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ABSTRACT

Commercial recommender systems face the challenge that task requirements from
platforms or users often change dynamically (e.g., varying preferences for accu-
racy or diversity). Ideally, the model should be re-trained after resetting a new
objective function, adapting to these changes in task requirements. However, in
practice, the high computational costs associated with retraining make this process
impractical for models already deployed to online environments. This raises a new
challenging problem: how to efficiently adapt the learning model to different task
requirements by controlling model parameters after deployment, without the need
for retraining. To address this issue, we propose a novel controllable learning
approach via Parameter Diffusion for controllable multi-task Recommendation
(PaDiRec), which allows the customization and adaptation of recommendation
model parameters to new task requirements without retraining. Specifically, we
first obtain the optimized model parameters through adapter tunning based on the
feasible task requirements. Then, we utilize the diffusion model as a parame-
ter generator, employing classifier-free guidance in conditional training to learn
the distribution of optimized model parameters under various task requirements.
Finally, the diffusion model is applied to effectively generate model parameters
in a test-time adaptation manner given task requirements. As a model-agnostic
approach, PaDiRec can leverage existing recommendation models as backbones
to enhance their controllability. Extensive experiments on public datasets and a
dataset from a commercial app, indicate that PaDiRec can effectively enhance
controllability through efficient model parameter generation. The code is released
at https://anonymous.4open.science/r/PaDiRec-DD13e.

1 INTRODUCTION

Traditional recommender systems are usually designed to improve accuracy by analyzing user be-
haviors and contextual data to uncover users’ potential interests and preferences (Kang & McAuley,
2018; Hidasi et al., 2016). Nowadays, recommendation models place greater emphasis on multi-
ple important aspects of the recommended results (also called multi-task recommendation), such as
diversity (Xia et al., 2017), fairness (Oosterhuis, 2021), etc. Existing multi-task recommendation
models are typically static (Zhang & Yang, 2021; Sener & Koltun, 2018), meaning that the pref-
erence weights for each aspect (e.g., accuracy or diversity) are predefined and fixed during both
training and testing. Once the static preference weights are determined, the training process can
employ various optimization algorithms to find the optimal solution.

However, in practical scenarios, the preference weights for different aspects often change dynami-
cally across both context and time. From a commercial perspective, different application scenarios
may require varying preference weights for different performance aspects of the recommendation
model to meet specific business needs. For instance, the checkout page emphasizes product diver-
sity, while the product detail page prioritizes accuracy by recommending similar items. From the
users’ perspective, different user groups may have distinct preferences, and even the same users
may have changing information needs over time. For example, a user may prefer highly accurate
recommendations when browsing a specific item category, but over time, such precision might di-
minish their interest, prompting a preference for more diverse categories. To address the above
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dynamic information needs of users or platforms, this paper focuses on enhancing the controlla-
bility of recommendation models at test time, specifically in the context of controllable multi-task
recommendation.

Traditional multi-task learning approaches face challenges in addressing the issue of dynamically
changing preference weights. More specifically, when preference weights change, they require re-
setting the objective function, re-training the recommendation model based on the new objective,
and then redeploying the updated model. However, while this approach enables the integration of
various optimization methods, the retraining process is highly time- and resource-intensive, render-
ing it impractical — especially since rapid response time is critical during online recommendation
phases. For instance, during promotional events, commercial stores often require real-time flow
control to adjust their recommendation strategies, with changes ideally implemented immediately.
Several studies have recognized the importance of dynamically adjusting models based on changing
preferences. Wortsman et al. (2022) used simple parameter merging across multiple task-specific
models, and Chen et al. (2023) employed discriminative models to generate parameters for multi-
task re-ranking problem. While they reduce response time and aim to enhance control over the
model, they struggle with approximating the optimal model (which we assume can be achieved
through retraining with given preference weights), potentially leading to suboptimal solutions. To
achieve both efficient test-time adaptation to changing preferences and preserve the approximate op-
timal performance that retraining offers, we leverage the strengths of diffusion models in generating
high-performance model parameters (Schürholt et al., 2022; Knyazev et al., 2021; Wang et al., 2024)
for recommendation model. Additionally, we utilize conditional control (Ho & Salimans, 2022) to
ensure controllability at test-time with changing preference weights as conditions.

In this work, we propose a novel parameter generation approach for controllable multi-task recom-
mendation by leveraging a generative model to efficiently generate task-specific model parameters at
test time based on varying task requirements (i.e., the preference weights for different performance
metrics), effectively addressing the challenges posed by rapidly changing requirements and the high
cost of retraining models. The proposed approach, termed PaDiRec, begins by formulating an ob-
jective function aligned with task-specific preference weights, and through advanced optimization
techniques, we fine-tune model parameters using adapter tuning. We then train a diffusion model
to learn the conditional distribution of these optimized adapter parameters under various task re-
quirements, where the classfier-free guidance training strategy is employed to perform conditional
training. Once trained, during online testing, the diffusion model can generate task-specific adapter
parameters with the task requirement as condition, which can be integrated with different sequen-
tial recommendation backbones to produce recommendation lists that meet the specified require-
ments. Additionally, PaDiRec is both model-agnostic and algorithm-agnostic, making it flexible
and compatible with various recommendation models and optimization strategies. We summarize
our contributions as follows:

• We formally define the problem of controllable multi-task recommendation (CMTR),
which focuses on the model’s ability to adapt to dynamic changes in preferences for differ-
ent metrics during online testing.

• We present PaDiRec, a diffusion model-based approach that generates model parameters
conditioned on task-specific preference weights, providing enhanced control and flexibility
by controlling model parameters in multi-task learning settings.

• Extensive experiments on two public datasets and an industrial dataset demonstrate that
PaDiRec achieves superior performance towards controllability of multi-task recommen-
dation while retaining recommendation performances.

2 PROBLEM FORMULATION AND ANALYSES

Given a user u ∈ U and a set of candidate items C = {ck}|C|k=1 where |C| denotes the total number
of candidate items. the historical interaction sequence of user u of length h is denoted by Su =
{cu1 , cu2 , . . . , cuh} (also called user history), where cuk ∈ C, k ∈ {1, 2, . . . , h}. For a recommendation
task i ∈ {1, 2, . . . , N}, a recommender system aims to find the following item list L∗

i among all
possible lists {L} composed by candidate items from C:

L∗
i = argmax

L
Ri(L | Su, C), (1)
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where Ri denotes the reward function corresponding to task i, which evaluates the recommender
system’s performance with respect to task i. More specifically, modern recommender systems often
evaluate performance from multiple perspectives, the reward function in Eq. (1) for task i can be
expressed as the following linear combination of p utility functions {Uj}pj=1:

Ri(L(Su, C)) =
p∑

j=1

wj
i Uj(L | Su, C), (2)

which allows task i to be quantified by a set of preference weights wi = {wj
i }

p
j=1 ∈ W for the

various utilities, whereW denotes the preference weight space that is a simplex.

Then, we can provide the definition of controllable multi-task recommendation (CMTR). The
goal of CMTR is to find a recommendation model fθ, parameterized by θ ∈ Θ, such that the item
lists output during test time, L = fθ(Su, C), can adapt to changes in tasks (i.e., adapt to variations in
the corresponding preference weights in Eq. (2)). As an example, after the recommendation model
fθ is deployed, when the preference weights for different utilities (e.g., accuracy and diversity) need
to shift from wi = {wj

i }
p
j=1 (i.e., task i) to wk = {wj

k}
p
j=1 (i.e., task k) based on user or platform

requirements, we say that the recommendation model fθ is controllable if it can ensure that its
reward remains at a high level regardless of how the preference weights change. Ideally, to accom-
modate changes in tasks, we could retrain the recommendation model after receiving new preference
weights to update its parameters, resulting in fθ̃ that maintains a high reward. However, for an al-
ready deployed model, the time required for retraining is impractical and unacceptable. Another
straightforward method would be to store N sets of task-specific parameters corresponding to the
preference weights for N tasks at the time of deployment, and load them when a new task arises at
test time. However, when considering a continuous preference weight space where the number of
tasks N tends to infinity (i.e., a continuous task space), this discrete method becomes impractical
due to storage limitations and cannot accommodate fine-grained or continuous task variations.

