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Abstract
Mechanistic simulators are an indispensable tool
for epidemiology to explore the behavior of com-
plex, dynamic infections under varying conditions
and navigate uncertain environments. ODE-based
models are the dominant paradigm that enable fast
simulations and are tractable to gradient-based
optimization, but make simplifying assumptions
about population homogeneity. Agent-based mod-
els (ABMs) are an increasingly popular alterna-
tive paradigm that can represent the heterogeneity
of contact interactions with granular detail and
agency of individual behavior. However, conven-
tional ABM frameworks are not differentiable and
present challenges in scalability; due to which it
is non-trivial to connect them to auxiliary data
sources easily. In this paper we introduce GRAD-
ABM which is a new scalable, fast and differen-
tiable design for ABMs. GRADABM runs sim-
ulations in few seconds on commodity hardware
and enables fast forward and differentiable in-
verse simulations. This makes it amenable to be
merged with deep neural networks and seamlessly
integrate heterogeneous data sources to help with
calibration, forecasting and policy evaluation. We
demonstrate the efficacy of GRADABM via ex-
tensive experiments with real COVID-19 and in-
fluenza datasets. We are optimistic this work will
bring ABM and AI communities closer together.

1. Introduction
Mechanistic simulation models explicitly model mecha-
nisms and causal connections to explore empirically ob-
served variables. They are an indispensable tool for epidemi-
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ology to explore the behavior of complex, dynamic infec-
tions and guide forecasting and decision making. Here, com-
partmental ODE-based models are the dominant paradigm
which use a system of differential equations to describe dis-
ease transmission by modeling the flow rate of individuals
from one disease stage (compartment) to another. Classical
examples include the ‘so-called’ S-I-R (susceptible-infected-
recovered) model with 3 compartments [30, 23]; with some
works which further stratify the population via separate
compartmental models for each sub-population (eg: Age-
SEIR [38], Geo-SEIR [9]). These SIR-like models are sim-
ple to design, very fast to execute and amenable to gradient-
based optimization of simulation parameters [41, 8]. Hence
they have also been used in hybrid models (with deep neural
networks) for forecasting influenza [24], Ebola [29] and
also COVID pandemic [27]. This tractability is achieved
through simplifying assumptions about homogeneous trans-
mission and perfect mixing (each agent interacts with every
other agent) in the population, which may often not be de-
sirable. Specifically, these SIR-like models do not represent
the underlying contact graphs which prevents them from
recreating heterogeneity of the interacting populations and
modeling the adaptability of individual behavior, in the real
world [10, 38]. Agent-based models (ABMs) have emerged
as an alternate paradigm which can alleviate these concerns.

ABMs are discrete simulators which comprise a collection
of agents which can act and interact within a computational
world [32, 15, 39, 59, 48]. They can explicitly represent
heterogeneity via the underlying contact networks and also
model the adaptability of individual behavior to enable more
realistic simulations. However, they are conventionally slow,
difficult to scale to large population sizes [40] and tough to
calibrate with real-world data [26]. This is a challenge since
simulation results (emergent behavior) can be highly sensi-
tive to the scale of the input population and calibration of the
input parameters. In addition, incorporating novel sources
of data that could inform calibration and other downstream
tasks (e.g., forecasting) is often laborious and adds overhead
complexity to the ABM (e.g., incorporating digital exposure
data to ABMs [31]). In this paper, we introduce GRAD-
ABM to alleviate these concerns and realize the potential
of ABMs for practical decision making in epidemiology.

The key insight of GRADABM is to enable fast forward and
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Figure 1. We introduce an end-to-end differentiable GradABM which can: i) ingest multi-granular (citizen, block, county, state) and
heterogeneous (clinical, behavioral, policy, census, survey) data sources; ii) simulate realistic populations quickly and reliably with
gradient-based calibration; iii) facilitate flexible interventions for policy decisions and efficient forecasting with end-to-end ML-ABM
pipelines. The key idea of GradABM is a general-purpose differentiable sparse tensor-calculus design which we validate by demonstrating
utility for epidemiology here.

differentiable inverse simulations. We realise this through
a differentiable sparse tensor-calculus based implementa-
tion. GRADABM can simulate millions-size networked
populations in few seconds on commodity hardware, run
on both CPUs and GPUs and is end-to-end differentiable.
Conventional ABM frameworks follow an object-oriented
(agent-centered) design where the agents are modeled as
objects. While conceptually appealing and extensible, this
is often inefficient to represent inter-agent infection trans-
mission (over contact networks) and within-agent disease
progression as the size of agent populations and interac-
tions scale. Our framework GRADABM follows a network-
centric design [20] where agents are represented as tensors,
their interaction networks as (sparse) adjacency matrices
and a continuous relaxation of the stochastic disease trans-
mission model is used to produce gradient estimates with
automatic differentiation. We use this scalable, fast and dif-
ferentiable design of GRADABM to merge with deep neural
networks (DNNs) and seamlessly integrate heterogeneous
data sources to help with calibration, forecasting and policy
evaluation. Particularly, we use COVID-19 and Influenza
modeling as examples to show the benefit of GRADABM
for (time-space) personalized and robust forecasting; and
evaluating efficacy of pharmaceutical interventions for de-
cision making. We believe that differentiable agent-based
epidemiology can open new venues for epidemic under-
standing and aid practical decision making by learning from
millions of agents in few seconds.

