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ABSTRACT

Logical reasoning is a fundamental capability of large language models (LLMs).
However, existing studies largely overlook the interplay between logical complex-
ity and semantic complexity, resulting in methods that struggle to address chal-
lenging scenarios involving abstract propositions, ambiguous contexts, and con-
flicting stances, which are central to human reasoning. We propose LogicAgent,
a semiotic-square–guided framework that jointly addresses these two axes of dif-
ficulty. The semiotic square provides a principled structure for multi-perspective
semantic analysis, and LogicAgent integrates automated deduction with reflec-
tive verification to manage logical complexity across deeper reasoning chains. To
support evaluation under these conditions, we introduce RepublicQA, a bench-
mark that couples semantic complexity with logical depth. RepublicQA reaches
college-level semantic difficulty (FKGL 11.94), contains philosophically grounded
abstract propositions with systematically constructed contrary and contradictory
forms, and offers the most semantically rich setting for assessing logical reason-
ing in LLMs. Experiments demonstrate that LogicAgent achieves state-of-the-art
performance on RepublicQA, with a 6.25% average gain over strong baselines,
and generalizes effectively to mainstream logical reasoning benchmarks including
ProntoQA, ProofWriter, FOLIO, and ProverQA, achieving an additional 7.05%
average gain. These results highlight the strong effectiveness of our semiotic-
grounded multi-perspective reasoning in boosting LLMs’ logical performance.

1 INTRODUCTION

"id": "RepublicQA_1_1",
Premise (P):  Debt is ··· Justice ···
Question (S): Repaying one‘s debts is just.
Option: True/False/Uncertain
Answer: False
Explanation: Justice ··· Answer is False 

RepublicQA

"id": "RepublicQA_4_1",
Question (S): Justice is the interest 
··· ···              of the stronger
 

(1) Semantic Structuring

(2) Logical Reasoning

(3) Reflective Verification
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su

lt

1⃣ Let's try to prove S1 directly...  
    → Hmm... can't determine its truth.
2⃣ Let's try to prove ¬S1 instead...  
    → Oh! ¬S1 turns out to be true.
3⃣ Let's check the contrary S2 for validation...  
    → Interesting! S2 is also true.
✅ Conclusion: Since ¬S1 and S2 are both true,  
    S1 must be false.

Figure 1: Overview of LogicAgent and the pro-
posed RepublicQA benchmark. (Top-left) Re-
publicQA features abstract, philosophical propo-
sitions from Plato’s Republic with diverse con-
textual premises, enabling multiple semantic in-
terpretations. (Bottom-left) LogicAgent consists
of three stages. (Top-right) A multi-step reason-
ing process explores contraries and contradictions
when S1 is indeterminate. (Bottom-right) Log-
icAgent outperforms strong baselines across four
benchmarks, demonstrating robust generalization
in symbolic, multi-perspective reasoning.

Logical reasoning (Smith, 2003) plays a central
role in human cognition, enabling structured
transitions from ambiguous inputs to defini-
tive conclusions. In AI (Cohen et al., 2020;
Vaswani et al., 2017), it underpins tasks such
as commonsense reasoning (Wang et al., 2024),
mathematical proof (Wang et al., 2023; Eisner
et al., 2024; Gao et al., 2023), and philosophi-
cal thinking (Paul, 2013). However, robust log-
ical reasoning in natural language remains chal-
lenging due to (1) semantic complexity (Tuggy,
1993), where expressions admit multiple in-
terpretations or surface forms, and (2) logical
complexity (Gibson, 1998), which requires rea-
soning over contextual premises and semantic
interactions (Zhang et al., 2020; Ding et al.,
2024).

Recent approaches can be grouped into three
categories: (1) LLM-based prompting meth-
ods, such as Chain-of-Thought (Wei et al.,
2022), Tree-of-Thought (Yao et al., 2023), and
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Least-to-Most (Zhou et al., 2022); (2) symbolic or FOL-driven approaches (Ryu et al., 2024;
Zhang et al., 2023; Yang et al., 2023) that rely on logical solvers (Pan et al., 2023); and (3) hybrid
frameworks (Sun et al., 2024; Xu et al., 2024a;b) that integrate LLMs (Achiam et al., 2023; Guo
et al., 2025; Zhao et al., 2023b) with symbolic modules. Although effective, these methods remain
centered on logical structure and give limited attention to semantic complexity, often assuming clean
predicates and unambiguous contexts. This neglects how abstraction, conflicting stances, and con-
textual ambiguity interact with logical inference, limiting performance when semantic and logical
complexity jointly shape reasoning (Lago, 2009; Lepore & Stone, 2007).

To capture the complex semantics and deep logical relations, we draw inspiration from Greimas’
Semiotic Square (Greimas et al., 1982; Greimas, 1987; 1988), a structuralist framework that extends
binary oppositions into a four-part structure. It encompasses both contraries (e.g., S1 vs. S2, which
cannot both be true but may both be false under non-empty domains) and contradictions (e.g., S1

vs. ¬S1, which cannot both be true or false). We migrate this semantic framework into classical
FOL with additional constraints, enabling structured multi-perspective reasoning that captures both
complex semantics and deep abstract logical relations.

Motivated by agent-based paradigms (Hong et al., 2023), we propose LogicAgent, a semiotic-
square-guided reasoning framework that automates multi-perspective deduction through a three-
stage pipeline: (1) Semantic Structuring Stage constructs a semiotic square to generate perspec-
tive variants of a proposition, including its contradiction and contrary, laying the foundation for
multi-perspective reasoning and reflection. (2) Logical Reasoning Stage formalizes the contextual
premises and performs symbolic deduction along both the original and contradiction paths. (3)
Reflective Verification Stage assesses the reasoning trajectory through logic-aware reflection and
revises conclusions when inconsistencies arise. This design enables LogicAgent to emulate human-
like reasoning while systematically addressing semantic ambiguity and logical complexity.

To rigorously evaluate how semantic complexity interacts with logical reasoning, we introduce Re-
publicQA, a benchmark grounded in classical philosophical concepts and annotated through multi-
stage, cross-validated human review. Existing reasoning benchmarks such as ProofWriter (Tafjord
et al., 2020), ProntoQA (Saparov & He, 2022), FOLIO (Han et al., 2022), and ProverQA (Qi et al.,
2025) are largely template-based and focus primarily on logical structure, offering limited semantic
depth and little coverage of the ways semantic ambiguity, abstraction, or opposing stances influence
logical inference. In contrast, RepublicQA captures semantic complexity through abstract philo-
sophical content and logical complexity through systematically organized contrary and contradictory
relations. It also exceeds existing benchmarks across all five semantic complexity indicators, reach-
ing a college-level reading difficulty (FKGL = 11.94) while maintaining the same level of logical
reasoning rigor required by prior datasets.

Experimental results show that our method achieves state-of-the-art performance on Repub-
licQA, surpassing strong baselines across different backbone models with an average improve-
ment of 6.25%. To further validate its generalization, we also evaluate LogicAgent on ProntoQA,
ProofWriter, FOLIO and ProverQA, where it again achieves superior results with an average gain of
7.05%. These findings confirm the effectiveness of semiotic-grounded multi-perspective reasoning
in enhancing LLMs’ logical capabilities under ambiguity and conceptual complexity.

2 PRELIMINARIES

S1

¬S2 ¬S1

S2

Greimas’ Semiotic Square

Contradictory

Contrary

Implication

Figure 2: Greimas’ Semiotic Square: illustrating
contraries (S1 vs. S2), contradictions (S1 vs. ¬S1,
S2 vs. ¬S2), and implications (S1 ⇒ ¬S2, S2 ⇒
¬S1).

Reasoning under ambiguity often involves not
only binary truth values but also conceptual op-
positions such as contraries (just vs. unjust)
and contradictions (true vs. false). Classical
logical formalisms capture the latter but lack a
systematic way to encode the former. To ad-
dress this gap, we incorporate Greimas’ Semi-
otic Square as a bridging device: it provides
a structured representation of semantic opposi-
tions, which we then ground in FOL. This in-
tegration forms the basis of LogicAgent, allow-
ing it to align natural language semantics with formal logical deduction.
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Greimas’ Semiotic Square. The Greimas’ Semiotic Square (Greimas et al., 1982) is a foundational
construct in structuralist semantics that organizes conceptual contraries and contradictions into a
four-element structure, enabling fine-grained reasoning over meaning, opposition, and implication.
In our work, we migrate this semantic structure into the setting of classical FOL, with additional
constraints to ensure logical soundness. Specifically, we introduce an existential import check to
avoid vacuous truth from material implication, and extend the evaluation space from binary {True,
False} to a three-valued scheme {True, False, Uncertain}, which better reflects reasoning under
ambiguity.

Let S1 denote a primary proposition. The structure of the semiotic square is illustrated in Figure 2:

• S2: the contrary of S1. The relation S1 ⊥ S2 implies both cannot be true, but both may be false
(subject to non-empty domain constraints).

• ¬S1: the contradictory of S1, satisfying the classical law of excluded middle: S1 ↔ ¬¬S1.

• ¬S2: the contradictory of S2.

Theorem 1 (Semantic Implication Theorem). If S1 and S2 are contraries, then within the semiotic
square the following semantic implications hold:

S1 ⇒ ¬S2 and S2 ⇒ ¬S1. (1)

Proof. Assume S1 = True. Since S1 and S2 are contraries, we obtain S2 = False. By the definition
of contradiction, ¬S2 = True. Thus, S1 ⇒ ¬S2. Symmetrically, S2 ⇒ ¬S1.

This structural implication mechanism allows the reasoning agent to verify the coherence of judg-
ments made about a target proposition by leveraging the relational semantics encoded in the square.

