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Abstract

Self-supervised vision-and-language pretrain-001
ing (VLP) aims to learn transferable multi-002
modal representations from large-scale image-003
text data and to achieve strong performances004
on a broad scope of vision-language tasks af-005
ter finetuning. Previous mainstream VLP ap-006
proaches typically adopt a two-step strategy re-007
lying on external object detectors to encode008
images in a multi-modal Transformer frame-009
work, which suffer from restrictive object con-010
cept space, limited image context and inef-011
ficient computation. In this paper, we pro-012
pose an object-aware end-to-end VLP frame-013
work, which directly feeds image grid fea-014
tures from CNNs into the Transformer and015
learns the multi-modal representations jointly.016
More importantly, we propose to perform ob-017
ject knowledge distillation to facilitate learn-018
ing cross-modal alignment at different seman-019
tic levels. To achieve that, we design two020
novel pretext tasks by taking object features021
and their semantic labels from external de-022
tectors as supervision: 1.) Object-guided023
masked vision modeling task focuses on en-024
forcing object-aware representation learning025
in the multi-modal Transformer; 2.) Phrase-026
region alignment task aims to improve cross-027
modal alignment by utilizing the similarities028
between noun phrases and object labels in the029
linguistic space. Extensive experiments on a030
wide range of vision-language tasks demon-031
strate the efficacy of our proposed framework,032
and we achieve competitive or superior perfor-033
mances over the existing pretraining strategies.034

1 Introduction035

With the success of BERT (Devlin et al., 2018)036

in language modeling, self-supervised Vision-and-037

Language Pretraining (VLP) has attracted much in-038

terest from AI community, which aims to learn gen-039

eralizable multi-modal representations from large-040

scale image-text data. Combined with a pretrain-041

then-transfer strategy, it shows great potential in042

tackling vision and language reasoning tasks, such 043

as image-text retrieval, visual question answering 044

(VQA) and visual entailment (Antol et al., 2015; 045

Lee et al., 2018; Xie et al., 2019; Liu et al., 2021, 046

2020). A critical step in such representation learn- 047

ing is to jointly model linguistic entities and visual 048

semantic concepts (e.g., attributes, objects, and re- 049

lations), as well as their alignment. However, this 050

is particularly challenging due to large discrepancy 051

in visual and language representations (pixels vs 052

words) and lack of entity-level cross-modal corre- 053

spondence in supervision. 054

To tackle those challenges, most existing ap- 055

proaches (Li et al., 2021; Gan et al., 2020; Chen 056

et al., 2020; Lu et al., 2019) adopt a two-step pre- 057

training strategy that firstly utilizes off-the-shelf 058

detectors to parse images into a set of object to- 059

kens, and then builds a multi-layer Transformer to 060

learn visual and language embeddings jointly. In 061

order to facilitate the multi-modal learning, those 062

networks are typically trained via a set of carefully 063

designed BERT-like objectives (e.g. Image-Text 064

Matching). Despite its promising performance, the 065

two-step strategy suffers from several limitations: 066

1) limited visual object concepts as the external 067

detectors are trained on a predefined set of object 068

categories; 2) lack of context cues outside of the 069

object regions, which are crucial for complex rea- 070

soning tasks; 3) sub-optimal visual representation 071

due to stage-wise training; and 4) computational 072

inefficiency caused by additional detection mod- 073

ules. To overcome those limitations, recent works 074

attempt to learn a joint visual-linguistic representa- 075

tions in an end-to-end manner (Huang et al., 2021, 076

2020; Xu et al., 2021; Kim et al., 2021). These 077

methods directly take dense visual features from 078

image grids as inputs to a multi-modal Transformer 079

network, and hence do not rely on external object 080

detectors in both pretraining and finetuning stages. 081

Such model design significantly simplifies overall 082

network architecture and allows deeper integration 083
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between visual and language features. However, us-084

