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Abstract
Reinforcement learning (RL) is a powerful ap-
proach for acquiring a good-performing policy.
However, learning diverse skills is challenging
in RL due to the commonly used Gaussian pol-
icy parameterization. We propose Diverse Skill
Learning (Di-SkilL1), an RL method for learning
diverse skills using Mixture of Experts, where
each expert formalizes a skill as a contextual mo-
tion primitive. Di-SkilL optimizes each expert
and its associate context distribution to a max-
imum entropy objective that incentivizes learn-
ing diverse skills in similar contexts. The per-
expert context distribution enables automatic cur-
ricula learning, allowing each expert to focus
on its best-performing sub-region of the context
space. To overcome hard discontinuities and
multi-modalities without any prior knowledge of
the environment’s unknown context probability
space, we leverage energy-based models to rep-
resent the per-expert context distributions and
demonstrate how we can efficiently train them
using the standard policy gradient objective. We
show on challenging robot simulation tasks that
Di-SkilL can learn diverse and performant skills.

1. Introduction
Solving tasks in diverse manners enables agents to better
adapt to unknown and challenging situations. This diverse
skill set is beneficial in many scenarios, such as playing
table tennis, where applying different strikes (e.g. backhand,
forehand, or smashing) to similar incoming balls is advanta-
geous because the strike is less predictable for the opponent.
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Similarly, in scenarios with environmental changes where
learned skills might be infeasible over time (e.g. grasping
an object while avoiding obstacles), diverse skills provide
additional adaptivity by discarding these invalid skills and
relying on alternatives. This property makes them superior
because complete relearning of skills is avoided.

Acquiring these diverse skill sets requires learning a pol-
icy that can represent multi-modality in the behavior space.
Recent advances in supervised policy learning have demon-
strated the potential of training high-capacity policies ca-
pable of capturing multi-modal behaviors (Shafiullah et al.,
2022; Blessing et al., 2023; Chi et al., 2023; Jia et al., 2024).
These policies exhibit remarkably diverse skills and out-
perform state-of-the-art methods. However, Reinforcement
Learning (RL) is essential to acquire skills in cases where
no expert data is available, or data collection is expensive.
Discovering multi-modal behaviors using RL is challenging
since the policies usually rely on Gaussian parameterization
and thus can only discover a single behavior.

We consider training agents that possess diverse skills, from
which they can select to tackle a specific task differently.
For capturing these multi-modalities in the agent’s behavior
space, we employ highly non-linear Mixture of Experts poli-
cies. Furthermore, we use automatic curriculum learning
for efficient learning, enabling each expert to focus on a
specific sub-region of the context space it favors. We intro-
duce this curriculum shaping by optimizing for an additional
per-expert context distribution that is used to sample con-
texts from the preferred regions to train the corresponding
expert. Automatic curriculum learning has proven to in-
crease performance by improving the exploration of agents,
particularly in sparse-rewarded environments (Klink et al.,
2022b).

We explore Contextual Reinforcement Learning in which a
continuous-valued context describes the task (Kupcsik et al.,
2013). In the example of robot table tennis (see Fig. 3a),
a context includes the desired ball landing positions on the
opponent’s tableside as well as physical aspects, such as the
incoming ball’s velocity or friction properties. In continuous
context spaces, the curriculum shaping per-expert context
distributions are often parameterized as Gaussian (Klink
et al., 2020a; Celik et al., 2022). However, the agent is usu-
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Figure 1: The Sampling Procedure for Di-SkilL. During Inference the agent observes contexts c from the environment’s
unknown context distribution p (c). The agent calculates the gating probabilities π(o|c) for each context and samples an
expert o resulting in (o, c) samples marked in blue. During Training we first sample a batch of contexts c from p (c),
which is used to calculate the per-expert context distribution π(c|o) for each expert o = 1, ...,K. The π(c|o) provides a
higher probability for contexts preferred by the expert π(θ|c, o). To enable curriculum learning, we provide each expert
the contexts sampled from its corresponding π(c|o), resulting in the samples (o, cT ) marked in orange. In both cases, the
chosen π(θ|c, o) samples motion primitive parameters θ for each context, resulting in a trajectory τ that is subsequently
executed on the environment. Before execution, the corresponding context, e.g., the goal position of a box, needs to be set in
the environment. This is illustrated by the dashed arrows, with the context in blue for inference and orange for training.

ally unaware of the context bounds, which makes additional
techniques necessary to constrain the distribution updates to
stay within the context region (Celik et al., 2022). Instead,
we employ energy-based per-expert context distributions,
which can be evaluated for any context and effectively rep-
resent multi-modality in the context space. Importantly,
our model is trained solely using context samples from the
environment that are inherently valid. Our approach elim-
inates the need for additional regularization of the context
distribution and does not require prior knowledge about the
environment. Due to the overlapping probability distribu-
tions of different per-expert contexts, our resulting mixture
policy offers diverse solutions for similar contexts with a
high probability.

Recent research in RL has explored Mixture of Experts poli-
cies, but often these methods either train the mixture in un-
supervised RL settings and then select the best-performing
expert in the downstream task (Laskin et al., 2021; Eysen-
bach et al., 2019) or train linear experts, limiting their per-
formance (Daniel et al., 2012; Celik et al., 2022). Our inspi-
ration draws from recent advancements that have achieved
diverse skill learning with a similar objective. However,
their approach involves linear expert models with Gaussian
context distributions. It requires prior knowledge of the
environment to design a penalty term when the algorithm
samples contexts outside the environment’s bounds. These

factors restrict the algorithm’s performance and applicabil-
ity when defining the context bounds requires knowledge,
such as forward kinematics in robotics.

To summarize, we introduce a novel RL method for learning
a Mixture of Experts policy that we refer to as Di-SkilL –
Diverse Skill Learning (see Fig. 1). Our method can gener-
alize to the continuous range of contexts defined by the (un-
known) environment’s context distribution while learning
diverse, and non-linear skills for solving a task defined by a
specific context. Importantly, our approach operates with-
out any assumptions about the environment. We show how
we can learn multi-modal context distributions by training
an energy-based model solely on context samples obtained
from the environment. On multiple sophisticated simulated
robot tasks, we demonstrate that we can learn diverse skills
while performing on par or better than baselines.

2. Preliminaries
Contextual Episode-based Policy Search (CEPS). We
consider learning diverse skills in the CEPS framework in
which the continuous-valued context c ∈ C defines the task,
e.g. a goal location to reach. The context c ∼ p (c) is
observed from the agent and is drawn from the environ-
ment’s unknown context distribution p (c) at the beginning
of each episode. The agent’s search distribution π(θ|c)
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maps the context c to continuous-valued controller parame-
ters θ ∈ Θ, which we represent as motion primitives (MP)
(Schaal, 2006; Paraschos et al., 2013; Li et al., 2023a) (see
Appendix C). We denote π(θ|c) as the agent’s policy as
common in the literature and optimize it by maximizing the
objective

max
π(θ|c)

Ep(c)

[
Eπ(θ|c)[R(c,θ)]

]
, (1)

where R(c,θ) denotes the return of a whole episode after
executing the MP parameter θ in context c. Due to the direct
return optimization, CEPS does not require the Markov as-
sumption as in common MDPs and is therefore specifically
suitable for tasks where the formulation of a Markovian
reward function is difficult.

Mixture of Experts (MoE) Policy for Curriculum Learn-
ing. Due to their ability to represent multi-modality, MoE
policies are a favorable choice in diverse skill learning.
The common MoE policy π(θ|c) =

∑
o π(o|c)π(θ|c, o)

(Bishop, 2006) contains the gating distribution π(o|c) that
is assigning probabilities to each expert o given context c
during inference. However, to enable automatic curriculum
learning during training, a learnable distribution π (c) =∑

o π(c|o)π(o) is required that can explicitly choose and
set context samples in the environment, so each expert o
can decide on which contexts it favors training (Celik et al.,
2022). Using Bayes’ rule π(o|c) = π(c|o)π(o)/π (c) the
MoE is rewritten as

π(θ|c) =
∑
o

π(c|o)π(o)
π (c)

π(θ|c, o). (2)

The per-expert context distribution π(c|o) can now be opti-
mized and allows the expert o to choose contexts c it favors.
We model each π(c|o) as an energy-based model and each
π(θ|c, o) as a neural network returning a Gaussian distribu-
tion for a context c (see Fig. 1 and Appendix C). The prior
π(o) is set to a uniform distribution throughout this work.

