020; Kennedy, 2023) and the references therein.

For some individual X, the outcome Y is missing. We denote R the missing indicator, where
R = 1 when Y is observed, otherwise R = 0. In addition to (X,A, Y,R), we also observe sur-
rogate outcomes S ∈ S ⊂ Rq. We will present the results for S ≠ ∅ but note that S = ∅
can be viewed as a special setting where our methodology still applies. Thus, the observations
are: (Xi, Ai, Si, Yi, Ri), i = 1, · · · , n, which are independent identically distributed copies of
(X,A, S, Y,R).We also denote S(1) and S(0) as the potential outcome of the surrogate outcome S.
In this paper, we assume that (X,A, S, Y,R) has the causal relationship in Fig 1, which is a causal
DAG of (Pearl, 2009).

In summary, the sample S contains two subsets, a label subset L = {Zi = (Xi, Ai, Si, Yi, Ri =
1), i = 1, . . . , nl} and an unlabel subset U = {Zi = (Xi, Ai, Si, Yi = NA, Ri = 0), i = nl +
1, . . . , n}, where NA stands for ”Not Available”, i.e., a missing value. Let the propensity score (PS)
function be π(x) = P(A = 1 | X = x) and the observed probability be ρ(x, a, s) = P(R = 1 |
X = x,A = a, S = s). To identify CATE, we need the following standard causal assumptions
(Rosenbaum & Rubin, 1983) and missing at random assumptions Kallus & Mao (2024).

Assumption 1. (a) Consistency: (S(a), Y (a)) = (S, Y ) almost surely when A = a;
(b) Ignoriability: Y (a) ⊥ A | X for a = 0, 1;
(c) Positivity: there exist a constant c > 0, such that 1 − c ≥ π(x) ≥ c and ρ(x, a, s) ≥ c for all
x ∈ X , a ∈ {0, 1}, and s ∈ S;
(d) Missing at Random: R ⊥ Y (a) | X,A, S(a), for a = 0, 1.

Assumption 1 requires the potential outcomes, for both the surrogate and primary outcome of an
individual at the actual treatment A, be the same as the actual outcome of that individual. The ignor-
ability assumption implies that there is no other confounders except for covariates X that influence
both the potential outcomes and the treatment assignment mechanism. The positivity assumption
states that each individual has a positive chance of receiving treatment and has the primary outcome
observed. The MAR assumption implies that the surrogate outcomes S is informative to the primary
outcome such that the distributions of labeled and unlabeled data are comparable after conditioning
on (X,A, S). These assumptions commonly hold in randomized experiments and well-designed
observational studies.

It is worth noting that the MAR assumption above is considerably weaker than MCAR assumption
and the MAR assumption in the previous literature (Chakrabortty & Dai, 2024; Zhang et al., 2023;
Chernozhukov et al., 2018; Azriel et al., 2022; Hou et al., 2023; Zhang et al., 2019; Zhang & Bradic,
2021; Chakrabortty et al., 2024). Those assumptions restrict the missing mechanism to not depend
on the surrogate outcomes S(a). However, such assumptions may fail if the missing mechanism is
predictable by the surrogate outcomes. For instance, it is possible that subjects with positive surro-
gate outcomes are more likely to drop out of the study as they expect themselves to be healthier and
more likely to have positive primary outcomes. In this case, estimating CATE without considering
the surrogate outcomes triggers a bias from an incorrect target population E[Y (1)−Y (0)|R = 1, X].
Therefore, the surrogate outcomes are necessary for estimating CATE.

Incorporating surrogate outcomes in the estimation of CATE requires special handling, since they
play a different role from the covariates and hence cannot be simply included in the model as a co-
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variate. To demonstrate this, we consider a linear regression model with only one surrogate outcome
and without missing:

Y = α0 + α′
xX + αaA+ αsS + ϵy, E[ϵy | X,A, S] = 0

S = β0 + β′
xX + βaA+ ϵs, E[ϵs | X,A] = 0.