ing grid-level features makes it difficult to capture085

object-level visual concepts, which often results086

in less expressive multi-modal representations and087

inferior performances in downstream tasks.088

In this work, we propose a novel object-aware089

end-to-end (E2E) VLP approach that inherits the090

strengths of both types of pretraining strategies091

mentioned above. Our core idea, which we name092

KD-VLP, is to incorporate visual object concepts093

in the E2E multi-modal learning, which is instan-094

tiated by performing Knowledge Distillation from095

semantic objects (e.g., from the off-the-shelf de-096

tectors) during the pretraining stage. This allows097

the network to better capture object representations098

and hence facilitates learning the alignment of lin-099

guistic entities and visual concepts. To achieve100

this, we introduce two novel pretext tasks to per-101

form object knowledge distillation based on a102

CNN+Transformer architecture: an object-based103

masked vision modeling task for enforcing object-104

aware feature embeddings, and a phrase-region105

alignment task for building correspondence be-106

tween object regions and language entities.107

Specifically, we adopt a typical CNN108

backbone+multi-modal Transformer model109

for the pretraining. Given an image-text pair, the110

visual backbone firstly computes a set of visual111

features on the image grid. Then a multi-layer112

Transformer takes the visual features and the113

corresponding text tokens as input to generate114

their multi-modal embeddings. Based on those115

embeddings, a set of task-specific heads compute116

the corresponding objectives to train the entire117

network in an end-to-end fashion. Here, in addition118

to the commonly-used image-text matching and119

masked language modeling objectives, we develop120

two object-aware pretext tasks. The first task,121

object-guided masked vision modeling (OMVM),122

aims to reconstruct the RoI features and semantic123

label of each object (from an external detector)124

using the surrounding visual context and text125

description. To facilitate cross-modal alignment,126

we also develop a knowledge-guided masking127

strategy, which samples object candidates for128

reconstruction according to the similarity scores129

between the noun phrases in the corresponding130

text and their semantic labels. The second task,131

phrase-region alignment (PRA), aims to further132

improve cross-modal alignment by matching the133

above-mentioned phrase-label similarity scores of134

each phrase with the cross-modal similarity scores 135

between the noun phrase embeddings and object 136

region embeddings. After pretraining, we then 137

transfer the learned multi-modal representations to 138

different downstream vision-language tasks. 139

We perform pretraining on two widely-used 140

indomain datasets: MSCOCO Caption (Lin 141

et al., 2014) and Visual Genome (Krishna et al., 142

2016), and validate the learned multi-modal rep- 143

resentations on five well-known visual-language 144

tasks: Visual Question Answering (VQA), Image- 145

text retrieval, Nature Language Visual Reason- 146

ing (NLVR2), Visual Entailment (VE) and Visual 147

Commonsense Reasoning (VCR). Empirical results 148

show that our method outperforms the state-of-the- 149

art end-to-end approaches by a sizeable margin. To 150

better understand our method, we also provide a 151

detailed ablation study and visualization. 152

The contributions of our work are three-fold: 153

• We propose a novel end-to-end pretraining 154

strategy, capable of better encoding visual ob- 155

ject concepts and facilitating multi-modal rep- 156

resentation learning. 157

• We design an object-guided masked vision 158

model task for distilling knowledge from ex- 159

ternal object detectors, and a phrase-region 160

alignment task to facilitate learning better 161

phrase-region correspondence. 162

• Compared with existing methods, we achieve 163

competitive or superior performances without 164

using external detection outputs during fine- 165

tuning stage and model test. 166

2 Related Work 167

The existing self-supervised VLP approaches can 168

be largely categorized into two groups: the two- 169

step pretraining and the end-to-end pretraining, de- 170

pending on whether they rely on visual object em- 171

beddings as input for the Transformer. 172

Two-step Pretraining firstly employ an off-the- 173

shelf object detector to convert an image into a set 174

of object embeddings, and then feed them into a 175

Transformer jointly with text embeddings to gen- 176

erate their multi-modal representations. Hence 177

their visual feature networks are not optimized dur- 178

ing both pretraining & finetuning stage. Most of 179

these methods, such as LXMERT (Tan and Bansal, 180

2019),ViLBert (Lu et al., 2019), VL-Bert (Su 181

et al., 2020), Unicoder-VL (Li et al., 2020a) and 182

UNITER (Chen et al., 2020), adopt BERT-like 183

objectives to train their networks, which include 184
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Masked Language Modeling (MLM), Masked Vi-185

