
What Happens During the Loss Plateau?
Understanding Abrupt Learning in Transformers

Pulkit Gopalani 1 Wei Hu 1

Abstract
Training Transformers on algorithmic tasks frequently demonstrates an intriguing abrupt learning phenomenon:
an extended performance plateau followed by a sudden, sharp improvement. This work investigates the underlying
mechanisms for such dynamics, primarily in shallow Transformers. We reveal that during the plateau, the model
often develops an interpretable partial solution while simultaneously exhibiting a strong repetition bias in their
outputs. This output degeneracy is accompanied by internal representation collapse, where hidden states across
different tokens become nearly parallel. We further identify the slow learning of optimal attention maps as a key
bottleneck. Hidden progress in attention configuration during the plateau precedes the eventual rapid convergence,
and directly intervening on attention significantly alters plateau duration and the severity of repetition bias and
representational collapse. We validate that these phenomena—repetition bias and representation collapse—are not
artifacts of toy setups but also manifest in the early pre-training stage of LLMs like Pythia and OLMo.

1. Introduction
Training Transformers on mathematical or algorithmic tasks often exhibits “abrupt learning” in their training dynamics,
where the model’s performance plateaus at a suboptimal level for an extended period before suddenly and rapidly converging
to the optimal solution (Nanda et al., 2023; Barak et al., 2022; Singh et al., 2024; Zhang et al., 2025; Wang et al., 2025)
(Figures 1 and 2). This is often considered an example of the broader phenomenon of “emergence,” where model capabilities
appear to arise discontinuously with increasing amount of parameters, training data, or training steps (Wei et al., 2022).

The goal of this paper is to uncover universal characteristics and underlying mechanisms that define these training dynamics
that are broadly applicable to a wide range of setups and tasks. We train small linear-Attention Transformers (1 or 2 layers)
on a suite of simple algorithmic tasks such as moving-window-sum, permutation, and multi-digit addition, among others.
These tasks have well-defined optimal solutions, allowing us to precisely measure the model’s progress against a known
ground truth. Furthermore, small models allow for tractable analysis and interpretation of internal model mechanisms.

We identify novel inductive biases that underlie the early plateau period of Transformer training: the model learns a partial
solution while being biased toward degenerate patterns in its outputs and internal representations (see Figure 1 for an
overview). We further study the pivotal role of attention map learning in driving these phenomena and overcoming the
performance plateau. Finally, we demonstrate that key findings from these controlled small-scale studies extend to the
pre-training dynamics of actual Large Language Models (LLMs).

2. Setup
We study the moving-window-sum (MWS) task, that involves computing the sliding-window sum (modulo p) of a length-n
sequence over windows of size 2; i.e. x1, x2, . . . , xn,SEP, y1, y2, . . . , yn,

yi =

{
x1 i = 1

(xi−1 + xi)mod p i ≥ 2

1University of Michigan, Ann Arbor, US. Correspondence to: Pulkit Gopalani <gopalani@umich.edu>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.

1

Transformer Loss Plateau for Algorithmic Tasks

After Sudden Drop in Loss

Before Sudden Drop in Loss

Attention Map

Train/Test Loss and Accuracy

Attention Map

Example Output Sequence

h1
h2 h3…

(hi ∈ ℝd)
h16

Hidden States

Example Output Sequence

10, 10, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13

1, 16, 6, 7, 2, 1, 11, 9, 16,
11, 16, 7, 4, 10, 2, 6h1

h2
h3

(hi ∈ ℝd) h16

h4

…

Hidden States

Figure 1. Abrupt learning and related characteristics. Training a shallow Transformer on algorithmic tasks like moving-window-sum
exhibits abrupt learning: performance plateaus for an extended number of steps, before suddenly and sharply improving to optimum.

Here, n = 16, xi ∼ Unif{1, . . . , 16}, p = 17, and SEP = 17 is a separator token. We train a 1-layer, 1-head Transformer
with causal linear Attention on the above task in an online fashion (new batch of 256 samples from the distribution at every
step), using Adam optimizer with a fixed stepsize 10−4 without weight decay. The training loss is the standard next-token-
prediction cross-entropy loss, computed on the full sequence (x1, . . . , xn,SEP, y1, . . . , yn). We measure accuracy over the
output part y1, y2, . . . , yn. Please see Appendix A for implementation details, and Appendix B for details on measuring
attention progress. We study other algorithmic tasks in Appendix E, and other model configurations / SGD in Appendix F.

3. Inductive Biases in the Early Phase of Training
In this section, we characterize several key manifestations of inductive biases in the early phase of Transformer training.

Partial Solution. During the loss plateau, the model often has already learned to implement a partial solution to the task.
This means it correctly predicts a subset of the output tokens, typically those corresponding to an intuitively simpler part of
the problem, while failing on the more complex parts. For instance, in the MWS task, the model quickly learns to predict the
first output token y1 correctly, as it is simply x1, while the overall loss remains high and accuracy on subsequent tokens is
low (see Figure 2(a) for the first-token accuracy). Such partial solutions are observed for various algorithmic tasks (Table 1).

Repetition Bias. Concurrent with learning the partial solution, the model’s outputs during the initial phase of training
display a strong repetition bias, which refers to a tendency of the model to generate repetitive tokens of the form x, x, x,
To quantify such repetitions, we simply count the output tokens that equal the next one: for sequence (y1, y2, . . . , yn),
define its repetition frequency ρ := 1

n−1

∑n−1
i=1 1[yi = yi+1]. We observe that ρ increases rapidly during the early phase of

training from a small initial value (see Figure 2(b)), while the optimal attention map has not been learned.

Representation Collapse. We further study the relation between the hidden representations at different output positions,
and find a strong representation collapse phenomenon—these representations become nearly parallel in the early phase of
training (except for the first output position which is correctly predicted in the partial solution). We measure the pairwise
cosine similarity between hidden representations hi,hj ∈ Rd at positions i, j in the output sequence, COSi,j :=

⟨hi,hj⟩
∥hi∥∥hj∥

(this quantity is averaged over a random batch of sequences). We find that in the early phase of training, there is a rapid
increase in COSi,j—averaged over all output positions i, j except the first position, this quantity increases to ≈ 0.95
(Figure 2(b)). Similar to repetitions, representation collapse is not present at initialization and only appears after a few
steps of training, in contrast to the rank collapse phenomenon for deep softmax-attention Transformers at initialization
(Anagnostidis et al., 2022). While we measure the cosine similarity between hidden states just before the LM (classifier)
head in the main paper, in Figure 29 we show that representation collapse happens in all intermediate layers.

2

Transformer Loss Plateau for Algorithmic Tasks

0 50 100 150 200 250 300 350 400
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
Lo

ss
Train/Test Loss & Accuracy

Loss
Accuracy
Partial Solution Accuracy

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a)

0 50 100 150 200 250 300 350 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Similarity
Repetition Frequency
Attention Progress Measure

0.1

0.2

0.3

0.4

0.5

0.6

0.7

At
te

nt
io

n
Pr

og
re

ss

Attention Progress and Cosine Similarity

(b)

Figure 2. Abrupt learning dynamics for the MWS task. (a): Train/Test loss and Train/Test Accuracy (note that both train and test
data metrics are near-identical in the online training setup, and thus we only report train metrics); (b): Attention Progress, Repetition
Frequency, and Representation Cosine Similarity between hidden states.