To efficiently and effectively adapt to changes in tasks, this paper focuses on controlling the model
parameters θ of the recommendation model fθ to accommodate the varying preference weights of
new tasks. More specifically, we treat the preference weights as variables and model the relationship
between the preference weight space W and the model parameter space Θ during training, trans-
forming the time- and resource-intensive retraining problem at test time into an efficient inference
problem. Formally, we aim to find a function gξ :W → Θ (where ξ denotes the parameter of g) that
generates model parameters capable of achieving a high reward given the new preference weights
wk for any task k at test time:

Rk(L(Su, C)) =
p∑

j=1

wj
k Uj(fθk

(Su, C) | θk = gξ(wk)). (3)

In contrast to traditional multi-task recommendation (MTR), which focuses only on fixed prefer-
ence weights for different utilities, our defined CMTR emphasizes how the model adapts to dynamic
changes in preference weights after deployment. This shift means that in traditional MTR, each task
corresponds to a single utility, whereas in CMTR, each task is associated with multiple utilities com-
bined through a linear weighting, with combination coefficients determined by a set of task-specific
preference weights. As a result, CMTR places greater emphasis on test-time adaption to handle
dynamic task requirements, introducing new challenges for CMTR model training and construction
compared to MTR.

3 PADIREC: THE PROPOSED APPROACH

In this section, we provide a detailed description of the proposed approach, PaDiRec. PaDiRec uti-
lizes a conditional generative framework designed to directly learn from the optimized parameters of
recommendation models tailored to specific tasks. This pre-training process enables the generation
of new model parameters based on specified preference weights at test time.

3.1 ALGORITHM OVERVIEW

As shown in Figure 1, we provide an illustrative overview of the proposed PaDiRec, which contains
the following three phases. (1) Preparation of adapters: the left part in Figure 1 shows the training
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Figure 1: An overview of the proposed PaDiRec. Details are shown in Sec. 3.1

process of the recommendation model, from which we can obtain a collection of optimized adapter
parameters for feasible specific task by sampling the preference weights. Note that we focus on
two utilities: accuracy and diversity. As defined in Eq. (3), each task is represented by a set of
preference weights for these two utilities. (2) Parameter diffusion model training: the middle part
in Figure 1 illustrates the conditional training procedure of the generative model gξ (i.e., DiT) with
the optimized adapter parameters as initial data and the corresponding preference weights as condi-
tion, thus generating meaningful adapter parameters from Gaussian noise given preference weights.
(3) Test-time parameter generation: the right part in Figure 1 shows how we utilize the trained
DiT model during the test phase to adapt to dynamically changing task requirements (i.e., prefer-
ence weights for diversity and accuracy). First, we quantify these task requirements as preference
weights. Next, we employ the trained DiT model to generate adapter parameters in real time, using
these preference weights as inputs, which are then combined with the backbone to directly support
the recommendation task. In the following subsections, we elaborate on the details of these phases.

3.2 PREPARATION OF ADAPTERS

Our goal is to construct the parameters of optimized recommendation models under different pref-
erence weights to prepare data for the generative model. Thus, this section is organized into three
parts: the structure of the recommendation model, the construction of task-specific objective func-
tions, and the tuning process for the recommendation model parameters.

Model structure. As shown in the left module of Figure 1, sequential recommendation models take
user history and candidate items as input. Guided by the objective function (i.e., loss function), the
model learns the underlying relationships within the user history, ultimately generating a recom-
mendation list (i.e., Rec. List) from the candidate items. Existing recommender systems based on
deep neural networks can be quite large, and making significant invasive modifications typically re-
quires retraining the entire model, which is often prohibitively expensive in industrial applications.
To address this, our approach introduces an adapter module, which can be seamlessly integrated into
existing sequential recommendation models. Specifically, we incorporate the adapter using a resid-
ual connection, attaching it to the last layer of the backbone model. In this setup, the backbone is
set to retain the original recommendation capabilities, while the adapter is responsible for adapting
to specific tasks.

Objective function construction. To obtain the optimized task-specific adapter parameters under
CMTR setting (as shown in Sec. 2 ), we first focus on the construction of loss functions based on
different preference weights of each task. Specifically, we directly convert the reward maximization
problem (reward defined in Eq. (2)) into a loss minimization problem. Given a specific set of pref-
erence weights wi = {wj

i }
p
j=1 ∈ W , which represent preference weight for the j-th utility in the

requirement of task i. Here, we focus on two utilities including diversity loss ℓdiversity and accuracy

4
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loss ℓaccuracy in each task (i.e., p = 2). Thus, the total loss function for task i is

ℓi = w1
i ℓaccuracy + w2

i ℓdiversity. (4)

Adapter tuning. Based on above total loss function, we decompose the recommendation model
parameters θ into two components: task-specific adapter parameters, denoted as θa and task-
independent backbone parameters, denoted as θb. Accordingly, optimizing the model is divided
into two phases. The first phase focuses on optimizing the backbone parameters θb, which uses
the standard BCE loss to train the backbone model thus preserving the original recommendation
accuracy. The second phase is about the optimization of the task-specific adapter parameters θa,
which aims at improving the system’s adaptability to different tasks. During the second phase, the
backbone parameters are frozen to prevent them from being tailored to any specific task, whereas
the adapter is trainable. More specifically, in the second phase, we train the task-specific adapter
parameters based on two loss functions as in Eq. (4), one for accuracy and one for diversity. For the
accuracy loss ℓaccuracy, we continue to use BCE as the loss function to guide the model toward accu-
racy. For the diversity loss ℓdiversity, inspired by Yan et al. (2021), we apply a differentiable smoothing
of the α-DCG metric and adapt it to the recommendation setting. Consider |C| candidate items and
|M| categories, where each item may cover 0 to |M| categories. The category labels are denoted
as yk,l: yk,l = 1 if item k covers category m, and yk,l = 0 otherwise, where k ∈ {0, . . . , |C| − 1},
l ∈ {0, . . . , |M| − 1}. Based on the α-DCG, we design a differentiable diversity loss function:

ℓdiversity = −
|C|∑
k=1

|M|∑
l=1

yk,l(1− α)Ck,l

log2(1 + Rankk)
, (5)

where α is a hyper parameter between 0 and 1, Rankk is the soft rank of the item k, and Ck,l is the
number of times the category l being covered by items prior to the soft rank Rankk. That is:

Rankk = 1 +
∑
j ̸=k

sigmoid ((sj − sk)/T ) , Ck,l =
∑
j ̸=k

yj,l · sigmoid ((sj − sk)/T ) , (6)

where sk denotes the relevance score of the k-th candidate item output by the model. For task i, we
denote θi as the model parameters including task-specific adapter parameters θa

i and fixed backbone
parameters θb

i . Overall, based on the total loss in Eq. (4), the task-specific optimization process of
θa
i for task i can be formulated as follows:

θa
i = argmin

θa
i

w1
i ℓaccuracy + w2

i ℓdiversity, (7)

where wi = {w1
i , w

2
i } ∈ W is sampled from [0, 1]. We employ the standard Adam optimizer to

optimize these parameters. Then we transform the parameters of each task-specific adapter into a
matrix-based format and these optimized parameters serve as the ground truth for the subsequent
generative model training process.