sion Modeling (MVM) and Image-Text Matching186

(ITM). In addition, VILLA (Gan et al., 2020) devel-187

ops an advanced adversarial pretraining and fine-188

tuning strategy to improve generalization ability.189

OSCAR (Li et al., 2020b) and VINVL (Zhang et al.,190

2021) introduce object labels to bridge different191

modalities and revisit the importance of visual fea-192

tures. Ernie-ViL (Yu et al., 2020) exploits struc-193

tured knowledge in the text and constructs scene194

graph prediction tasks to learn joint representa-195

tions. UNIMO (Li et al., 2021) proposes a uni-196

fied model to leverage large-scale free text corpus,197

image collections, and image-text pairs simultane-198

ously through a contrastive learning task. Despite199

their strong performances, those methods are lim-200

ited by the object detector and neglect visual cues201

outside of object regions, often leading to mistakes202

in downstream tasks.203

End-to-End (E2E) Pretraining directly feed204

dense features on image grids from a visual back-205

bone network into a Transformer network along206

with text tokens. As such, both the visual and207

Transformer networks are optimized jointly in an208

end-to-end manner in the pretraining & finetuning209

stage. Pixel-Bert and SOHO (Huang et al., 2021,210

2020) pioneer the use of the E2E pretraining ar-211

chitecture and propose a novel visual-dictionary212

masked vision modeling task. E2E-VLP (Xu et al.,213

2021) presents a pretraining framework supervised214

with additional object detection and image caption-215

ing tasks to enhance visual semantics learning. It216

is worth noting that their object detection pretext217

task requires millions of bounding boxes annota-218

tion, unable to generalize to large-scale image-text219

corpus. ViLT (Kim et al., 2021) is the first to unify220

vision and language with a pure Transformer net-221

work, which has a simpler structure and enjoys222

faster inference. However, compared to the two-223

step methods, they are typically less expressive224

in terms of object-level concepts and thus suffer225

from weaker performances on challenging visual226

reasoning tasks. Our method is in line with the227

E2E pretraining framework. The key difference is228

that we propose to facilitate learning object-aware229

multi-modal representations by performing object230

semantic knowledge distillation.231

3 Our Approach232

3.1 Problem Definition and Overview233

The goal of self-supervised VLP is to learn a234

generic and transferable visual-linguistic represen-235

tation from a large amount of image-text data, 236

which can achieve strong generalization perfor- 237

mances in downstream vision-language tasks. To 238

this end, the pretraining framework typically de- 239

velops a variety of carefully-designed cross-modal 240

pretext tasks (e.g. MLM, ITM) to train a deep net- 241

work that encodes the multi-modal representation. 242

Formally, we denote the image-text corpus for train- 243

ing as X = {(Ii, Di)}|X |i=1 where I represents the 244

image andD is the corresponding language descrip- 245

tion. In general, we construct a pretraining network 246

consisting of a representation network moduleMθ 247

and a set of task-specific network heads {Φθs}Ss=1 248

where s indicates the pretext tasks. The overall 249

pretraining objective is defined as follows, 250

min
θ,θ1,...θS

E(I,D)∼X [
∑

s Ls(Ys,Φθs ◦Mθ(I,D)] (1) 251

where Ys and Ls are task-specific ground-truth la- 252

bel and loss function respectively, and ◦ is a net- 253

work compound operator. After pretraining, we 254

remove all the task-specific heads and apply the 255

representation networkMθ∗ with the learned pa- 256

rameters θ∗ to the downstream tasks, followed by 257

task-specific fine-tuning. 258

In this work, we aim to design an E2E pretrain- 259

ing strategy for the VLP problem. To this end, 260

we adopt a modular representation network, which 261

takes image grid features from a CNN-based vi- 262

sual network and the corresponding text embed- 263

dings into a multi-modal Transformer (Huang et al., 264

2020, 2021). Our goal is to learn the visual network 265

and the Transformer jointly, and yet to effectively 266

encode object-level visual concepts in the multi- 267

modal representations. This enables us to capture 268

rich cross-modal alignment between linguistic en- 269

tities and visual semantic concepts for the down- 270

stream tasks, and meanwhile to enjoy the benefits 271

of an efficient E2E network design without relying 272

on detectors during fine-tuning and inference. 273

To achieve this, we propose a set of cross-modal 274

pretext tasks that perform object knowledge distil- 275

lation from external detectors in both semantic and 276

feature space. Specifically, in addition to the image- 277

text matching (ITM) and masked language mod- 278

eling (MLM) tasks, we introduce two novel pre- 279

text tasks, Object-Guided Masked Vision Modeling 280

(OMVM) and Phrase-Region Alignment (PRA), 281

which take the object RoI feature embeddings and 282

semantic labels from external detectors as supervi- 283

sion. The OMVM task masks out the object regions 284

and forces the network to predict the correspond- 285
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Figure 1: Overview: The model contains a Visual Backbone for preparing image embeddings and a Transformer for vision
& language fusion. The entire framework is supervised by two novel proposed pretext tasks: Object-guided Masked Vision
Modeling (OMVM), Phrase-Region Alignment (PRA) as well as two standard tasks: Masked Language Modeling (MLM) and
Image-Text Matching (ITM).

ing external RoI feature embeddings and object286

labels while the PRA task exploits object labels287

to encourage the alignment between visual objects288

and language entities. Fig.1 illustrates an overview289

of our framework. Below we will first present the290

details of model architecture in Sec.3.2, followed291

by our design of pretext tasks in Sec.3.3.292

3.2 Model Architecture293

Given an image-text pair, our model firstly com-294

putes the image embeddings and linguistic embed-295

dings respectively, and then concatenates them into296

a sequence of tokens with two additional tokens297

[sep] and [cls] as inputs to a Transformer for gen-298

erating multi-modal contextualized embeddings.299

Visual Embedding We adopt a CNN backbone300

to extract image features V = {vi}Li=1 for each301

image I where L is the size of feature grids and302

vi ∈ Rdv is a feature vector with dimension dv.303

In addition, each feature is further concatenated304

with its 2-D sine position embedding (Carion et al.,305

2020). Following SOHO, we use a ResNet-101(He306

et al., 2016) as the visual backbone, followed by307

additional 1x1 Conv and 2x2 strides Max-pooling308

to reduce the memory footprint.309

Linguistic Embedding For the language D, we310

first tokenize the sentence into a sequence of word311

tokens using WordPiece (Wu et al., 2016), then312

encode them into word embeddingsW = {wj}Tj=1313

where wj ∈ Rdw is the feature vector. Similarly,314

an index position (Devlin et al., 2018) embedding315

is supplemented to each word embedding.316

Multi-modal Transformer After obtaining im-317

age and linguistic embeddings, we assemble them318

into a sequence of tokens {V, [sep],W, [cls]}, and319

adopt a multi-layer Transformer to compute their 320

representations encoded by the final-layer states 321

{HV ,hsep,HW ,hcls} whereHV = {hvi}Li=1 and 322

HW = {hwj}Tj=1 represent the states for visual and 323

language part respectively. Finally, those repre- 324

sentations are sent into each pretext task head to 325

compute the supervision signals. 326

3.3 Pretext Tasks 327

We now describe our cross-modal pretext tasks for 328

the E2E pretraining, aiming to learn more effec- 329

tive multi-modal representations. Below we will 330

first introduce objects-aware pretext tasks that take 331

external object features and semantic labels as su- 332

pervision, followed by the standard MLM and ITM. 333

Specifically, for each image, we first generate a 334

set of object proposals from an off-the-shelf detec- 335

tor, denoted as {(on, cn, fn)}Nn=1 where on ∈ R4 336

is box location, cn indicates object category, and 337

fn ∈ Rdo is object RoI features with dimension 338

Rdo . For ease of notation, we also introduce a bi- 339

nary mask1 on the feature map for each object on 340

and denote its flattened version as mn ∈ RL. For 341

the corresponding text, we extract a set of noun 342

phrases P = {pz}|P|z=1 with an external language 343

tool2 and calculate the similarity αz,n between each 344

noun phrase pz and the object category cn in the 345

linguistic space: 346

αz,n = Cos(Eext(pz), Eext(cn)), (2) 347

where Cos(·, ·) indicates cosine distance function 348
and Eext represents an off-the-shelf language em- 349

bedding (e.g. BERT). Using them as supervision, 350

we design two novel pretext tasks to distill object- 351

level knowledge below. 352

1We give an illustration in Suppl.
2https://spacy.io/
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Object-guided Masked Vision Modeling353

(OMVM) The first task aims to learn more354

explicit object concepts in the E2E pretraining.355

Specifically, we sample an object each time and356

mask out its features in the Transformer input,357

and enforce the network to generate external358

object RoI features and semantic labels. To359

learn better cross-modal alignment, we propose360

a knowledge-guided masking strategy, which361

samples noun phrase-related object regions to362

mask based on the (normalized) similarity score363

αz,n. The selected object region is denoted with364

its binary mask, category and RoI features, as365

(m∗, c∗, f∗).366

We design two learning objectives, Masked Re-367

gion Classification (MRC) and Masked Region Fea-368

ture Regression (MRFR) as below369

LOMVM =E(I,D)∼XLMRC(c∗,V\m∗ ,W)