Self-Paced Diverse Skill Learning with MoE. Due to its
ability to represent multi-modality and automatic curricu-
lum learning, the MoE model in Eq. 2 is a suitable policy
representation for discovering diverse skills in the same
context-defined task. For explicit optimization of this pol-
icy, we are using the KL-regularized Maximum Entropy RL
objective in CEPS (Celik et al., 2022)

max
π(θ|c),π(c)

Eπ(c)

[
Eπ(θ|c) [R(c,θ)] + αH [π(θ|c)]

]
− βKL (π (c) ∥ p (c)) . (3)

The KL-term incentivizes the context distribution π (c) to
match the environment’s distribution p (c) and can be priori-
tized during optimization by choosing the scaling parameter
β appropriately. The entropy of the mixture model incen-
tivizes learning diverse solutions (Celik et al., 2022) and

can be prioritized with a high scaling parameter α. It is
well-known that this objective is difficult to optimize for
MoE policies and requires further steps to obtain a tractable
lower-bound (Celik et al., 2022)

max
π(θ|c,o)

Eπ(c|o),π(θ|c,o) [R(c,θ) + α log π̃(o|c,θ)]

+ αEπ(c|o) [H [π(θ|c, o)]] (4)

for the expert π(θ|c, o) updates and a lower-bound for the
per-expert context π(c|o) updates

max
π(c|o)

Eπ(c|o) [Lc(o, c) + (β − α) log π̃(o|c)]

+ βH (π(c|o)) , (5)

where Lc(o, c) = Eπ(θ|c,o)
[
R(c,θ) + α log π̃(o|c,θ)

]
+

αH [π(θ|c, o)]. The variational distributions π̃(o|c,θ) =
πold(o|c,θ) and π̃(o|c) = πold(o|c) arise through the de-
composition and are responsible for learning diverse solu-
tions and concentrating on context regions with small, or
no support by π (c) (Celik et al., 2022). In every iteration,
the variational distributions are updated in closed form to
tighten the bounds. Details of the equations are in the Ap-
pendix A.

3. Related Work
Contextual Episode-based Policy Search (CEPS). CEPS
is a black-box approach to reinforcement learning (RL), in
which the search distribution is the agent’s policy that maps
the contexts to controller parameters, typically represented
as motion primitives (Schaal, 2006; Paraschos et al., 2013;
Li et al., 2023a). One of the noteworthy advantages of
CEPS lies in the independence of assumptions such as the
Markovian property in common MDPs. This characteristic
renders it a versatile methodology, particularly well-suited
for addressing a diverse array of intricate tasks where the for-
mulation of a Markovian reward function is difficult (Otto
et al., 2023). CEPS has been explored by applying var-
ious optimization techniques, including Policy Gradients
(Sehnke et al., 2010), Natural Gradients (Wierstra et al.,
2014), stochastic search strategies (Hansen & Ostermeier,
2001; Mannor et al., 2003; Abdolmaleki et al., 2019), and
trust-region optimization techniques (Abdolmaleki et al.,
2015; Daniel et al., 2012; Tangkaratt et al., 2017), particu-
larly in the non-contextual setting. Researchers extended the
setting by incorporating linear (Tangkaratt et al., 2017; Ab-
dolmaleki et al., 2019) and non-linear contextual adaptation
(Otto et al., 2023; Li et al., 2023b), leveraging the recently
introduced trust-region layers for neural networks (Otto
et al., 2021). The work by (Li et al., 2023b) additionally
introduces step-wise updates to improve sample-efficiency.
However, all previously mentioned methods learn single-
mode policies and do not address acquiring diverse skills
leveraging automatic curriculum learning.
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Curriculum Reinforcement Learning. Curriculum rein-
forcement learning can potentially increase the performance
of RL agents, especially in sparse-rewarded environments
(Tao et al., 2024) in which exploration is fundamentally
difficult. Adapting the environment based on the agent’s
learning process has been proposed by several works al-
ready, e.g. automatically generating sets of tasks or goals
to increase the learning speed of the agent (Florensa et al.,
2017; 2018; Sukhbaatar et al., 2018; Zhang et al., 2020;
Wöhlke et al., 2020; Racaniere et al., 2020), or generating a
curriculum by interpolating an auxiliary and known distri-
bution of target tasks (Klink et al., 2022b; 2020a;b; 2024).
Works propose sampling a training level from a prespecified
set of environments (Jiang et al., 2021b), or unsupervised
environment design (Jiang et al., 2021a; Dennis et al., 2020)
based on the agent’s learning process. The work by (Klink
et al., 2022a) proposes improving the approximation of the
state-action value function by representing it as a sum of
residuals acquired in previous curriculum tasks. None of the
above methods apply automatic curriculum learning on an
RL problem with an MoE policy, except for the work in (Ce-
lik et al., 2022). However, they parameterize the curriculum
distribution as Gaussian, suffering from low representation
capacity and requiring knowledge about the environment’s
context distribution. Instead, we leverage energy-based
models to avoid these shortcomings.

RL with Mixture of Experts (MoE).Ren et al. (2021) pro-
pose using MoE policy representation and presents a novel
gradient estimator to calculate the gradients w.r.t. the MoE
parameters. Huang et al. (2023) present a model-based RL
approach to train latent variable models. The work presents
a novel lower bound for training the multi-modal policy pa-
rameterization. Recently, Hendawy et al. (2024) proposed
using MoEs for learning a shared representation in multi-
task reinforcement learning, whereas Akrour et al. (2021)
present how interpretable MoEs can be learned in continu-
ous RL. These methods differ from our work in that they are
not categorized in the CEPS framework, or are model-based
variants and do not use automatic curriculum learning tech-
niques. In the CEPS framework, RL with MoE policies has
also been explored in the works by Daniel et al. (2012); End
et al. (2017), in which an MoE model with linear experts
without automatic curriculum learning is learned. Addi-
tional constraints need to be added to enforce diversity in
the experts. In the work by Tosatto et al. (2021) a mixture
model is used to perform RL, however, pre-recorded demon-
stration data is required to train the mixture model and no
curriculum learning is considered. Related method to MoEs,
Product of Experts was used in (Hansel et al., 2023; Le et al.,
2023) for motion generation.
The work by Celik et al. (2022) also uses MoE policies and
relies on the maximum entropy objective as we do, however,
their method only considers linear experts with Gaussian

per-expert distributions which limits the performance and
consequently requires many experts to solve a task. More-
over, it requires environment knowledge to hand-tune a
punishment term to keep the optimization of the per-expert
context distributions within the context bounds.

Quality-Diversity Optimization (QDO). Learning diverse
skills has also been explored in the evolutionary strategy
community, most notably with the MAP-Elites algorithm
(Cully et al., 2015), where behavioral descriptors are de-
fined to distinguish the different learned motions. Exten-
sions (Nilsson & Cully, 2021; Faldor et al., 2023a;b) have
been proposed to improve the performance of these meth-
ods. However, these methods can not easily be applied to
the contextual setting where different controller parameters
should be chosen in different situations such that post hoc
adaptations (Keller et al., 2020; Faldor et al., 2023b) are
required. In contrast to QDO methods, in our work diver-
sity measurement naturally arises through the considered
objective and does not need defining behavioral descriptors.
Moreover, Di-SkilL indirectly learns a gating distribution
that selects the expert after observing a context.

Unsupervised Reinforcement Learning (URL). URL also
considers learning diverse policies (Yang et al., 2024; Ey-
senbach et al., 2021; Laskin et al., 2021; Eysenbach et al.,
2019; Campos et al., 2020; Lee et al., 2019; Liu & Abbeel,
2021). The objective differs from ours and skills are trained
in the absence of an extrinsic reward. We discuss parallels
in the Appendix B.