4. The Role of Learning Attention
Observe that though the loss dynamics are abrupt, attention progress measure as well as repetitions and representation
collapse are not (Figure 2(b)); that is, even when the loss is barely decreasing (between steps 50 and 150), attention progress
measure notably increases, accompanied by a decrease in repetition frequency and representation collapse. We show in
Appendix C that in the residual stream, representation collapse occurs after the attention layer during the early phase of
training. Subsequently, via training-time interventions, we show that learning the attention map plays a crucial role in
shaping the loss plateau as well as repetitions and representation collapse.

Biasing the Attention Map. To study the role of attention map, we slightly modify the training process starting at different
time points in training, biasing it towards (or away from) the optimal attention map to check if repetitions, representation
collapse, and loss plateau are reduced (resp. amplified). We do the following: at training time, starting at step t0, we
multiply the attention map values for output tokens except the first position at Ω (i.e. optimal attention map positions) by a
constant c > 0; for c > 1, this implies biasing the model towards the final (optimal) attention map, whereas for 0 < c < 1,
this implies biasing the model away from the optimal attention map. We find that, for c > 1 and various values of t0,
such a scaling leads to lower average cosine similarity between hidden states, lower frequency of repetitions, and faster
convergence (Figures 3 and 6). Whereas, for 0 < c < 1, we find the opposite: the model is in representation collapse state
for a longer time and converges later compared to the non-scaled (c = 1) case, while the repetition frequency remains large
throughout the plateau (Figure 7, Appendix C). Moreover, we also show that fixing attention map to optimal value at the
start of training leads to essentially no loss plateau or repetitions / representation collapse, while the same does not occur if
we fix MLP / embeddings only to their optimal value (Figure 8, Appendix C). Hence, learning the optimal attention map
has a direct effect on shaping the loss dynamics as well as repetitions and representation collapse.

0 100 200 300 400
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Train/Test Loss

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

c=10
c=2.5
c=1

Figure 3. Biasing attention map by c > 1. We find that multiplicative biasing the attention map towards more weight to optimal positions
leads to faster convergence, accompanied by less repetitions and average cosine similarity.

3

Transformer Loss Plateau for Algorithmic Tasks

5. A Further Look at Repetition Bias
Having observed that Transformer models exhibit a strong repetition bias in the early phase of training, which co-occurs
with the loss plateau, we now take a further look at this repetition bias and study how it might be affected by the amount of
repetitions in the training sequences.

Beyond Repetitions in Consecutive Tokens. One hypothesis for the reason behind repetition bias is that the training data
may consist of some repetitions, and the model may pick up these patterns and amplify them in the early phase of training.
We show in Appendix D.1 that on the prefix sum task with low repetitions in the training data, there are still repetitions in
output, albeit of a different nature than the contiguous repetitions seen for MWS.

Repetitive Sequences Are Easier to Learn. Motivated by evidence for repetition bias, we show in Appendix D.2 that
training Transformers on such repetitive sequences leads to no loss plateau, and that the model can learn (inaccurate)
repetitions quite early (after ≈ 10 training steps), verifying the early-phase repetition bias.

6. Repetition Bias and Representation Collapse in LLMs
Having shown that degenerate patterns of repetition bias and representation collapse are prevalent in small Transformers
trained on algorithmic tasks, we check whether such phenomena occur during the early pre-training phase of LLMs as
well. We show that this is indeed the case, using checkpoints of open-source LLMs Pythia (Biderman et al., 2023) and
OLMo-2 (OLMo et al., 2024).

For Pythia models with 14M, 1B, 1.4B, and 2.8B parameters, we find strong representation collapse in the early training
steps in their last layers (Figure 4). Specifically, we use 100 questions from the test split of the AI2 ARC-Easy dataset (Clark
et al., 2018). For each question, we generate 8 tokens and compute the pairwise cosine similarity of the hidden states (see
Appendix A for details). Figure 4 shows that at initialization, the average cosine similarity is relatively low (0.4-0.65), but
within a few steps of training for all models, it sharply increases to > 0.9. These results remain similar if we use random
sampling instead of greedy decoding (Figure 30). Further, the outputs for many prompts in the greedy decoding case are
trivial repetitions of the same token, e.g., newline ‘\n’, a clear manifestation of repetition bias.

For OLMo-2, at its earliest available training checkpoint (step 150, OLMo-2-1124-7B), the average representation cosine
similarity in the above setup is ≈ 0.93; for the next checkpoint at step 600, this value has already decreased to ≈ 0.43
(similar for both greedy decoding and random sampling strategies). Hence, repetition bias and representation collapse occur
in the early pre-training phase of LLMs, validating our findings beyond toy settings.

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

Pythia-14m

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9

Pythia-1b

100 101 102 103 104

Pretraining Step

0.4

0.6

0.8

Pythia-1.4b

100 101 102 103 104

Pretraining Step

0.4

0.6

0.8

1.0
Pythia-2.8b

Figure 4. Representation Collapse during Pythia Pretraining. Representation collapse at different Pythia pretraining checkpoints;
tokens generated via greedy decoding. We find that representation collapse occurs in the early phase of pre-training for these models as
well, where average pairwise cosine-similarity for output tokens approaches ≈ 1.0 and reduces as training progresses.

7. Discussion
We identified repetition bias and representation collapse as key characteristics of the early-phase inductive biases of
Transformer training, which are closely connected to the commonly observed loss plateau. The questions of why such
representation collapse / repetition bias exists during early time training, why the initial rate of learning attention map is
slow for algorithmic tasks, and how it connects to the intuitive “complexity” of the task are interesting questions for future
research. We discuss related work on abrupt learning, grokking, repetitions etc. in Appendix H.

4

Transformer Loss Plateau for Algorithmic Tasks

References
Anagnostidis, S., Biggio, L., Noci, L., Orvieto, A., Singh, S. P., and Lucchi, A. Signal propagation in transformers: Theoret-

ical perspectives and the role of rank collapse. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=FxVH7iToXS.

Barak, B., Edelman, B. L., Goel, S., Kakade, S. M., eran malach, and Zhang, C. Hidden progress in deep learning: SGD
learns parities near the computational limit. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=8XWP2ewX-im.

Barbero, F., Banino, A., Kapturowski, S., Kumaran, D., Araújo, J. G. M., Vitvitskyi, A., Pascanu, R., and Veličković, P.
Transformers need glasses! information over-squashing in language tasks, 2024. URL https://arxiv.org/abs/
2406.04267.

Belrose, N., Pope, Q., Quirke, L., Mallen, A., and Fern, X. Neural networks learn statistics of increasing complexity, 2024.
URL https://arxiv.org/abs/2402.04362.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley, H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S., Prashanth,
U. S., Raff, E., et al. Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Boix-Adsera, E., Littwin, E., Abbe, E., Bengio, S., and Susskind, J. Transformers learn through gradual rank increase, 2023.
URL https://arxiv.org/abs/2306.07042.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., and Saphra, N. Sudden drops in the loss: Syntax acquisition, phase
transitions, and simplicity bias in MLMs. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=MO5PiKHELW.

Chen, S., Sheen, H., Wang, T., and Yang, Z. Training dynamics of multi-head softmax attention for in-context learning:
Emergence, convergence, and optimality, 2024b. URL https://arxiv.org/abs/2402.19442.