+LMRFR(f∗,V\m∗ ,W)
(3)370

To calculate the losses LMRC and LMRFR, we371

first compute the object representation hm∗ for the372

masked region at the final layer, which is average-373

pooled overHV based on its binary mask m∗. For374

MRC, a multi-layer FC network ΦMRC is adopted375

to predict its object category. Thus, LMRC=376

CE(ΦMRC(hm∗), c∗) is the standard cross-entropy377

loss. In addition, we take another FC network378

ΦMRFR to learn the object concept in feature space379

directly by minimizing the L2 distance, LMRFR =380

||ΦMRFR(hm∗)− f∗)||22.381

Phrase Region Alignment (PRA) The second382

task, PRA, mainly focuses on learning cross-modal383

alignment at object-level, which aims to pull pos-384

itive phrase-region pairs closer and push negative385

pairs away. Here we utilize the similarity αz,n be-386

tween the noun phrase and object category in the387

linguistic space as a guidance.388

Concretely, we first compute the object represen-389

tation hmn for each proposal and the phrase rep-390

resentation hpz , both of which are obtained from391

the final layer states of the Transformer. Specif-392

ically, hmn is average-pooled over HV based on393

binary mask mn while hpz = 1
|pz |

∑
j∈pz hwj rep-394

resents average states of word tokens within pz .395

We define the cross-modal similarity as α̂z,n =396

Cos(hpz ,hmn).397

The task PRA minimizes the KL-divergence398

between the cross-modal similarities α̂z =399

{Softmax(α̂z,n)}Nn=1 and the phrase-label similar-400

ities αz = {Softmax(αz,n)}Nn=1 as below:401

LPRA = 1
|P|

∑
zDKL(α̂z||αz) (4) 402

Finally, denoting the mask setM = {mn}Nn=1, we 403

have the overall PRA loss function as follows: 404

LPRA = E(I,D)∼XLPRA({αz,n}|P|,Nz,n=1,M,P,V,W) (5) 405

Masked Language Modeling (MLM) We take 406

the same masking strategy (15% prob. to mask) as 407

in BERT (Devlin et al., 2018) to randomly mask 408

out the input word tokens. Here, MLM aims to 409

predict the original word index in vocabulary space 410

for each masked token based on the whole image 411

and its surrounding language context via the Trans- 412

former. Hence a cross-entropy loss is adopted: 413

LMLM = −E(I,D)∼X logP (wj |V,W\j) (6) 414

Image-Text Matching (ITM) In ITM, the multi- 415

layer Transformer is trained to distinguish whether 416

the input image-text pairs are semantically matched 417

based on the final layer [cls] token representation 418

hcls. To construct the training samples, we ran- 419

domly replace the text for each image-text pair with 420

another text from dataset with a probability of 0.5. 421

Thus, the output label can be defined as y ∈ {0, 1} 422

where y = 1 indicates matched pair. The training 423

objective for the ITM task is to minimize binary 424

cross-entropy loss: 425

LITM = −E(I,D)∼X logP (y|V,W) (7) 426

4 Experiments 427

4.1 Experiment Setup 428

Pretraining Corpus: Following the E2E pre- 429

training strategy (Huang et al., 2021, 2020; Xu 430

et al., 2021), we take indomain datasets: MSCOCO 431

(Lin et al., 2014) and VG (Krishna et al., 2016) as 432

pretraining datasets since it is widely used in liter- 433

ature. In total, two datasets comprise about 200K 434

images and 5.6M image-text pairs, where each im- 435

age is associated with multiple captions. 436

Implementation Details: We follow BERT to 437

tokenize caption into word tokens by using Word- 438

Piece, and resize the image into (800, 1333) as 439

prior works. For model architecture, a widely-used 440

ResNet101 for visual encoding and 12-layer Trans- 441

former for multi-modal fusion are adopted for a fair 442

comparison. Both networks are initialized with Im- 443

ageNet and BERT pretrained parameters. Besides, 444

following the majority of two-step methods, we 445

apply the widely-used object detector BUTD (An- 446

derson et al., 2018) to generate object proposals as 447

well as their RoI embeddings as our supervision. 448
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Table 1: Evaluation results on the multi-modal downstream tasks. Indomain denotes MSCOCO and Visual Genome corpus
while outdomain stands for Conceptual Caption and SBU corpus. Text corpus includes BookWiki and OpenWebText while
image corpus contains OpenImages and unlabeled COCO. AT means using adversarial training during both pretraining and
finetuning stages. Blue number denotes experiments with additional text premise input. - denotes the result is not available

Models Pretraining corpus Backbone AT
Flickr30k-IR Flickr30k-TR SNLI-VE NLVR2 VQA2.0

R@1 / R@5/ R@10 R@1 / R@5 / R@10 val / test dev / test-p test-dev / -std
two-step pretraining

ViLBert (Lu et al., 2019) Conceptual Cap. ResNet101 x 58.20 / 84.90 / 91.52 - - - 70.55 / 70.92
VL-Bert (Su et al., 2020) Conceptual Cap. ResNet101 x - - - - 71.79 / 72.91

VisualBert (Li et al., 2019) MSCOCO ResNet152 x 71.33 / 84.98 / 86.51 - - 67.40 / 67.00 70.80 / 71.00
Unicoder-VL(Li et al., 2020a) outdomain ResNet101 x 71.50 / 90.90 / 94.90 86.20 / 96.30 /99.00 - - -

LXMERT (Tan et al. 2019) indomain ResNet101 x - - - 74.90 / 74.50 72.42 / 72.54
VLP (Zhou et al., 2021) outdomain ResNext101 x - - - - 70.50 / 70.70