4. Diverse Skill Learning
The common Contextual Episodic Policy Search (CEPS)
loop (Kupcsik et al., 2013) with a Mixture of Experts (MoE)
policy representation learning observes a context c, and then
selects an expert o that subsequently adjusts the controller
parameters θ given (c, o). We consider the same process
during testing time, as shown in blue color in Fig. 1 (see
also Fig. 7a). However, the procedure changes during train-
ing for Di-SkilL as automatic curriculum learning requires
that the agent can determine which context regions it prefers
to focus on. In this case, we observe a batch of context
samples from the environment’s context distribution p (c).
For each of these samples, every per-expert context distri-
bution π(c|o) calculates a probability, which results in a
categorical distribution over the contexts c. We use these
probabilities to sample contexts cT for the corresponding
expert o resulting in (cT , o) sample pairs (see orange parts
in Fig. 1 and Fig. 7b). Each chosen expert o provides
Gaussian distributions over the motion primitive parame-
ters θ by mapping the contexts cT to mean vectors µθ and
covariance matrices Σθ using a parameterized neural net-
work. We can now sample motion primitive parameters θ
from these Gaussian distributions to generate trajectories
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τ using a motion primitive generator. These trajectories
are subsequently executed on the environment (green color
in Fig. 1) and an episode return R(θ, cT ) is observed and
used for updating the MoE (see Section 4.2). Yet, there
exist several issues for a stable overall training of the MoE
model, which requires special treatment for each π(c|o) and
π(θ|c, o). Algorithmic details and parameterizations of the
model can be found in the Appendix C.

4.1. Energy-Based Model For Automatic Curriculum
Learning

To illustrate these issues, we consider a bounded, uniformly
distributed two-dimensional environment context distribu-
tion p(c) (see example in the Appendix C in Fig. 7c). It is
challenging for a Reinforcement Learning (RL) agent to au-
tomatically learn its curriculum π(c|o) within the valid con-
text space (Celik et al., 2022). Hard discontinuities such as
steps often naturally arise in p (c) due to the environment’s
finite support in real-world environments. For instance, in
an environment where the agent’s task is to place an object
in specific positions on a table, the probability of observ-
ing a goal position outside the table’s surface is zero. This
implies that a large subset of the context space has no proba-
bility mass. Therefore, exploration in these regions might be
difficult if there is no guidance encoded in the reward. Even
if it is guaranteed that π(c|o) only samples valid contexts, it
still needs to be able to represent multi-modal distributions,
such as illustrated in Fig. 7d. This multi-modality can be
present because of environmental circumstances or simply
if experts π(θ|c, o) prefer contexts in spatially apart regions.
For the object placing example, this could correspond to
regions on the table where the object cannot be placed due to
obstacles or holes. We therefore require π(c|o) being able to
represent i) complex distributions, ii) multi-modality and iii)
only explore within the valid context bounds of p (c). We
propose parameterizing each per-expert distribution π(c|o)
as an energy-based model

π(c|o) = exp(ϕo(c))/Z (6)

to address the issues i) and ii), where the energy function
ϕo is a per-expert learnable neural network. Energy-based
models (EBMs) have shown to be capable of represent-
ing sharp discontinued functions and multi-modal distribu-
tions (Florence et al., 2022). Yet, they are hard to train and
sample from due to the intractable normalizing constant
Z =

∫
c
exp(ϕo(c))dc. We can circumvent and address

these issues iii) by approximating the normalizing constant
with contexts c ∼ p (c) as Z ≈

∑N
i=1 exp(ϕo(ci)). This

approximation is justified as we can sample from p (c) by
simply resetting the environment without execution. Ad-
ditionally, the EBM will encounter important parts of the
context space during the training by resampling a large
enough batch of contexts c ∼ p (c) in each iteration. Each

expert can therefore sample preferred contexts from the
current batch of valid contexts by calculating the probabil-
ity for each of the contexts using π(c|o) as parameterized
in Eq. 6. Updating the parameters of the EBM can read-
ily be addressed by the standard RL objective for diverse
skill learning, as described in the next section. It should be
noted that explicit models such as Gaussians, or Normaliz-
ing Flows (Papamakarios et al., 2021) can also be used to
parameterize π(c|o), but their support cannot be easily re-
stricted to a bounded space with hard discontinuities defined
by the environment. Therefore, sampling from an explicit
π(c|o) can easily generate invalid contexts, especially if the
valid distribution has hard non-linearities.

4.2. Updating the Mixture of Experts Model

We update each expert π(θ|c, o) and its corresponding per-
expert context distribution π(c|o) by maximizing the ob-
jectives in Eq. 4 and in Eq. 5, respectively. These de-
composed objectives allow us to independently update both
distributions and to retain the properties of diverse skill
learning from the objective in Eq. 9. However, updating
the distributions is not straightforward due to the bi-level
optimization that leads to a dependency on both terms. This
is particularly challenging for the expert π(θ|c, o) as the
sampled contexts c can drastically change from one itera-
tion to another if π(c|o) changes too aggressively. The same
applies for updating π(c|o) as calculating the objective re-
quires calculating an integral over θ under the expectation
of π(θ|c, o). For a stable update for both distributions, we
employ trust-region updates to restrict the change of both
distributions from one iteration to another. These updates
have been shown to improve the learning process (Peters
et al., 2010; Schulman et al., 2015; 2017; Otto et al., 2021).

Expert Update. We parameterize each expert π(θ|c, o)
with a single neural network and update them by a trust-
region constrained optimization

max
π(θ|c,o)

Eπ(c|o),π(θ|c,o) [R(c,θ) + α log π̃(o|c,θ)]

+ αEπ(c|o) [H [π(θ|c, o)]] (7)
s.t. KL (π(θ|c, o) ∥ πold(θ|c, o)) ≤ ϵ ∀ c ∈ C,

where the KL-bound ensures that the expert π(θ|c, o) does
not differ too much from the expert πold(θ|c, o) from the
iteration before for each context c. The entropy bonus
H [π(θ|c, o)] incentivizes π(θ|c, o) to fully cover the pa-
rameter space while avoiding (θ, c) regions that are covered
by other experts o. The latter is guaranteed by π̃(o|c,θ)
which rewards (θ, c) regions that can be assigned to expert
o with high probability. We efficiently update the experts
using trust region layers (Otto et al., 2021; 2023).

Per-Expert Context Distribution Update. We consider
the objective with the augmented rewards as shown in Eq. 5
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Figure 2: a) High-probability regions of the individual per-expert context distributions π(c|o), where a color represents an
expert o. The red circle marks the context space of goal-reaching positions for the 5-Link Reacher’s tip. The specialization
of π(c|o) is induced by π̃(o|c). b) Different π(c|o) need to overlap for learning diverse skills. This overlapping is induced
by the entropy bonus H [π(c|o)]. c) Different tip trajectories sampled in the same contexts. The trajectories and the end joint
constellation are in the same color. The diversity in the parameter space is induced by π̃(o|c,θ). d) Visualization of the
5-Link Reacher task (5LR).

for updating each context distribution π(c|o). We can not
apply the trust region layers (Otto et al., 2021) in this case,
as π(c|o) is a discrete distribution over the context samples
ci parameterized by the EBM. Yet, we can still use PPO
(Schulman et al., 2017) for updating π(c|o) and simplifying
our objective, as we can now calculate many terms in closed
form. For this, we rewrite the objective as

max
π(c|o)

∑
ci∼p(c)

π(ci|o)Lc(o, ci)+ (8)

∑
ci∼p(c)

π(ci|o)
(
(β − α) log π̃(o|ci)− β log π(ci|o)

)
and observe that all terms in the second sum can be calcu-
lated in closed form. Note that the first term is approx-
imated by resampling the context samples using π(c|o)
since computing Lc(o, c) requires calculating the integral
over θ under the expectation of π(θ|c, o) as Lc(o, c) =
Eπ(θ|c,o)

[
R(c,θ) + α log π̃(o|c)

]
+ αH [π(θ|c, o)]. This

expectation can only be estimated for context vectors that
are actually chosen by the component. The entropy bonus
in Eq. (8) incentivizes covering of the context space, while
focusing on context regions that are not, or only partly cov-
ered by other options. The latter is guaranteed by π̃(o|c)
which assigns a high probability if expert o can be assigned
to the context c.