3.3 PARAMETER DIFFUSION MODEL TRAINING

The optimized adapter parameters and corresponding preference weights obtained from Sec. 3.2 are
used as the training data for the diffusion model. We employ a generative model gξ parameterized
by ξ to learn the process of generating model parameters. Specifically, gξ is applied to predict the
conditional distribution of the adapter parameter matrices pgξ(θ

a
i |wi) given the preference weights

wi, where i corresponds to the task i. We adopt diffusion models (Ho et al., 2020) as our genera-
tive model due to its efficacy in various generation tasks (Li et al., 2022; Ho et al., 2022a; Vignac
et al., 2023) and its superior performance on multi-modal conditional generation (Bao et al., 2023;
Nichol et al., 2022; Saharia et al., 2022). We train the diffusion model to sample parameters by
gradually denoising the optimized adapter parameter matrix from the Gaussian noise. This process
is intuitively reasonable as it intriguingly mirrors the optimization journey from random initializa-
tion which is a well-established practice in existing optimizers like Adam. For task i, our denoising
model takes two parts as the input: a noise-corrupted adapter parameter matrix θa

i,t, and a set of
preference weights wi, with t representing the step in the forward diffusion process. The training
objective is as follows:

ℓdiff = Eθa
i,0,ϵ∼N (0,1),t

[∥∥ϵ− ϵξ(θ
a
i,t,wi, t)

∥∥2] , (8)

5
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where ϵ denotes the noise to obtain θa
i,t from θa

i,0, and the denoising model ϵ(·) is the main part of the
generative model gξ. We assume that the parameters of gξ primarily originate from the denoising
model. For simplicity, we denote the denoising model as ϵξ. To conduct condition training in a
classifier-free guidance manner (Ho & Salimans, 2022), we use the denoising model to serve as
both the conditional and unconditional model by simply inputting a null token ∅ as the condition
(i.e., preference weights wi) for the unconditional model, i.e. ϵξ(θa

i,t, t) = ϵξ(θ
a
i,t,wi = ∅, t). The

probability of setting wi to ∅ is denoted as puncond and is configured as a hyperparameter. Alg. 1
in Appendix illustrates the detailed procedure.

3.4 TEST-TIME PARAMETER GENERATION

After the diffusion is trained, we can generate the parameters θa
n,0 by querying gξ with a new set

of preference weights wn, specifying the desired preference weights for accuracy and diversity of
new task n. Then the generated adapter parameter θa

n,0 for that new task is directly loaded into the
adapter, which is connected to the backbone. This forms a new customized recommendation model
that responds to the preference weights of the new task. The generation is an iterative sampling
process from step t = T to t = 0, which denoises the Gaussian noise into meaningful parameters
taking specific preference weights as the condition. The generation process is formulated as follows:

ϵ̃ξ(θ
a
n,t,wn, t) = (1 + γ)ϵξ(θ

a
n,t,wn, t)− γϵξ(θ

a
n,t, t),

θa
n,t−1 =

1
√
αt

[
θa
n,t −

βt√
1− αt

ϵ̃ξ(θ
a
n,t,wn, t)

]
+ σtzt,

(9)

where zt ∼ N (0, I) for t > 1 and zt = 0 for t = 1, βt = 1 −
αt, γ ∈ [0, 1] . Alg. 2 in Appendix illustrates the detailed procedure.

Figure 2: The relationship between the loss
values in Eq. (7) and the adapter parameters
θa
i (with the preference weights w1

i = 0.3 and
w2

i = 0.7) on MovieLens 1M using SAS-
Rec as backbone. The index order indicates
the number of epochs after convergence. The
detailed settings are shown in Sec. A.2

Specifically, after generating the adapter param-
eter matrix, we reshape it to obtain the adapter
parameters (for simplicity, we do not distinguish
between the notations used before and after the
reshaping). The generated adapter parameter is
directly load into the adapter architecture. Then
keeping the backbone parameters θb

n and the
adapter parameters θa

n,0 fixed, the recommenda-
tion model is directly applied to extract features
from the user history interactions and score candi-
date items to generate a recommendation list that
aligns with the preference weights of the new task.

4 DISCUSSIONS ON THE ROBUSTNESS
OF PARAMETER DIFFUSION

In experiments of Sec. 5, we found that parame-
ter diffusion in our PaDiRec can generate model
parameters that differ from those obtained by re-
training the total loss in Eq. (7), yet still achieve
good recommendation performance and controlla-
bility. This leads us to hypothesize that parameter
diffusion may find more robust model parameters through model parameter generalization. To vali-
date this hypothesis, we continued training the adapter parameters for multiple epochs after the total
loss had converged, analyzing the relationship between the adapter parameters and the values of the
loss Eq. (7). We employed polynomial fitting to model the relationship between the data points,
estimating the functional relationship between the loss values and model parameters, achieving a
goodness of fit of R2 = 0.74. As illustrated in Figure 2, we observe that the solutions of the total
loss exhibit different characteristics under various model parameters. Specifically, there are rela-
tively flat solution sets, referred to as “Stable Solutions”, as well as solution sets with more dramatic
fluctuations, termed “Sharp Solutions”. Furthermore, as verified in RQ1 of Sec. 5.3, we observe that
the parameter diffusion in PaDiRec effectively learns the set of robust “Stable Solutions”, thereby
enhancing controllability while maintaining high performance.

6
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Table 1: Performance comparison between the proposed method and baseline models. The best
results are highlighted in bold, while the second-best results are underlined.

MovieLens Amazon Food Industrial Dataset
Metrics Metrics MetricsBackbone Algorithm

Avg.HV Pearson r-a Pearson r-d Avg.HV Pearson r-a Pearson r-d Avg.HV Pearson r-a Pearson r-d

Retrain 0.2281 - - 0.2251 - - 0.2779 - -
CMR 0.1920 0.8901 0.9150 0.1955 -0.7039 0.9932 0.2476 0.8750 0.9237
Soup 0.1441 0.7861 0.9133 0.1561 0.5317 0.6693 0.1825 0.7306 0.8188
MMR 0.1808 0.9575 0.8803 0.1707 0.1320 -0.3087 0.2034 0.9077 0.9655

SASRec

PaDiRec (Ours) 0.2138 0.9905 0.9903 0.2420 0.8857 0.9816 0.2812 0.9976 0.9986
- LLM 0.0625 -0.0600 0.0994 0.1017 0.7296 0.8558 0.0372 0.7279 0.7132

Retrain 0.1823 - - 0.1556 - - 0.1735 - -
CMR 0.1760 0.9068 0.8813 0.3617 0.8287 0.9059 0.1230 0.6514 0.5985
Soup 0.1197 0.8061 0.6694 0.0604 0.3850 0.8005 0.1226 0.7099 0.8200
MMR 0.1609 0.8692 0.7257 0.1354 -0.3497 -0.3748 0.1287 0.7916 0.7553

GRU4Rec

PaDiRec (Ours) 0.2009 0.9929 0.9786 0.1623 0.8470 0.9685 0.1871 0.9760 0.9236
- LLM 0.0625 -0.0716 0.0119 0.0667 0.7484 0.7904 0.0372 0.8088 0.7722

Retrain 0.2301 - - 0.2232 - - 0.2777 - -
CMR 0.1769 0.9286 0.9903 0.2064 -0.6279 0.9828 0.3315 0.8855 0.9300
Soup 0.1483 0.8033 0.8858 0.1533 0.5342 0.6525 0.1811 0.7310 0.8248
MMR 0.1815 0.8946 0.8684 0.1672 0.3057 0.2037 0.2060 0.9004 0.9565

TiSASRec

PaDiRec (Ours) 0.2532 0.9923 0.9914 0.2394 0.8759 0.9851 0.2862 0.9968 0.9984
- LLM 0.0625 -0.0663 0.0999 0.0667 0.7213 0.8499 0.0372 0.7373 0.7451

5 EXPERIMENTS

We conducted experiments to evaluate the performance of PaDiRec on two public datasets and an
industrial dataset for sequential recommendation.