3 METHODOLOGY

To emulate human-like logical reasoning from multiple perspectives, we propose LogicAgent, as
shown in Figure 3. The framework consists of three core stages: (1) Semantic Structuring Stage,
(2) Logical Reasoning Stage, and (3) Reflective Verification Stage. By integrating semiotic theory
with classical logic under additional constraints, LogicAgent enables multi-perspective reasoning
and reflection over conceptual structures. Each stage plays a distinct role in transforming linguistic
input into structured reasoning: from semantic structuring, to symbolic deduction, and ultimately to
reflective verification for consistency.

3.1 TASK DEFINITION

Given a set of natural language Premises P = {p1, p2, . . . , pn}, where each pi denotes a logical
statement, and a Proposition Q, the task is to determine the answer of Q with respect to P , choosing
one of three labels: True, False, or Uncertain. 1

3.2 SEMANTIC STRUCTURING STAGE

Given an input proposition Q, this stage first treats it as the primary proposition S1, preserving
its original semantic stance. Based on S1, the stage jointly generates its contradictory ¬S1, the
corresponding contrary S2, and the contradiction of the contrary ¬S2, each paired with a symbolic
representation in FOL.

Contradictory Construction. Given a natural-language proposition S1, we first formalize it into
a FOL expression. We then negate the entire formula to obtain ¬S1 and simplify it using standard
equivalences (quantifier negation, De Morgan, implication, bi-implication), as summarized in Ta-
ble 1 (column “S1 (simplified)”). Finally, the simplified form is mapped back into natural language,
ensuring that ¬S1 is both syntactically valid in FOL and semantically a strict negation of S1.

1ProntoQA is restricted to the classical two-valued setting (True/False), whereas RepublicQA, ProofWriter,
FOLIO, and ProverQA additionally include Uncertain to handle indeterminate cases.
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Premise (P):
Debt is generally seen as a repayable obligation. 
Some debts may lack legitimacy.  Justice 
involves helping friends and avoiding harm. 
Repaying a problematic debt may result in harm.

Raw Input

Question (S): （True/False/Uncertain）
Is the statement 'Repaying one's debts is just' 
always correct?

S1: Repayment of debt is always just.
FOL: ∀x (Debt(x) ∧ Repaid(x) → Just(x))

¬S2: Some repaid debts are just.  
FOL: ∃x (Debt(x) ∧ Repaid(x) ∧ Just(x))

¬S1: Some repaid debts are unjust.  
FOL: ∃x (Debt(x) ∧ Repaid(x) ∧ ¬Just(x))

S2: Repayment of debt is always unjust.  
FOL: ∀x (Debt(x) ∧ Repaid(x) → ¬Just(x))

(1) Semantic Structuring Module

CFG 
Validator

CFG Validator

(2) Logical Reasoning Module

P1: Debt is generally seen as a repayable 
obligation 

FOL: ∀x (Debt(x) → Obligation(x))
Pn: ······  

S1 ¬S2¬S1 S2

Planner
Step 1: Identify the Goal

······
Step n: Conclude the Plan

Solver
Step 1: Identify the Goal

······
Final answer: {True/false/Uncertain}

Reasoning Verification

S1: False ¬S1:True

(3) Reflective Verification Module

Quick Reflection
If S1 ＝True/False ∧ ¬S1 ＝Uncertain    

Deep Reflection

Direct Resolution

Type1: S1 correct → S1
Type2: S1 incorrect → S1 Uncertain

If S1 ＝ Uncertain ∧ ¬S1 ＝ True/False   
Type3: S1 correct → S1 Uncertain
Type4: ¬S1 correct → ¬(¬S1)

If S1 ＝True ∧ ¬S1 ＝True then (2) S2

If S2 ＝True → S1 False else (2) ¬S2

If S1 ＝False ∧ ¬S1 ＝False then (2) S2

Because S2 ⇒ ¬S1 

Because S2 ⇒ ¬S1 
If S2 ＝True → S1 False else

Semantic 
Validator

Translator

Because S1 ⇒ ¬S2
If ¬S2＝False → S1 False else 

S1 is
False

Figure 3: Overview of the LogicAgent framework. The agent processes a natural language propo-
sition through three stages. (1) Semantic Structuring Stage constructs a Greimas’ Semiotic Square,
generating four interrelated propositions: the primary proposition S1, its contradiction ¬S1, the con-
trary S2, and the contradiction of the contrary ¬S2. These are verified for FOL-consistency using a
CFG-based parser. (2) Logical Reasoning Stage transforms the premises into FOL, plans deductive
steps for each proposition, and performs symbolic reasoning to evaluate their answers. (3) Reflective
Verification Stage adjudicates the final judgment via three procedures: Direct Resolution, applied
when S1 and ¬S1 offer a contradictory answer; Quick Reflection, used when either S1 or ¬S1 is
uncertain; and Deep Reflection, used when both S1 and ¬S1 yield the same value, requiring further
validation through the semiotic implication relations involving S2 and ¬S2.

Definition 1 (Existential Import Check). Let P be the set of premises defining a model MP =
(DP , IP ), where DP is the domain of discourse and IP the interpretation function. For a candidate
formula ϕ, its existential import under P holds, written EICP (ϕ) = T, iff

∃η : Free(ϕ)→DP such that MP , η |= Ante(ϕ),
where Ante(ϕ) denotes the antecedent or quantifier scope of ϕ. Otherwise EICP (ϕ) = F, indicating
that ϕ is vacuous (e.g., empty domain or unsatisfiable antecedent).
Lemma 1 (Soundness of Conditional Contrariety). A candidate pair (S1, S2) generated under a rule
r in Table 1 is a valid contrary pair under P iff both satisfy EICP (S1) = EICP (S2) = T and
MP |= ¬(S1 ∧ S2). Pairs failing either condition are excluded from the contrary set.

This establishes that only non-vacuous and mutually unsatisfiable pairs are retained, ensuring that
the migration from semiotic structure to FOL preserves logical soundness.

Contrary Construction. We adopt the classical definition of contrariety: S1 and S2 cannot both
be true but may both be false. Table 1 summarizes six unified rules for constructing contraries and
contradictories. For strict forms, symbolic transformation directly yields valid contraries. For con-
ditional forms, candidates S2 are first generated (via rules or LLM transformation) and then verified
by the existential import check (Definition 1) to ensure non-vacuous quantifiers and satisfiable an-
tecedents. Only pairs satisfying EICP (S1) = EICP (S2) = T and MP |= ¬(S1 ∧ S2) are retained
as valid contraries (Lemma 1). For structures beyond these six templates, model-assisted generation
with self-supervised validation re-applies Definition 1 to filter logically sound pairs.

Validation and Verification. All candidate propositions (S1, ¬S1, S2, ¬S2) are validated through
a three-stage pipeline, and only those passing all stages are retained for downstream reasoning:

1. Truth-table evaluation: FOL formulas are assigned truth values to check whether relations of
contrariety (S1 vs. S2) and contradiction (S1 vs. ¬S1, S2 vs. ¬S2) are satisfied.

2. CFG-based validation: A context-free grammar (CFG) checker enforces syntactic correctness
of all FOL expressions, guaranteeing well-formedness.
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3. LLM verification: An LLM confirms semantic and structural consistency, ensuring that con-
traries and contradictories remain faithful to the intended meaning and relevant to the premises.

Table 1: Unified rules for constructing contraries and contradictories. A,B denote arbitrary formulas
(possibly nested); φ(x) denotes a predicate with variable x. ⊕ is exclusive-or.

# S1 ¬S1 S2 Type Constraint EIC Condition

1 ∀xφ(x) ¬∀xφ(x) ≡ ∃x¬φ(x) ∀x¬φ(x) Strict N/A Always holds
2 A ∧ B ¬(A ∧ B) ≡ ¬A ∨ ¬B A ∧ ¬B Strict N/A Always holds
3 A ↔ B ¬(A ↔ B) ≡ A ⊕ B A ↔ ¬B Strict N/A Always holds
4 ∃xφ(x) ¬∃xφ(x) ≡ ∀x¬φ(x) ∃x¬φ(x) Conditional D ̸= ∅ EICP (φ(x)) = T
5 A → B ¬(A → B) ≡ A ∧ ¬B A → ¬B Conditional Sat(A) EICP (A) = T
6 A ∨ B ¬(A ∨ B) ≡ ¬A ∧ ¬B A ∨ ¬B Conditional A = F EICP (B) = T

3.3 LOGICAL REASONING STAGE

This stage comprises three functional units: a Translator for premise formalization, a Planner for
reasoning path construction, and a Solver for logical deduction.

Translator. The translator converts natural-language premises into FOL. Instead of relying on open-
ended prompting, this step is guided by a set of general mapping conventions that define how
linguistic structures are aligned with logical forms. In particular:

• Entities (objects, concepts) 7→ unary predicates, e.g., Entity(x).

• Actions or relations 7→ binary or n-ary predicates, e.g., Action(a, x) or Relation(y, x).

• Roles or agents 7→ unary predicates over individuals, e.g., Role(y).

• Normative or evaluative properties (just, good, harmful) 7→ predicates over actions or states,
e.g., Just(a), Good(x).

This mapping schema is benchmark-agnostic and applies uniformly across different benchmarks.
Each translated formula is further validated by a CFG parser to ensure syntactic correctness, so even
if predicate names differ across benchmarks, the logical structure remains well-formed.