It is not difficult to verify that the CATE with respect to a covariate X is τ(x) = αa + αsβa.
However, if we regress Y on (X,A, S), we will get a biased estimate that targets αa instead of
αa + αsβa. Such a phenomenon is analogous to the mediation analysis (Baron & Kenny, 1986;
Robins & Greenland, 1992; Imai et al., 2010; VanderWeele, 2016). The effect of the treatment A
on the primary outcome Y is mediated through the surrogate outcomes S. Regressing the primary
outcome on both the treatment and the mediator leads to the biased estimator of treatment effects.
After all, the surrogate outcomes are post-treatment variables and should not be treated as covariates
when estimating the CATE.

4 METHODS

We first propose a novel method that can incorporate surrogate outcomes with any existing CATE
estimators (Hill, 2011; Alaa & van der Schaar, 2017; Hahn et al., 2020; Athey & Imbens, 2016;
Wager & Athey, 2018; Johansson et al., 2016; Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019;
Künzel et al., 2019; Nie & Wager, 2020; Kennedy, 2023). We then use this idea to develop the
Surrogate-Assisted Learner (SA-learner).

4.1 IMPROVEMENT USING SURROGATE OUTCOMES

Let µ(x, a, s) = E[Y |X = x,A = a, S = s,R = 1] be the regression outcome of the observed
data. We show the identification result utilizing the surrogate outcomes in Proposition 1.

Proposition 1. Under Assumption 1, CATE is identifiable as:

τ(x) = ES [µ(X, 1, S) | X = x,A = 1]− ES [µ(X, 0, S) | X = x,A = 0],

where ES represents the conditional expectation taking over the surrogate outcome S given (X,A).
For convenience, we denote ES [µ(X,A, S) | X = x,A = a] by ν(x, a) and its estimator by ν̂(x, a).

Proposition 1 suggests that we can use a two-step procedure to identify CATE when the primary
outcome is missing. This motivates our approach to assist the CATE estimate by the surrogate
outcomes. In the first step, we regress the primary outcome Y on (X,A, S) from the label data
L and obtain the estimator µ̂(x, a, s) for µ(x, a, s). We then evaluate it as a proxy of the primary
outcome on the entire sample S. In the second step, we regress the proxy µ̂(X,A, S) on X from the
entire sample S for both the treated (A = 1) and the control (A = 0) groups. The CATE estimator
is then obtained by taking the difference τ̂(x) = ν̂(x, 1) − ν̂(x, 0). In fact, we can replace the
second step by many CATE estimators for the complete dataset from the literature as the data is
now completely imputed by the proxy µ̂(x, a, s). We summarize the procedure in Algorithm 1 and
illustrate it through the meta-learners (Künzel et al., 2019; Kennedy, 2023) in the Supplement and
compare their numerical performance in Section 6.

Algorithm 1. (CATE estimators with Surrogate outcomes)

Step 1. Train an appropriate machine learning algorithm of µ(x, a, s) on the label data L and get
the evaluation on the entire data S.

Step 2. Replace the primary outcome Yi by the proxy µ̂(Xi, Ai, Si), regardless of whether the
primary outcome is observed or not, and apply the CATE estimation to the completed data
{(Xi, Ai, µ̂(Xi, Ai, Si)) : i = 1, . . . , n} to obtain the CATE estimate τ̂(x).

Although Algorithm 1 offers an estimate for CATE when the primary outcome is not fully available,
it is unsurprising that this CATE estimate is sensitive to the error in Step 1. To address such a
concern, we propose the SA-learner, a doubly robust estimator, as a solution.
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4.2 SA-LEARNER

We utilize the semiparametric theory to improve the CATE estimation. The idea is to find a pseudo-
outcome ζ(z) := ζ(z;µ, ρ, ν, π) depending on nuisance functions ideally with second-order de-
pendence on nuisance estimation error such that E[ζ(z;µ, ρ, ν, π)] is equal to the ATE. Following
Robins et al. (1994); Robins & Rotnitzky (1995); van der Laan & Robins (2003); Tsiatis (2006), we
consider the functional ψ = E[τ(X)] under the MAR setting, which is pathwise differentiable and
admits an efficient influence function. Then the pseudo-outcome ζ(z;µ, ρ, ν, π) is a component in
the influence function of ψ. We omit the derivation of the influence function and only present the
form of pseudo-outcome. Let (µ, ρ, ν, π) be some functions that may not necessarily be equal to the
true (µ, ρ, ν, π), and define a score functions

ζ(z;µ, ρ, ν, π) = ν(x, 1)− ν(x, 0) + φ(z;µ, ρ, ν, π), (1)

where

φ(z;µ, ρ, ν, π) =
a− π(x)

π(x)(1− π(x))

(
r(y − µ(x, a, s))

ρ(x, a, s)
+ µ(x, a, s)− ν(x, a)

)
.