5.1 EXPERIMENT SETTINGS

Dataset. We used two public datasets, MovieLens 1M 1 and Amazon Food 2, and the
Industrial Data from a electronics commercial store. Detailed descriptions of the datasets
and preprocessing methods can be found in Appendix A.3.

Baselines. The baselines are as follows. Retraining as Eq. (2), which is considered optimal.
Soup (Wortsman et al., 2022), a classic algorithm for model merging. MMR (Carbonell & Goldstein,
1998), a rule-based post-process policy. CMR (Chen et al., 2023), an re-rank algorighm utilizing
hypernetwork to achieve dynamic preference of changing. LLM (Appendix A.11), a prompt-based
method for controllable recommendation. Details about all the baselines are shown in Appendix A.4

Metrics. We propose evaluating performance from two dimensions. Specifically, we use Hyper-
volume (HV) (Guerreiro et al., 2021) to measure the performance of the algorithm on each task,
particularly in terms of the trade-offs between accuracy and diversity. The average HV (denoted as
Avg.HV) across multiple tasks is used to assess the overall performance of the algorithm in balanc-
ing both objectives (accuracy and diversity). To eliminate the differences in scale between the two
objectives, we normalize the performance on each objective. Additionally, we utilize the Pearson
correlation coefficient to evaluate the alignment between the algorithm’s performance across differ-
ent tasks and the optimal model, providing insight into the algorithm’s controllability. Pearson r-a,
Pearson r-d measure the correlation between the algorithm and the optimal in terms of accuracy
(NDCG@10) and diversity (α-NDCG@10).

5.2 EXPERIMENTAL RESULTS

We conducted experiments to address the following two questions: i) How transferable is PaDiRec,
specifically in terms of its ability to adapt to different backbone algorithms? ii) How does PaDiRec
perform compared to other baselines on each specific task? The results are presented in Table 1.

To answer the first question, we used commonly adopted sequential recommendation models as
backbones (e.g., SASRec (Kang & McAuley, 2018), GRU4Rec (Hidasi, 2015), and TiSASRec (Li
et al., 2020b)) and conducted extensive experiments across three datasets. Specifically, we eval-
uated PaDiRec’s performance under various task descriptions by measuring NDCG@10 and α-
NDCG@10. The accuracy weight wacc. varies from 0 to 1 in intervals of 0.1, with the corresponding

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/links.html
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(a) Accuracy on MovieLens 1M (b) Accuracy on Amazon Food (c) Accuracy on Industrial Data

(d) Diversity on MovieLens 1M (e) Diversity on Amazon Food (f) Diversity on Industrial Data

Figure 3: The accuracy and diversity curve of PaDiRec and other baselines in NDCG@10 and α-
NDCG@10 across accuracy weights ranging from 0 to 1, with intervals of 0.1. The backbone is
TiSASRec, results on other backbones are shown in Appendix A.6

diversity weight set as wdiv. = 1 − wacc.. We then post-processed NDCG@10 and α-NDCG@10
across different tasks to compute Avg.HV, Pearson r-a, and Pearson r-d. These metrics respectively
evaluate the quality of multi-objective optimization on individual tasks and the controllability across
multiple tasks. Overall, across the three backbones and three datasets, PaDiRec consistently ranked
among the top two performers across all three evaluation metrics. Notably, in most cases, the top
two of Avg.HV are Retrain and PaDiRec, indicating that PaDiRec’s performance in multi-objective
trade-offs is on par with, or even superior to, Retrain. Specific exceptions occurred, such as on
the Amazon Food dataset with GRU4Rec as the backbone and the Industrial Data with
TiSASRec as the backbone, where CMR achieved the best Avg.HV. This is because CMR is not in-
fluenced by task descriptions and thus maintains consistently high NDCG@10 scores (as shown in
Figure 3 and further explained in response to question ii). For Pearson r-a and Pearson r-d, PaDiRec
demonstrated strong correlations with the Retrain method, indicating that PaDiRec closely aligns
with Retrain (which we assume to be optima) in terms of accuracy (NDCG@10) and diversity (α-
NDCG@10) across different tasks. On the Amazon Food dataset with SASRec as the backbone,
CMR achieved the highest Pearson r-d. However, its Pearson r-a was negative, indicating a lack of
control and a collapse in accuracy.

To address the second question, we presented the specific performance of PaDiRec under each task
description using TiSASRec as the backbone across three datasets, as shown in Figure 3 (more re-
sults are shown in Appendix. A.6). It is observed that in all three datasets, PaDiRec’s NDCG@10
progressively increases with higher accuracy weights, while α-NDCG@10 decreases correspond-
ingly due to the simultaneous reduction in diversity weight. These trends demonstrate the effective-
ness of our algorithm in controllability. Notably, assuming that Retrain is optimal, PaDiRec exhibits
strong consistency with the Retrain method. In contrast, MMR, as a post-processing algorithm,
shows variability because varying degrees of diversity manipulation can disrupt the original recom-
mendation list, uncontrollably affecting its accuracy. The Soup method merges the parameters of
accuracy and diversity models based on their weights, aligning closely with the Retrain model when
accuracy weights are extreme but showing significant deviations in other tasks. This indicates that
tasks do not follow a simple linear relationship with different preference weights, and Soup makes
overly strong assumptions about this relationship. CMR demonstrates inconsistent performance
across different datasets. On the MovieLens 1M dataset, CMR aligns well with the original de-
scriptions by exhibiting high diversity. However, on the other two datasets, it shows a stable yet
uncontrollable state; for instance, on the Amazon Food dataset, CMR maintains high accuracy

8
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Table 2: Response time comparison between proposed PaDiRec and the “Retrain” approach across
three datasets using three different backbones. Note that the unit is seconds (sec.).

Approach Backbone MovieLens 1M (sec.) Amazon Food (sec.) Industrial Data (sec.)

Retrain

SASRec 293.10 ± 11.61 91.01 ± 2.34 46.82 ± 3.25

GRU4Rec 281.60 ± 17.36 92.39 ± 4.28 49.54 ± 2.38

TiSASRec 303.80 ± 9.09 105.40 ± 7.66 52.47 ± 4.64

PaDiRec

SASRec 2.68 ± 0.36 2.64 ± 0.36 2.55 ± 0.25

GRU4Rec 2.56 ± 0.27 2.54 ± 0.24 2.51 ± 0.23

TiSASRec 2.55 ± 0.23 2.52 ± 0.24 2.58 ± 0.26

even with low accuracy weights, and on the Industrial Data, it retains high diversity despite
low diversity weights.

5.3 ANALYSES

We conducted our analysis experiments based on three key research questions: RQ1: What are the
advantages of Diffusion over Hypernetwork in parameter generation? RQ2: Is PaDiRec efficient
enough to handle real-time changes in preference weights compared to Retrain? RQ3: How do
different conditioning strategies impact the model’s performance? Additionally, we also present
some case study in Apprndix A.12.

Regarding RQ1: Diffusion outperforms Hypernetwork in parameter generation.

We conducted experiments to validate the robustness of the parameters generated by PaDiRec (as
assumed in Sec. 4). Specifically, we designed three sets of experiments to constructed adapter
parameters: “Retrain”, “PaDiRec” and “Hypernetwork”, where “Hypernetwork” utilizes the MLP
to learn the relationship between the preference weight and the optimized adapter parameters.