Planner. For a selected proposition from the semiotic square (e.g., S1), the planner constructs
a reasoning blueprint. It specifies the evaluation goal, selects relevant premises, and determines
which reasoning rules (e.g., Modus Ponens, Modus Tollens, Conjunction, Generalization) could
be applied. The planner may also outline potential counterexample checks and identify implicit
contextual relations that, while not explicitly stated in the premises, are salient within the discourse
background. Its output is a structured reasoning trajectory, but without issuing a verdict.

Solver. The solver operationalizes the planner’s blueprint: it applies the designated reasoning rules
to the given premises, performs deductions step by step, and generates intermediate conclusions.
During this process, it verifies logical consistency and checks for contradictions or counterexamples.
The solver outputs both a transparent reasoning trace and the final classification of the proposition
as True, False, or Uncertain.

3.4 REFLECTIVE VERIFICATION STAGE

This stage adjudicates the final judgment through a three-stage reflective process that ensures coher-
ence among the answers of the semiotic square’s four propositions.

Direct Resolution. When S1 and ¬S1 produce complementary verdicts, such as S1 = True and
¬S1 = False, the stage directly adopts the answer of S1 as final. This scenario reflects a decisive and
non-contradictory judgment grounded in the strict contradiction relationship between the proposition
and its contradictory. The decision rule for this resolution strategy is defined as follows:

S1 =

{ True, if S1 = True ∧ ¬S1 = False
False, if S1 = False ∧ ¬S1 = True
Uncertain, if S1,¬S1 = Uncertain

(2)
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Quick Reflection. When either S1 or its contradictory ¬S1 is labeled as Uncertain, the stage triggers
quick reflection by forwarding the two verdicts and their reasoning traces into a large language
model. The model analyzes the internal consistency of the deduction process and returns a refined
judgment based on four reflection types:

Case 1: If S1 ∈ {T, F}, ¬S1 = U

• Type 1: S1 correct ⇒ Return S1 = S1

• Type 2: S1 incorrect ⇒ Return S1 = U

Case 2: If S1 = U, ¬S1 ∈ {T, F}
• Type 3: S1 correct ⇒ Return S1 = U
• Type 4: ¬S1 correct ⇒ Return S1 = ¬(¬S1)

Deep Reflection. When both S1 and its contradictory ¬S1 yield the same verdict (e.g., both True or
both False), this creates a contradiction under standard logical assumptions. The stage enters Deep
Reflection mode, leveraging the structured semantic relations provided by the semiotic square, in
particular the implications S1 ⇒ ¬S2 and S2 ⇒ ¬S1, to adjudicate which prediction is more likely
to be valid.

Case 1: Both S1 = True, ¬S1 = True → Solve S2

• If S2 = True: since S2 ⇒ ¬S1 → ¬S1 is correct → Return S1 = False
• Else → Solve ¬S2

– If ¬S2 = False: since S1 ⇒ ¬S2 → S1 is incorrect → Return S1 = False
– Else: Invoke Quick Reflection

Case 2: Both S1 = False, ¬S1 = False → Solve S2

• If S2 = True: since S2 ⇒ ¬S1 → ¬S1 is incorrect → Return S1 = False
• Else: Invoke Quick Reflection

4 REPUBLICQA BENCHMARK
FKGL

TTR

UBRContary

MTLD

ProntoQA
ProofWriter

FOLIO
ProverQA

RepublicQA

Figure 4: Complexity metrics compari-
son. Red is our benchmark.

Current benchmarks primarily focus on logical complex-
ity while largely overlooking semantic complexity, result-
ing in limited coverage of abstraction, contextual ambigu-
ity, and nuanced meaning. To address this gap, we con-
struct RepublicQA, a benchmark designed to jointly cap-
ture logical depth and semantic breadth reasoning.

Benchmark Construction. RepublicQA draws from
classical philosophical and ethical traditions that explore
justice, morality, agency, and knowledge. These sources,
characterized by dialogical inquiry and abstract argumen-
tation, provide naturally ambiguous propositions and op-
posing stances suitable for evaluating advanced logical
and semantic reasoning. We extracted propositions and
contextual premises manually, with double annotation by two graduate students to ensure logical
and semantic consistency. A detailed description of RepublicQA and other benchmarks can be
found in Appendix C.1.

Complexity Comparison. RepublicQA introduces abstract propositions with deeper logical de-
pendencies, balanced True/False/Uncertain distributions, and contexts requiring the integration of
multiple philosophical concepts. To characterize its complexity, we organize our measurements into
three categories: a primary indicator reflecting conceptual difficulty (FKGL), secondary indicators
capturing lexical and phrasal variation (TTR, MTLD, UBR), and a supporting indicator concerning
the structure of contrary construction. Figure 4 shows that RepublicQA achieves the strongest per-
formance across all five complexity indicators, and its contrary construction patterns far exceed those
of existing benchmarks, highlighting its emphasis on abstraction, semantic depth, and non-template
reasoning. These properties underscore its suitability for evaluating reasoning under ambiguity and
high-level conceptual interactions. Details of these metrics are provided in Appendix D.4, with
additional information about RepublicQA in Appendix D.
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5 EXPERIMENT

5.1 SETTINGS

We evaluate our framework on two fronts. First, we assess its performance on our proposed Re-
publicQA benchmark using different baseline models, verifying that the benchmark is broadly ap-
plicable for benchmarking logical reasoning. Second, to test the generalizability of our method,
we conduct evaluations on established logical QA benchmarks, including ProntoQA, ProofWriter,
FOLIO, and ProverQA. The experimental setup includes the following components:

Benchmarks. We evaluate on four established logical reasoning benchmarks: ProntoQA (Saparov
& He, 2022) (5-hop subset), ProofWriter (Tafjord et al., 2020) (depth-5, OWA setting), FOLIO (Han
et al., 2022) (full expert-curated split), and ProverQA (Qi et al., 2025) (hard split with 500 examples,
6–9 reasoning steps). Detailed benchmark descriptions are provided in Appendix C.1.

Baselines. We compare LogicAgent with five representative baselines: Naive Prompting, Chain-of-
Thought (CoT) (Wei et al., 2022), Logic-LM (Pan et al., 2023), SymbCoT (Xu et al., 2024b), and
Aristotle (Xu et al., 2024a). Detailed baseline introductions are provided in Appendix C.2.

Model. For RepublicQA, we evaluate with both the locally deployed qwen2.5:32b (Yang et al.,
2025) and GPT-4o (Hurst et al., 2024), ensuring robustness across open and closed source LLMs.
For other benchmarks (ProntoQA, ProofWriter, FOLIO, ProverQA), we adopt qwen2.5:32b as
the base model. In all experiments, the decoding temperature is fixed at 0.

Symbolic Toolkit. To verify the syntactic validity of logical forms, we employ the nltk (Bird,
2006) library for CFG-based structural checking during the FOL parsing stage.

Table 2: Performance comparison across RepublicQA and other logical reasoning benchmarks. Best
results are in bold, second-best are underlined.

Method RepublicQA Other Benchmarks

Qwen2.5-32B ↑ GPT-4o ↑ Avg ↑ Pronto ↑ ProofWriter ↑ FOLIO ↑ ProverQA ↑ Avg ↑

Naive 68.50 74.00 71.25 82.00 59.17 60.29 39.60 60.27
CoT 72.00 75.00 73.50 92.40 63.17 68.42 47.20 67.80
Logic-LM 70.00 73.50 71.75 91.89 63.82 71.93 62.40 72.51
SymCoT 76.00 80.50 78.25 95.20 64.67 70.59 57.20 71.92
Aristotle 74.50 82.50 78.50 94.80 63.23 68.68 56.20 70.73
LogicAgent 82.50 87.00 84.75 97.80 71.95 79.90 68.60 79.56

(+6.50) (+4.50) (+6.25) (+2.60) (+7.28) (+7.97) (+6.20) (+7.05)

5.2 COMPARISON WITH SOTA

Table 2 presents the main results from which we can draw several observations.

Our RepublicQA highlights the unique challenges of semantic ambiguity. On RepublicQA,
Logic-LM performs comparably to the naive baseline, indicating that tool-augmented methods bring
little advantage when facing symbolic and semantic ambiguity. In contrast, our LogicAgent achieves
the best performance on both Qwen2.5-32B (82.50) and GPT-4o (87.00), surpassing the strongest
baseline by an average of 6.25 points. This confirms that RepublicQA effectively stresses reasoning
under ambiguity, and that our method is best suited to address these challenges.

Our LogicAgent generalizes effectively across several mainstream reasoning benchmarks.
LogicAgent achieves an average improvement of 7.05 points over the best baseline, with consis-
tent gains on Pronto (+2.60), ProofWriter (+7.28), FOLIO (+7.97), and ProverQA (+6.20). These
results show that the proposed framework transfers robustly beyond RepublicQA and delivers supe-
rior performance on diverse logical QA benchmarks.

Our LogicAgent is particularly effective in multi-hop settings with semantic ambiguity. Bench-
marks such as FOLIO, ProverQA, and RepublicQA require long reasoning chains over context-
sensitive propositions, which often hinder purely neural or template-based approaches. LogicAgent
consistently achieves the best performance on these benchmarks, confirming its strength in handling
complex reasoning under ambiguity.
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5.3 ABLATION STUDY

To evaluate the contribution of our method, we conduct three sets of ablation experiments aimed at
answering the following key questions:

1. How effective is each stage in our reasoning framework? We ablate components to measure
their contribution.

2. What is the impact of FOL representations and natural language descriptions on reasoning
performance? We disable either modality to assess their relative importance.

3. How do different components affect computational efficiency? We compare per-sample run-
time across ablation settings to study the trade-off between cost and accuracy.

4. How do semantic and logical complexity interact? We analyze model performance under
varying semantic difficulty and hop depth to make this interplay explicit.