Choshen, L., Hacohen, G., Weinshall, D., and Abend, O. The grammar-learning trajectories of neural language models,
2022. URL https://arxiv.org/abs/2109.06096.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., and Tafjord, O. Think you have solved question
answering? try arc, the ai2 reasoning challenge. arXiv:1803.05457v1, 2018.

Cui, H., Behrens, F., Krzakala, F., and Zdeborová, L. A phase transition between positional and semantic learning in a
solvable model of dot-product attention, 2024. URL https://arxiv.org/abs/2402.03902.

Edelman, E., Tsilivis, N., Edelman, B. L., eran malach, and Goel, S. The evolution of statistical induction heads: In-context
learning markov chains. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=qaRT6QTIqJ.

Fu, Z., Lam, W., So, A. M.-C., and Shi, B. A theoretical analysis of the repetition problem in text generation, 2021. URL
https://arxiv.org/abs/2012.14660.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can transformers learn in-context? a case study of simple function
classes, 2023. URL https://arxiv.org/abs/2208.01066.

Gopalani, P., Lubana, E. S., and Hu, W. Abrupt learning in transformers: A case study on matrix completion. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=O9RZAEp34l.

Hiraoka, T. and Inui, K. Repetition neurons: How do language models produce repetitions?, 2025. URL https:
//arxiv.org/abs/2410.13497.

Hoffmann, D. T., Schrodi, S., Bratulić, J., Behrmann, N., Fischer, V., and Brox, T. Eureka-moments in transformers: Multi-
step tasks reveal softmax induced optimization problems, 2024. URL https://arxiv.org/abs/2310.12956.

5

https://openreview.net/forum?id=FxVH7iToXS
https://openreview.net/forum?id=8XWP2ewX-im
https://arxiv.org/abs/2406.04267
https://arxiv.org/abs/2406.04267
https://arxiv.org/abs/2402.04362
https://arxiv.org/abs/2306.07042
https://openreview.net/forum?id=MO5PiKHELW
https://arxiv.org/abs/2402.19442
https://arxiv.org/abs/2109.06096
https://arxiv.org/abs/2402.03902
https://openreview.net/forum?id=qaRT6QTIqJ
https://arxiv.org/abs/2012.14660
https://arxiv.org/abs/2208.01066
https://openreview.net/forum?id=O9RZAEp34l
https://openreview.net/forum?id=O9RZAEp34l
https://arxiv.org/abs/2410.13497
https://arxiv.org/abs/2410.13497
https://arxiv.org/abs/2310.12956

Transformer Loss Plateau for Algorithmic Tasks

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The curious case of neural text degeneration, 2020. URL
https://arxiv.org/abs/1904.09751.

Hoogland, J., Wang, G., Farrugia-Roberts, M., Carroll, L., Wei, S., and Murfet, D. Loss landscape degeneracy drives
stagewise development in transformers, 2025. URL https://arxiv.org/abs/2402.02364.

Inoue, M., Park, H., and Okada, M. On-line learning theory of soft committee machines with correlated hidden units
–steepest gradient descent and natural gradient descent–. Journal of the Physical Society of Japan, 72(4):805–810, April
2003. ISSN 1347-4073. doi: 10.1143/jpsj.72.805. URL http://dx.doi.org/10.1143/JPSJ.72.805.

Jacot, A., Ged, F., Şimşek, B., Hongler, C., and Gabriel, F. Saddle-to-saddle dynamics in deep linear networks: Small
initialization training, symmetry, and sparsity, 2022. URL https://arxiv.org/abs/2106.15933.

Karpathy, A. Karpathy/mingpt: A minimal pytorch re-implementation of the openai gpt (generative pretrained transformer)
training, 2022. URL https://github.com/karpathy/minGPT.

Kumar, T., Bordelon, B., Gershman, S. J., and Pehlevan, C. Grokking as the transition from lazy to rich training dynamics,
2024. URL https://arxiv.org/abs/2310.06110.

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papailiopoulos, D. Teaching arithmetic to small transformers, 2023. URL
https://arxiv.org/abs/2307.03381.

Li, H., Lan, T., Fu, Z., Cai, D., Liu, L., Collier, N., Watanabe, T., and Su, Y. Repetition in repetition out: Towards
understanding neural text degeneration from the data perspective. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=WjgCRrOgip.

Liu, Z., Kitouni, O., Nolte, N., Michaud, E. J., Tegmark, M., and Williams, M. Towards understanding grokking: An
effective theory of representation learning, 2022. URL https://arxiv.org/abs/2205.10343.

Lubana, E. S., Kawaguchi, K., Dick, R. P., and Tanaka, H. A percolation model of emergence: Analyzing transformers
trained on a formal language, 2024. URL https://arxiv.org/abs/2408.12578.

Lyu, K., Jin, J., Li, Z., Du, S. S., Lee, J. D., and Hu, W. Dichotomy of early and late phase implicit biases can provably
induce grokking, 2024. URL https://arxiv.org/abs/2311.18817.

Merrill, W., Tsilivis, N., and Shukla, A. A tale of two circuits: Grokking as competition of sparse and dense subnetworks,
2023. URL https://arxiv.org/abs/2303.11873.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Steinhardt, J. Progress measures for grokking via mechanis-
tic interpretability. In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=9XFSbDPmdW.

OLMo, T., Walsh, P., Soldaini, L., Groeneveld, D., Lo, K., Arora, S., Bhagia, A., Gu, Y., Huang, S., Jordan, M., Lambert, N.,
Schwenk, D., Tafjord, O., Anderson, T., Atkinson, D., Brahman, F., Clark, C., Dasigi, P., Dziri, N., Guerquin, M., Ivison,
H., Koh, P. W., Liu, J., Malik, S., Merrill, W., Miranda, L. J. V., Morrison, J., Murray, T., Nam, C., Pyatkin, V., Rangapur,
A., Schmitz, M., Skjonsberg, S., Wadden, D., Wilhelm, C., Wilson, M., Zettlemoyer, L., Farhadi, A., Smith, N. A., and
Hajishirzi, H. 2 olmo 2 furious, 2024. URL https://arxiv.org/abs/2501.00656.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and Misra, V. Grokking: Generalization beyond overfitting on small
algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.

Prieto, L., Barsbey, M., Mediano, P. A. M., and Birdal, T. Grokking at the edge of numerical stability, 2025. URL
https://arxiv.org/abs/2501.04697.

Reddy, G. The mechanistic basis of data dependence and abrupt learning in an in-context classification task, 2023. URL
https://arxiv.org/abs/2312.03002.

Rende, R., Gerace, F., Laio, A., and Goldt, S. A distributional simplicity bias in the learning dynamics of transformers,
2025. URL https://arxiv.org/abs/2410.19637.

6

https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2402.02364
http://dx.doi.org/10.1143/JPSJ.72.805
https://arxiv.org/abs/2106.15933
https://github.com/karpathy/minGPT
https://arxiv.org/abs/2310.06110
https://arxiv.org/abs/2307.03381
https://openreview.net/forum?id=WjgCRrOgip
https://arxiv.org/abs/2205.10343
https://arxiv.org/abs/2408.12578
https://arxiv.org/abs/2311.18817
https://arxiv.org/abs/2303.11873
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.04697
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2410.19637

Transformer Loss Plateau for Algorithmic Tasks

Saad, D. and Solla, S. A. On-line learning in soft committee machines. Phys. Rev. E, 52:4225–4243, Oct 1995. doi:
10.1103/PhysRevE.52.4225. URL https://link.aps.org/doi/10.1103/PhysRevE.52.4225.