Figure 4: The variation of performance be-
fore and after disturbance in MovieLens
1M based on SASRec. The blue bars represent
the variation in NDCG@10, while the red rep-
resent the variation in α-NDCG@10

First, we added Gaussian noise of the same mag-
nitude to all three sets of adapter parameters and
measured the resulting fluctuations in NDCG@10
and α-NDCG@10. The experiments were repeated
multiple times under various preference weights,
and the results are shown in Figure 4. We ob-
served that the parameters generated by PaDiRec
exhibited the lowest performance fluctuations, both
in terms of accuracy (NDCG@10) and diversity
(α-NDCG@10), when subjected to perturbations,
which verifies the assumption in Sec. 4. Addi-
tionally, we compared the similarity (Inverse Eu-
clidean Distance) between the three sets of param-
eters and the Retrain parameters. Hypernetwork-
generated parameters showed slightly higher sim-
ilarity to the Retrain parameters than those gener-
ated by Diffusion, with values of 0.3147 ± 0.0184
and 0.3035±0.0184, respectively. This indicates that PaDiRec, as a diffusion-based parameter gen-
erator, is not merely mimicking parameters but has learned the underlying distribution of parameters,
demonstrating its ability to generate robust, high-performance parameters (?).

Regarding RQ2: The efficiency and effectiveness of PaDiRec.

PaDiRec is designed to adaptively adjust model parameters in an online environment without re-
training, enabling it to quickly respond to new task requirements. This places a strong emphasis
on the model’s response time. We compared the response times of PaDiRec and “Retrain” across
various backbones and datasets, with the results shown in Table 2. As observed, in all experiments
using three different backbones across three datasets, PaDiRec’s response time was significantly
faster than that of “Retrain”. Notably, the response time of “Retrain” correlated with the size of
the dataset, whereas PaDiRec exhibited minimal variation across different datasets. This highlights
PaDiRec’s data-agnostic nature indicating its potential for handling large-scale datasets efficiently.

9
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Regarding RQ3: Influence of different conditioning strategies.

We investigate the influence of different conditioning strategies aimed at improving the integra-
tion of conditions into the denoising model. As shown in Figure 5, each strategy emphasizes dif-
ferent performance dimensions (details on the construction of each strategy can be found in Ap-
pendix A.5). In terms of Hypervolume, all five strategies outperform the “Retrain” approach, with
the “Pre&Post” strategy achieving the best results. For Pearson r-a and Pearson r-d, the “Adap-
norm” strategy demonstrates the best overall performance, indicating strong consistency with the
“Retrain” approach, i.e., high controllability. Additionally, the Hypervolume remains within an ac-
ceptable range, suggesting that adding conditions aggregated by an attention mechanism to the layer
norm is a promising approach for controllability.

6 RELATED WORK

Figure 5: Performances of different condi-
tioning strategies on MovieLens 1M using
SASRec as backbone. The results of the “Re-
train” algorithm are used as a reference.

Diffusion models. Diffusion probabilistic mod-
els (Ho et al., 2020; Song et al., 2020; Nichol &
Dhariwal, 2021)have not only achieved significant
success in the field of image generation but have
also found wide applications in various other ar-
eas in recent years, such as video generation (Ho
et al., 2022b), text generation (Li et al., 2022; Gong
et al., 2022), etc. Moreover, diffusion models have
shown the ability to generate high-quality neural
network parameters, achieving comparable or even
superior performance to traditionally trained mod-
els (Yuan et al., 2024; ?). These models have also
been applied to enhance the accuracy of recom-
mender systems by addressing challenges such as
noisy interactions and temporal shifts in user pref-
erences (Wang et al., 2023). In our work, we utilize
diffusion models to generate parameters for con-
trollable multi-task recommender systems.

Multi-task learning (MTL) aims to develop unified models that tackle multiple learning tasks si-
multaneously while facilitating information sharing (Zhang & Yang, 2021; Ruder, 2017). Recent
advancements in MTL include deep networks with various parameter sharing mechanisms (Misra
et al., 2016; Long et al., 2017; Yang & Hospedales, 2016) and approaches treating MTL as a multi-
objective optimization problem (Lin et al., 2019; Mahapatra & Rajan, 2020; Xie et al., 2021). These
latter methods focus on identifying Pareto-efficient solutions across tasks, with significant applica-
tions in recommender systems (Jannach, 2022; Li et al., 2020a; Zheng & Wang, 2022) Researchers
have explored different strategies, from alternating optimization of joint loss and individual task
weights to framing the process as a reinforcement learning problem (Xie et al., 2021). The emphasis
has shifted from optimizing specific preference weights to finding weights that achieve Pareto effi-
ciency across objectives (Sener & Koltun, 2018; Lin et al., 2019). Some methods utilize attention
mechanisms to dynamically allocate computational resources among tasks (Liu et al., 2019). More
recent approaches, such as the CMR (?), utilize hypernetworks to learn the entire trade-off curve for
MTL problems. However, our novel approach diverges from these existing methods by employing
diffusion models to control model parameters at test time, potentially offering greater flexibility and
adaptability in handling multi-task learning problems.

7 CONCLUSIONS

This paper addresses the critical challenge of adapting recommendation models to dynamic task
requirements in real-world applications, where frequent retraining is impractical due to high com-
putational costs. To tackle this problem, we propose PaDiRec, a novel controllable learning ap-
proach that enables efficient adaptation of model parameters without retraining by utilizing a diffu-
sion model as a parameter generator. Our approach is model-agnostic, allowing it to integrate with
existing recommendation models and enhance their controllability. PaDiRec provides a practical
solution for real-time, customizable recommendations in achieving efficient, test-time adaptation.
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A APPENDIX

A.1 AGORITHMS

Algorithm 1 Parameter Diffusion Model Training

1: Input: Dataset {(θi
a,0,wi)}Ni=1 denoted as D ▷ Dataset Preparation

2: Initialize: Learnable parameters ξ for g
3: Repeat:
4: (θi

a,0,wi) ∼ D ▷ Sample data with conditioning from the dataset
5: wi ← ∅ with probability puncond ▷ Randomly discard conditioning to train unconditionally
6: t ∼ Uniform(1, . . . , T ) ▷ Sample diffusion step
7: ϵt ∼ N (0, I) ▷ Sample a Gussian noise
8: ∇ξ∥ϵ− ϵξ(

√
αtθ

i
a,0 +

√
1− αtϵt,wi, t)∥2 ▷ Optimization of denoising model

9: Until converged

Algorithm 2 Test-time Parameter Generation

1: Input: preference weights of new task n, denoted as wn, Gaussian noise θna,T ∼ N (0, I)
2: Initialize: Trained parameters ξ for g, guidance strength γ
3: for t ∈ {1, 2, . . . , T} do
4: if t > 1 then
5: zt ∼ N (0, I)
6: else
7: zt = 0
8: end if
9: ϵ̃ξ(θ

n
a,t,wn, t) = (1 + γ)ϵξ(θ

n
a,t,wn, t)− γϵξ(θ

n
a,t, t)

10: θna,t−1 = 1√
αt
(θna,t −

βt√
1−αt

ϵ̃ξ(θ
n
a,t,wn, t)) +

√
βtzt

11: end for

A.2 SETTINGS OF EXPERIMENT IN DISCUSSION

In this experiment, we conducted tests on MovieLens 1M with preference weights set to w1
i = 0.3

and w2
i = 0.7, using SASRec as the backbone. The experiment followed the loss function in Eq. 4.

We first trained the adapter to convergence (approximately 30 epochs), then continued training for
several more epochs, recording the loss values and adapter parameters after each epoch. Each point
in the figure represents a recorded value.

A.3 DATASETS

A.3.1 DATASET INTRODUCTION

MovieLens-1M 3 contains 1,000,209 anonymous ratings of approximately 3,900 movies, provided
by 6,040 users who joined MovieLens in 2000. We sorted each user’s browsing history chronologi-
cally and filtered out users with fewer than five interactions. As a result, 994,338 interactions, 6,034
users, and 3,125 items were used in the final dataset. Each interaction is formatted to include user
ID, item ID, and timestamp. To evaluate the diversity of the recommendation list, we extracted the
genre information for each movie from the meta-information. Each movie may belong to one or
more of the 18 available genres.