Our Contributions: (i) We present GRADABM, a differen-
tiable ABM that can simulate million-scale populations in a
few seconds on commodity hardware and be merged with
DNNs for end-to-end learning. The key idea of GRADABM
is a general-purpose differentiable sparse tensor-calculus
based implementation which we validate for epidemiology
here. (ii) We demonstrate the utility of GRADABM for
robust forecasting and analysis of COVID-19 and Influenza.
(iii) We show the use of GRADABM in evaluating pharma-
ceutical interventions for policy decision making.

2. Background and Related Work
First, we briefly mention work in Agent-based Models
(ABMs) and with relevance to epidemiology. Then, we
summarize relevant work on learning in ABMs by integrat-
ing with deep neural networks, methods to calibrate ABM
parameters and scalability of simulation parameters. We
conclude a brief mention of a useful insight we leverage
for our solution (permutation invariance). We refer the
reader to [45, 23, 30, 37] for a more extensive discussion.
ABMs define systems [32, 15] as collections of agents
with can act and interact with each other within a compu-
tational world. They have been used to model cells in a
tumor micro-environment to diagnose cancers [39], humans
in a physical environment to study economic policies [59],
infectious diseases [48, 5] and avatars in a digital world to
study misinformation [16]. ABMs in Epidemiology (Epi-
ABM) are used to understand how disease spreads and eval-
uate efficacy of health interventions for mitigating them.
EpiABMs build simulations where agents host and trans-
mit virus within their multiple contact networks (there is a
within-host disease model e.g. SIR); and [40, 25] discuss
methods and assumptions for designing such simulators.
Briefly, population contact networks are assumed to resem-
ble a random graph with a specific degree distribution; and
an epidemiological model [31] is used to describe between-
host transmission and within-host progression of infection.
Recently, such EpiABMs are used to evaluate the benefit
of delaying 2nd dose of the vaccine [48], deploying mo-
bile apps for digital contact tracing [5], prioritizing test
speed over accuracy [36] to contain the spread of COVID-
19. The utility of such simulators for practical decision
making depends upon their ability to recreate the population
with great detail, integrate with real-world data streams and
analyze the sensitivity of results. Learning from data in
ABMs by integrating with DNNs is being explored across
multiple fields. The dominant method is to treat it as a
multi-agent reinforcement learning task where the ABM
defines the environment and a DNN is used to parameter-
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ize agent action policies. Similar ideas has been used by
[59] to learn equitable economic policies, [51] to analyze
societal segregation dynamics, [42] to learn oil and gas
macro strategies. An alternate strategy has focused on using
DNNs to emulate agent-based models [11, 7, 43] by using
the ABM to generate training dataset for DNNs. Recently,
[11] used an epidemiological ABM to generate synthetic
datasets and trained DNN models to predict infectiousness
for proactive contact tracing. [43] used a similar strategy
(of ABM as surrogate) to identify what simulation parame-
ters to calibrate. In contrast, we propose to make the ABM
differentiable instead so that it can be trained end-to-end
with the DNN modules using gradient-based optimization.
This makes it possible to integrate heterogeneous data to
infer latent micro variables and improve forecasting power
of ABMs through hybrid DNN-ABM pipelines. This also
has interesting implications for calibrating ABMs, as we
discuss next. Calibration of ABMs involves identifying
appropriate values for micro variables and is essential to
ensure reliability of results. Generally, a hybrid strategy
is used where some parameters are sourced from control
trials conducted offline by clinical experts and then others
are calibrated in-silico by achieving a goodness-of-fit be-
tween emergent ABM output and real-world macro data
(e.g. number of deaths). The conventional technique is to
use grid search [18, 48] or beam search [55] by running
several forward simulations and finding the best-fit. This is
often slow and tough to scale to many parameters. Recent
works is using optimization methods for faster and better
calibration. [43] uses an ML model to identify what pa-
rameters to calibrate but values are identified with random
search. [5] used compartmental (SEIR-like) models where
parameters are learned by gradient-based optimization in the
SEIR-like model and are then used in the ABM. However,
SEIR-like models have few tunable parameters which limits
the extent and correctness of calibration with real-world
data for the ABM. In contrast, the differentiable design of
GRADABM allows calibrating parameters with gradient-
based optimization inside the ABM itself. This helps learn
personalized parameters resulting in better (and robust) fore-
casting and policy decision making. Such gradient-based
calibration is iterative and hence requires fast forward simu-
lations, as is reviewed next. Scalability of ABMs is a key
consideration since modeling granular population details is
computationally expensive. Conventional frameworks like
Mesa follow an object-oriented design and while ease to use
(Python-API) are prohibitively slow to scale (require few
hours for a single iteration). There have been attempts to re-
duce this burden and simulate realistic scale with distributed
HPC systems and GPU-optimized implementations. Epi-
Fast [14] demonstrated simulating large contact networks
in a few minutes on distributed systems. However, the
required compute for such executions is expensive and non-
trivial to access. OpenABM [31] presents an optimized