Q1: Impact of Core Reasoning Stages. To address Q1, we conduct ablation studies on each of
the three core stages in our method. Specifically:

• For Stage 1 (Semantic Structuring), we disable the construction of the Greimas semiotic square
and retain only the proposition matching the original proposition.

• For Stage 2 (Logical Reasoning), we remove the planning process and directly attempt to solve
the proposition without intermediate step generation.

• For Stage 3 (Reflective Verification), we remove both Quick Reflection and Deep Reflection,
and instead apply a rule-based Direct Resolution mechanism. Specifically, the model selects the
final verdict by combining the base resolution strategy 2 with the supplemental decision rule:

S1 =

{
S1, if S1 ̸= Uncertain ∧ ¬S1 = Uncertain
¬(¬S1), if S1 = Uncertain ∧ ¬S1 ̸= Uncertain
S1, if S1 = ¬S1 ∈ {True,False}

(3)

Table 3: Ablation results under different configurations.

Setting ProofW. FOLIO ProverQA RepublicQA* Avg

w/o Square 65.17 72.06 56.60 76.50 67.58
w/o Plan 62.17 69.61 75.00 72.00 69.70
w/o Reflect 67.50 76.12 63.40 78.50 71.38
Ours 71.95 79.90 68.60 82.50 75.74

The ablation results in Table 3
demonstrate that each component in
our framework contributes meaning-
fully to the overall performance. Re-
moving the semiotic square stage
causes a substantial decline, with
the average accuracy dropping from
75.74 to 67.58 (-8.16). This indicates
that analyzing propositions from multiple semantic perspectives, including contraries and contradic-
tions, is critical for handling complex meanings. Excluding the reflective verification stage results
in a smaller decrease to 71.38 (-4.36), suggesting that earlier reasoning stages already yield rela-
tively reliable conclusions. Interestingly, removing the planning stage improves performance on
ProverQA (from 68.60 to 75.00, +6.40); however, this removal leads to sharp declines on the other
three datasets (-9.78 on ProofWriter, -10.29 on FOLIO, -10.50 on RepublicQA), reducing the av-
erage (excluding ProverQA) from 77.78 to 70.94 (-6.84). We observed that ProverQA gold chains
typically involve 6–9 reasoning steps, while our planner often generates trajectories exceeding 10
steps. This suggests the existence of a reasoning complexity threshold, beyond which over-extended
reasoning depth may impair performance, pointing to an important direction for future research.

Q2: Impact of FOL and Natural Language Inputs. To investigate the respective contributions
of FOL and natural language inputs, we conduct an ablation study by removing either the FOL
representations or the natural language statements from the model input. The results are visualized
in Figure 5a.

Across four reasoning benchmarks, removing FOL input causes substantial performance degrada-
tion. On ProofWriter and FOLIO, accuracy drops from 71.95 to 33.33 and from 79.90 to 34.31,
showing that classical FOL representations are critical for symbolic reasoning. Even on Pron-
toQA, which mainly tests basic deduction, performance falls sharply from 97.80 to 49.00. By con-
trast, ProverQA shows only a modest decline, likely because its hardest split already involves long
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Figure 5: Ablation studies: (a) input modalities and (b) reasoning efficiency.

reasoning chains, where performance bottlenecks stem more from semantic complexity than from
explicit FOL representation alone.

In contrast, RepublicQA shows a different pattern. When the natural language input is removed
and only FOL is retained, the accuracy declines substantially from 82.50 to 55.50. Removing FOL
leads to a smaller drop to 71.00. This suggests that RepublicQA relies more heavily on the rich
semantic information embedded in natural language. As a multi-semantic benchmark grounded
in philosophical discourse, it includes contextual nuances such as implicit assumptions, shifting
definitions, and pragmatic dependencies, which are not fully captured by symbolic logic alone.

Nevertheless, the best performance on RepublicQA is still achieved when both modalities are used
(82.50), confirming that FOL contributes essential symbolic constraints even in semantically
complex scenarios. Taken together, these results demonstrate that natural language enhances inter-
pretability and contextual understanding, while FOL ensures inferential precision. Their integration
enables more accurate and robust reasoning across a wide range of tasks.

Q3: Impact on Computational Efficiency. We measure per-sample processing time under var-
ious ablation settings on RepublicQA. As shown in Figure 5b, removing planning achieves the
largest speedup (-37.1%), reflecting the cost of orchestrating multi-step reasoning. Excluding FOL
(woFOL) also reduces processing time by 35.4%, highlighting the overhead of symbolic deduction.
Smaller reductions are observed when removing natural language statements (-15.5%) or reflective
verification (-9.5%). Similar trends hold for ProofWriter, FOLIO and ProverQA, with planning
and FOL as the main bottlenecks. For ProverQA, runtime is instead dominated by reasoning chain
length, as removing FOL or statements has little effect.

Table 4: Semantic Difficulty vs. Logical Depth.

Hop↑ FOLIO ProofWriter ProverQA RepublicQA

Acc.↓ FK Acc.↓ FK Acc.↓ FK Acc.↓ FK↑

4 0.5161 6.45 0.6029 1.65 0.5636 8.27 0.4286 12.99
5 0.4474 7.72 0.4634 1.60 0.4231 8.40 0.3125 14.68
6 0.3750 7.35 0.4000 1.38 0.2500 7.40 0.0000 17.70

Q4: Semantic–Logical Interplay. As
shown in Table 4, our analysis yields three
key findings:

(1) Accuracy uniformly declines with
greater logical depth. Across all four
datasets, accuracy decreases steadily as
hop count increases: FOLIO (0.5161 →
0.3750), ProofWriter (0.6029 → 0.4000), ProverQA (0.5636 → 0.2500), and RepublicQA (0.4286
→ 0.0000). This confirms that deeper chains of inference inherently reduce model performance.

(2) Prior benchmarks decouple semantic complexity from logical depth. In FOLIO,
ProofWriter, and ProverQA, semantic difficulty remains essentially unchanged across hops. For
instance, FKGL across hops is 6.45–7.72 in FOLIO, 1.38–1.65 in ProofWriter, and 7.40–8.40 in
ProverQA. These ranges indicate that while logical depth increases with hops, semantic complex-
ity remains almost unchanged, showing that earlier benchmarks do not couple semantic and logical
difficulty.
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(3) RepublicQA uniquely increases both semantic and logical complexity. At the same hop level,
RepublicQA consistently exhibits higher FKGL yet lower accuracy than all other datasets. Its FKGL
rises from 12.99 → 17.70 as hops increase from 4 to 6, while accuracy simultaneously drops from
0.4286 → 0.0000. This demonstrates that elevated semantic complexity substantially amplifies the
challenge of deep logical reasoning, confirming that RepublicQA is the only benchmark that probes
the joint interplay of semantic and logical complexity.

6 CONCLUSION

We present LogicAgent, a reasoning framework designed to address linguistic ambiguity and com-
plex semantic dependencies through structured, multi-perspective reasoning. Grounded in semiotic
principles, LogicAgent transforms natural language into first-order logic representations and per-
forms reasoning in three stages: semantic structuring of contraries and contradictions, FOL deduc-
tion along multiple reasoning paths, and reflective verification to refine conclusions. To evaluate rea-
soning under ambiguity and conceptual variability, we introduce RepublicQA, a benchmark derived
from philosophical discourse with context-sensitive, semantically rich propositions. Compared with
existing benchmarks such as ProntoQA, ProofWriter, FOLIO, and ProverQA, RepublicQA uniquely
emphasizes symbolic–semantic alignment under ambiguity, where tool-augmented baselines show
limited advantage. Experiments demonstrate that LogicAgent achieves the best performance on Re-
publicQA and also generalizes strongly across other benchmarks. These findings confirm both the
distinct value of RepublicQA and the effectiveness of semiotic-grounded, logic-aware reasoning.

ETHICS STATEMENT

The RepublicQA benchmark introduced in this paper is derived entirely from publicly available
philosophical texts, specifically Plato’s Republic, which is in the public domain. No human sub-
jects, private data, or sensitive groups are involved, and the dataset poses no immediate ethical or
societal risks. All processing steps, including proposition extraction and annotation, were carried
out by graduate students following academic standards. For transparency and reproducibility, we
plan to release both the code for dataset construction and the RepublicQA benchmark used in our
experiments.

REPRODUCIBILITY STATEMENT

We provide partial code and benchmark with the submission. The complete implementation and the
full RepublicQA benchmark will be released at the camera-ready stage to ensure full reproducibility.
All experimental settings, model configurations, and benchmark processing details are documented
in the main text and Appendix.

THE USAGE OF LLM

In accordance with ICLR guidelines, we used large language models solely for writing assistance
and language refinement.
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APPENDIX

This appendix provides supplementary materials, including the related work, formalization in first-
order logic (FOL), details of baselines and benchmarks, the construction of RepublicQA, error anal-
ysis, case studies, computational efficiency evaluation, and full prompting examples.

A RELATED WORK

LLM-Based Logical Reasoning. CoT prompting (Wei et al., 2022; Zhang et al., 2025a; Mirzadeh
et al., 2024) improves LLM reasoning (Gu & Dao, 2023; Bai et al., 2023; Huang & Chang, 2022)
by generating intermediate steps in natural language. Variants such as self-consistency (Wang et al.,
2022) and symbolic CoT (Xu et al., 2024b) improve accuracy and interpretability, with SymbCoT
showing that symbolic forms enhance logical reasoning. Aristotle (Xu et al., 2024a) further in-
troduces a logic-guided framework using decomposition, search, and resolution, achieving strong
results on complex tasks. However, most CoT-based (He et al., 2025; Zhang et al., 2023) and sym-
bolic methods follow linear reasoning paths (Zheng et al., 2024; Zhao et al., 2023a; Sun et al., 2024)
and struggle to capture semantic depth, including contraries and contradictions. Other approaches
translate LLM outputs into external logic engines (Pan et al., 2023; Ryu et al., 2024), but suffer
from brittleness and lack of feedback. In contrast, we propose a fully internal symbolic framework
in which the LLM constructs, manipulates, and verifies logical structures. Guided by Greimas’
semiotic square (Greimas, 1988), our method enables reasoning over semantically diverse, multi-
perspective statements.