Amazon Grocery and Gourmet Food 4 contains 151,254 anonymous reviews of 8,713 products
by 14,681 users, spanning from August 09, 2000 to July 23, 2014. Since the items belong to 156
categories, with each item assigned to only one category, we used the GloVe (Pennington et al.,
2014) to generate embeddings for each category. We then applied K-means clustering to group them

3https://grouplens.org/datasets/movielens/
4http://jmcauley.ucsd.edu/data/amazon/links.html
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into 30 broader categories, allowing each item to belong to one or more of these 30 broader genres.
The interaction format is the same as MovieLens-1M.

The industrial dataset is the user click dataset from a electronics commercial store in , spanning
from July 24, 2024, to August 24, 2024. We processed the raw data, filtering out users with fewer
than 20 interactions, and randomly selected the interaction histories of 1,000 users. Each interaction
was formatted to match the structure used in MovieLens-1M. Notably, the filtered interactions cov-
ered several categories. We manually merged similar categories into 27 broader ones, allowing each
item to belong to multiple categories, thereby supporting diversity in the dataset.

A.3.2 DATASET SETTINGS

For the recommendation model setup, we used the ReChorus framework5 for standardized process-
ing. Regarding data partitioning strategy, we employed the Leave-One-Out approach. Specifically,
for each user’s interaction history, interactions were sorted by timestamp, with the last interaction
designated as the test set, the second-to-last interaction as the validation set, and the remaining
sequence as the training set. During the training stage, negative sampling was set to 9 items per
positive interaction, while during testing, the full item set was used.

A.4 BASELINES

PadiRec was compared with several algorithms that were constructed in the controllable multi-task
recommendation scenarios, including: Retraining is performed using Linear Scalarization (Birge
& Louveaux, 2011) based on each task description, with the assumption that the resulting model
parameters represent the optimal solution. Soup (Wortsman et al., 2022) obtain a new model by av-
eraging the parameters of fine-tuned models without requiring additional computation during infer-
ence. In our work, we fine-tuned two models on accuracy and diversity respectively, and then merged
them linearly based on the task description. MMR (Carbonell & Goldstein, 1998) is a heuristic post-
processing approach with the item selected sequentially according to maximal marginal relevance.
We set the hyper-parameters based on the task description to achieve varying degrees of diversity
in the recommendations. CMR (Chen et al., 2023) dynamically adjusts models based on prefer-
ence weights using policy hypernetworks to generate model parameters. LLM (the prompt is shown
in A.11) is utilized as a personalized recommender system. We achieve controllable recommen-
dations by inputting prompts containing specific preference weights to respond to users’ real-time
preferences. For our experiments, we selected the llama3-7B-Instruct model. Details regarding the
prompts and settings can be found in the appendix.

A.5 CONDITION STRATEGIES

Pre Conditioning (i.e., Pre cond.) “Pre” denotes that the preference weights embeddings are inte-
grated into the parameters embeddings before being fed into self-attention layers. In this method,
we simply add the preference weight embeddings to the parameters embeddings within the input
sequence.

Pre and Post Conditioning (i.e., Pre&Post) “Post” denotes that the preference weights embeddings
are intergeted after the parameters embeddings fed into self-attention layers.In this method, we add
the preference weights embeddings both “Pre” and “Post”.

5https://github.com/THUwangcy/ReChorus
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Figure 6: Illustration of conditioning strategies : Pre Conditioning

Figure 7: Illustration of conditioning strategies : Pre and Post Conditioning

Pre-Adaptive Conditioning (i.e., Pre-Adap) In this variant, we introduce an attention mechanism,
which determines to what extent the preference weighted embeddings should be added to specific
parameters embeddings. This approach aims to empower the model to learn how to adaptively utilize
the preference weighted, enhancing its conditioning capabilities.
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Figure 8: Illustration of conditioning strategies : Pre-Adaptive Conditioning

Post-Adaptive Conditioning (i.e., Post-Ada) The preference weights embeddings based on the at-
tention mechanism is added after the multi-head self-attention in each transformer layer. Specif-
ically, the query used for preference weights attentive aggregation is the output of the multi-head
self-attention layer.

Figure 9: Illustration of conditioning strategies : Post-Adaptive Conditioning

Adaptive-Norm Conditioning (i.e., Ada-Norm) The preference weights embeddings based on the
attention mechanism is used for re-scaling the output in each layer norm.
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Figure 10: Illustration of conditioning strategies : Adaptive-Norm Conditioning

A.6 THE CURVE OF ACCURACY (NDCG@10) AND DIVERSITY (α-NDCG@10) ON OTHER
BACKBONES

(a) MovieLens 1M (b) Amazon FOOD (c) The industrial dataset

Figure 11: The trend of PadiRec and other baselines in NDCG@10 and α-NDCG@10 across accu-
racy weights ranging from 0 to 1, with intervals of 0.1. The backbone is GRU4Rec
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(a) MovieLens 1M (b) Amazon FOOD (c) The industrial dataset

Figure 12: The trend of PadiRec and other baselines in NDCG@10 and α-NDCG@10 across accu-
racy weights ranging from 0 to 1, with intervals of 0.1. The backbone is SASRec

A.7 SOTA BACKBONE (LRUREC)

(a) Accuracy (b) Diversity

Figure 13: The trend of PadiRec and other baselines in NDCG@10 and α-NDCG@10 across accu-
racy weights ranging from 0 to 1, with intervals of 0.1. The backbone is LRURec

A.8 THE EMBEDDING SIZE PROBLEM
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(a) 128 (b) 256

Figure 14: The trend of PadiRec and other baselines in NDCG@10 and α-NDCG@10 across accu-
racy weights ranging from 0 to 1, with intervals of 0.1. The backbone is SASRec.
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A.9 MORE OBJECTIVES (ACCURACY, DIVERSITY, FAIRNESS)

(a) NDCG@10 Trend. (b) αNDCG@10 Trend. (c) Fairness Comparison.

Figure 15: The comparison of PadiRec between ‘fair’ and ‘unfair’ in metrics
NDCG GAP@10(fairness), NDCG@10(accuracy) and α-NDCG@10(diversity) across accu-
racy weights ranging from 0 to 1, with intervals of 0.1. The backbone is SASRec. The dataset
is Movielens. Note that a smaller NDCG GAP@10 indicates a smaller difference in NDCG@10
between male and female user groups, signifying greater fairness.

Table 3: Fine-grained comparison of NDCG@10(accuracy), α-NDCG@10(diversity), and
NDCG GAP@10(fairness) under different fairness weights while keeping the accuracy weight and
diversity weight fixed.

Acc. weight Metric Fair. weight = 0.1 0.4 0.7 1.0

0.6
NDCG@10 0.3034 0.2910 0.2945 0.2959
a-NDCG@10 0.1085 0.1096 0.1094 0.1100
NDCG GAP@10 0.0267 0.0253 0.0175 0.0119

0.7
NDCG@10 0.3455 0.3448 0.3395 0.3482
a-NDCG@10 0.1019 0.1019 0.1045 0.1027
NDCG GAP@10 0.0366 0.0299 0.0286 0.0285
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A.10 NETWORK LAYERS OF RECOMMENDATION MODELS

In our experiments, we implement our framework on three recommendation models, SASRec (Kang
& McAuley, 2018), GRU4Rec (Hidasi, 2015), and TiSASRec (Li et al., 2020b). We provide their
details of parameter structure in Tables 4, 5, and 6 respectively.
SASRec (Kang & McAuley, 2018) Self-Attentive Sequential Recommendation. This model em-
ploys a Transformer architecture to model user sequences for personalized recommendation tasks.
It utilizes self-attention mechanisms that capture both long and short-term preferences by attending
differently to items based on their relevance.

GRU4Rec (Hidasi, 2015) Gated Recurrent Units for Recommendation Systems. GRU4Rec lever-
ages gated recurrent units (GRUs) to model user interaction sequences for session-based recommen-
dations. By utilizing a gating mechanism, it effectively captures dependencies across varying time
gaps between interactions, making it robust to session shifts and dropout behaviors.