UNITER (Chen et al., 2020) indomain+outdomain ResNet101 x 72.52 / 92.36 / 96.08 85.90 / 97.10 / 98.80 78.59 / 78.28 75.85/75.80 72.70 / 72.91
OSCAR (Li et al., 2020b) indomain+outdomain ResNet101 x - - - 78.07 / 78.36 72.16 / 73.44
VILLA (Gan et al., 2020) indomain+outdomain ResNet101 X 74.74 / 92.86 / 95.82 86.60 / 97.70 / 99.20 79.47 / 79.03 78.39 / 79.30 73.59 / 73.67
Ernie-ViL (Yu et al., 2020) outdomain ResNet101 X 74.44 / 92.72 / 95.94 86.70 / 97.80 / 99.00 - - 72.62 / 72.85

UNIMO (Li et al., 2021)
indomain+outdomain+

ResNet101 X 74.66 / 93.40 / 96.08 89.70 / 98.40 / 99.10 80.00 / 79.10 - 73.79 / 74.02
text-corpus+ image-corpus

end-to-end pretraining
Pixel-Bert (Huang et al., 2020) indomain ResNet50 x 59.80 / 85.50 / 91.60 87.00 / 98.90 / 99.50 - 71.70 / 72.40 71.35 / 71.42

E2E-VLP (Xu et al., 2021) indomain ResNet101 x - - - 75.23 /- 72.43 / -
ViLT (Kim et al., 2021) indomain+outdomain ViT-B x 64.40 / 88.70 / 93.80 83.50 / 96.70 / 98.60 - 75.70 / 76.13 71.26 / -

SOHO (Huang et al., 2021) indomain ResNet101 x 72.50 / 92.70 / 96.10 86.50 / 98.10 / 99.30 85.00 / 84.95 76.37 / 77.32 73.25 / 73.47
KD-VLP (ours) indomain ResNet101 x 78.20 / 94.56 / 97.02 91.40 / 98.90 / 99.40 78.21(88.18) / 77.87(88.21) 77.36 / 77.78 74.20 / 74.31

Table 2: Evaluation of image retrieval (IR) and text retrieval (TR) task on MSCOCO dataset and the performance of VCR task.

Models Backbone
MSCOCO-IR(1K) MSCOCO-TR(1K) MSCOCO-IR(5K) MSCOCO-TR(5K) VCR

R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10 Q→A QA→R Q→AR
two-step pretraining

Unicoder-VL(Li et al., 2020a) ResNet101 69.70 / 93.50 / 97.20 84.30 / 97.30 / 99.30 46.70 / 76.00 / 85.30 62.30 / 87.10 / 92.80 72.60 74.50 54.40
UNITER (Chen et al., 2020) ResNet101 - - 50.30 / 78.50 / 87.20 64.40 / 87.40 / 93.10 74.56 77.03 57.76

OSCAR (Li et al., 2020b) ResNet101 - - 54.00 / 80.80 / 88.50 70.00 / 91.10 / 95.50 - - -
VILLA (Gan et al., 2020) ResNet101 - - - - 75.54 78.78 59.75
VL-Bert (Su et al., 2020) ResNet101 - - - - 73.80 74.40 55.20
end-to-end pretraining

Pixel-Bert (Huang et al., 2020) ResNet50 64.10 / 91.00 /96.20 77.80 /95.40 / 98.20 41.10 / /69.70 / 80.50 53.40 / 80.40 / 88.50 - - -
ViLT (Kim et al., 2021) ViT-B - - 42.70 / 72.90 / 83.10 61.50 / 86.30 / 92.70 - - -

SOHO (Huang et al., 2021) ResNet101 73.50 / 94.50 / 97.50 85.10 / 97.40 / 99.40 50.60 / 78.00 / 86.70 66.40 / 88.20 / 93.80 - - -
KD-VLP (ours) ResNet101 75.21 / 94.89 / 97.99 88.62 / 98.18 / 99.44 56.64 / 82.17 / 89.49 74.28 / 92.86 / 96.28 76.70 78.63 60.54

For model learning, we optimize the entire net-449

work by using SGD for CNNs with a learning rate450

of 1e-2 and AdamW for Transformer with a learn-451

ing rate of 1e-4, as suggested in SOHO. The train-452

ing iterations are up to 100K with batch-size 512453

in each. The learning rate decays 10 times at 20K,454

40K respectively. All experiments are conducted455

on 16 NVIDIA V100 GPUs with mixed-precision456

training to reduce memory cost about 7 days.457

4.2 Downstream Tasks458

As in prior works, we evaluate our approach by459

finetuning it over a set of well-established VL un-460

derstanding tasks, including image-text retrieval,461

visual entailment (VE), natural language visual rea-462

soning (NLVR2), VQA, and VCR. During fine-463

tuning, we compound a specific learnable head464

with the pretrained visual backbone and Trans-465

former, then finetune the entire network with down-466

stream task-specific loss in an E2E fashion. In467

this work, we mainly compare performance with468

SOHO, Pixel-Bert, E2E-VLP, and ViLT since they469

are the E2E pretraining as ours. Besides, several470

representative two-step pretraining approaches are471

also selected to compare without loss of generality.472

Next, we will depict results analysis for each task473

and leave finetuning experiment setups in Suppl.474

Image-Text Retrieval aims retrieval an image475

when give a specific caption, or vice versa. As 476

in Tab.1&2, we achieve superior performances in 477

all evaluation settings on both datasets, especially 478

outperforming SOHO by 5.65% and 4.90% R@1 479

in Flickr30k-IR/-TR, 1.71% and 3.52% R@1 in 480

MSCOCO-IR/-TR 1K test set as well as 6.04% 481

and 7.88% in the 5K test set. It is worthing noting 482

that we outperform the two-step pretraining SOTA 483

approach UNIMO by a moderate margin, despite 484

that they use additional outdomain datasets, text 485

corpus, image collections, and adversarial training. 486

Visual Entailment (VE) predicts whether an 487

image semantically entails the text and requires 488

fine-grained reasoning ability in a model. In Tab.1, 489

we achieve we achieve 78.21% accuracy in val 490

set and 77.87% in test set. It is worth noting that 491

SOHO takes additional text premise as input, which 492

leads to large improvements. For a fair compari- 493

son, we also implement that setting and outperform 494

SOHO by a sizeable margin. 495

NLVR2 aims to determine whether a natural cap- 496

tion is true about a pair of photographs, which is 497

full of semantic diversity, compositionality chal- 498

lenges. We outperform SOHO, Pixel-bert, ViLT 499

and E2E-VLP by a clear margin as in Tab.1, and 500

performs comparably with two-step pretraining. 501

VQA requires requires a richer multi-modal un- 502
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Table 3: Ablation study of various proposed pretext tasks. Image-text Retrieval task is conducted on MSCOCO 1K test set.