4.3. How does Diversity Emerge?

From the Eq. 7 and Eq. 8 it is clear that diverse behaviors,
represented by the experts, emerge from the interplay of
those terms in Eq. 7 and Eq. 8. We visually demonstrate the
meaning of the individual terms on the 5-Link Reacher task
(see Fig. 2d). The Reacher needs to reach a goal position
in the two-dimensional space with its tip. In this task, a
context represents the goal position within the context space,

visualized as a red circle around the reacher’s fixed first joint
(Fig. 2a). We trained Di-SkilL with 50 experts.

In Fig. 2a we show the high-probability regions of the in-
dividual per-expert context distributions π(c|o), by setting
the color intensity proportional to this probability. Each
color represents an individual expert o. Each π(c|o) con-
centrates on a sub-region of the context space such that
the corresponding π(θ|c, o) becomes an expert there. This
specialization is incentivized by the term π̃(o|c) in Eq. 8.
However, for learning diverse behaviors for the same context
regions, it is necessary that the per-expert context distribu-
tions π(c|o) overlap, which is motivated by the entropy term
H [π(c|o)] in Eq. 8.

These overlapping context regions are visualized in Fig. 2b,
where we count how many experts o are active for each
context. The figure shows that more experts prefer regions
close to the initial position of the reacher, indicating that
these contexts are easier to solve. Despite the closeness to
the reacher’s initial position, the agent does not have to exert
much energy to reach these points. Indeed, both aspects are
present in the task’s reward function (see Appendix D for
details), explaining why the left half plane of the context
space has fewer overlapping. However, the learned MoE
has two or more experts active in most parts of the context
region. These experts differ in their behavior (see Fig. 2 for
examples), which is motivated by the terms π̃(o|c,θ) and
H [π(θ|c, o)] in Eq. 7.

5. Experiments
In our evaluations, we compare Di-SkilL against the base-
lines BBRL (Otto et al., 2023) and SVSL (Celik et al., 2022).
Whenever the environment satisfies the Markov properties,
we additionally compare against PPO (Schulman et al.,
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Figure 3: a) (left top) Hopper Jump Task (HJ). (Top right) Box Pushing with Obstacle (BPO). (Bottom Left) Robot Mini
Golf (MG). (Bottom right) Robot table tennis (TT). b) Ablation studies, showcasing the need for automatic curriculum
learning for Di-SkilL. BBRL and Di-SkilL can solve TT environment decently. Di-SkilL’s variants without curriculum
learning struggle to achieve a good performance. SVSL needs more samples to achieve around 80% success rate, suffering
under the linear experts. c) Performance of Di-SkilL, BBRL, LinDi-SkilL, and PPO on 5LR with sparse in-time rewards.

2017). BBRL and SVSL are suitable baselines as they are
state-of-the-art CEPS algorithms that can learn complex
skills. BBRL can learn highly non-linear policies leverag-
ing trust region updates. SVSL learns a linear Mixture of
Experts (MoE) model and can capture multi-modality in
the behavior space. We consider challenging robotic en-
vironments with continuous context and parameter spaces.
The considered environments either have a non-Markovian
reward function, i.e. require retrospective data for calcula-
tion, or temporally sparse reward functions, increasing the
learning complexity due to more difficult exploration.

We start by providing an overview of the benchmarking
environments. In an ablation study, we then show that auto-
matic curriculum learning is an essential feature of Di-SkilL
to learn high-performing skills. Lastly, on five sophisticated
robot simulation tasks we report the performance of Di-
SkilL against the baselines. The results show that Di-SkilL
performs on par, or better than the baselines on all tasks. In
addition to the performance analysis, we qualitatively show
Di-SkilL’s learned diverse skills on the challenging table
tennis, box pushing, and reaching tasks.

5.1. Environments

The considered environments are visualizations in Fig. 3a.
Throughout all environments, we used ProDMPs (Li et al.,
2023a) to generate trajectories (see Appendix C). Detail
descriptions are provided in the Appendix D.

Table Tennis (TT). A 7-degree of freedom (DoF) robot
has to learn fast and precise motions to hit the ball to a
desired position on the opponent’s side. The 4-dim. context
consists of the incoming ball’s landing position and the
desired ball’s landing position on the opponent’s side. The

TT env. requires good exploratory behavior and has a non-
Markovian reward structure, making step-based approaches
infeasible to learn useful skills (Otto et al., 2023).

Table Tennis Hard (TT-H). We extend the TT environment
to a more challenging version by varying the ball’s initial
velocity. This additionally increases the learning complexity,
as the agent now needs to reason about the physical effects of
changed velocity ranges and requires improved adaptability.

5-Link Reacher (5LR). The 5-Link reacher has to reach a
goal position within all quadrants in the context space (see
Fig. 2a) as opposed to the version in (Otto et al., 2023),
where the multi-modality in the behavior space (see Fig. 2c)
was avoided by constraining the context space to the upper
half of the context space. Additionally, the time-sparse
reward makes this task a challenging benchmark.

Hopper Jump (HJ). Presented in (Otto et al., 2023) in
which the Hopper (Brockman et al., 2016) is tasked to jump
as high as possible while landing in a goal position. The HJ
has a non-Markovian reward, making step-based RL meth-
ods unfeasible to learn useful policies (Otto et al., 2023).

Box Pushing with Obstacle (BPO). A 7DoF robot is tasked
to push a box to a target position and rotation while avoiding
an obstacle. In addition to the time-spare reward (Otto et al.,
2023), our version includes the obstacle and considers a
larger range of the box’s target position.

Robot Mini Golf (MG). The 7DoF robot has to hit the ball
in an env. with two obstacles (static, varying), such that
it passes the tight goal. The context is the obstacle’s, the
goal’s, and the ball’s position. The MG environment has
a non-markovian reward, making step-based RL methods
unfeasible to learn useful policies (Otto et al., 2023).
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Figure 4: Performance on the a) HJ (Hopper Jump) b) BPO (Box Pushing with Obstacle), c) TT-H (Table Tennis Hard),
and d) MG (Robot Mini Golf) tasks. a) Di-SkilL performs on par with BBRL on the HJ task. b) The multi-modality
introduced by the obstacle in the box pushing task leads to worse performance for BBRL than for Di-SkilL and LinDi-SkilL.
PPO suffers under the time-sparse reward setting. c) While BBRL converges faster, Di-SkilL achieves a higher success rate
eventually. d) Di-SkilL outperforms the baselines on the MG task. LinDi-SkilL performs poorly on the non-Markovian
rewarded tasks TT-H and MG, indicating that highly non-linear policies are beneficial.

5.2. ACL Benefits

Automatic Curriculum learning (ACL) enables Di-SkilL’s
experts to shape their curriculum by explicitly sampling
from preferred context regions. We analyze the importance
of this feature by comparing the performance of variants of
Di-SkilL on the table tennis (TT) task.

For both variants Di-SkilLV2 and Di-SkilLV3 we disable
ACL by fixing the term induced by the variational distri-
bution to log π̃(o|c) = 0 in Eq. 8 and by setting the en-
tropy scaling parameter β = 2000. Ignoring the variational
distribution π̃(o|c) during training eliminates the intrinsic
motivation of the per-expert context distribution π(c|o) to
focus on sub-regions in the context space that are not, or
only partially, covered by any other π(c|o) (Section 4.3).
Setting β = 2000 incentivizes each π(c|o) to maximize its
entropy, resulting in a uniform distribution in the environ-
ment’s bounded context space. For Di-SkilL we keep the
ACL and set β = 4. We provide the same number of 50
context-parameter samples per expert for Di-SkilLV2 and
Di-SkilL, whereas Di-SkilLV3 receives 260 samples per ex-
pert in each iteration. All variants possess 5 experts.
In Fig. 3b we report the mean success rates and the 95%
confidence interval for each method on at least 4 seeds. Di-
SkilLV2 converges to a much smaller success rate, and Di-
SkilLV3 needs more samples to reach the level of Di-SkilL.
BBRL and Di-SkilL achieve high success rates, while BBRL
performs slightly better. SVSL shows worse performance,
even though the model has 20 experts. The results indi-
cate that ACL is an essential feature of Di-SkilL ensuring
that Di-SkilL can learn high-perfroming skills with fewer
samples. Moreover, SVSL’s poor performance shows that
Gaussian parameterized per-expert context distributions that
require additionally tuned punishment terms for guided up-

dates are together with linear experts incapable of achieving
a satisfying performance.