TiSASRec (Li et al., 2020b) Time Interval-Aware Self-Attention for Sequential Recommendation.
This model extends SASRec by incorporating time intervals between user interactions as an ad-
ditional context. TiSASRec modifies the self-attention mechanism to account for these intervals,
providing a more nuanced understanding of user preferences that evolve over time. The model
includes a specialized positional encoding scheme to integrate these time dynamics alongside the
sequential user behaviors.

LRURec (Yue et al., 2024) Linear Recurrent Units for Sequential Recommendation. This model
introduces a novel linear recurrent unit architecture tailored for sequential recommendation tasks.
LRURec combines the efficiency of recurrent neural networks with the modeling capabilities of
self-attention mechanisms, enabling rapid inference and incremental updates on sequential data.
By decomposing linear recurrence operations and implementing recursive parallelization, LRURec
achieves reduced model size and parallelizable training.

Table 4: Parameter structure of SASRec(n depends on dataset)

Layer name Parameter shape Parameter count
i embeddings.weight [n, 64] 64n
p embeddings.weight [21, 64] 1344

transformer block.0.masked attn head.q linear.weight [64, 64] 4096
transformer block.0.masked attn head.q linear.bias [64] 64

transformer block.0.masked attn head.k linear.weight [64, 64] 4096
transformer block.0.masked attn head.k linear.bias [64] 64

transformer block.0.masked attn head.v linear.weight [64, 64] 4096
transformer block.0.masked attn head.v linear.bias [64] 64

transformer block.0.layer norm1.weight [64] 64
transformer block.0.layer norm1.bias [64] 64

transformer block.0.linear1.weight [64, 64] 4096
transformer block.0.linear1.bias [64] 64

transformer block.0.linear2.weight [64, 64] 4096
transformer block.0.linear2.bias [64] 64

transformer block.0.layer norm2.weight [64] 64
transformer block.0.layer norm2.bias [64] 64

adapter.0.weight [8, 64] 512
adapter.0.bias [8] 8

adapter.2.weight [64, 8] 512
adapter.2.bias [64] 64
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Table 5: Parameter structure of GRU4Rec(n depends on dataset)

Layer name Parameter shape Parameter count
i embeddings.weight [n, 64] 64n

rnn.weight ih l0 [192, 64] 12288
rnn.weight hh l0 [192, 64] 12288

rnn.bias ih l0 [192] 192
rnn.bias hh l0 [192] 192

out.weight [64, 64] 4096
out.bias [64] 64

adapter.0.weight [8, 64] 512
adapter.0.bias [8] 8

adapter.2.weight [64, 8] 512
adapter.2.bias [64] 64

Table 6: Parameter structure of TiSASRec(n depends on dataset)

Layer name Parameter shape Parameter count
i embeddings.weight [n, 64] 64n

p k embeddings.weight [21, 64] 1344
p v embeddings.weight [21, 64] 1344
t k embeddings.weight [513, 64] 32832
t v embeddings.weight [513, 64] 32832

transformer block.0.masked attn head.v linear.weight [64, 64] 4096
transformer block.0.masked attn head.v linear.bias [64] 64

transformer block.0.masked attn head.k linear.weight [64, 64] 4096
transformer block.0.masked attn head.k linear.bias [64] 64

transformer block.0.masked attn head.q linear.weight [64, 64] 4096
transformer block.0.masked attn head.q linear.bias [64] 64

transformer block.0.layer norm1.weight [64] 64
transformer block.0.layer norm1.bias [64] 64

transformer block.0.linear1.weight [64, 64] 4096
transformer block.0.linear1.bias [64] 64

transformer block.0.linear2.weight [64, 64] 4096
transformer block.0.linear2.bias [64] 64

transformer block.0.layer norm2.weight [64] 64
transformer block.0.layer norm2.bias [64] 64

adapter.0.weight [8, 64] 512
adapter.0.bias [8] 8

adapter.2.weight [64, 8] 512
adapter.2.bias [64] 64
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A.11 PROMPT OF LLM IN CONTROLLABLE MULTI-TASK RECOMMENDATION

“You are a recommendation expert who receives a user’s chronological purchase history and pro-
vides the next recommended item from a given set of candidate products. ” “Please note that you
need to consider the äccuracyänd d̈iversityöf recommendations comprehensively.. ” “Their defini-
tions are as follows: ” “Objective 1: Accuracy: Ensure that the recommended items are highly
relevant to the user’s interests and needs, thereby ensuring the accuracy of the recommendations.
To measure the effectiveness of your recommendations, it will use nDCG as the evaluation met-
ric. ” “Objective 2: Diversity: Ensure that the recommended content is diverse, avoiding exces-
sive recommendations of similar items. To achieve this, it will use Alpha-nDCG as the evaluation
metric, penalizing overly similar recommended items and encouraging a diverse range of content
in the recommendation list. ” “Now, I will provide the current user’s purchase history and the
set of candidate products. Purchase history: [-history-]. Candidate product set: [-candidates-].”
“Please rank these candidates and give [-out num-] item as recommendationns and make them both
diverse and accurately relevant with the history preference. ” “To achieve this, consideri the pri-
ority of these two objectives according to the given priority weights (äccuracy:̈[-w accuracy-] and
d̈iversity:̈[-w diversity-]) ” “Split your output with line break. You MUST rank and output 10 items
as recommendations. ” “You can not generate candidates that are not in the given candidate set.”
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A.12 CASE STUDY

In this section, we present the specific recommendation performance in each set of preference
weights. We randomly select one customer from each of the three datasets and demonstrate the
performance of the recommendation system models on these individual customers. As the accuracy
weight increases (i.e., the diversity weight decreases), we observe a downward trend in the height
of the bar chart, indicating that the number of categories represented in the recommendation list
decreases, signifying a reduction in diversity. Meanwhile, the line chart shows an upward trend,
suggesting that the target item’s rank moves higher, reflecting an improvement in recommendation
accuracy. The specific details are illustrated in the figures below. These changes clearly demonstrate
the effectiveness of the PadiRec algorithm in controllable multi-task recommendation.

Figure 16: Case study on MovieLens 1M utilizing SASRec as the backbone. Note that the bars
represent all the categories contained in the top-10 item list (some lists may contain more than 10
categories, as one item can belong to multiple categories). The line chart represents the rank of the
target item in each list.

Figure 17: Case study on Amazon FOOD utilizing SASRec as the backbone. Note that the bars
represent all the categories contained in the top-10 item list (some lists may contain more than 10
categories, as one item can belong to multiple categories). The line chart represents the rank of the
target item in each list.
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Figure 18: Case study on The industrial dataset utilizing SASRec as the backbone. Note that the
bars represent all the categories contained in the top-10 item list (some lists may contain more than
10 categories, as one item can belong to multiple categories). The line chart represents the rank of
the target item in each list.

Figure 19: Case study on the MovieLens-1M dataset utilizing GRU4Rec as the backbone. Note that
the bars represent all the categories contained in the top-10 item list (some lists may contain more
than 10 categories, as one item can belong to multiple categories). The line chart represents the rank
of the target item in each list.

Figure 20: Case study on the Amazon FOOD dataset utilizing GRU4Rec as the backbone. Note that
the bars represent all the categories contained in the top-10 item list (some lists may contain more
than 10 categories, as one item can belong to multiple categories). The line chart represents the rank
of the target item in each list.
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Figure 21: Case study on the industrial dataset utilizing GRU4Rec as the backbone. Note that the
bars represent all the categories contained in the top-10 item list (some lists may contain more than
10 categories, as one item can belong to multiple categories). The line chart represents the rank of
the target item in each list.

Figure 22: Case study on MovieLens 1M dataset utilizing TiSASRec as the backbone. Note that the
bars represent all the categories contained in the top-10 item list (some lists may contain more than
10 categories, as one item can belong to multiple categories). The line chart represents the rank of
the target item in each list.