Models Pretext Tasks
MSCOCO-TR(1K) MSCOCO-IR(1K) SNLI-VE NLVR2 VQA2.0

R@1 / R@5 / R@10 R@1 / R@5 / R@10 val / test dev / test-p test-dev / -std
baseline ITM+MLM 57.99 / 87.80 / 94.66 73.10 / 93.42 / 97.32 73.44 / 73.40 62.13 / 62.08 66.62 / 66.68

- ITM+MLM+StandardMVM 58.22 / 87.59 / 94.60 73.58 / 93.66 / 97.63 74.00 / 73.46 63.26 / 62.75 66.66 / 66.86
- ITM+MLM+RandomMVM 58.18 / 87.12 / 94.68 73.60 / 94.80 / 97.50 73.99 / 74.58 64.02 / 64.68 66.90 / 66.05
- ITM+MLM+OMVM 60.32 / 88.65 / 95.15 74.83 / 94.34 / 97.74 74.54 / 75.12 66.23 / 66.76 67.95 / 68.21

KD-VLP (ours) ITM+MLM+OMVM+PRA 61.10 / 89.40 / 95.50 76.70 / 95.00 / 98.00 74.62 / 75.22 66.71 / 67.59 68.19 / 68.43

Figure 2: (a) demonstrates the comparison of different masking vision strategies where the first row presents the 15% Bert-like
masking strategy adopted by all previous works and the second row shows our knowledge-guided masking strategy. Red masks
denotes the masked regions. (b) demonstrates a comparison of word-to-image attention maps. The bright region denotes higher
attention scores between word and visual tokens.

derstanding to solve the free-form and open-ended503

questions. In Tab.1, the results present a clear im-504

provement compared with E2E pretraining meth-505

ods while surprisingly outperform the strong two-506

step pretraining methods by a slight margin.507

VCR requires higher-order cognition and508

commonsense reasoning about the world.509

We achieve superior accuracy, specifically510

76.70%/78.63%/60.53% in three different problem511

setting. It is worth noting that we set up the first512

end-to-end benchmark for the challenging VCR513

task without relying on detection during inference.514

Besides, we outputform VL-BERT and OSCAR by515

a clear margin and work comparably with VILLA,516

which adopts advanced adversarial training and517

more outdomain corpus.518

Overall, our approach outperforms the previous519

E2E pretraining by a sizeable margin, which indi-520

cates the superiority of our object-aware E2E multi-521

modal representation. In addition, we also per-522

forms better or comparably with previous state-of-523

the-art two-step pretrainig, like UNIMO, VILLA,524

Ernie-ViL, which even adopt more outdomain cor-525

pos, sophisticated adversarial training.526

4.3 Ablation Study & Visualization Analysis527

In this section, we validate the effectiveness of each528

pretext task and provide qualitative visualization529

analysis. To save experimental cost, we adopt a530

light-weighted ResNet-18 and 3-layer Transformer531

network to conduct the ablation study.532

Baseline: The baseline takes standard ITM and 533

MLM to train the entire model. In Tab.3, it still 534

achieves decent results over various VL tasks. 535

Object-guided masked vision modeling: As in 536

Tab.3, compared with baseline, OMVM presents 537

a clearly consistent improvement over all down- 538

stream tasks. It suggests that OMVM can enhance 539

the end-to-end multi-modal representations with 540

explicit object concepts learning. In addition, the 541

knowledge-guided masking strategy further helps 542

establish cross-modal correspondence. 543

To further investigate the OMVM task, we ran- 544

domly mask a box region with 15% probability 545

rather than sampling a region based on the nor- 546

malized similarity score αz,n, denoted as Random- 547

MVM. The other pretraining details are the same 548

as in OMVM. We observe a significant perfor- 549

mance drop over all downstream tasks, especially 550

in image-text retrieval and NLVR2. It indicates 551

that simple RandomMVM will result in inefficient 552

multi-modal representation learning because there 553

is a high probability that the selected region has no 554

relationship with the associated description. 555

In addition, we also explore the similar masked 556

feature regression task as in UNITER by randomly 557

masking out the image grid features as in BERT 558

and then requiring the Transformer to reconstruct 559

its original features rather than the external object 560

RoI embeddings, denoted as StandardMVM. The 561

results show that such StandardMVM fails to fa- 562
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Figure 3: Performance gains in different model size