The corresponding semiparametric efficient ATE estimate is the sample average of ζ(Zi;µ, ρ, ν, π).
The following proposition shows such a characterization of ATE through ζ(Z;µ, ρ, ν, π).
Proposition 2. Let (µ, ρ, ν, π) be nuisance functions that may not necessarily equal the true
(µ, ρ, ν, π). Assume that (ρ, π) satisfies the requirement of (ρ, π) in Assumption 1(c). Then

E[ζ(Z;µ, ρ, ν, π)] = ψ

if either (µ, ν) = (µ, ν) or (ρ, π) = (ρ, π).

Proposition 2 implies the doubly-robustness of our method. It extends previous work for a complete
dataset to the missing data setting. If the proxy perfectly represents the primary outcome, i.e.,
µ(a, s, x) = y or the data is complete, i.e., r = 1 and ρ(x, a, s) = 1, then the doubly robust score
ζ(z;µ, ρ, ν, π) reduces to the efficient influence function for complete data (van der Laan & Rose,
2011). The intuition is that, to efficiently estimate the ATE, the doubly robust estimator averages
the pseudo-outcome ζ(Z;µ, ρ, ν, π), so to estimate the CATE, it suffices to learn the mapping from
covariates X to the pseudo-outcome ζ(Z;µ, ρ, ν, π). This motivates the following procedure:
Algorithm 2. (SA-learner)

Step 1. We first split the data into C equal-size folds, then estimate µ(x, a, s), ρ(x, a, s), ν(x, a),
π(x) with cross-fitting over the C folds, where µ̂(x, a, s) is obtained from in Algorithm 1,
and ν̂(x, a) is form regressing µ̂(x, a, s) on covariates X .

Step 2. Form Equation equation 1 using cross-fit plug-in estimates of nuisance components
µ̂(−c(i))(x, a, s), ρ̂(−c(i))(x, a, s), ν̂(−c(i))(x, a), π̂(−c(i))(x), where the notation c(·) maps
from sample to fold, and (−c(i)) indicates predictions without using the i-th sample for
training. Let ζ̂(−c(i))(z) = ζ(z; µ̂(−c(i)), ρ̂(−c(i)), ν̂(−c(i)), π̂(−c(i))). We estimate the
CATE by minimizing the following empirical loss

τ̂(·) = argmin
τ
L̂(τ), (2)

where

L̂(τ) =
1

n

n∑
i=1

(ζ̂(−c(i))(Zi)− τ(Xi))
2. (3)

We can leverage flexible non-parametric learners such as random forests and neural networks to
get τ̂(·) in equation 2. An interesting conceptual connection is that under the completely observed
outcome Y , Equation equation 1 reduces to the celebrated Augmented Inverse-Probability Weighted
(AIPW) score (Robins et al., 1994; Robins & Rotnitzky, 1995), then τ̂(·) in equation 2 becomes a
Doubly Robust Learner (DR-learner) (Kennedy, 2023).

We highlight that the empirical loss equation 3 in Algorithm 2 can be used for learning other es-
timates of interest with a minimal adjustment. For instance, we can also investigate the CATE on
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the unlabeled (CATU), τCATU (x) = E[Y (1) − Y (0)|R = 0, X = x]. When the target is CATU,
we are interesting in measuring the heterogenetic treatment effect among the missing subjects. Let
e(x) = P(A = 1 | X,R = 0) be the PS function among the unlabeled. In this case, Assump-
tion 1 (b) can be weakened by Ignoriability of the unlabeled: Y (a) ⊥ A|X,R = 0 for a = 0, 1.
Assumption 1 (c) needs to be replaced by Positivity for both missing and observed: there exist a
constant c > 0, such that c ≤ e(x) ≤ 1 − c and c ≤ ρ(x, a, s) ≤ 1 − c for all x ∈ X , a ∈ {0, 1},
and s ∈ S . Under the refined assumptions, we define the doubly robust score for the ATE on the
unlabeled population as

ζCATU (z;µ, ρ, ν, e) =
1− r

P(R = 0)
(ν(x, 1)− ν(x, 0)) + φCATU (z;µ, ρ, ν, e),

where

φCATU (z;µ, ρ, ν, e) =
A− e(x)

e(x)(1− e(x))

(
1− ρ(x, a, s)

P(R = 0)

r(y − µ(x, a, s))

ρ(x, a, s)
+

(1− r)(µ(x, a, s)− ν(x, a))

P(R = 0)

)
.