5.3. Analyzing the Performance and Diversity

For a detailed analysis, we have evaluated all methods on
24 seeds for each environment and algorithm and report the
interquantile mean (IQM) with a 95% stratified bootstrap
confidence interval as suggested by (Agarwal et al., 2021).
Please note that SVSL requires designing a punishment
function to guide the context samples in the environment’s
valid context region, which makes its application difficult,
especially if the context influences the objects’ physics. We
therefore propose comparing against LinDi-SkilL instead
of SVSL. LinDi-SkilL also has linear experts but benefits
from Di-SkilL’s energy-based per-expert context distribution
π(c|o) eliminating the need for punishment functions.

The performance curve of the HJ task in Fig. 4a shows
that Di-SkilL performs on par with BBRL, while BBRL
converges slightly faster. Both methods can solve the task,
indicating that the task doesn’t require diversity. We can
also see that LinDi-SkilL achieves a similar performance as
BBRL and Di-SkilL, but needs more samples to converge.
We provide additional analysis of this task in Appendix E.

Fig. 4b shows the performance curves on the BPO task. The
obstacle introduces multi-modality in the behavior space
which cannot be captured by a single-mode policy. This
multi-modality explains why DiSkilL and LinDi-SkilL out-
perform BBRL, while Di-SkilL still achieves the highest
success rate. PPO’s poor performance indicates that time-
correlated exploration as used with motion primitives is
effective in sparse rewarded tasks.

A similar performance behavior can be observed in the 5LR
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Figure 5: Di-SkilL’s Diverse Skills for the Box Pushing with Obstacle BPO Task. The figures visualize diverse solutions
to the same contexts c on a table (black rectangle). The red, thick rectangle represents the obstacle. The 7DoF robot is
tasked to push the box (shown in different colors for each solution found) to the goal box position (red rectangle with a
green dot) and align the blue edges to match the orientation. The context consists of the 2-dim. obstacle position, the 2-dim.
goal position and the 1-dim. goal orientation around the z-axis. We visualized successful box trajectories for each sampled
skill from the same Di-SkilL policy with 10 experts. The diversity learned in the parameter space results in different box
trajectories ranging in position and orientation.

goal

ball

(a) Backhand Drive

goal

ball

(b) Forehand Drive

goal

ball

(c) Backhand Block

goal

ball

(d) Forehand Push

goal

ball
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Figure 6: Di-SkilL’s Diverse Skills for the Table Tennis Hard TT-H task. We fixed the ball’s desired landing position and
varied the serving landing position and the ball’s initial velocity. Di-SkilL can return the ball in different striking types
such as backhand or forehand strikes, where hitting the ball with the green side of the racket is referred to as backhand and
forehand otherwise. The shown striking styles are captured from the same Di-SkilL policy that was trained with 10 experts.

task. In Fig. 3c we report the achieved returns and observe
that Di-SkilL outperforms BBRL due to the ability to cap-
ture multi-modal behaviors (e.g. reaching from different
sides) while PPO suffers from the sparse rewarded setting.
Moreover, LinDi-SkilL’s linear experts cause slow conver-
gence, indicating that more experts are needed to effectively
cover the whole context space. For both tasks, Di-SkilL’s
diverse skills in the parameter space θ induce different be-
haviors. Fig. 5 shows diverse box trajectories to several
fixed goal and obstacle positions in the BPO task, whereas
Fig. 2c shows different tip trajectories to several fixed goal
positions in the 5LR task.

The non-Markovian rewarded tasks (TT-H and MG) show
that non-linear policies as learned by BBRL and Di-SkilL
are beneficial. Di-SkilL and BBRL perform similarly well
on the TT-H task (see Fig. 4c), where Di-SkilL achieves a
slightly higher end success rate compared to BBRL. How-
ever, there is a clear performance gap between Di-SkilL and
BBRL on the MG task (see Fig. 4d) with Di-SkilL outper-
forming BBRL. In both tasks, LinDi-SkilL performs worse
than Di-SkilL and BBRL indicating that linear experts are
insufficient for solving these tasks.

Di-SkilL can discover diverse striking styles in the table
tennis task (TT-H). Fig. 6 shows some of these learned

skills. Additional strike visualizations are in Appendix E.

6. Conclusion and Future Work
In this paper, we propose Diverse Skill Learning (Di-SkilL),
a novel method for learning diverse skills using a contextual
Mixture of Experts. Each expert automatically learns its
curriculum by optimizing for a per-expert context distribu-
tion π(c|o). We have demonstrated challenges that arise
through enabling automatic curriculum learning (ACR) and
proposed parameterizing π(c|o) as energy-based models
(EBMs) to address these challenges. Additionally, we pro-
vided a methodology to efficiently optimize these EBMs.
We also proposed using trust-region updates for the deep
experts to stabilize our bi-level optimization problem. In an
ablation, we have shown that ACR is necessary for efficient
and performant learning. Moreover, in sophisticated robot
simulation environments, we have shown that our method
can learn diverse skills while performing on par or better
than the baselines. Currently, the major drawback of our
approach is its inability to replan, causing failures in the
tasks if the robot even has small collisions with objects. We
intend to address this issue in future research. To improve
the sample complexity of our approach, we additionally
plan to use off-policy RL techniques.
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Figure 7: Probabilistic Graphical Models (PGMs) during inference a) and training b). During a)) the model observes
the contexts c from the environment. An expert o is sampled from π(o|c), which leads to an adjustment of the motion
primitive parameters θ by π(θ|c, o). We iterate over each expert during (b), sample the contexts c and θ from the per-expert
distribution π(c|o) and π(θ|c, o) respectively. Sampling from π(c|o) allows shaping the expert’s curriculum. c) illustrates
the environment’s context distribution p (c) and a possibly optimal π(c|o) (d)) in two-dim. space. Yellow areas indicate high
and purple zero probability. The illustrations show that optimizing π(c|o) requires dealing with i) step-like non-linearities,
ii) multi-modality, iii) bounded within the red rectangle support of p (c), complicating exploration.

A. Additional Information to Self-Paced Diverse Skill Learning with MoE
The general self-paced diverse skill learning objective

max
π(θ|c),π(c)

Eπ(c)

[
Eπ(θ|c) [R(c,θ)] + αH [π(θ|c)]

]
− βKL (π (c) ∥ p (c))

can be reformulated to

max
π(c,θ)

Eπ(o),π(c|o)
[
Eπ(θ|c,o) [R(c,θ) + α log π(o|c,θ)] + β log p (c) + (β − α) log π(o|c)

]
+ αEπ(o),π(c|o) [H [π(θ|c, o)]] + βEπ(o) [H [π(c|o)]] + βH [π(o)] , (9)

by inserting π(θ|c), π (c) from Eq. (2) into Eq. (9) and applying Bayes theorem. This objective is not straightforward to
optimize for Mixture of Experts MoE models and requires further steps to introduce a lower bound (see Section 2) that can
be efficiently optimized. Please note that the variational distributions in Eq. 4 and Eq. 5 can be calculated in closed form by
the identities

π̃(o|c,θ) = πold(o|c,θ) =
πold(θ|c, o)πold(o|c)

πold(θ|c)

π̃(o|c) = πold(o|c) =
πold(c|o)π(o)

πold(c)

We refer the interested reader to (Celik et al., 2022) for a detailed derivation.

B. Additional Related Work
Unsupervised Reinforcement Learning. Another field of research that considers learning diverse policies is unsupervised
reinforcement learning (URL). In URL the agent is first trained solely with an intrinsic reward to acquire a diverse set
of skills from which the most appropriate is picked to solve a downstream task. More related to our work is a group of
algorithms that obtain their intrinsic reward based on information-theoretic formulations (Laskin et al., 2021; Eysenbach
et al., 2019; Campos et al., 2020; Lee et al., 2019; Liu & Abbeel, 2021). However, their resulting objective is based on
the mutual-information and differs from the objective we maximize. The learned skills in the pre-training aim to cover
distinct parts of the state-space during pre-training in the absence of an extrinsic task reward which implies that skills are not
explicitly trained to solve the same task in different ways. Those methods operate within the step-based RL setting which
differs from CEPS.
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C. Additional Information to Diverse Skill Learning
C.1. The Parameterization of the Mixture of Experts (MoE) Model

In the following, we provide details on the parameterization of the MoE model.