Singh, A. K., Moskovitz, T., Hill, F., Chan, S. C. Y., and Saxe, A. M. What needs to go right for an induction head? a
mechanistic study of in-context learning circuits and their formation, 2024. URL https://arxiv.org/abs/2404.
07129.

Varma, V., Shah, R., Kenton, Z., Kramár, J., and Kumar, R. Explaining grokking through circuit efficiency, 2023. URL
https://arxiv.org/abs/2309.02390.

Wang, M., Yu, R., E, W., and Wu, L. How transformers get rich: Approximation and dynamics analysis, 2025. URL
https://arxiv.org/abs/2410.11474.

Wang, W., Li, Z., Lian, D., Ma, C., Song, L., and Wei, Y. Mitigating the language mismatch and repetition issues in
llm-based machine translation via model editing, 2024. URL https://arxiv.org/abs/2410.07054.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D.,
Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., and Fedus, W. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?
id=yzkSU5zdwD. Survey Certification.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers: State-of-the-art natural language processing, 2020. URL
https://arxiv.org/abs/1910.03771.

Xu, J., Liu, X., Yan, J., Cai, D., Li, H., and Li, J. Learning to break the loop: Analyzing and mitigating repetitions for neural
text generation, 2022. URL https://arxiv.org/abs/2206.02369.

Xu, Z., Wang, Y., Frei, S., Vardi, G., and Hu, W. Benign overfitting and grokking in relu networks for xor cluster data, 2023.
URL https://arxiv.org/abs/2310.02541.

Yao, J., Yang, S., Xu, J., Hu, L., Li, M., and Wang, D. Understanding the repeat curse in large language models from a
feature perspective, 2025. URL https://arxiv.org/abs/2504.14218.

Zhang, Y., Singh, A. K., Latham, P. E., and Saxe, A. Training dynamics of in-context learning in linear attention, 2025.
URL https://arxiv.org/abs/2501.16265.

7

https://link.aps.org/doi/10.1103/PhysRevE.52.4225
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2309.02390
https://arxiv.org/abs/2410.11474
https://arxiv.org/abs/2410.07054
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2206.02369
https://arxiv.org/abs/2310.02541
https://arxiv.org/abs/2504.14218
https://arxiv.org/abs/2501.16265

Transformer Loss Plateau for Algorithmic Tasks

A. Detailed Setup and Experimental Details
Model Architecture. We use a 1-layer, 1-head Transformer with causal masking and linear attention. This simple
architecture can already solve the MWS task to perfect accuracy. Formally, for a sequence of tokens (s1, . . . , sL), the
Transformer output is,

TFθ(s1, s2, . . . , sL) = LM ◦ (Id +MLP) ◦ (Id + Attn) ◦ Embed(s1, s2, . . . , sL)

where Embed outputs sum of token and absolute positional embeddings hi ∈ Rd, and Attn denotes the causal-linear-
Attention operation that combines tokens such that output at ith position is,

[Attn(h1, h2, . . . , hL)]i = WO

 i∑
j=1

(h⊤
j W

⊤
KWQhi)WV hj

 ; WO,WK ,WQ,WV ∈ Rd×d.

MLP denotes the 2-layer neural net hi 7→ W2(σ(W1hi)) for W2 ∈ Rd×4d,W1 ∈ R4d×d, and σ the GELU activation. LM
is a linear layer that maps the hidden state hi ∈ Rd to logits vi ∈ R|V | (V denotes the vocabulary for a task; for instance, for
MWS task, V = {0, 1, . . . , 17}). Note that all linear maps above implicitly include a bias term, and we use pre-LayerNorm
so that before Attn, MLP, and LM, a LayerNorm operation is applied to the hidden states hi. For generating sequences, we
use greedy decoding i.e. output token is determined by the maximum logit over the vocabulary. We use linear attention to
avoid vanishing gradient issues from softmax attention being a contributing factor toward abrupt learning, which was argued
in (Hoffmann et al., 2024). We also show similar results on softmax attention, multi-layer / multi-head models, and models
with varying d in Appendix F.

Training. The model is trained to minimize the standard next-token-prediction cross-entropy loss over the full sequence
i.e. (x1, . . . , xn,SEP, y1, . . . yn) for the MWS task. We evaluate accuracy over the output portion of the sequence, i.e.,
y1, . . . , yn, averaged over these n positions. We use the Adam optimizer with a constant learning rate 10−4 and no weight
decay. The training is conducted in an online / single-epoch fashion, where a new batch of 256 training samples is drawn
from the data distribution at each training step. Note that in this setup, the training and test losses essentially coincide. For
completeness, we also show similar results on the SGD optimizer in Appendix F.

Causal Linear Attention. Linear attention transformer is obtained simply by removing the softmax activation function
when computing the attention map, and setting the causal mask to 0 instead of −∞. We use the existing minGPT
implementation (Karpathy, 2022) (MIT licence) for our experiments, modifying the code as above and wherever required.

LLM Experiments. We use Pythia (Biderman et al., 2023) / OLMo-2 (OLMo et al., 2024) pretrained models (Apache 2.0
Licence) hosted on Huggingface Transformers (Wolf et al., 2020) and run them on the ARC-Easy dataset (Clark et al., 2018)
(CC-BY-SA 4.0 Licence). We set the use cache=False in the generate function, and use the hidden state used for
predicting each of the 8 output tokens. For random sampling, we use do sample=True (using default temperature value),
using do sample=False for our greedy decoding results.

B. Abrupt Learning and Attention Map
Abrupt Learning. Following the training procedure described above will result in a characteristic abrupt learning curve,
where the training/test loss is stuck at some sub-optimal value for a significant number of steps, before suddenly and rapidly
decreasing to its optimal value (Figure 2(a)). This drop in loss is accompanied by a similarly rapid increase in accuracy,
indicating that the optimal solution is learned abruptly.

Attention Map. We analyze the attention map at different points during training. We find that the attention map shows a
sparse, interpretable pattern after the sudden loss drop, while no such pattern is shown before the sudden drop (Figure 1).
For the MWS task, this optimal attention pattern corresponds to each output token yi attending only to the input tokens
relevant to its computation, i.e., attending to x1 for y1, and to xi, xi−1 for yi, i ≥ 2. We further use an Attention Progress
Measure (APM) to record the progress of the attention map toward its optimal pattern during training, defined as

APM :=

∑
(i,j)∈Ω |Aij |∑
(i,j) |Aij |

,

8

Transformer Loss Plateau for Algorithmic Tasks

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8
Co

sin
e

Si
m

ila
rit

y
Train Loss & Cosine Similarity

Cosine Sim. (a)
Cosine Sim. (b)
Train/Test Loss

0 100 200 300 400
Steps

1.0

1.5

2.0

2.5

No
rm

Post Att. Residual Stream Norm

0 100 200 300 400
Steps

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

No
rm

Pre Att. Residual Stream Norm

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Figure 5. Norm and representation collapse dynamics for (a) pre- and (b) post-attention residual streams for all positions i, j except the
first position.

where Aij denotes the attention score allocated to the jth token when computing output at the ith position in the sequence,
and Ω is the set of position pairs in the optimal attention map. This measure is defined with absolute values due to our choice
of linear attention so that Aij could be positive or negative. In experiments, we calculate APM averaged over a random
batch of sequences. Figure 2(b) shows that the APM monotonically increases from near 0 to near 0.8 during training, and
its increase is more gradual than the loss/accuracy dynamics. In particular, APM already increases to a nontrivial value
during the loss plateau and before the sudden loss drop.