To define the empirical loss, we replace the probability measure P by the empiri-
cal measure Pn, and the nuisance functions (µ, ρ, ν, e) by their cross-fitted estimators
(µ̂(−c(i)), ρ̂(−c(i)), ν̂(−c(i)), ê(−c(i))). Let ζ̂(−c(i))

CATU (z) = ζCATU (z; µ̂
−c(i), ρ̂−c(i), ν̂−c(i), ê−c(i)).

The loss function is as follows

L̂CATU (τ) =
1

n

n∑
i=1

(ζ̂
(−c(i))
CATU (Zi)− τ(Xi))

2.

The rest of the learning procedure follows Algorithm 2. The theory below for CATE can be derived
analogously.

5 THEORY

We present the rate of converge of the SA-learner using empirical processes theory (van der Vaart
& Wellner, 1996). Similar to the empirical loss in Equation equation 3, we define the oracle loss
function: L̃(τ) = 1

n

∑n
i=1(ζ(Zi)−τ(Xi))

2, and the oracle estimator: τ̃ = argminτ∈Γ L̃(τ), where
Γ is a function space of the CATE.

We use (µ, ρ, ν, π) to denote fixed functions to which (µ̂(−c(i)), ρ̂(−c(i)), ν̂(−c(i)), π̂(−c(i))) con-
verges to in the L∞-norm, i.e., ∥f̂ − f∥∞ = op(1), where f represents the nuisance functions. We
denote U , V , P and Q as the function space in which µ̂(−c(i)), ν̂(−c(i)), ρ̂(−c(i)), π̂(−c(i)) lies.
Assumption 2. (a) There exists a constant c, such that 1−c ≥ π̂(−c(i))(x) ≥ c, ρ̂(−c(i))(x, a, s) ≥ c,
∥U∥∞ <∞, and ∥µ∥∞ <∞; for all (x, a, s) ∈ X × {0, 1} × S , ρ̂(−c(i)) ∈ P and π̂(−c(i)) ∈ Q,
(b) Either (µ, ν) = (µ, ν) or (ρ, π) = (ρ, π);
(c) For some constant γ > 0, the oracle estimator τ̃ satisfies ∥τ̃ − τ∥2 = Op(n

−γ) with the
corresponding function space Γ satisfying Radn(Γ) = O(n−η) for some 0 < η ≤ 1/2.

Assumption 2 (a) requires the boundedness of the function spaces, which is standard for nonpara-
metric regression. Assumption 2 (b) requires at least one of the pair, regression outcome estimation
or the conditional probability estimation, be consistent. Such an assumption allows for model mis-
specification in the nuisance function estimation. Assumption 2 (c) concerns the rate of convergence
of the oracle estimator. In the literature, the convergence rates have been extensively investigated.
For example, the rate is of order n−α/(2α+d) for nonparametric regression (Wasserman, 2006) and of
order n−α/(2α+t) log3/2 n for a regularized ReLU neural network (Schmidt-Hieber, 2020), where α
is the degree of smoothness of a d-dimensional true regression function in the CATE function space
Γ, and t ≤ d is the intrinsic dimension of the space Γ.

Before presenting the convergence rate of the SA-learner, we refine Proposition 2 in terms of the
nuisance estimators (µ̂(−c(i)), ν̂(−c(i)), ρ̂(−c(i)), π̂(−c(i))).
Proposition 3. Under Assumption 1 and 2, we can derive that

|E[ζ̂(−c(i))(Z)]− ψ| = Op(max(rµ(n)rρ(n), rν(n)rπ(n))),

where ψ is the ATE and ∥f̂ − f∥∞ = Op(rf (n)) with f representing the nuisance functions
(µ, ρ, ν, π).
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Proposition 3 further characterizes the error from nuisance function estimation. The product terms
rµ(n)rρ(n) and rν(n)rπ(n) resemble the error terms associated with doubly robust scores in a
complete dataset. Let r(n) = max(rµ(n)rρ(n), rν(n)rπ(n)). In the complete dataset, µ(x, a, s) =
y and ρ(x, a, s) = 1; thus rµ(n) = rρ(n) = 0. The error term r(n) reduces to rν(n)rπ(n), which is
identical to the known error bound for the doubly-robustness in CATE estimation when there is no
missing data (Kennedy, 2023). We are now ready to present the convergence rate of the SA-learner.
Theorem 1. Under Assumption 1 and 2, we have