LLM-Powered Agents. Advances in LLMsSong et al. (2022; 2023); Li et al. (2024); Song et al.
(2024); Hu et al. (2025); Song et al. (2025); Ye et al. (2025) have led to agent frameworks (Zhang
et al., 2025b; Durante et al., 2024) capable of planning, memory, and multi-step reasoning. Systems
such as Generative Agents (Park et al., 2023), AutoAgents (Chen et al., 2023), and MetaGPT (Hong
et al., 2023) simulate interactive behavior or coordinate task execution, while others like Code-
as-Policies (Liang et al., 2023), Gorilla (Patil et al., 2024), and TaskMatrix (Liang et al., 2024)
integrate APIs or GUI actions for real-world applications. Building on the agent paradigm, our
approach leverages structured and automated reasoning with symbolic representation and reflective
verification to tackle abstract and semantically diverse reasoning tasks. By centering the reasoning
process on symbolic representation and multi-perspective analysis, we aim to extend the capabilities
of LLMs without additional fine-tuning.

Benchmarks for Logical Reasoning. Existing logical reasoning benchmarks (Patel et al., 2024)
primarily evaluate formal validity under controlled conditions. PrOntoQA (Saparov & He, 2022) is
a synthetic relational reasoning benchmark centered on transitivity and set membership in symbolic
settings. ProofWriter (Tafjord et al., 2020) provides synthetic natural language problems grounded
in rule-based microworlds with simplified entities and basic logical connectives. FOLIO (Han et al.,
2022) contributes natural language scenarios paired with FOL annotations covering everyday com-
monsense events. ProverQA (Qi et al., 2025), generated via the ProverGen pipeline, combines
LLM generation with theorem proving to construct verified reasoning chains across multiple diffi-
culty splits. Despite their rigor, these benchmarks focus almost exclusively on logical form: their
propositions are concrete, unambiguous, and semantically fixed. They omit higher-level semantic
complexity, including abstract concepts, contextual variability, and systematically constructed rela-
tions such as contraries and contradictions. As a result, they offer limited support for evaluating
models’ capacity for multi-perspective and contrastive reasoning in semantically rich settings.

B FIRST-ORDER LOGIC (FOL)

First-Order Logic (FOL), also known as predicate logic or first-order predicate calculus, is a for-
mal system widely used in mathematics, computer science, philosophy, and linguistics. It extends
propositional logic by introducing variables that range over objects in a domain and predicates that
describe relationships and properties of these objects. FOL allows us to write general statements
involving quantifiers, such as “for all” and “there exists,” making it a powerful tool for expressing
logical structure and reasoning.
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Table 5: Key Syntax Elements in First-Order Logic

Name FOL Notation Explanation

Variable x, y, z Placeholder symbols representing arbitrary elements in the domain of
discourse.

Constant a, b, c Refer to specific, fixed objects in the domain.
Operators (OP) {⊕, ∨, ∧, →, ↔} Defines the set of logical connectives used to combine or relate propo-

sitions, including exclusive or, or, and, implication, and biconditional.
Used in building compound formulas.

Function f(x), g(x, y) Maps input objects to an output object; returns a term.
Predicate P (x), R(x, y) Express properties or relations; returns true or false.

Negation ¬P (x) Logical NOT: P (x) is not true.
Conjunction P (x) ∧ Q(x) Logical AND: both P (x) and Q(x) must be true.
Disjunction P (x) ∨ Q(x) Logical OR: at least one of P (x) or Q(x) must be true.
Implication P (x) → Q(x) Logical implication: if P (x) is true, then Q(x) must be true.
Biconditional P (x) ↔ Q(x) Logical equivalence: P (x) and Q(x) are true or false together.

Universal Quantifier ∀x P (x) “For all x, P (x) is true” — generalization.
Existential Quantifier ∃x P (x) “There exists x such that P (x) is true” — existential claim.

Term x, a, f(a, x) The basic expressions referring to objects (variables, constants, or func-
tions).

Atomic Formula P (a, x) A predicate applied to terms — indivisible logical unit.
Complex Formula ∀x(P (x) → Q(f(x))) A formula built from atoms using connectives and quantifiers.
WFF (Well-formed) — A syntactically valid FOL formula interpretable as true or false.

B.1 FORMAL SYNTAX AND VALIDATION OF FOL

FOL forms the backbone of our symbolic reasoning pipeline. As shown in Table 5, FOL comprises
several syntactic components that define the structure of logical statements, including variables,
constants, predicates, logical operators, quantifiers, and term compositions.

FOL CFG Grammar. To ensure the well-formedness of FOL expressions, we implement a sym-
bolic parser using the nltk library (Bird, 2006). Specifically, we define a context-free grammar
(CFG) to support automatic parsing and validation of logical formulas throughout our pipeline:

S → F | Q F
Q → QUANT VAR | QUANT VAR Q
F → ‘¬’ ‘(’ F ‘)’ | ‘(’ F ‘)’ | F OP F | L

OP → ‘⊕’ | ‘∨’ | ‘∧’ | ‘→’ | ‘↔’
L → ‘¬’ PRED ‘(’ TERMS ‘)’ | PRED ‘(’ TERMS ‘)’

TERMS → TERM | TERM ‘,’ TERMS
TERM → CONST | VAR

QUANT → ‘∀’ | ‘∃’

Example: For the rule “∀x(Debt(x) ∧ Repaid(x) → ¬Just(x))”, the CFG derivation proceeds as
follows, as shown in Figure 6:

• QUANT→ ‘∀’

• PRED→ ‘Debt’ | ‘Repaid’ | ‘Just‘

• VAR→ ‘x‘

Note that PRED, CONST, and VAR are instantiated dynamically for each example during parsing.
This grammar enables symbolic structure checking and forms the foundation for all logic-based
components in our agent.

Syntactic Validation. We incorporate a rigorous syntactic validation mechanism based on this
CFG, serving as a critical quality control step prior to symbolic reasoning. The validator performs
structural analysis to ensure:

16



Under review as a conference paper at ICLR 2026

• Quantifier Scope Verification: Ensuring proper binding and scope relationships for universal
and existential quantifiers

• Predicate Structure Validation: Confirming syntactic correctness of predicate-argument struc-
tures

• Logical Connective Placement: Verifying appropriate positioning and precedence of logical
operators

Only expressions that pass CFG validation are forwarded to the reasoning phase. This ensures the
logical integrity of FOL representations derived from natural language and prevents errors caused
by malformed logical forms.

Figure 6: An example CFG parse tree for the FOL rule ∀x(Debt(x) ∧ Repaid(x) → ¬Just(x)).

C BENCHMARKS AND BASELINES

C.1 BENCHMARKS

ProntoQA is a synthetic question-answering benchmark designed to systematically explore the rea-
soning abilities of language models through formal analysis. The benchmark generates examples
with chains-of-thought that describe the reasoning required to answer questions correctly, enabling
systematic exploration of LLM reasoning capabilities. The benchmark focuses on fundamental logi-
cal relationships and deductive reasoning patterns, providing a controlled environment for assessing
model performance on multi-step logical reasoning tasks.

ProofWriter is a synthetic benchmark featuring natural language problems that assess systematic
neural logical deduction. Developed by the Allen Institute, ProofWriter generates implications,
proofs, and natural language reasoning over rulebases of facts and rules under open world assump-
tions. This benchmark presents complex logical relationships involving combinations of conjunc-
tions and disjunctions, requiring models to perform multi-step deductive reasoning while generating
natural language proofs that justify their conclusions. And the context in this benchmark contains
more challenging logical relationships such as the combination of ”and” and ”or.”

FOLIO is a natural language reasoning benchmark with fol reasoning problems that require mod-
els to determine the correctness of conclusions given a world defined by premises. FOLIO aims
to ensure high language naturalness and complexity, an abundant vocabulary, and factuality while
maintaining high reasoning complexity. It is a high-quality and manually curated benchmark, writ-
ten by CS undergraduate and graduate students and researchers in academia and industry. To ensure
that the conclusions follow the premises logically, all reasoning examples are annotated with FOL
formulas. FOLIO represents one of the most challenging logical reasoning benchmarks, combining
natural language complexity with the precision of FOL.

ProverQA is a high-quality FOL reasoning benchmark created with the ProverGen framework,
which combines the generative diversity of LLMs with the rigor of automated theorem proving.
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Each instance includes natural language statements, FOL translations, and formally verified rea-
soning chains. The benchmark is designed to test deductive consistency and the ability to align
symbolic and linguistic representations. The dev set contains 1,500 examples evenly divided into
easy (1–2 reasoning steps), medium (3–5 steps), and hard (6–9 steps) levels, providing a scalable and
systematically validated environment for evaluating logical reasoning under increasing complexity.