C. The Role of Learning Attention
Representation Collapse Occurs After the Attention Layer. We verify whether the attention layer is responsible for
representation collapse during the early phase of training. To this end, we plot the cosine similarity of the residual stream for
output tokens just before and after the attention layer. Formally, let the residual stream before attention layer (i.e., token +
positional embeddings) be hi ∈ Rd, and the residual stream after attention layer be h′

i ∈ Rd, we measure the norm and
pairwise cosine similarity for hi and h′

i in Figure 5.

We find that in the early phase of training, the cosine similarity between different positions in the post-attention residual
stream representations approaches 1.0 rapidly, which is not the case for pre-attention. Furthermore, the norm of h′

i grows
rapidly in this phase, while the norm of hi remains near-constant. Hence, in the residual stream, representation collapse
occurs after the attention layer during the early phase of training.

Biasing the Attention Map. We do the following: at training time, starting at step t0, we multiply the attention map
values for output tokens except the first position at Ω (i.e. optimal attention map positions) by a constant c > 0; for c > 1,
this implies biasing the model towards the final (optimal) attention map, whereas for 0 < c < 1, this implies biasing the
model away from the optimal attention map.

We find that, for c > 1 and various values of t0, such a scaling leads to lower average cosine similarity between hidden
states, lower frequency of repetitions, and faster convergence (Figures 3 and 6). Whereas, for 0 < c < 1, we find the
opposite: the model is in representation collapse state for a longer time and converges later compared to the non-scaled

0 100 200 300 400
Steps

1.25
1.50
1.75
2.00
2.25
2.50
2.75

Lo
ss

Train/Test Loss

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

t0 = 100
t0 = 75
t0 = 50
t0 = 25
t0 = 0
No bias

Figure 6. Biasing attention map by c = 10 at different t0 during training.

9

Transformer Loss Plateau for Algorithmic Tasks

0 200 400 600 800 1000
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Lo

ss

Train/Test Loss

c=1
c=0.5
c=0.2

0 200 400 600 800 1000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 200 400 600 800 1000
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

Figure 7. Biasing attention map by c < 1. We find that biasing the attention map to have lesser weight at optimal positions leads to
slower convergence, and more representation collapse and repetitions.

(c = 1) case, while the repetition frequency remains large throughout the plateau (Figure 7).

For example, for t0 = 0, c = 10, i.e. scaling 10× from the start of training, we find that the peak cosine similarity attained
during training is ≈ 0.6, much smaller than the ≈ 0.95 attained for c = 1, and further the peak for c = 10 is for negligible
duration compared to that for c = 1. Later values of t0 = 25, 50, 75 show similar results wherein the cosine similarity drops
immediately on the above biasing operation, followed by lower repetition frequency and convergence to optimal solution
(Figure 6).

On the other hand, for t0 = 0, c = 0.2, 0.5, the model takes much longer to converge and is in representation collapse /
large repetition frequency state for much longer. This is in line with our expectation that lower attention map values for the
optimal positions lead to slower learning and prolonged representation collapse. Hence, learning the optimal attention map
has a direct effect on shaping the loss dynamics as well as repetitions and representation collapse.

Training with Optimal Attention. In this test, we initialize with the optimal attention map by fixing embeddings,
LayerNorm for attention layer and attention layer weights to their final values at the end of a normal training run, so that at
initialization, the correct attention map is already available to subsequent layers. We re-train the subsequent non-fixed layers
starting from random initialization.

For the attention layer, we choose the set of parameters to initalize in 2 ways: (a) only Key, Query (WK ,WQ) weights, and
(b) All of Key, Query, Value, Output (WK ,WQ,WV ,WO) weights. We find that in both of these cases, learning only the
subsequent layers (i.e. MLP, LM Head) take significantly shorter time than training the full model, without any significant
representation collapse, repetitions or plateau in loss (Figure 8). Further, between (a) and (b), we find that additionally
having WO,WV layers initialized to optimal values slightly speeds up learning, and average cosine similarity goes up to
approx 0.15 instead of ≈ 0.45 when only initializing WK ,WQ weights. This indicates that WO,WV layers also play a
non-trivial role in causing representation collapse. This result confirms that attention map is a major bottleneck that leads to
early representation collapse and loss plateau.

0 100 200 300 400
Steps

1.5

2.0

2.5

3.0

Lo
ss

Train/Test Loss

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.1

0.2

0.3

0.4

0.5

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency
Emb+(K,Q,O,V)
Emb+(K,Q)
MLP+LM head
Emb+LM head

Figure 8. Different optimal initializations and effect on training. We find that fixing attention and embedding weights (i.e. attention
map) to optimal value, and training other components leads to faster convergence and lesser representation collapse / repetitions. Similar
effect does not hold for fixing optimal MLP or Embeddings. (K,Q,O, V respectively denote the parameters WK ,WQ,WO,WV .)

10

Transformer Loss Plateau for Algorithmic Tasks

Optimal MLP or Embeddings Do Not Help. On the other hand, fixing MLP or embeddings (together with LM head) to
their final optimal values and re-training the other components does not qualitatively change the training dynamics from
the full training case, i.e., a significant loss plateau, repetition bias, and representation collapse still occur (Figure 8). This
indicates that there is little benefit from having the optimal MLP or embeddings at initialization compared to attention map.

D. A Further Look at Repetition Bias
D.1. Beyond Repetitions in Consecutive Tokens

One hypothesis for the reason behind repetition bias is that the training data may consist of some repetitions, and the model
may pick up these patterns and amplify them in the early phase of training. To investigate this, we consider a task with
low repetitions in the training data. In particular, we consider the prefix sum task, where the outputs y1, . . . , yn are defined
as yi = (

∑i
j=1 xj)mod p. Our choice of the input distribution ensures that there is no repetition in consecutive output

positions (i.e., yi ̸= yi+1 for all i). Indeed, training a Transformer on the prefix sum task does not result in a significant
increase in the repetition frequency at any point in training, unlike the MWS task. Nevertheless, in the early training phase,
we still observe that only a few tokens appear repeatedly in the model output though not contiguously as in the MWS task.
Therefore, we consider an alternative measure of repetitions based on entropy: for an output sequence y1, y2, . . . , yn, we
define

SeqEnt(y1, . . . , yn) :=

|V |∑
i=1

pi log(1/pi); pi =
|{yj = vi, j ∈ [n]}|

n

i.e. simply the entropy of the empirical distribution of tokens in the sequence. Intuitively, the entropy is lower if most
probability mass is concentrated at a few tokens, and larger if the tokens are more uniformly distributed. We find that
the model output entropy quickly goes to quite low values early in training compared to the entropy of ground-truth data
(Figure 9), indicating that the model still has a form of repetition bias. Further, representation collapse still happens in the
early phase, with the average cosine similarity going to 0.8 during the plateau.