∥τ̂ − τ∥2 = Op(n
−γ + r(n)).

Furthermore, if r(n) > n−γ , then ∥τ̂ − τ∥2 ≍ ∥τ̃ − τ∥2.

Theorem 1 ensures that, by suitably controlling model complexity and under some mild assumptions
on the nuisance estimators, the SA-learner is doubly robust in the sense that as long as one of
the pair of the nuisance function estimations is consistent, then the SA-learner is also consistent.
It also implies that the cross-fitted SA-learner can attain performance comparable to that of the
oracle learner, which has prior knowledge of all nuisance functions (µ, ρ, ν, π). Moreover, when
all nuisance function estimators are consistent, the SA-learner converges to the truth at a rate faster
than the rates of the nuisance estimators. Therefore, employing the SA-learner theoretically leads to
a better estimator of the CATE. The proof of Theorem 1 is given in the Supplement.

6 EXPERIMENTS

For empirical evaluation, we conduct two experiments and follow prior work on treatment effect
estimation to examine the performance on synthetic dataset.

Datasets. In the first dataset, we consider a simple MCAR setting such that the missing rate is
approximately 50%. We adapt the mean function from Györfi et al. (2002) and the treatment mech-
anism from Kennedy (2023). The synthetic data contains 1000 observations with one covariates and
two surrogate outcomes. The details of the simulation are provided in the Appendix. In the second
dataset, we construct a MAR setting such that the missingness mechanism is conditionally indepen-
dent of the primary outcome Y , given the surrogate outcomes S. The marginal missing rate is about
30%. For the rest of settings, We follow the simulation of “Setup A” in Wager & Athey (2018).
The synthetic dataset are generated across three different sample sizes: n = 1000, 2000, 3000 with
5 covariates and 2 surrogate outcomes. Again, the details of the simulation are provided in the
Appendix.

Baseline Methods. We compare the performance of the SA-learner to four well-established meta
learner algorithms: S-learner (Künzel et al., 2019), T-learner (Künzel et al., 2019), X-learner
(Künzel et al., 2019) and DR-learner (Kennedy, 2023). Since these four baseline meta-learners,
are designed for complete data and cannot handle missing values, we exclude the observations with
missing outcomes and train the baseline methods solely on the labeled sample L.

Implementation Details. To demonstrate the performance of two estimators under varying nui-
sance estimation errors, we will manually assign the estimation error in the first dataset, which
is suitable for simulation purposes. For a fixed α > 0, we set µ̂ = µ + N(1, 1), ν̂ =
ν + N(1, 1), logit(ρ̂) = logit(ρ) + N(n−α, n−2α), and logit(π̂) = logit(π) + N(n−α, n−2α)
so that RMSE(ρ̂) ≈ RMSE(π̂) ≈ n−α, and the error rate of (ρ̂, π̂) is dominated than that of
(µ̂, ν̂). In this case, S-learner and T-learner are analogous as a plug-in estimator so we only present
the T-learner in the first dataset. In the second dataset, we also implement Algorithm 1. Algorithm
1 takes 4 different Baseline Methods as its default learners. We employ a flexible machine learning
model to estimate the nuisance functions, but use a simple linear regression to estimate the CATE.
For estimation of the nuisance function, the outcome models, such as µ(x, a, s) and ν(x, a), are
implemented using XGBoost; while the probability models, such as ρ(x, a, s) and π(x), are imple-
mented using logistic regression. All methods are trained and evaluated using cross-validation in
each dataset.