RepublicQA is a philosophical reasoning benchmark derived from classical works in Western phi-
losophy, including Plato’s Republic (Plato, 2016), Aristotle’s Metaphysics (Aristoteles & Apostle,
1966), and the Nicomachean Ethics (Irwin et al., 2019). These traditions provide rich discussions
of justice, morality, governance, virtue, and knowledge, yielding abstract propositions and struc-
tured counterarguments that are well suited for evaluating advanced reasoning. The benchmark
presents complex logical problems in which models must judge whether philosophical statements
follow from contextual premises. RepublicQA assesses the ability to engage with abstract concepts,
moral and ethical reasoning, and classical argumentative patterns while preserving high complexity
in both language and inference. Each example reflects foundational questions in Western philoso-
phy and requires reasoning over conditional claims, normative principles, and abstract conceptual
relations. To maintain logical consistency, the examples are organized around classical philosoph-
ical dialogues and argumentative structures that require multi-step reasoning to determine whether
conclusions about justice, virtue, or political order are supported by the given premises.

C.2 BASELINES

Here we illustrate the details of each baseline used for comparison.

Naive Prompting. This approach involves directly presenting the question to the model without any
additional instructions or intermediate reasoning steps. The model is expected to produce the final
answer based solely on its pretrained knowledge. It does not encourage or structure the reasoning
process, making it suitable only for simple or factual queries.

Chain-of-Thought (CoT). CoT prompting introduces intermediate reasoning steps by encouraging
the model to articulate its thought process before reaching a conclusion. Instead of predicting the
final answer directly, the prompt guides the model to perform step-by-step reasoning. This has been
shown to improve multi-step reasoning performance on complex tasks (Wei et al., 2022).

Logic-LM. Logic-LM converts natural language statements into symbolic logic representations and
uses a rule-based logical engine to carry out reasoning. By explicitly leveraging classical FOL
rules, it enhances reasoning accuracy and structure, especially in tasks requiring strict logical con-
sistency (Pan et al., 2023).

SymbCoT. SymbCoT extends CoT prompting by incorporating symbolic representations and logic-
based rules. It first transforms the natural language input into symbolic expressions, and then
prompts the model to reason over these representations with the help of formal logic constraints.
This integration improves the model’s capability for structured and formally grounded reasoning
(Xu et al., 2024b).

Aristotle. Aristotle is a logic-complete reasoning framework designed for complex logical tasks by
integrating symbolic structures across all reasoning stages. It includes three main components: Log-
ical Decomposer, Logical Search Router, and Logical Resolver. These components enable structured
task decomposition, guided reasoning, and contradiction resolution. Aristotle is particularly effec-
tive when used with LLMs, which benefit from symbolic supervision and structured guidance, lead-
ing to stronger performance than smaller models or purely generative strategies (Xu et al., 2024a).
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Figure 7: Answer distribution across different benchmarks.
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Table 6: Benchmark Comparison: Basic Statistics and Semantic Complexity. Bold indicates the
best performance and underline indicates the second best.

Basic Statistics Semantic Complexity

Benchmark Total Topics Vocab Logic steps FKGL↑ TTR↑ MTLD↑ UBR↑ Contrary↑
ProntoQA 500 1 69 11 6.78 0.448 13.93 0.852 0.00
FOLIO 204 1 1,021 0* 6.62 0.569 33.54 0.805 0.30
ProofWriter 600 345 61 0* 1.25 0.193 11.31 0.513 0.00
ProverQA 500 500 2,453 25.73 8.44 0.616 34.84 0.774 0.13
RepublicQA 600 61 4,070 16.22 11.94 0.685 74.81 0.929 0.70

+41.5% +11.2% +114.7% +9.0% +133.3%
*Dataset does not provide explicit reasoning steps.

D DETAILS OF OUR REPUBLICQA

D.1 STATISTICS

Answer Distribution. The benchmark exhibits a balanced distribution across three answer cate-
gories, as illustrated in Figure 7. The relatively high proportion of ”Uncertain” answers (37.5%)
reflects the nuanced nature of philosophical reasoning, where definitive conclusions are often diffi-
cult to establish.

Basic Statistics. The RepublicQA benchmark comprises 600 carefully constructed samples cover-
ing 61 unique philosophical topics. Table 6 presents the fundamental statistical characteristics of the
benchmark.

D.2 PHILOSOPHICAL CONCEPTS

RepublicQA is deeply grounded in the thematic structure of Plato’s Republic, and its philosophical
concepts directly shape both the semantic and logical complexity of the benchmark. As shown in
Figure 8a, core concepts such as Justice (1,308 occurrences), State (846), Soul (670), Art (451),
Knowledge (242), Virtue (206), and Education (117) appear frequently throughout the dataset.
These abstract and interrelated notions introduce substantial semantic richness and require models to
integrate multiple conceptual layers when drawing conclusions. Their interactions create reasoning
scenarios that are considerably deeper and more context dependent than those found in benchmarks
built around concrete entities or isolated factual predicates.

D.3 TOPIC MODELING RESULTS

We applied Latent Dirichlet Allocation (LDA) topic modeling to identify thematic structures within
the RepublicQA benchmark. Using optimal hyperparameters determined through coherence score
validation, we extracted five distinct thematic clusters that capture the core philosophical themes of
Plato’s Republic:

1. Political Philosophy: Encompasses discussions of governance structures, including concepts
such as tyrants, wealth distribution, rulers’ responsibilities, freedom, and systemic injustice.

2. Individual Psychology: Focuses on human nature and development, explaining personal de-
sires, educational processes, external influences on character formation, and individual moral
development.

3. Metaphysics and Epistemology: Examines questions about knowledge and reality, including
the three parts of the soul, how we think rationally, and how different mental faculties work
together.

4. Philosophy of Art and Reality: Addresses questions of representation and truth, examining
concepts of essence, philosophical debate methodology, imitation theory, and the distinction
between appearance and reality.
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5. Ethics and Justice Theory: Examines moral frameworks, investigating justice principles, re-
sponses to injustice, ethical rules, power dynamics, and competing moral interests.

These thematic clusters demonstrate the benchmark’s comprehensive coverage of Platonic philoso-
phy while maintaining balanced representation across major philosophical domains.
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Figure 8: Analysis of Philosophical Concepts: (a) frequency distribution of concepts, (b) overall
word cloud highlighting key terms.

D.4 SEMANTIC COMPLEXITY ANALYSIS

To assess the semantic complexity of RepublicQA relative to existing reasoning benchmarks, we
evaluate all datasets across three complementary dimensions, as summarized in Table 6: (1) con-
ceptual complexity, measured by FKGL; (2) lexical diversity, captured by TTR, MTLD, and UBR;
and (3) structural contrast, quantified through the Contrary metric.

Conceptual Complexity. We measure sentence-level abstraction using the Flesch–Kincaid Grade
Level (FKGL):

FKGL = 0.39 · Nwords

Nsentences
+ 11.8 ·

Nsyllables

Nwords
− 15.59.

Higher scores indicate denser conceptual content and more syntactically demanding propositions.

Lexical Diversity. We assess vocabulary and phrasal variation through three complementary mea-
sures: Type–Token Ratio (TTR), MTLD for long-span lexical variety, and Unique Bigrams Ratio
(UBR) for phrasal diversity. These metrics capture the breadth and stability of semantic expression
beyond surface-level repetition.

Structural Contrast. To quantify higher-level semantic structure, we use the Contrary metric,
which measures the presence of systematically constructed contrasting relations within each dataset.
Higher values correspond to richer semantic tension and more nuanced relational patterns that re-
quire models to integrate multiple, potentially competing interpretations.

Results. As shown in Table 6, RepublicQA substantially surpasses existing benchmarks across
all dimensions. It requires college-level reading (FKGL = 11.94), exhibits markedly richer lexical
diversity (TTR = 0.685), maintains long-span expressive variability (MTLD = 74.81), and achieves a
high phrasal diversity (UBR = 0.929). In addition, RepublicQA uniquely incorporates systematically
constructed contrary relations (Contrary = 0.70), introducing semantic tension and multi-perspective
reasoning that are absent from rule-based datasets such as ProntoQA and ProofWriter.

These results establish RepublicQA as a valuable resource for evaluating deep reasoning and gen-
eralization in artificial intelligence systems. Figure 8b further illustrates its conceptual landscape
through a word cloud of prominent philosophical terms, reinforcing its role as a benchmark for
semantically diverse and abstract reasoning tasks.
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Table 7: Parallel NL→FOL mappings across difficulty levels for each dataset.

Dataset Simple Medium Hard

RepublicQA NL: Debt repayment is a
moral obligation.
FOL:
∀a∀x(Repay(a, x) →
MoralObligation(a))

NL: Some debts originate from
unjust or fraudulent means.
FOL: ∃x(Debt(x) ∧
(Fraudulent(x)∨Unjust(x)))

NL: Justice requires helping friends and
avoiding harm to innocents.
FOL: ∀a(Just(a) →
(∀y(Friend(y) →
Beneficial(a, y)) ∧
∀z(Innocent(z) →
¬Harm(a, z))))

ProverQA NL: Loyal is well-trained.
FOL: WellTrained(loyal)

NL: If Legend has strong hooves
and a powerful gait, he can be a
champion.
FOL: (StrongHooves(ℓ) ∧
PowerfulGait(ℓ)) →
CanBeChampion(ℓ)

NL: If Legend is competitive, then
he has (unique color xor distinctive
marking), is good-tempered, not athletic,
etc.
FOL: Competitive(ℓ) →
((UniqueColor(ℓ) ⊕
DistinctiveMarking(ℓ)) ∧
GoodTemperament(ℓ) ∧
¬AthleticBuild(ℓ) . . . )

ProofWriter NL: Charlie is kind.
FOL:
Kind(charlie,True)

NL: If someone is quiet and cold,
they are smart.
FOL: ∀x((Quiet(x) ∧
Cold(x)) → Smart(x))

NL: Rough Cold; Cold Smart Red;
Red Rough (cyclic reasoning chain).
FOL: Rough(x) →
Cold(x); (Cold(x)∧Smart(x)) →
Red(x); Red(x) → Rough(x)

FOLIO NL: If people perform, they
attend school events.
FOL: ∀x(Perform(x) →
AttendEngage(x))

NL: Inactive people chaperone
school dances.
FOL:
∀x(InactiveDisinterested(x) →
ChaperoneDances(x))

NL: Bonnie either attends events as a
student, or neither.
FOL: AttendEngage(bonnie) ∧
StudentSchool(bonnie) ∨
¬(AttendEngage(bonnie) ∧
StudentSchool(bonnie))

E CASE STUDY

We present a representative case from RepublicQA to illustrate how LogicAgent integrates dual-
form representations, multi-perspective reasoning, and reflective verification in a unified pipeline.
We analyze this example through three key components of our methodology.