Hence, we find that repetition bias might take different forms depending on the task, but still robustly occurs in the early
phase of training.

0 100 200 300 400 500
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
.

Cosine Sim.
Attention Prog.

0 100 200 300 400 500
Steps

1.2

1.4

1.6

1.8

2.0

2.2

Se
q.

 E
nt

ro
py

Sequence Entropy

Output Entropy
Data Entropy

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress & Cosine Similarity

Figure 9. Prefix sum task training dynamics. While the usual contiguous repetitions do not occur for this task, an alternate form of
repetition occurs in terms of having only a few distinct tokens in the output sequence. ‘Sequence entropy’ quantifies this repetition by
measuring the entropy of the empirical distribution of tokens in a sequence, and averaging this entropy over a batch of sequences.

D.2. Repetitive Sequences Are Easier to Learn

On the other hand, we study what happens when the ground-truth data have a lot of repetitions. We consider a simple
task REPEAT1 of the form x1, x2, . . . , xn,SEP, y1, y2, . . . , yn, where yi = x1 ∀i. Unlike other tasks, the loss curve for
REPEAT1 does not have any noticeable plateau, though the accuracy still shows a small plateau period (Figure 10). This
observation indicates that such repetitive sequences are easier from an optimization perspective and hence likely “preferred”
during the early stage of training. In fact, just one gradient step is sufficient to bring the average representation cosine
similarity to ≈ 0.5.

To further understand the early training phase model output, we define another metric α1 that measures to what extent the

11

Transformer Loss Plateau for Algorithmic Tasks

0 20 40 60 80 100 120
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Train/Test Loss
Train/Test Accuracy

0 20 40 60 80 100 120
Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
. /

 R
ep

ea
t F

re
q.

Cosine Similarity & Repetition Frequency

Cosine Similarity
Repetition Freq. ()
First Token Freq. (1)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 10. REPEAT1 training dynamics. We find that there is no observable plateau in loss on training a 1-layer transformer on the
REPEAT1 task. Moreover, metrics like ρ (repetition frequency) and α1 increase to near-perfect values rapidly in the early phase of
training, indicating a model bias towards learning repetitive sequences.

model simply outputs the same token for all output positions: α1 = 1
n

∑n
i=1 1[yi = y1]. Note that this is distinct from

accuracy, in that the model might output the wrong y1, however repeats y1 at y2, . . . , yn. We find that α1 rapidly increases
to near perfect values (> 0.9) in the early phase of training, showing that the model tends to repeat the first token identically
at most positions, even though the output token itself might be incorrect. Hence, repetitive sequences appear to be inherently
easier for the Transformer to learn, and this is likely the reason for repetition bias in the early phase of training.

We define 2 variants of the above task, REPEAT2 and REPEAT4 denoting the number of distinct repetitive blocks in the
sequences for those tasks. The training dynamics for these tasks in Figures 11(a) and 12(a) show that similar to REPEAT1,
the training loss does not exhibit any plateau. Moreover, the repetition frequency ρ and metric α1 increase rapidly to ≈ 1.0
early on in training.

REPEAT2 This task is defined as,

yi =

{
x1 1 ≤ i ≤ 8

(x1 + 1)mod 17 9 ≤ i ≤ 16

0 20 40 60 80 100 120
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Train/Test Loss
Train/Test Accuracy

0 20 40 60 80 100 120
Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
. /

 R
ep

ea
t F

re
q.

Cosine Similarity & Repetition Frequency

Cosine Similarity
Repetition Freq. ()
First Token Freq. (1)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 11. REPEAT2 training dynamics. Note that there is no plateau in loss, similar to the REPEAT1 task. Further, the pairwise cosine
similarity for hidden states take a specific form indicating the blocks of repeated tokens in the output (marked yellow), over which we
compute the average cosine similarity reported in (a).

REPEAT4 This task is defined as

yi =


x1 1 ≤ i ≤ 4

(x1 + 1)mod p 5 ≤ i ≤ 8

(x1 + 2)mod p 9 ≤ i ≤ 12

(x1 + 3)mod p 13 ≤ i ≤ 16

12

Transformer Loss Plateau for Algorithmic Tasks

0 20 40 60 80 100 120
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Train/Test Loss
Train/Test Accuracy

0 20 40 60 80 100 120
Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
. /

 R
ep

ea
t F

re
q.

Cosine Similarity & Repetition Frequency

Cosine Similarity
Repetition Freq. ()
First Token Freq. (1)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 12. REPEAT4 training dynamics. Similar to REPEAT2, there is no plateau in loss. The pairwise cosine similarity for hidden
states takes a form (marked yellow) indicating the blocks of repeated tokens in the output, over which we compute the average cosine
similarity reported in (a).

E. Results for Other Algorithmic Tasks
This section presents results on a suite of algorithmic tasks, verifying the generality of our identified phenomena.

Table 1. Algorithmic tasks that show abrupt learning and partial solution during plateau

Task Description Partial Solution

Moving Window Sum (MWS) Sum over moving window of 2
elements, copy 1st element

First input element

Prefix Sum (PRE) Compute prefix sum of a given
n–length sequence

First input element

Permutation (PER) Permute an n−length sequence by
given permutation

Incorrect permutation of
input sequence

Multi-Digit Addition (ADD) Add atmost–n–digit numbers First digit (0 or 1) i.e.
total carry-over from n
digits

Histogram (HIST) Compute counts of each element in
n–length sequence

≈ 100% Repetitive
sequences

Reverse (REV) Reverse n–length input sequence Repetitive sequences1

Copy (COPY) Copy n–length input sequence Repetitive sequences1

(1The loss plateau is very brief, hence a partial solution like other cases is not applicable.)

13

Transformer Loss Plateau for Algorithmic Tasks

E.1. Multi-Digit Addition

This task involves adding 2 atmost 4–digit numbers; if the numbers are represented as a = a1a2a3a4, b = b1b2b3b4 and
their sum a+ b = c = c0c1c2c3cn then the training sequences for ADD are of the form

a1, a2, a3, a4,+, b1, b2, b3, b4,=, c4, c3, c2, c1, c0

Note that the output sequence is reversed, following the observations from (Lee et al., 2023). We find similar abrupt learning
characteristics (Figure 13), partial solution in this case being c0 i.e. total carry-over from 4 single digit add operations. An
interpretable attention map learnt for the output sequence is shown in Figure 14.

0 500 1000 1500 2000
Steps

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 500 1000 1500 2000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Similarity & Repetitions
Repetition Freq.
Cosine Similarity

0 500 1000 1500 2000
Steps

0.3

0.4

0.5

0.6

0.7

At
te

nt
io

n
Pr

og
re

ss

Attention Progress Measure

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 13. Training dynamics for Add task. (left) Train/Test Loss, Accuracy and Partial solution progress (c0 accuracy); (middle)
Repetition frequency and representation collapse; (right) Attention progress measure.

Figure 14. Attention map for add task, note that the model attends to the relevant digits in the input numbers, and to somewhat lesser
extent to the preceding digits as well (highlighted positions show entries with larger magnitude).