Parametrization of the expert π(θ|c, o). We parameterize each expert π(θ|c, o) as a Gaussian policy N (µγ(c),Σγ(c),
where the mean µγ(c) and the covariance Σγ(c) are functions of the context c and parameterized by a neural network
with parameters γ. Although the covariance Σγ(c) is formalized as a function of the context c, we have not observed any
advantages in doing so. In our experiments, we therefore parameterize the covariance as a lower-triangular matrix L and
form the covariance matrix Σ = LLT .

Parameterization of the per-expert context distribution π(c|o). The reader is referred to Section 4 for details on the
parameterization of π(c|o)

Parameterization of the prior π(o). We fix the prior π(o) to a uniform distribution over the number K of available
components and do not further optimize this distribution. This is a useful definition to increase the entropy of the mixture
model.

Parameterization of the context distribution π (c). Due to the relation π (c) =
∑

o π(c|o)π(o), π (c) is defined by π(c|o)
and does not need explicit modelling.

Parameterization of the gating distribution π(o|c). Due to the relation π(o|c) = π(c|o)π(o)
π(c) we do not need an explicit

parameterization of π(o|c) and can easily calculate the probabilities for choosing the expert o given a context c.

C.2. Using Motion Primitives in the Context of Reinforcement Learning

Motion Primitives (MPs) are a low-dimensional representation of a trajectory. For instance, instead of parameterizing
a desired joint-level trajectory as the single state in each time step, MPs introduce a low-dimensional parameter vector
θ which concisely defines the trajectory to follow. The generation of the trajectory depends on the method that is used.
Probabilistic Movement Primitives (ProMPs) (Paraschos et al., 2013) for example define the desired trajectory as a simple
linear function τ = ΦTθ, where Φ are time-dependent basis functions (e.g. normalized radial basis functions). Dynamic
Movement Primitives (DMPs) (Schaal, 2006) rely on a second-order dynamic system that provides smooth trajectories in the
position and velocity space. Recently Probabilistic Dynamic Movement Primitives (ProDMPs) were introduced by Li et al.
(2023a) and combines the advantages of both methods, that is the easy generation of trajectories and smooth trajectories. We
therefore rely on ProDMPs throughout this work.

In the context of reinforcement learning, the policy π(θ|c), or in our case an expert π(θ|c, o) defines a distribution over the
parameters θ of the MP depending on the observed context c. This allows the policy to quickly adapt to new tasks defined
by c.

C.3. Algorithm Details

Detailed descriptions of the algorithm during training and during inference are provided in the algorithm boxes Alg. 1 and
Alg. 1, respectively. In each iteration during training, we sample a batch of contexts c from the environment by resetting it.
We then iterate over each expert and evaluate the probabilities of these contexts c on each per-expert context distribution
π(c|o) and sample then training contexts cT from them. From the corresponding expert π(θ|c, o) we sample motion
primitive parameters θ and evaluate the samples (cT ,θ) on the environment and observe a return R(c,θ) which we use to
update the experts π(θ|c, o) and the per-expert context distributions π(c|o) by maximizing Obj. 7 and Obj. 8 respectively.
During inference, we observe contexts c from the environment, calculate the gating distributions π(o|c) = π(c|o)π(o)

π(c)

from which we sample the expert o. We then either take the mean or sample an θ from this expert and execute it on the
environment.
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Algorithm 1 Di-SkilL Training

Input: α, β, N(max. iterations), K(num. experts),T(num. samples per expert)
Output: π(θ|c)

1: for k = 1 to N do
2: c ∼ p (c) (context batch by environment resetting)
3: for o = 1 to K do
4: cT ∼ π(c|o) (context batch from EBM)
5: θ ∼ π(θ|cT , o)
6: R(c,θ)← eval(θ, cT )
7: π(θ|c, o)← Obj. 7
8: π(c|o)← Obj. 8
9: end for

10: end for

Algorithm 2 Di-SkilL Inference

Input: π(θ|c)
1: c ∼ p (c) (observe contexts from environment)
2: o ∼ π(o|c), where π(o|c) = π(c|o)π(o)

π(c)

3: θ ∼ π(θ|c, o)
4: R(c,θ)← eval(θ, c)

D. Experimental Details
D.1. Environment Details

D.1.1. TABLE TENNIS EASY

Environment. We use the same table tennis environment as presented in (Otto et al., 2023), in which a 7 Degree of
Freedom (DoF) robot has to return a ball to a desired ball landing position. The context is the four-dimensional space of
the ball’s initial landing position ( x ∈ [−1,−0.2], y ∈ [−0.65, 0.65]) on the robot’s table side and the desired ball landing
position (x ∈ [−1.0,−0.2], y ∈ [−0.6, 0.6]) on the opponent’s table side. The robot is controlled with torques on the joint
level in each time step. The torques are generated by the tracking controller (PD-controller) that tracks the desired trajectory
generated by the motion primitive. We consider three basis functions per joint resulting in a 21-dimensional parameter (θ)
space. We additionally allow the agent to learn the trajectory length and the starting time step of the trajectory. Note that the
starting point allows the agent to define when after the episode’s start the generated desired trajectory should be tracked.
Induced by the varying contexts, this is helpful to react to the varying time the served ball needs to reach a positional
space that is convenient to hit the ball with the robot’s racket. Overall the parameter space is 23 dimensional. The task is
considered successful if the returned ball lands on the opponent’s side of the table and within ≤ 0.2m to the goal location.

The reward function is unchanged from (Otto et al., 2023) and is defined as

Rtask =



0, if cond. 1,
f2(pr,pb) if cond. 2,
f3(pr,pb,pl,pgoal) if cond. 3,
f4(pr,pb,pl,pgoal) if cond. 4,
f5(pr,pb,pl,pgoal) if cond. 5,

where pr is the executed trajectory position of the racket center, pb is the executed position trajectory of the ball, pl is the
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ball landing position, pgoal is the target position. The individual functions are defined as

f2(pr,pb) = 0.2− 0.2g(pr,pb)

f3(pr,pb,pl,pgoal) = 3− 2g(pr,pb)− h(pl,pgoal)

f4(pr,pb,pl,pgoal) = 6− 2g(pr,pb)− 4h(pl,pgoal)

f5(pr,pb,pl,pgoal) = 7− 2g(pr,pb)− 4h(pl,pgoal),

where g(x,y) = tanh (min ||x− y||2) and h(x,y) = tanh (||x− y||2). The different conditions are

• cond. 1: the end of the episode is not reached,

• cond. 2: the end of the episode is reached,

• cond. 3: cond.2 is satisfied and the robot did hit the ball,

• cond. 4: cond.3 is satisfied and the returned ball lands on the table,

• cond. 5: cond.4 is satisfied and the landing position is at the opponent’s side.

The episode ends when any of the following conditions are met

• the maximum horizon length is reached

• ball did land on the floor without hitting

• ball did land on the floor or table after hitting

The whole desired trajectory is obtained ahead of environment interaction, making use of this property we can collect some
samples without physical simulation. The reward function based on this desired trajectory is defined as

rtraj = −
∑
(i,j)

|τdij | − |qbj |, (i, j) ∈ {(i, j) | |τdij | > |qbj |}

where τd is the desired trajectory, i is the time index, j is the joint index, qb is the joint position upper bound. The desired
trajectory is considered as invalid if rtraj < 0, an invalid trajectory will not be executed on the robot. The overall reward is
defined as:

r =

{
rtraj , rtraj < 0

rtask, otherwise

SVSL. SVSL requires designing a guiding punishment term for context samples that are not in a valid region. For the
four-dimensional context space in table tennis, this can be done using quadratic functions (as proposed in the original work
(Celik et al., 2022)):

Rc(c) = −20 · d2c ,

where d2c is the distance of the current context c to the valid context region.

SVSL Hyperparameters All hyperparameters are summarized in the Table 1.

Hyperparameters are listed in the Table 2.

D.1.2. TABLE TENNIS TASK HARD

Environment. We extend the table tennis environment described in Appendix D.1.1 by additionally including the ball’s
initial velocity in the context space making the task harder as the agent has to react to ranging velocities now. We define the
initial velocity vx ∈ [1.5m

s , 4
m
s ]. Note that every single constellation within the resulting context space is a valid context.