Dual-Form Representation and Semantic Precision

LogicAgent processes each proposition using both natural language and FOL representations. This
dual-form design retains the conceptual richness of natural language while enabling symbolic rea-
soning under FOL. In the selected case, natural language captures nuanced distinctions (e.g., “jus-
tice” vs. “ability”), while FOL clarifies logical scope and reasoning structure:

• Semantic Preservation: Contextual meaning is preserved during FOL translation

• Logical Precision: Symbolic structure enables explicit reasoning

• Boundary Clarification: FOL delineates abstract concepts

To illustrate how LogicAgent handles diverse linguistic phenomena, we additionally provide parallel
NL→FOL mappings across simple, medium, and hard cases for all datasets (Table 7), including
examples with nested quantifiers and negation.

Multi-Perspective Reasoning for Robust Evaluation

To go beyond single-path deduction, LogicAgent constructs a semiotic square for each proposition,
enabling reasoning over four semantic positions: S1, S2, ¬S1, and ¬S2. In this case, the system
reasons over S1 (“The just man is a thief”) and its contradiction ¬S1, revealing a conflict between
their conclusions. This multi-perspective reasoning allows:

• Verification Through Redundancy: Independent chains confirm or challenge conclusions

• Error Detection: Logical inconsistency between perspectives triggers correction

• Semantic Exploration: Opposing positions clarify conceptual boundaries
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Planning, Execution, and Reflective Correction

Step 1 – Planning: A 7-step reasoning plan is generated for S1 via semantic decomposition and rule
mapping.

Step 2 – Reasoning Execution: S1 yields an Uncertain result, while ¬S1 concludes True, signaling
inconsistency.

Step 3 – Reflective Verification: The QuickReflection module identifies a Type 4 error (S1 incorrect,
¬S1 correct), attributing it to conceptual confusion between moral capacity and criminal action.

Final Conclusion: The system resolves the inconsistency and outputs False for the original propo-
sition “The just man turns out to be a thief”.
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F ERROR ANALYSIS

Our error analysis highlights four key capabilities required for strong logical reasoning: (1) accurate
construction of Greimas’ semantic squares, (2) faithful FOL translation, (3) effective planning of
reasoning paths, and (4) consistent verification.

Benchmark Semantic Richness Impact. As shown in Figure 10, the availability of valid contraries
differs substantially across benchmarks. RepublicQA exhibits the richest set of meaningful concep-
tual contrasts, while FOLIO, ProverQA, ProntoQA, and ProofWriter contain far fewer, which limits
opportunities for multi-perspective reasoning. Even within RepublicQA, not all propositions admit
well-defined contraries, since constructing them requires resolving semantic ambiguity, aligning
abstract concepts, and recovering context-dependent links that are often implicit. Figure 9 further
shows that accuracy on contrary cases is consistently lower than overall accuracy, indicating that
contrary reasoning remains intrinsically difficult for current models.

FOL Translation Accuracy. We observe relatively few FOL parsing errors with Qwen2.5-32B,
especially on semantically rich datasets. However, even small translation mistakes can propagate,
producing systematic failures despite correct semantic structuring.

Planning Limitations. Our framework does not enhance the base model’s intrinsic planning ability.
When reasoning paths are poorly estimated, semantic analysis alone cannot compensate, especially
on long-horizon datasets such as ProverQA. The planner may also over-extend reasoning: while
ProverQA typically requires 6–9 steps, our full model often exceeds 10 steps and drops to 68.6%
accuracy. In contrast, removing planning (woPlan) keeps trajectories within the expected range and
achieves 75% accuracy (Table 3). These results indicate that reasoning length exhibits a critical
threshold beyond which accuracy degrades sharply.

Verification Inconsistencies. Although occurring at extremely low frequencies, our method oc-
casionally exhibits hallucination during the verification phase. In these instances, despite making
correct intermediate judgments, the system produces final verdicts that contradict its own reasoning
steps, indicating a contradiction between reasoning processes and output generation.
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G COMPUTATIONAL EFFICIENCY ANALYSIS

We analyze the computational efficiency of LogicAgent from both configuration-level and stage-
level perspectives, focusing on processing time and token consumption across core components.

Time-Accuracy Trade-offs. As shown in Figure 5b, LogicAgent demonstrates a clear trade-off
between accuracy and efficiency. Planning increases computation time by roughly 78% but provides
structured, goal-directed trajectories that benefit complex multi-hop reasoning. FOL translation
further boosts accuracy through symbolic deduction and consistency checking, though at the cost
of substantial latency. In contrast, purely natural language reasoning is faster but lacks the rigor
and precision afforded by symbolic structure. These findings highlight the importance of structured
reasoning when accuracy and interpretability are required.

Table 8: Token Consumption Analysis

Config Token Type Mean Median

Full
Prompt 14,402.44 13,866.00

Completion 3,988.79 3,904.50
Total 18,391.23 18,262.50

woFOL
Prompt 11,274.76 10,586.00

Completion 2,788.24 2,732.00
Total 14,063.00 13,405.50

woStatement
Prompt 13,113.88 12,125.00

Completion 3,472.03 3,309.50
Total 16,585.92 15,606.00

Token Consumption Patterns. We report token
consumption patterns for RepublicQA under three
configurations (Table 8). On average, the full set-
ting requires 18.4k tokens, while removing the FOL
module (woFOL) reduces usage by 23.5% to 14.1k
tokens, with prompt and completion tokens decreas-
ing by 21.7% and 30.1%, respectively. Prompt to-
kens consistently dominate (75–80% of total), re-
flecting the heavy contextual demands of multi-
hop reasoning. The woStatement setting shows the
largest variability, indicating that semantic structur-
ing requirements fluctuate substantially across dif-
ferent philosophical queries.

Stage-Level Timing Breakdown. To understand intra-system efficiency, we analyze stage-wise
processing time for LogicAgent’s full configuration on RepublicQA (Table 9). The Logical Reason-
ing Stage is the dominant computational bottleneck, accounting for 75.1% of total runtime (139.66s).
This is attributed to three interacting factors: (1) multi-path execution across S1 and ¬S1, effectively
doubling reasoning steps; (2) context-to-FOL translation involving semantic disambiguation and
quantifier binding; and (3) execution of detailed plans that enforce step-wise logical progression.
The Semantic Structuring Stage, responsible for constructing Greimas’ semiotic square, is compar-
atively efficient (13.6%), as it involves short-form outputs and deterministic linguistic transforma-
tions. The Reflective Verification Stage, while occasionally expensive, benefits from its adaptive
design. In most cases, it executes lightweight verification; only uncertain or conflicting cases invoke
full re-analysis, keeping its average cost low (11.3%).

Implications. LogicAgent’s modular architecture enables flexible control over computational cost.
High-cost components such as planning or FOL translation can be disabled in resource-constrained
settings, or selectively activated when tasks demand deeper reasoning.

Table 9: Stage-wise processing time analysis for LogicAgent on RepublicQA

Stage Processing Time (s) Percentage (%)

Semantic Structuring 25.31 13.6
Logical Reasoning 139.66 75.1
Reflective Verification 21.08 11.3

Total 186.05 100.0

H FULL PROMPTING

Below are detailed prompts used by each component in our reasoning framework, including Se-
mantic Structuring, Translator, Planner, Solver, and Reflective Verification. Each prompt is de-
signed to elicit structured outputs from the language model to support the overall reasoning pipeline.
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Case 1

Context: Some individuals who possess a particular skill may also be able to perform the opposite
action of that skill.
······
Question: Is the statement ’The just man turns out to be a thief’ correct?
Constructing Semiotic Square

• S1 (Assertion): ”The just man turns out to be a thief”
FOL Translation: ∃x(Just(x) ∧ Thief(x))

• S2 (Contrary): ”The just man turns out to be a guardian”
FOL Translation: ∀x(Just(x) → ¬Guardian(x))

• ¬S1 (Contradictory): ”The just man does not turn out to be a thief”
FOL Translation: ∀x(Just(x) → ¬Thief(x))

• ¬S2 (Sub-contrary: ”The just man does not turn out to be a guardian”
FOL Translation: ∃x(Just(x) ∧Guardian(x))

Verifying FOL with CFG
[A2] Validation Status: PASSED
- All quantifiers properly scoped
- Predicate structures syntactically correct
- Logical connectives appropriately placed
- Variable bindings consistent

Verifying logical structure Logical Structure Verification:

• GreimasCoreValid: true - Core opposition identified

• GreimasCompleteValid: true - Complete square constructed

Translator The system processes contextual information and formalizes eleven key premises:

1. Premise 1: “Some individuals skilled at striking may also be able to defend effectively”
FOL: ∃y (SkillfulAt(Strike, y) ∧ CanPerform(Defend, y))

2. Premises...

Multi-Perspective Planning, Reasoning Execution, and Verification

Perspective A (S1): The system generates a 7-step reasoning plan and executes it.
Verdict: S1 reasoning concludes Uncertain.