Metrics. We measure the precision in the estimation of heterogeneous effect (PEHE) by ϵPEHE =√
1
n

∑n
i=1(τ̂(Xi)− τ(Xi))2, and visualize the averaged PEHE across 200 replicates in Figure 2a

and Figure 2b.
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(a) PEHE with respect to the rate of conver-
gence from the nuisance function estimation

(b) PEHE for selected meta-learners
across different sample sizes

Figure 2: Simulation results

Result. From Figure 2a, the results indicate that the plug-in estimator, T-learner, inherits the large
errors from estimating the individual regression functions, whereas the SA-Learner achieves sub-
stantially smaller errors and adapts to the smoothness of the CATE. The X-Learner attains an MSE
that lies between the two. The DR-Learner exhibits a trend similar to that of the SA-Learner, but
with a higher PEHE and a slower convergence rate, possibly due to sample inefficiency. Consistent
with Theorem 1, the MSE of the SA-Learner approaches that of the oracle as the propensity score
estimation error diminishes (i.e., as the convergence rate increases).

From Figure 2b, we observe that all meta learners utilizing surrogate outcomes outperform those
that do not, for instance S versus S1. This confirms the effectiveness of Algorithm 1 for the benefits
of surrogate outcomes. Moreover, the SA-learner performs best among all methods. The relative
performance of the SA-Learner appears to improve as the sample size increases.

7 CONCLUSION

This paper introduces the SA-Learner, a novel method for estimating heterogeneous treatment ef-
fects in the presence of missing outcomes. By leveraging surrogate outcomes, the SA-Learner ef-
fectively addresses the challenges of bias and efficiency loss commonly encountered in real-world
data with missing responses. The SA-Learner enjoys double robustness, ensuring consistent CATE
estimates even under misspecification of certain nuisance functions. Additionally, we also establish
its convergence rate, requiring only slower convergence rate for the nuisance function estimators
without restrictive model assumptions. This property enables flexible implementation using off-the-
shelf machine learning algorithms. Through extensive experiments on synthetic data, we empirically
validates the effectiveness of the proposed method and demonstrates its superiority over competing
meta-learners. Our methods thus constitute valuable additions to the CATE estimation toolkit. Their
broader impact will likely be to improve estimation accuracy in existing HTE applications.

In the future, practical adaptations of the SA-learner may be explored to accommodate multiple and
continuous treatments. Multiple treatments arise in various applications; for example, waiting time
before follow-up, percent of discount in marketing studies, and drug dosage in clinical trials (Imai &
van Dyk and, 2004; Hirano & Imbens, 2004; Bretz et al., 2005; Cattaneo, 2010). Analyzing multiple
treatments provides valuable insights into causal effects across different treatment levels but poses
great challenges for CATE estimation, as additional assumptions are required for identification. Re-
cently, Acharki et al. (2023) extended the meta-learner methods to the multiple-treatment setting.
Therefore, a natural future direction is to extend our SA-learner to this context. Another direction
is to extend the framework to the Missing Not At Random (MNAR) setting. Strictly speaking,
our MAR setting corresponds to an MNAR scenario in the classical causal inference framework,
as missingness may depend on external randomness through surrogate outcomes. Nonetheless, con-
cerns about potential unmeasured confounding may still be raised. A potential solution is to leverage
tools from proximal causal inference to address unmeasured confounders associated with the miss-
ingness (Liu et al., 2024; Sverdrup & Cui, 2023; Cui et al., 2024; Mastouri et al., 2023).
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László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free Theory of
Nonparametric Regression. Springer New York, 2002.

P. Richard Hahn, Jared S. Murray, and Carlos M. Carvalho. Bayesian Regression Tree Models for
Causal Inference: Regularization, Confounding, and Heterogeneous Effects (with Discussion).
Bayesian Analysis, 15(3):965, 2020.

Shonosuke Harada and Hisashi Kashima. Counterfactual propagation for semi-supervised individ-
ual treatment effect estimation. Machine Learning and Knowledge Discovery in Databases, pp.
542–558, 2020.

Negar Hassanpour and Russell Greiner. Learning disentangled representations for counterfactual
regression. International Conference on Learning Representations, 2020.

James J. Heckman and Edward Vytlacil. Structural equations, treatment effects, and econometric
policy evaluation. Econometrica, 73(3):669–738, 2005.

Jennifer L. Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011.