Figure 23: Case study on Amazon FOOD dataset utilizing TiSASRec as the backbone. Note that the
bars represent all the categories contained in the top-10 item list (some lists may contain more than
10 categories, as one item can belong to multiple categories). The line chart represents the rank of
the target item in each list.
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Figure 24: Case study on the industrial dataset utilizing TiSASRec as the backbone. Note that the
bars represent all the categories contained in the top-10 item list (some lists may contain more than
10 categories, as one item can belong to multiple categories). The line chart represents the rank of
the target item in each list.

Table 7: Case Study of PaDiRec on MovieLens 1M utilizing SASRec as the backbone. We compared
the top-10 recommendation lists between an accuracy weight of 0.1 and an accuracy weight of 0.9.
Notably, when the accuracy weight is 0.1 (indicating a high preference for diversity), items covering
more categories are ranked higher, but the list does not include the target item, indicating poor
accuracy. Conversely, with an accuracy weight of 0.9, the target item is ranked in the top 1 position
within the recommendation list.

Accuracy Category Item Is Target Item
0.1 Animation, Children’s,

Comedy, Musical, Romance
Little Mermaid No

0.1 Action, Comedy, Crime,
Horror, Thriller

From Dusk Till Dawn No

0.1 Adventure, Fantasy, Sci-Fi Time Bandits No
0.1 Animation, Children’s Sword in the Stone No
0.1 Action, Romance, Thriller Desperado No
0.1 Adventure, Children’s,

Fantasy
Santa Claus No

0.1 Horror, Sci-Fi Invasion of the Body
Snatchers

No

0.1 Film-Noir, Mystery, Thriller Palmetto No
0.1 Action, Comedy Twin Dragons No
0.1 Film-Noir Sunset Blvd. No
0.9 Horror Birds Yes
0.9 Drama Cider House Rules No
0.9 Comedy, Romance Annie Hall No
0.9 Action, Comedy, Crime,

Horror, Thriller
From Dusk Till Dawn No

0.9 Drama, Romance Girl on the Bridge No
0.9 Animation, Children’s,

Comedy, Musical, Romance
Little Mermaid No

0.9 Comedy Road Trip No
0.9 Comedy, Drama Chuck & Buck No
0.9 Horror, Sci-Fi Invasion of the Body

Snatchers
No

0.9 Animation, Children’s Sword in the Stone No
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A.13 DETAILS OF DIFFUSION

Table 8: Parameter structure of Model, where the transformer block index ‘x’ ranges from 0 to 3.

Layer name Parameter shape Parameter count
embedding.weight [8, 512] 4096

linear.weight [512, 8] 4096
linear.bias [8] 8

transformer block.x.self attn.out proj.weight [512, 512] 262144
transformer block.x.self attn.out proj.bias [512] 512

transformer block.x.linear1.weight [512, 2048] 1048576
transformer block.x.linear1.bias [2048] 2048

transformer block.x.linear2.weight [2048, 512] 1048576
transformer block.x.linear2.bias [512] 512

transformer block.x.norm1.weight [512] 512
transformer block.x.norm1.bias [512] 512

transformer block.x.norm2.weight [512] 512
transformer block.x.norm2.bias [512] 512

transformer block.x.dropout1.weight [512] 512
transformer block.x.dropout1.bias [512] 512

transformer block.x.dropout2.weight [512] 512
transformer block.x.dropout2.bias [512] 512

step mlp.0.weight [512, 512] 262144
step mlp.0.bias [512] 512

step mlp.1.weight [512, 512] 262144
step mlp.1.bias [512] 512

step mlp.2.weight [512, 512] 262144
step mlp.2.bias [512] 512

kgEmb mlp.0.weight [2, 512] 1024
kgEmb mlp.0.bias [512] 512

timeEmb mlp.0.weight [2, 512] 1024
timeEmb mlp.0.bias [512] 512

A.14 DIFFUSION TRANSFORMER FLOPS CALCULATION.

A.14.1 BASE PARAMETERS

• Sampling steps (T ): 500

• Input shape: [batch size, channels, sequence length] = [1, 8, 137]

• Condition vector: 2× 1

• Model dimension (d model): 512

• Number of transformer layers (N ): 4

• Number of attention heads: 8

A.14.2 SINGLE STEP COMPUTATION BREAKDOWN

1. Initial Processing

• Input permute: [1, 8, 137]→ [1, 137, 8]

• Linear projection (8→ 512): 137× (8× 512) = 561, 152 FLOPs

• Condition embedding (2→ 512): 2× 512 = 1, 024 FLOPs

• Time embedding (2→ 512): 2× 512 = 1, 024 FLOPs

• Step embedding: 2× (512× 512) + 512 = 524, 800 FLOPs

• Total Initial Processing: 1, 088, 000 FLOPs
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2. Transformer Layer Computation (per layer)

• Input shape: [137, 512]
• Self-Attention computation:

Query, Key, Value projections: 3× (137× 512× 512) = 107, 479, 040 FLOPs
Attention score computation: (137× 137× 64)× 8 = 12, 055, 552 FLOPs

Value weighting: (137× 137× 64)× 8 = 12, 055, 552 FLOPs
Output projection: 137× 512× 512 = 35, 826, 688 FLOPs

• Feed-forward network computation:

First linear layer (512→ 2048): 137× 512× 2048 = 143, 065, 088 FLOPs
Second linear layer (2048→ 512): 137× 2048× 512 = 143, 065, 088 FLOPs

GELU activation: 137× 2048 = 280, 576 FLOPs

• Single Transformer Layer Total: 453, 827, 584 FLOPs

3. Output Processing

• Final linear projection (512→ 8): 137× (512× 8) = 561, 152 FLOPs

A.14.3 TOTAL COMPUTATION

1. Single Step Computation

• Initial processing: 1,088,000
• Transformer layers: 453, 827, 584× 4 = 1, 815, 310, 336

• Output processing: 561, 152
• Per step total: 1, 816, 959, 488 FLOPs

2. Complete Sampling Process (500 steps):

• Total FLOPs: 1, 816, 959, 488× 500 = 908, 479, 744, 000 ≈ 0.9085 TFLOPs

A.14.4 EFFICIENCY EVALUATION AND CONCLUSION

Taking the RTX 3090 as an example, which achieves 35.58T FLOPS per second, our diffusion
model requires only 0.9085T FLOPs for the entire 500-step sampling process. Therefore, the infer-
ence process of the diffusion model takes approximately 0.026 seconds. Including some data storage
overhead, the total time is around the order of seconds (aligned with Table 2). In real-world recom-
mendation scenarios, a single recommendation typically occurs within milliseconds. However, for
users, waiting 2-3 seconds to customize a more personalized model is considered acceptable.

A.15 DISCUSSION ON USED MOVIELENS EVALUATION

We utilized the MovieLens dataset for our experiments. MovieLens is among the most widely used
datasets in the recommender systems domain, serving as a standard benchmark for validating new
models and ensuring reproducibility. However, it is important to acknowledge that the user-item
interactions recorded in the MovieLens dataset primarily reflect engagements between users and
the MovieLens platform, where users are prompted to recall movies they have previously watched.
This setup differs significantly from typical recommendation scenarios encountered in real-world
applications, as analysis by Fan et al. (2024).

Nonetheless, the MovieLens dataset remains valuable for research purposes. It provides researchers
with a standardized benchmark, facilitating the verification of model implementations and enabling
comparisons with existing studies. Besides, it is important to note that, our focus is not on the
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patterns of sequential data but rather on providing controllability to the backbone models. Therefore,
employing the MovieLens dataset in our research is justified. We recognize the limitations of relying
solely on the MovieLens dataset. To comprehensively assess the effectiveness and applicability of
our model, we conducted experiments on three datasets, further demonstrating the effectiveness of
the algorithm.
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