However, there exist ball landing positions that can not be set along with a subset of the initial velocity range. This makes
designing a guiding punishment term for SVSL especially difficult. We adopt the parameter space and the reward function
as defined in the standard table tennis environment as described in Appendix D.1.1.

Hyperparameters are listed in the Table 4.
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D.2. Hopper Jump

Environment. We use the same hopper jump environment as presented in (Otto et al., 2023), in which the hopper (Brockman
et al., 2016) has to jump as high as possible and land at a specified position. The context is the four-dimensional space of
the last three joints of the hopper and the goal landing position [j3, j4, j5, g], where the ranges are from [−0.5,−0.2, 0, 0.3]
to [0.0, 0.0, 0.785, 1.35]. The hopper is controlled the same as in (Brockman et al., 2016). Here, we consider three basis
functions per joint and a goal basis resulting in a parameter space (θ) of 12 dimensions. The reward is non-markovian and
is unchanged from (Otto et al., 2023).

In each time-step t the action cost

τt = 10−3
K∑
i

(ait)
2,

is provided. The variable K = 3 corresponds to the number of degrees of freedom. At the end of the episode, a reward
containing retrospective information about the maximum height in the z-direction of the center of mass achieved hmax,
the goal landing position of the heel pgoal, the foot’s heel position when having contact with the ground after jumping the
first time pfoot, contact is given. Additionally, per-time information such as pfoot, t describing the position of the foot’s heel in
world-coordinates is given. The resulting reward function is

Rtot = −
T∑

t=0

τt +Rheight +Rgdist +Rcdist +Rhealthy,

where

Rheight = 10hmax,

Rgdist = ||pfoot,T − pgoal||2,
Rcdist = ||pfoot,contact − pgoal||2,

Rhealthy =

{
2 if zT ∈ [0.5,∞]and θ, γ, ϕ ∈ [−∞,∞]
0 else.

The healthy reward is the same as provided by (Brockman et al., 2016).

Hyperparameters are listed in the Table 5.

D.2.1. BOX PUSHING WITH OBSTACLE TASK

Environment. We increase the difficulty of the box pushing environment as presented in (Otto et al., 2023), by changing
major parts of the context space. The goal of the box pushing task is to move a box to a specified goal location and
orientation using the seven DoF Franka Emika Panda. The newly context space (compared to the original version in (Otto
et al., 2023)) are described in the following. We increase the box’ goal position range to xg ∈ [0.3, 0.6], yg ∈ [−0.7, 0.45],
and keep the goal orientation angle ϕ ∈ [0rad, 2πrad]. Additionally, we include an obstacle between the initial box and the
box’s goal. The range of the obstacle position is xo ∈ [0.3, 0.6], yo ∈ [−0.3, 0.15]. Note that we guarantee a distance of at
least 0.15m between the obstacle’s position and the initial position as well as at least 0.15m between the obstacle’s position
and the box’s goal position.

The robot is controlled via torques on the joint level. We use four basis functions per DoF, resulting in a parameter space
of 28 dimensions. We consider an episode successful if the box’s orientation around the z-axis error is smaller than 0.5 rad
and the position error is smaller than 0.05m.

The sparse-in-time reward function is up to a scaling parameter the same as presented in (Otto et al., 2023). We describe
the whole reward function in the following.

The box’s distance to the goal position is
Rgoal = ∥p− pgoal∥,

where p is the box position and pgoal is the goal position. The rotation distance is defined as

Rrotation =
1

π
arccos |r · rgoal|,
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where r and rgoal are the box orientation and goal orientation quaternion respectively. The incentive to keep the rod within
the box is defined as

Rrod = clip(||p− hpos||, 0.05, 10),
where hpos is the position of the rod tip. Similarly, to incentivize to maintain the rod in a desired rotation, the reward

Rrod rotation = clip(
2

π
arccos |hrot · h0|, 0.25, 2)

is defined, where hrot and h0 = (0, 1, 0, 0) are the current and desired rod orientation in quaternion respectively. To
incentivize the robot to stay within the joint and velocity bounds, the error

err(q, q̇) =
∑

i∈{i||qi|>|qbi |}

(|qi| − |qbi |)

+
∑

j∈{j||q̇j |>|q̇bj |}

(|q̇j | − |q̇bj |)

is used, where q, q̇, qb, and q̇b are the robot’s joint positions and velocities as well as their respective bounds. To learn
low-energy motions, the per-time action (torque) cost

τt =

K∑
i

(ait)
2,

is used. The resulting temporal sparse reward is given as

Rtot =


−Rrod −Rrod rotation − 0.02τt − err(q, q̇) t < T,

−Rrod −Rrod rotation − 0.02τt − err(q, q̇)
−350Rgoal − 200Rrotation t = T,

where T = 100 is the horizon of the episode. The reward gives relevant information to solve the ask only in the last time
step of the episode, which makes exploration hard.

Further Visualizations of learned skills. We show additional plots of the box’s trajectories in the box pushing task in Fig.
8.

Hyperparameters are listed in the Table 6.

D.3. Extended 5-Link Reacher Task

Environment. In the 5-Link Reacher task, a 5-link planar robot has to reach a goal position with its tip. The reacher’s
initial position is straight to the right. This task is difficult to solve, as it introduces multi-modality in the behavior space.
(Otto et al., 2023) avoided this multi-modality by constraining the y coordinate of the goal position to y ≥ 0, i.e. the first
two quadrants. We adopt the 5Link-Reacher task by increasing the context space to the full space, i.e. all four quadrants. We
consider 5 basis functions per joint leading to a 25-dimensional parameter space. We consider the sparse reward function
presented in (Otto et al., 2023) as

Rtot =

{
−τt t < T,

−τt − 200Rgoal − 10Rvel t = T,

where
Rgoal = ∥p− pgoal∥2

and

τt =

K∑
i

(ait)
2.

The sparse reward only returns the task reward in the last time step T and additionally adds a velocity penalty Rvel =∑K
i (q̇iT )

2. The joint velocities are denoted asq̇. This velocity penalty avoids overshooting in the last time step.

Hyperparameters are listed in the Table 3.
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D.4. Robot Mini Golf Task

Environment. In the robot mini golf task the agent needs to hit a ball while avoiding the two obstacles, such that it passes
the tight goal to achieve a bonus. The context space consists of the ball’s initial x-position xball ∈ [0.25m, 0.6m], the XY
positions of the green obstacle xobs ∈ [0.3, 0.6] and yobs ∈ [−0.5,−0.1] and the x positions of the goal xball ∈ [0.25, 0.6].
The parameter space is 29 dimensional resulting from the 4 basis functions per joint and an additional duration parameter
which allows the robot to learn the duration of the trajectory. The robot starts always at the same position. The reward
function consists of three stages:

Rtask =



−0.0005 · τt if cond. 1,
0.2− 0.2 tanh (min ||pr − pb||) if cond. 2,
2− 2 tanh (min ||pb − pg||)
− tanh (||pb,y − pthresh,y||) if cond. 3,
6 if cond. 3,

where the individual conditions are

• cond. 1: the end of the episode is not reached,

• cond. 2: the end of the episode is reached and the robot did not hit the ball,

• cond. 3: the end of the episode is reached and the robot has hit the ball, but the ball didn’t pass the goal

• cond. 4: the end of the episode is reached, robot has hit the ball and the ball has passed the goal for at least 0.75m

The episode ends when the maximum horizon length T = 100 is achieved. We again make use of the advantage that we
obtain the whole desired trajectory ahead of the environment interaction, such that we can collect some samples without
physical simulation. The reward function based on this desired trajectory is defined as

rtraj =
∑
(i,j)

|τdij | − |qbj |, (i, j) ∈ {(i, j) | |τdij | > |qbj |}

where τd is the desired trajectory, i is the time index, j is the joint index, qb is the joint position upper bound. The desired
trajectory is considered as invalid if rtraj < 0, an invalid trajectory will not be executed on the robot. Additionally, we
provide a punishment, if the agent samples invalid duration times

rdur = −3 (max(0, td − td,max) + max(0, td,mint − td)) ,

where td,max = 1.7s, td,min = 0.45s and td is the duration in seconds chosen by the agent. The overall reward is defined
as:

r =


rtraj ,−20(rtraj + rdur)− 5 if invalid duration,

or trajectory
rtask, otherwise.