cilitate multi-modal representation learning in the563

E2E framework.564

Phrase-region alignment: The OMVM above565

mainly focuses on instance-level knowledge dis-566

tillation by absorbing external object RoI features567

and semantic labels. Different from that, PRA aims568

to establish positive object-phrase correspondence569

while suppressing the negative ones under the guid-570

ance of similarities between noun phrases and ob-571

ject labels in linguistic space. As in Tab. 3, we572

significantly improve 0.78% R@1 of MSCOCO-573

TR and 1.87% in MSCOCO-IR. In addition, PRA574

shows slight improvements for more challenging575

fine-grained reasoning tasks, like VE, NLVR2, and576

VQA. The results indicate that PRA is beneficial to577

multi-modal representation learning.578

Visualization analysis: In Fig.2(a), our579

knowledge-guided masking strategy always masks580

out the phrase-related image regions, which can581

facilitate multi-modal learning. On the contrary,582

previous works, like SOHO, VILLA ..., mask583

out background regions or part of the object584

region with a high probability, which have no585

relationship with the corresponding description586

and result in inefficient cross-modal alignment.587

Fig.2(b) demonstrates the word-to-image attention588

maps. Compared to SOHO, our method can589

attend more accurately to image regions for the590

corresponding word. Surprisingly, even the word591

"smiling" can locate the baby’s face correctly,592

which suggests that our approach not only learns593

better noun-region alignment but also helps594

establish high-order correspondence, like actions.595

(see Suppl. for more visualization.)596

Influence of object detector: We adopt the de-597

fault BUTD detector in a typical 2-step pretraining598

method for a largely fair comparison. To inves-599

tigate the influence of object detectors, we also600

conduct pretraining with objects knowledge ex-601

tracted from FRCNN-RN101 pretrained on COCO.602

In Tab.4, we observe a performance drop compared603

with the model pretrained with BUTD, which sug-604

Table 4: Performance with different object detectors
Models Detectors Categories NVLR-dev VQA-test dev
SOHO - - 64.62 66.69

KD-VLP (ours) FRCNN on COCO 80 65.86 67.14
KD-VLP (ours) BUTD 1600 66.71 68.19

Table 5: Individual contribution of each pretext task
Models Pretext Tasks NVLR-dev VQA-test dev
baseline ITM+MLM 62.13 66.62

- ITM+MLM+MRC 64.44 67.27
- ITM+MLM+MRFR 64.23 67.36
- ITM+MLM+PRA 63.78 67.17

KD-VLP (ours) ITM+MLM+MRC+MRFR+PRA 66.71 68.19

gests large object knowledge space will facilitate 605

multimodal pretraining. Besides, although with 606

COCO detector, we still outperform SOHO by a 607

clear margin, indicating the superiority of object 608

knowledge in E2E pretraining framework. 609

Contribution of each pretext task: In Tab.5, 610

we show the individual contributions of our pro- 611

posed tasks. MRC, MRFR, PRA pretext tasks all 612

help facilitate multi-modal representation learning 613

and improve the performance compared with the 614

baseline model as a result. 615

Impact of object knowledge distillation in dif- 616

ferent model sizes: We take SOHO as a strong 617

baseline and compare it at different model sizes 618

(ResNet18 + 3-layer Transformer, ResNet101 + 619

12-layer Transformer) to investigate the impact of 620

object knowledge distillation. Fig.3 demonstrates 621

the performance gains over some representative 622

vision-language tasks. It shows that object con- 623

cepts learning always helps multi-modal represen- 624

tation learning no matter what model size it is. In 625

VE and text-retrieval, the larger model even im- 626

proves significantly than the light-weighted model 627

and shows more capacities to learn external object 628

semantics knowledge. 629

5 Conclusion 630

In this paper, we have proposed a novel self- 631

supervised VLP method that promotes learning 632

object-aware multi-modal representations in an 633

end-to-end framework. Our key idea is to perform 634

object knowledge distillation in both semantic and 635

feature space from external detectors in the pre- 636

training stage. In particular, we develop an object- 637

guided masked vision modeling task for distilling 638

external object knowledge, and a phrase-region 639

alignment task for learning better alignment of lin- 640

guistic entities and visual concepts. Compared 641

with prior works, we achieve competitive or supe- 642

rior performance without relying on sophisticated 643

object detectors during model finetuning and test 644

in downstream tasks. 645
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Appendix775

In this supplementary material, we firstly discuss776

the limitations of work, then give the detailed777

dataset statistics of pretraining and each down-778

stream task, and depict more advanced implemen-779

tation details of the pretraining. In addition, we780

also demonstrate how to generate a binary mask for781

each object proposal, followed by detailed exper-782

imental setups and finetuning strategies of down-783

stream tasks. Besides, we also discuss the influence784

of image size during pretraining stge. Finally, we785

provide more qualitative visualization results for786

better understanding.787

A Limitations788

In this paper, we only pretrain our proposed KD-789

VLP framework on indomain datasets, including790

MSCOCO and Visual Genome caption datasets. In791

the future, we need to scale up our model pretrained792

on more noisy web image-text pairs to make it to793

learn more general knowledge.794

B Experiments795

B.1 Dataset Statistics796

As shown in Tab.6 we summarize the dataset statis-797

tics of pretraining and each downstream task, in-798

cluding the number of image-text pairs and num-799

ber of images for each dataset split. It is worth800

mentioning that we select the MSCOCO & Visual801

Genome image-text data as our pretraining datasets802

Figure 4: Illustration of generating binary mask for each
proposal.

since they are typical indomain datasets for many 803

downstream tasks and are widely adopted by prior 804

works. 805

Table 6: Dataset statistics of pretraining and downstream
tasks. The number in brackets indicates the number of images

task data sources training val test

pretraining
MSCOCO

5.1M(207K) 131K(7.1K) -
Visual Genome

VCR
MovieClips

213K(80K) 26.5K(9.9K) 25.2K(9.5K)
LSMDC

Image-text Flickr30k 145K(29K) 5K(1K) 5K(1K)
Matching MSCOCO 567K(113.2K) 25K(5K) 25K(5K)

Visual Flickr30k
52.9K(29.7K) 17.8K(1K) 17.9K(1K)

Entailemnt SNLI

VQA
MSCOCO

443.8(82.8K) 214.4K(40.5K) 447.8K(81.4K)
Abstract Scenes

NLVR2 Flickr30k 529.5K(29.8K) 17.9K(1K) 17.9(1K)