14

Transformer Loss Plateau for Algorithmic Tasks

E.2. Prefix sum

This task involves computing the cumulative (prefix) sum of an n−length sequence of integers, so that the training sequences
in PRE are of the form (n = 16,SEP = 17),

x1, x2, . . . , xn,SEP, y1, y2, . . . , yn

yi =

 i∑
j=1

xj

 mod 17 ∀i ∈ [n]

Training dynamics for this task are shown in Fig. 15 which show similar abrupt learning behavior as MWS and partial
solution learning for y1. The interpretable attention map learnt for this task is shown in Figure 16.

0 100 200 300 400 500
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
.

Cosine Sim.
Attention Prog.

0 100 200 300 400 500
Steps

1.2

1.4

1.6

1.8

2.0

2.2

Se
q.

 E
nt

ro
py

Sequence Entropy

Output Entropy
Data Entropy

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress & Cosine Similarity

Figure 15. Training dynamics for Prefix sum task. (left) Train/Test Loss, Accuracy and Partial solution progress (y1 accuracy); (middle)
Attention progress and representation collapse; (right) SeqEnt for data and model output sequences.

Figure 16. Attention map for Prefix sum task, that uses the relevant token in the input, as well as the previous token in the output to track
prefix sum (highlighted positions show entries with larger magnitude).

15

Transformer Loss Plateau for Algorithmic Tasks

E.3. Permutation

This task involves training a 2-layer, 1-head Transformer on permuting a length−n sequence using the permutation π, which
is generated at random and is distinct for each training sequence. Formally, for a sequence of positive integers (x1, . . . , xn)
and a permutation (π1, . . . , πn) over [n], training sequences for PER, k = 0, 1, 2, . . . are given by

x1, . . . , xn,SEP, π1, . . . , πn,SEP, xπ1 , . . . , xπn

where xi ∼ Unif{17, 18, . . . , 32}, n = 16,SEP = 0. The partial solution in this case is the output sequence being an
permutation of the input sequence x1, . . . , xn i.e., it learns to copy the tokens correctly, but in wrong order (Figure 17).

0 50 100 150 200 250 300 350 400
Steps

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Lo
ss

Train/Test Loss, Accuracy

Loss
Acc.
Part. Sol. Acc.

0 50 100 150 200 250 300 350 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Similarity & Repetitions
Repetition Freq.
Cosine Similarity

0 50 100 150 200 250 300 350 400
Steps

0.05

0.10

0.15

0.20

0.25

At
te

nt
io

n
Pr

og
re

ss

Attention Progress Measure

Layer 1
Layer 2

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 17. Training dynamics for Permutation task. (left) Train/Test Loss, Accuracy and Partial solution progress; (middle) Repetition
frequency and representation collapse; (right) Attention progress measure. Note that the repetition frequency decreases by step 100, which
is followed by the partial solution.

(a) Layer 1 (b) Layer 2

Figure 18. Attention maps for the 2 layer Transformer used for Permutation task; highlighted positions show entries with larger magnitude.
(a) Attention map in Layer 1 where rows are attention weights over the input part x1, x2, . . . , xn of the sequence. The highlighted
positions are attending to π1, π2, . . . , πn = 5, 15, 4, 14, 3, 13, 6, 10, 11, 9, 16, 1, 12, 8, 2, 7. for index i ∈ [n].; (b) Attention map in
Layer 2; the rows (output part of the sequence) are attention scores over the part of sequence to which Layer 1 attention map copies the
correctly permuted tokens. This implies that this attention map simply copies the correct token from the residual stream after Layer 1.

16

Transformer Loss Plateau for Algorithmic Tasks

E.4. Histogram

This task (Cui et al., 2024) involves computing the counts of elements in the input sequence, and training sequences are of
the form

x1, x2, . . . , xn,SEP, y1, y2, . . . , yn

yi =

n∑
j=1

1[xj = xi]

where xi ∼ Unif{1, 2, . . . , 12}, n = 16,SEP = 0. We train a 2-layer, 1-head transformer for this task, with gradient
clipping (1.0) to avoid loss spikes (Figure 19). We note that the repetition bias in this case is quite strong which leads to
≈ 100% repetitions in the early phase of training, and which we characterize as partial solution for this task. Further we
only consider the attention map from layer 1 Figure 20 since this is the most consistent and clearly interpretable across runs,
and indicates an identity-map-like function.

0 250 500 750 1000 1250 1500
Steps

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy

0 250 500 750 1000 1250 1500
Steps

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Similarity & Repetitions

Repetition Freq.
Cosine Similarity

0 250 500 750 1000 1250 1500
Steps

0.1

0.2

0.3

0.4

At
te

nt
io

n
Pr

og
re

ss

Attention Progress Measure

Layer 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 19. Training dynamics for Histogram task. (left) Train/Test Loss and Accuracy; (middle) Repetition frequency and representation
collapse; (right) Attention progress measure. We only measure attention progress for the 1st layer, since that is the one that consistently
and clearly shows an interpretable pattern (Figure 20).

Figure 20. Attention map in layer 1 for histogram task, where rows for the latter half of the sequence compute attention weights over the
input tokens xi, similar to an identity map (highlighted positions show entries with larger magnitude).

17

Transformer Loss Plateau for Algorithmic Tasks

E.5. Reverse

This is the task of reversing the input sequence, so that the training sequences for reverse task REV are given as,

x1, x2, . . . , xn,SEP, xn, xn−1, . . . , x1

for xi ∼ Unif{1, 2, . . . , 16}, n = 16,SEP = 0. The training dynamics are shown in Figure 21(a) and the interpretable
attention map is shown in Figure 21(b).

0 20 40 60 80 100
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy

0 20 40 60 80 100
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
./C

os
in

e
Si

m
.

Repetition, Cosine Sim. and Attention Prog.

Repetition Freq.
Cosine Similarity
Attention Prog. Measure

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

At
te

nt
io

n
Pr

og
re

ss

(a)

Figure 21. Training dynamics for Reverse task. We see Abrupt Learning, Representation Collapse and Repetitions, though to a lesser
extent than MWS task. Note that the plateau is much shorter compared to MWS, possibly explained by the fact that reversing a sequence
is ‘easier’ than computing the moving window sum.

E.6. Copy

This is the trivial task of copying the input sequence as is, so that the training sequences for copy task COPY are given as,

x1, x2, . . . , xn,SEP, x1, x2, . . . , xn

for xi ∼ Unif{1, 2, . . . , 16}, n = 16,SEP = 0. The training dynamics are shown in Figure 22(a) and the interpretable
attention map is shown in Figure 22(b).

0 10 20 30 40 50
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy

0 10 20 30 40 50
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
pe

tit
io

n
Fr

eq
./C

os
in

e
Si

m
.

Repetition, Cosine Sim. and Attention Prog.

Repetition Freq.
Cosine Similarity
Attention Prog.

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

At
te

nt
io

n
Pr

og
re

ss
 M

ea
su

re

Figure 22. Training dynamics for Copy task. Similar to reverse task, we observe Abrupt Learning, Representation Collapse and
Repetitions for Copy task, but this time to an even lesser extent than reverse task itself.

18

Transformer Loss Plateau for Algorithmic Tasks

F. Varying Configurations
We demonstrate below that abrupt learning, representation collapse and repetition bias occur across model hyperparameter
variations for the MWS task (Figures 23 to 27). We also show that training using SGD instead of Adam also demonstrates
similar abrupt learning characteristics (Figure 28).