Hyperparameters are listed in the Table 7.

E. Additional Evaluations
We provide additional diverse skills to the Box Pushing Obstacle task in Fig. 8. In Fig. 10 we provide additional diverse
strikes to fixed ball’s desired landing positions on the TT-H task.

Furthermore, we analyze Di-SkilL’s performance on the hopper jump task in more detail. In Fig. 9a we observe that the
mean return is on par with BBRL, similar to the achieved goal distance in Fig. 9c. However, there is a small gap in the max
height, where BBRL jumps slightly higher (see Fig. 9b. Given that the mean return is on par, one would expect that the
maximum jump height is on par as well. However, Di-SkilL optimizes the remaining terms in the objective of the hopper
jump task such as the healthy reward (see Appendix D), which explains this gap.
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Figure 8: Additional Diverse Skills for the Box Push Obstacle Task learned by Di-SkilL. We fix the contexts and sample
experts which we subsequently execute. This leads to diverse behaviors in the motion primitive parameter spaceθ which
leads to different trajectories of the pushed box on the table.
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Figure 9: Additional Analysis of the Hopper Jump (HJ) task.

F. Hyperparameters
We list the hyperparameters for all algorithms on all environments in the following tables.

add component every iteration 1000
fine tune all components every iteration 50

number component adds 1
number initial components 1
number total components 20

number traj. samples per component per iteration 200
α 0.0001
β 0.5

expert KL-bound 0.01
context KL-bound 0.01

Table 1: Hyperparameters for SVSL on TT
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Figure 10: Di-SkilL’s Diverse Skills for the TT-H task. We fixed the ball’s desired landing position and varied the serving
landing position and the ball’s initial velocity. Di-SkilL can return the ball in different striking types. Note that each row
represents a different desired ball landing position.
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Di-SkilL BBRL
critic activation tanh tanh

hidden sizes critic [8,8] [32, 32]
initialization orthogonal orthogonal

lr critic 0.0003 0.0003
optimizer critic adam adam

ciritc epochs 100 100
activation context distribution tanh –

epochs context distribution 100 –
hidden sizes context distr [16,16] –

initialization orthogonal –
lr context distribution 0.0001 –
optimizer context distr adam –

batch size per component 50 209
number samples from environment distribution 5000 –

number samples per component 50 209
normalize advantages True True

expert activateion tanh tanh
epochs 100 100

hidden sizes expert [64] [32]
lr policy 0.0003 0.0003

covariance type full full
alpha 0.001 –
beta 4 –

number components 5 –
covariance bound 0.005 0.001

mean bound 0.05 0.05
projection type KL KL

trust region coefficient 100 25

Table 2: Hyperparameters for Di-SkilL and BBRL on TT.
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Di-SkilL BBRL LinDi-SkilL PPO
critic activation tanh tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32] [32, 32]
initialization orthogonal orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003 0.0003
optimizer critic adam adam adam adam

ciritc epochs 100 100 100 10
activation context distribution tanh – tanh –

epochs context distribution 100 – 100 –
hidden sizes context distr [16,16] – [16, 16] –

initialization orthogonal – orthogonal –
lr context distribution 0.0001 – 0.0001 –
optimizer context distr adam – adam –

batch size per component 25 240 25 512 (32 minibatches)
number samples from environment distribution 5000 – 5000 –

number samples per component 25 240 25 16384
normalize advantages True True True True

expert activateion tanh tanh – tanh
epochs 100 100 100 10

hidden sizes expert [32,32] [64,64] – [32, 32]
lr policy 0.0003 0.0003 0.0003 0.0003

covariance type full full full diagonal
alpha 0.01 – 0.01 –
beta 8 – 8 –

number components 10 – 10 –
covariance bound 0.001 0.005 0.0005 –

mean bound 0.05 0.05 0.05 –
projection type KL KL KL –

trust region coefficient 100 25 100 –
discount factor 1 1 1 1

Table 3: Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO on 5LR. We used all code-level optimization
(Engstrom et al., 2020) needed for PPO. The implementation is based on the source code from (Otto et al., 2021).
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Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [8,8] [32, 32] [8,8]
initialization orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distribution tanh – tanh

epochs context distribution 100 – 100
hidden sizes context distr [16,16] – [16, 16

initialization orthogonal – orthogonal
lr context distribution 0.0001 – 0.0001
optimizer context distr adam – adam

batch size per component 50 209 50
number samples from environment distribution 5000 – 5000

number samples per component 50 209 50
normalize advantages True True True

expert activateion tanh tanh –
epochs 100 100

hidden sizes expert [128] [32,32] –
lr policy 0.0003 0.0003 0.0003

covariance type full full full
alpha 0.001 – 0.001
beta 0.5 – 0.5

number components 10 – 10
covariance bound 0.005 0.0005 0.001

mean bound 0.05 0.05 0.05
projection type KL KL KL

trust region coefficient 100 25 100

Table 4: Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hard Table Tennis Task (TT-H).
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Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [64,64] [64, 64] [64,64]
initialization orthogonal orthogonal orthogonal

lr critic 0.0001 0.0001 0.0001
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distribution tanh – tanh

epochs context distribution 100 – 100
hidden sizes context distr [16,16] – [16, 16]

initialization orthogonal – orthogonal
lr context distribution 0.0001 – 0.0001
optimizer context distr adam – adam

batch size per component 80 200 80
number samples from environment distribution 1000 – 1000

number samples per component 80 200 80
normalize advantages True True True

expert activateion tanh tanh –
epochs 100 100 100

hidden sizes expert [32, 32] [32,32] –
lr policy 0.0003 0.0003 0.0003

covariance type full full full
alpha 0.01 – 0.01
beta 8 – 8

number components 3 – 3
covariance bound 0.005 0.05 0.005

mean bound 0.05 0.1 0.05
projection type KL KL KL

trust region coefficient 100 25 100

Table 5: Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hopper Jump Task (HJ).
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Di-SkilL BBRL LinDi-SkilL PPO
critic activation tanh tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32] [256, 256]
initialization orthogonal orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003 0.0001
optimizer critic adam adam adam adam

ciritc epochs 100 100 100 10
activation context distribution tanh – tanh –

epochs context distribution 100 – 100 –
hidden sizes context distr [16,16] – [16, 16] –

initialization orthogonal – orthogonal –
lr context distribution 0.0001 – 0.0001 –
optimizer context distr adam – adam –

batch size per component 50 500 50 410 (40 minibatches)
number samples from environment distribution 5000 – 5000 –

number samples per component 50 500 50 16384
normalize advantages True True True True

expert activateion tanh tanh – tanh
epochs 100 100 100 10

hidden sizes expert [64,64] [64,64 – [256, 256]
lr policy 0.0003 0.0003 0.0003 0.0001

covariance type full full full diagonal
alpha 0.01 – 0.0001 –
beta 64 – 64 –

number components 10 – 10 –
covariance bound 0.005 0.0005 0.001 –

mean bound 0.05 0.05 0.05 –
projection type KL KL KL –

trust region coefficient 100 25 100 –
discount factor 1 1 1 1

Table 6: Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO for Box Pushing Obstacle task (BPO). We used all
code-level optimization (Engstrom et al., 2020) needed for PPO. The implementation is based on the source code from (Otto
et al., 2021).
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Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32]
initialization orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distribution tanh – tanh

epochs context distribution 100 – 100
hidden sizes context distr [16,16] – [16, 16]

initialization orthogonal – orthogonal
lr context distribution 0.0001 – 0.0001
optimizer context distr adam – adam

batch size per component 50 500 50
number samples from environment distribution 5000 – 5000

number samples per component 50 500 50
normalize advantages True True True

expert activateion tanh tanh –
epochs 100 100 100

hidden sizes expert [64,64] [128,128] –
lr policy 0.0003 0.0003 0.0003

covariance type full full full
alpha 0.0001 – 0.0001
beta 1 – 1

number components 10 – 10
covariance bound 0.005 0.001 0.001

mean bound 0.05 0.05 0.01
projection type KL KL KL

trust region coefficient 100 25 100

Table 7: Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the mini golf task.
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