Keisuke Hirano and Guido W. Imbens. Applied Bayesian Modeling and Causal Inference from
Incomplete-Data Perspectives. John Wiley & Sons, Ltd, 2004.

Joseph W. Hogan, Jason Roy, and Christina Korkontzelou. Handling drop-out in longitudinal stud-
ies. Statistics in Medicine, 23(9):1455–1497, 2004.

Paul W. Holland. Statistics and causal inference. Journal of the American Statistical Association,
81(396):945–960, 1986.

Jue Hou, Zijian Guo, and Tianxi Cai. Surrogate assisted semi-supervised inference for high dimen-
sional risk prediction. Journal of Machine Learning Research, 24(265):1–58, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kosuke Imai and David A van Dyk and. Causal inference with general treatment regimes. Journal
of the American Statistical Association, 99(467):854–866, 2004.

Kosuke Imai, Luke Keele, and Dustin Tingley. A general approach to causal mediation analysis.
Psychol Methods, 15(4):309–334, 2010.

Guido Imbens, Nathan Kallus, Xiaojie Mao, and Yuhao Wang. Long-term causal inference under
persistent confounding via data combination. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 87(2):362–388, 2024.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
ence. International Conference on Machine Learning, pp. 3020–3029, 2016.

Nathan Kallus and Xiaojie Mao. On the role of surrogates in the efficient estimation of treatment
effects with limited outcome data. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 87(2):480–509, 2024.

Edward H. Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
Electronic Journal of Statistics, 17(2):3008 – 3049, 2023.

David M Kent, Jessica K Paulus, David van Klaveren, Ralph D’Agostino, Steve Goodman, Rodney
Hayward, John P A Ioannidis, Bray Patrick-Lake, Sally Morton, Michael Pencina, Gowri Raman,
Joseph S Ross, Harry P Selker, Ravi Varadhan, Andrew Vickers, John B Wong, and Ewout W
Steyerberg. The predictive approaches to treatment effect heterogeneity (path) statement. Annals
of Internal Medicine, 172(1):35–45, 2020.
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A APPENDIX

The first dataset is simulated as follows:

Xi ∼ U(−1, 1), Ai ∼ Bernoulli(0.5 + 0.4 sign(Xi)),

Si ∼ N2(0, I2), Ri ∼ Bernoulli(0.5),

Yi = b(Xi, Ai, Si) +Aiτ(Xi) + ϵi(Xi), ϵi(Xi) ∼ N(0, (0.2− 0.1 cos(2πXi))
2),

where the base line function is b(Xi, Ai, Si) = µ(Xi) +Aiτ(Xi) + 0.1Si1 − 0.1Si2 with

µ(x) =


(x+ 2)2/2 if −1 ≤ x < −0.5;
x/2 + 0.875 if −0.5 ≤ x < 0;
−5(x− 0.2)2 + 1.075 if 0 ≤ x < 0.5;
x+ 0.125 if 0.5 ≤ x ≤ 1,

and the underlying CATE function is τ(Xi) = 1. Note that the observed indicatorRi is independent
of Yi.

Next, we generate the second dataset. Let trimη(x) = max(η,min(x, 1 − η)) and sigmoid(x) =
1/(1 + e−x). We have

Xi ∼ U(0, 1)5, Ai ∼ Bernoulli(trim0.1(sin(πXi1Xi2))),

Si ∼ N2((1− 2Ai)1, I2), Ri ∼ Bernoulli(sigmoid(Si1/2 + Si2/2 + 1)),

Yi = b(Xi, Ai, Si) + (Ai − 0.5)τ(Xi) + ϵi, ϵi ∼ N(0, 1),

where the base line function is b(Xi, Ai, Si) = sin(πXi1Xi2) + 2(Xi3 − 0.5)2 +Xi4 + 0.5Xi5 +
(1 − 2Ai)(Si1 + Si2), and the underlying CATE function is τ(Xi) = (Xi1 + Xi2)/2. Note that
the observed indicator Ri is conditional independent of the primary outcome Yi given the surrogate
outcomes Si.

14


	Introduction
	Related Works
	Semi-supervised learning
	Causal inference with surrogate outcomes
	Conditional average treatment effect estimation

	Problem Formulation
	Methods
	Improvement using Surrogate Outcomes
	SA-learner

	Theory
	Experiments
	Conclusion
	Appendix