0 100 200 300
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Loss

0 100 200 300
Steps

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

0 100 200 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency
L = 1
L = 2
L = 4
L = 6

Figure 23. Number of Layers (L). We show that abrupt learning, representation collapse in the last layer and repetitions occur for multi
(2, 4, 6)–layer models as well.

0 50 100 150 200 250 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

2-layer model

Layer 1
Layer 2

0 50 100 150 200 250 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

4-layer model

Layer 1
Layer 2
Layer 3
Layer 4

0 50 100 150 200 250 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

6-layer model

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6

Figure 24. Extent of Representation collapse at various intermediate layers. Cosine similarity values showing the extent of representa-
tion collapse after each intermediate layer in multi-layer models. Note that the representation collapse is not so severe in the early layers
of multi-layer models, but the cosine similarity becomes close to 1.0 as we progress to the final layer.

0 100 200 300 400
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Loss

0 100 200 300 400
Steps

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

H = 1
H = 2
H = 4
H = 8

Figure 25. Number of attention heads (H). We show that abrupt learning with representation collapse and repetition bias occurs in
1-layer multi-attention head models as well.

19

Transformer Loss Plateau for Algorithmic Tasks

0 500 1000 1500
Steps

1.5

2.0

2.5

Lo
ss

Loss

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency
d = 64
d = 128
d = 256
d = 1024

Figure 26. Embedding dimension (d). We show that abrupt learning with representation collapse and repetition bias occurs in 1-layer
1-head models with different embedding dimension. Note that the convergence is delayed for models with smaller values of d = 64, 128.

0 200 400 600 800 1000 1200 1400
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Sim.
Repetition Freq.
Attn. Prog. Measure

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress and Cosine Similarity

Figure 27. Softmax Attention. For completeness we show that repetition bias and early-phase representation collapse are not limited to
linear transformers but are observed in softmax attention transformers as well. Note that the loss plateau is longer than that for linear
attention.

0 50 100 150 200 250 300
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Sim.
Repetition Freq.
Attn. Prog. Measure

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress and Cosine Similarity

Figure 28. SGD instead of Adam for loss optimization. We show that abrupt learning is not limited to Adam optimizer, and occurs with
SGD (η = 0.1) as well. We chose this value of η since smaller values typically lead to much longer periods of little decrease in loss,
without increase in accuracy.

20

Transformer Loss Plateau for Algorithmic Tasks

G. Additional Figures

0 50 100 150 200 250 300 350 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity
Token+Positional Embed
Attn Output
Post-Att Res. Stream
Post-MLP/Pre-LM Res. Stream

Figure 29. Cosine similarity at various points in residual stream for 1-layer, 1-head Transformer trained on MWS task.

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

Pythia-14m

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9
Pythia-1b

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9

Pythia-1.4b

100 101 102 103 104

Pretraining Step
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pythia-2.8b

Figure 30. Representation collapse at different Pythia pretraining checkpoints; inference with random sampling.

H. Related Work
Abrupt learning has been studied in multiple settings; (Barak et al., 2022) studied it for parity tasks for multiple neural net
architectures, while (Edelman et al., 2024) studied abrupt learning for a Markov chain task with Transformers. (Gopalani
et al., 2024) showed that training a BERT model on matrix completion leads to abrupt learning, while (Lubana et al., 2024)
connected abrupt learning for a grammar data setup to graph percolation. For abrupt learning in in-context learning (Garg
et al., 2023), there has been a line of recent works (Zhang et al., 2025; Singh et al., 2024; Wang et al., 2025; Chen et al.,
2024b; Reddy, 2023) that proposed various theoretical and empirical explanations. We aim to understand a unifying reason
behind such observations, in an algorithmic setup for multiple tasks with multi-token output sequences, without restrictive
assumptions on our model or training setup.

Repetition in language models is a well studied problem (Holtzman et al., 2020; Hiraoka & Inui, 2025; Li et al., 2023;
Fu et al., 2021; Yao et al., 2025; Wang et al., 2024; Xu et al., 2022). However these works focus not on the early phase
of training, but on how repetition may arise in pretrained models, and how to mitigate such phenomena. (Choshen et al.,
2022) remarked that in the early phase of training language models, the output might contain some word repetitions, but
understanding this occurrence is not the main focus of their work. Rank collapse is a related phenomenon for deep softmax
transformers at initialization that might hinder training (Anagnostidis et al., 2022); however, our representation collapse
phenomenon is different in that (i) we use shallow (1 or 2 layers) Transformers instead of deep ones; (ii) we use linear
attention instead of softmax; (iii) our observed representation collapse occurs only after a few steps of training, not at
initialization.

A line of recent work focused on understanding a related phenomenon of grokking (Power et al., 2022), which is abrupt

21

Transformer Loss Plateau for Algorithmic Tasks

generalization after an extended phase of memorization of training data by the model. Multiple works have studied grokking
from the perspective of circuits (Nanda et al., 2023; Varma et al., 2023; Merrill et al., 2023), representation learning (Liu
et al., 2022), delay in feature learning (Kumar et al., 2024; Lyu et al., 2024; Xu et al., 2023), and learning syntactic structures
for linguistic data (Chen et al., 2024a). We focus on abrupt learning in the online training regime where there isn’t a fixed
training set, which is a different phenomenon from grokking. Grokking has also been attributed to the softmax activation in
attention (Hoffmann et al., 2024; Prieto et al., 2025), which does not apply to our linear-attention setup.

Saddle-to-saddle dynamics (Boix-Adsera et al., 2023; Jacot et al., 2022) have also been used to explain plateau and sudden
drop in loss during training. However, these results require very small scale of initialization (→ 0) for their results to hold,
which does not hold in our setups.

The interplay of simplicity bias and Transformer learning dynamics has been studied recently in (Rende et al., 2025; Belrose
et al., 2024). In (Belrose et al., 2024) authors show that neural nets learn lower-order moments of data earlier in training,
and that the embedding statistics of Transformer models and token n-gram frequencies are related, explaining a specific
distributional simplicity bias during training. (Rende et al., 2025) show that Transformer-based models progressively learn
higher-order (‘many-body’) interactions between tokens in the sequence.

Ideas from statistical physics have also been used towards understanding initial loss plateaus in neural net training (Saad &
Solla, 1995; Inoue et al., 2003); they work in a 2-layer teacher-student neural net setup, where the second layer is fixed
during training, and use order parameters to study training. They show that there is a permutation symmetry in the weight
vectors of the first layer during the early plateau stage, and exiting this symmetry state is what leads to drop in loss.

There has also been recent work towards understanding training dynamics of Transformers using techniques from singular
learning theory (Hoogland et al., 2025). The core idea in this approach is to estimate the Local Learning Coefficient (LLC)
during training, and use this quantity to explain degeneracy in the loss landscape, and consequently the stage-wise training
dynamics of Transformers.

Note that we study representation collapse in the early phase of training, which is distinct from the notion of representation
collapse in (Barbero et al., 2024); they show that for 2 sequences (v1, v2, . . . , vn) and (v1, v2, . . . , vn, vn), as n grows large,
the pretrained model’s hidden state representation for the last token becomes identical for both sequences (Theorem 4.2,
(Barbero et al., 2024)).

22