B.2 More Pretraining Details 806

In pretraining stage, we also adopt gradient accu- 807

mulation3 and gradient checkpointing4 techniques 808

to further reduce the GPU memory footprint and 809

increase the batch-size. In our experiments, the 810

gradient accumulation step size is set as 4. 811

B.3 Binary mask for each proposal 812

As shown in Fig.4, we generate a binary mask of 813

the same size of feature map for each proposal 814

where locations within the bounding box fill 1 and 815

others fill 0. 816

B.4 Detailed experiment setup for each 817

downstream task 818

Image-Text Retrieval: The image-text retrieval 819

typically includes two sub-tasks: image-retrieval 820

(IR) aims to retrieval an image when given a 821

specific caption and text-retrieval (TR) is on 822

the contrary. We perform experiments on both 823

Flickr30k (Plummer et al., 2015) and MSCOCO 824

dataset. As in UNITER, we construct a mini-batch 825

for each GPU of a matched image-text pair, t-1 neg- 826

ative images, and t-1 negative texts where t is set 827

as 32. Besides, we take a fully-connected network 828

3https://nvidia.github.io/apex/advanced.html
4https://pytorch.org/docs/stable/checkpoint.html

10



(a) Knowledge-guided masking strategy. Red mask denotes the masked region in an image

(b) Text-to-image attention maps. The bright region denotes higher attention scores between word tokens and image regions.

on top of hcls and adopt the binary cross-entropy829

loss as supervision signal. The finetuning iterations830

are up to 10K by following linear decay schedul-831

ing with initial lr 7e-5 for Transformer, 1e-4 for832

CNNs. Top-K (R@K, K ∈ {1, 5, 10}) recall is the833

evaluation metric.834

Visual Entailment (VE): VE task aims to pre-835

dict whether an image semantically entails the text836

and requires fine-grained reasoning ability in a837

model. VE dataset is built upon SNLI (Bowman838

et al., 2015) and Flickr30k. Each image-text pair is839

assigned with one of three classes: entailment, neu-840

tral, contradiction. As in UNITER, we formulate it841

as 3-way classification problem based on hcls. The842

batch size is 32 per GPU while other finetuning843

strategies are the same.844

Natural Language Visual Reasoning (NLVR2):845

NLVR2 aims to determine whether a natural cap-846

tion is true about a pair of photographs, which847

is full of semantic diversity, compositionality chal-848

lenges. We follow UNITER to construct two image-849

text pairs for each sample and concatenate their850

hcls features to infer true or false. All finetuning851

strategies are the same as before except for a batch852

size 12 per GPU. 853

Visual Question Answering (VQA): VQA re- 854

quires a richer multi-modal understanding to solve 855

the free-form and open-ended questions. VQA 856

dataset contains 204K images from MSCOCO, 857

614K free-from nature language question and 858

around 6M answers. It is typically formulated as 859

a 3192-way classification problem and supervised 860

by binary cross-entropy loss as in UNITER. The 861

batch size here is 32 per GPU while other finetun- 862

ing strategies are kept the same. 863

Visual Commonsense Reasoning (VCR): 864

Given a question for an image, VCR needs to 1.) 865

correctly answer (Q→A); 2.) provide a rationale 866

justifying its answer (QA→R); 3.) reason both 867

of them (Q→AR), which requires higher-order 868

cognition and commonsense reasoning about 869

the world. Following UNITER, we introduce a 870

second-stage pretraining over the VCR dataset due 871

to severe difference in dataset distribution com- 872

pared to indomain image-text corpus. In addition, 873

we also utilize a similar person grounding (Park 874

et al., 2020) pretext task to tightly align the person 875

tags in text and their visual locations. During 876
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Table 7: Performance comparison of different image size
Models Image Size NVLR-dev VQA-test dev
SOHO (600,1000) 64.62 66.69

KD-VLP(ours) (600,1000) 66.52 68.04
KD-VLP(ours) (800,1333) 66.71 68.19

finetuning stage, we concatenate each question877

along with each possible answer to form four878

kinds of text inputs, and feed each of them into879

Transformer network with corresponding image880

embeddings. Finally, a binary cross-entropy loss881

is adopted to supervise each pair. Since VCR882

questions explicitly reference objects at specific883

locations, we implement coreferencing between884

text and image by replacing referenced entities885

in the questions with their corresponding box886

locations. In the second stage pretraining for VCR,887

we reduce the learning rate to a constant 5e-05 and888

trained for an additional 9K steps. Due to longer889

sequence lengths in the VCR dataset, a training890

batch-size of 224 is used. We also use a step size891

of 2 for gradient accumulation. After pretraining,892

we finetuned on the VCR task for 10K steps with a893

learning rate of 1e-04 for both the Transformer and894

the CNNs. Linear warmup of the learning rate is895

applied for 1000 steps, followed by a linear decay896

ending at a total of 10K steps.897

B.5 Influence of image size898

We adopt larger image size mainly for fair compar-899

isons with most 2-step pretraining methods, Pix-900

elBert and E2E-VLP as all of them use the size901

(800, 1333). To investigate this, we pretrain our902

method with size (600,1000) and report the results903

in Tab.7. We can see that our method has a mild904

performance drop, but still outperforms SOHO by905

a decent margin.906

B.6 More Visualizations907

As in Fig.5a, we observe that our knowledge-908

guided masking strategy masks out the image re-909

gions, which are highly related to the correspond-910

ing sentences. This design can force Transformer911

to infer object features and semantic labels based912

on the surrounding visual context and its language913

descriptions. On the contrary, SOHO randomly914

masks out either background regions (Fig.5a(1)915

& Fig.5a(2)) or local object parts (Fig.5a(3) &916

Fig.5a(4)), which are not related to the correspond-917

ing sentences with a high probability and result in918

inefficient multi-modal representation learning.919

As shown in Fig.5b, it shows that our object-920

aware end-to-end multi-modal representations can921

accurately establish the correspondence between 922

word tokens and visual tokens, which demonstrates 923

the superiority of our approach. 924
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