Perspective B (¬S1): Parallel reasoning is performed for the contradictory proposition.
Verdict: ¬S1 reasoning concludes True.

Direct Resolution:
• Inconsistency Detected: S1 = Uncertain and ¬S1 = True violate logical consistency.

• Trigger: System enters Quick Reflection.

Quick Reflection Analysis:
• S1 Reasoning: Incorrect.

• ¬S1 Reasoning: Correct.

Reflection Classification:
• Type 4 Error: S1 incorrect, ¬S1 correct with True verdict.

• Resolution Protocol: Return False as final verdict.

• Error Source: Conceptual confusion between ability and criminal behavior in S1 reasoning.

Final Decision Making:
Based on QuickReflection analysis revealing conceptual errors in S1 reasoning and confirming the
validity of ¬S1 evaluation, the system concludes that the proposition ”The just man turns out to be a
thief” is False.
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Semantic Structuring

You are a reasoning expert. Your task is to analyze a logical proposition using the Greimas’
Semiotic Square framework, which decomposes a proposition into four positions: S1 (orig-
inal statement), S2 (semantic contrary), ¬S1 (negation of S1), and ¬S2 (negation of S2).
Core Steps:

1. Extract Core Proposition: If the question asks ”Is the statement ’X’ correct?”, extract
X as S1. Preserve original wording exactly.

2. Identify Semantic Contrary: Define S2 as a proposition that cannot be true simulta-
neously with S1, though both may be false. Priority opposition types include:

• Moral: just vs. unjust, good vs. evil
• Behavioral: help vs. harm, benefit vs. hurt
• Authority: obedience vs. independent judgment

3. Build Semiotic Square:
• S1: Original target proposition
• S2: Semantic contrary to S1

• ¬S1: Logical negation of S1

• ¬S2: Logical negation of S2

Example Analysis:
• Question: Is the statement “repaying a debt is always just” correct?
• Concept A: just
• Concept B: unjust
• S1: Repayment of debt is always just.

FOL: ∀x (Debt(x) ∧Repaid(x) → Just(x))

• S2: Repayment of debt is always unjust.
FOL: ∀x (Debt(x) ∧Repaid(x) → Unjust(x))

• ......
• S2 Type: Contrary

Output Format (JSON):
{
"concept\_A": "...",
"concept\_B": "...",
"S1": \{"statement": "...", "FOL": "..."\},
"S2": \{"statement": "...", "FOL": "..."\},
"not\_S1": \{"statement": "...", "FOL": "..."\},
"not\_S2": \{"statement": "...", "FOL": "..."\},

}

Now analyze the following statement using this framework.
Question: {question}

25



Under review as a conference paper at ICLR 2026

Translator

You are a logical reasoning expert skilled in translating natural language into precise logical
structure.
Your task is to extract a list of key premises from the following context.
Each premise must be expressed in two formats:

1. A concise and accurate natural-language statement
2. Its corresponding First-Order Logic (FOL) expression written in standard predi-

cate logic

FOL rules:
• Logical conjunction of expr1 and expr2: expr1 ∧ expr2

• Logical disjunction of expr1 and expr2: expr1 ∨ expr2

• Logical exclusive disjunction of expr1 and expr2: expr1 ⊕ expr2

• Logical negation of expr1: ¬expr1
• expr1 implies expr2: expr1 → expr2

• expr1 if and only if expr2: expr1 ↔ expr2

• Logical universal quantification: ∀x
• Logical existential quantification: ∃x

Conventions & Guidelines
• Use explicit action variables (a) for actions like “repaying” or “obeying”, and object

variables (x) for debts, obligations, or rules.
• Use person or role variables (y) for entities like people, rulers, citizens, friends.
• Predicates must apply directly to valid entities or actions — never nest predicates:
• Typed variables:
x→ debt / obligation / rule
a→ action
y→ person / social role (e.g., friend, ruler, citizen)

• Focus on extracting premises related to obligation, justice, causality, moral norms.
• Quantifiers:
∀ (for all), ∃ (there exists), and treat Most / Typically as ∀ (general statements).

• If the context suggests a causal chain (e.g., problematic debt → harm → unjust), write
each causal link as a separate premise — do not collapse into a single line.

Below is the information you need to deal with right now.
Context:
{context}

Return your answer in exactly this JSON format:

{
"premises": [

{
"statement": "...",
"FOL": "..."

}
...

]
}
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Planner

You are a logical reasoning expert.
Your task is to draft a step-by-step reasoning plan to determine whether a given logical
statement is true, false, or uncertain.
The definition of the three options are:

• True: If the premises can infer the question statement under FOL reasoning rule
• False: If the premises can infer the negation of the question statement under the FOL

reasoning rule
• Uncertain: If the premises cannot infer whether the question statement is true or false.

What to do:
1. Identify the goal (the statement to evaluate).
2. Identify which premises, rules, or definitions are relevant.
3. Break down how to logically connect premises to reach intermediate reasonings.
4. Organize the reasoning steps clearly and sequentially.
5. End with a final step: determine whether the statement in the goal is true or false

or uncertain, without making the judgment.

Below is an example
Question:
“Repaying one’s debts is always just.”,
“∀x (Debt(x) ∧ Repaid(x) → Just(x))”
Premises:

• Justice involves doing good to friends.
FOL: ∀a (Just(a) → ∀y (Friend(y) → Beneficial(a,y)))

• ......

{
"plan": [

"Step 1: Identify the goal...
......
"Step n: Search for counterexamples...
"Final Step: Decide whether the premises ...

]
}

Below are the premises and questions you need to derive a plan to solve, please follow the
instruction and example aforementioned.
Input:
Question
{target statement}
Premises:
{premises}

Plan: Make sure you only derive the plan. Do not solve the question and do not determine
the truth value of the conclusion at the planning stage. This plan will be used to help guiding
a language model to follow step-by-step. The expected final step in the plan is to determine
whether the the conclusion is true/false/uncertain.
Do not solve the question and do not determine the truth value at this stage. Only generate a
detailed reasoning plan.
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Solver

The task is to determine whether the value of the conclusion/question is true/false/uncertain
based on the premises.
You must refer to the following first-order logic reasoning rules when making logical rea-
soning.
Input Information:

1. Semiotic Square (The statement you need to reason to judge)
2. Formal Premises extracted from the context

Your goal is to evaluate whether the statement in the goal logically follows from the
premises. Analyze step-by-step.
Please solve the question step by step. During each step, please indicate what first-order
logic reasoning rules you used. Besides, show the reasoning process by the logical operators
including but not limited to: ⊕ (either or), ∨ (disjunction), ∧ (conjunction), → (implica-
tion), ∀ (universal), ∃ (existential), ¬ (negation), ↔ (equivalence). You can combine natural
language and logical operators when doing reasoning.

Definitions:
• True: A statement is “true” if it necessarily follows from the given premises using logical

rules.
• False: A statement is “false” if it is contradicted by the premises or its negation is logi-

cally inferred from them or if there are counterexamples.
• Uncertain: A statement is “uncertain” if there is insufficient information in the premises

to determine its truth value conclusively.

Now analyze input
Goal:
{target statement}
Premises:
{premises}
Plan:
{PLAN}

Output JSON Format (place this at the end, Ensure the JSON is valid (no trailing com-
mas)):

{
"steps": [

"Step 1: ...",
"Step 2: ...",
"...",
"Final answer: {true/false/uncertain}"

],
"verdict": "True" | "False" | "Uncertain"

}
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Reflective Verification

Task: Verify the correctness of the execution in determining the value of the conclusion
based on the provided context using first-order logic rules.
Verification Process:
Input Analysis:
Original Execution: [[EXECUTION]]
Verification Steps:

1. Identify the Goal: Determine the objective of the original execution.
2. Evaluate the Premises: List given premises and their first-order logic representations.
3. Logical Deduction Analysis:

• Analyze S1’s reasoning chain.
• Analyze ¬S1’s reasoning chain.
• Check for logical validity and soundness.

4. Verdict Justification: Establish which reasoning is correct.
5. Classification: Categorize the case type.
6. Final Conclusion: Deliver the verified answer.

Output Format:
Conclude with a revised answer using the following JSON structure:
{
"verdict": "True" | "False" | "Uncertain",
"reason": "Type 1: S1 reasoning correct → Return S1’s verdict"|
"Type 2: S1 incorrect, ¬S1 correct with Uncertain verdict → Return Uncertain"|
"Type 3: S1 correct with Uncertain verdict → Return Uncertain" |
"Type 4: S1 incorrect, ¬S1 correct with True verdict → Return False" |
"Type 5: S1 incorrect, ¬S1 correct with False verdict → Return True" |
"Type 6: Both S1 and ¬S1 incorrect → Return independently verified result"

}

Verification Execution:
Original Execution: [[EXECUTION]]
Verify:
Please indicate the revised answer at the end using CURLY BRACKETS. The response must
be one of:
{
"verdict": "True" | "False" | "Uncertain",
"reason": "Type 1: S1 reasoning correct → Return S1’s verdict"|
"Type 2: S1 incorrect, ¬S1 correct with Uncertain verdict → Return Uncertain"|
"Type 3: S1 correct with Uncertain verdict → Return Uncertain" |
"Type 4: S1 incorrect, ¬S1 correct with True verdict → Return False" |
"Type 5: S1 incorrect, ¬S1 correct with False verdict → Return True" |
"Type 6: Both S1 and ¬S1 incorrect → Return independently verified result"

}
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