C++/Cuda API to build an epidemiological ABM for fast
execution on commodity hardware but is tough to extend
and is not amenable to gradient-based learning. Motivated
by recent work in molecular dynamics [50], GRADABM is
implemented using highly optimized sparse tensor APIs of
auto-diff packages (e.g.,: pytorch, JAX) to accelerate and
scale simulations while preserving ease of use.

Invariances, Computation and ABMs Efficacy of DNN
architectures results from overcoming the curse of dimen-
sionality by leveraging the pre-defined invariances arising
from the underlying low-dimensionality and structure of the
physical world [17]. This is key to efficient computation on
grids with CNNs (translation invariance) and graphs with
GNNs via neural message passing (permutation invariance).
We posit that while useful for learning DNNs, utilizing these
invariances can make computation tractable in physical sys-
tems, where they exist naturally. Specifically, we observe
that epidemiological models [20, 31, 5, 48] also adhere to
permutation invariance wherein the order of infectious in-
teractions (pair-wise message passing) within a step does
not matter when estimating the probability of infection from
those interactions. We use this to make GRADABM differ-
entiable where the transmission model can be implemented
as a variant of message passing parameterized with physi-
cal equations instead of neural networks. More details in
appendix.

3. Differentiable Agent-based Modeling for
Epidemiology

The pipeline is summarized in Fig. 2, where the inner loop
is comprised of the epidemiological model GRADABM
and the outer loop of the calibration model CALIBNN.
Training is executed over 4 stages: 1) generating epidemio-
logical input parameters using a parameterized neural net-
work (CALIBNN), 2) epidemiological forward simulation
with the generated parameters (inner loop), 3) computing a
loss/error between output of the epidemiological model and
ground truth data, and 4) compute the gradient of this loss
using back-propagation through all the previous 3 stages
and then update parameters of CALIBNN using gradient
descent. In the rest of this section, we first describe the epi-
demiological model, followed by the calibration and training
pipeline.

3.1. Epidemiological Model

Here, we describe the micro loop shown in Fig. 2. We
consider a K step discrete-event simulation with a net-
worked population of n stateful agents, where At is the
underlying contact network at given step t. We build upon
a standard epidemiological model used in several clinical
papers [20, 31, 48], which is comprised of a Transmission
Model and a Progression Model. These two components
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Figure 2. Differentiable Agent-based Epidemiology involves 4 stages i) heterogeneous macro-level population data (CDC, census,
behavioral, survey) is input to a calibration model (CALIBNN) to predict epidemiological parameters (θT , θP ). ii): (θT , θP ) are used run
K forward steps of the fully-differentiable epidemiological model (GRADABM) which simulates micro-level infection transmission
(Transmit) and disease progression (Progress) over individual contact networks. Disease statistics are aggregated (Aggregate) at
end of K steps to obtain the macro-level simulation output (ŷ). iii) Error between predicted ŷ and real-world case statistics (y) is used to
define a loss (L(ŷ; ŷ)). iv) Gradient of this loss is computed by automatic differentiation through the micro-level GRADABM to update
weights of macro-level GRADABM using gradient descent.

recursively update the state of all agents, which is described
next.

Agent State is denoted by a 3-D tensor Xt
j for an agent j ∈

{1, . . . , n} at time step t ∈ {0, . . . ,K}. Xt
j = {aj , dtj , etj}

where aj ∈ {0−10, 11−20, 21−30, . . . , 71−80, 80+} is
the age of the agent, which can take one of nine discrete val-
ues; dtj is the current disease stage of agent j and for exam-
ple in COVID-19, it can take values in ∈ {S,E, I,R,M}
where S,E, I,R,M denote susceptible, exposed, infected,
recovered and dead (mortality) stages respectively, etj ∈
{−1, . . . , t− 1} denotes the time step of last exposure. In
some simulations, we augment the state using two additional
controlled dynamic variables, which are: vtj ∈ {0, 1, 2} that
denotes the current vaccination status and qtj ∈ {Y,N} that
denotes the current quarantine status.

Transmission Model is a parameterized model that com-
putes the probability of infection transmission as a result of
an interaction between susceptible and infected (or exposed)
agents. Interaction Networks are the sites for contact be-
tween agents that transmit infection. Following [48, 5], we
separately model contact graphs within a county and repre-
sent agent interactions in multiple scenarios: household, ran-
dom and work related interactions. The graph is generated
using demographic-stratified mobility information obtained
from [49], evolves at every time step (different at each step).
Consider an interaction at time t, between susceptible and in-
fected agents with states Xt

i = [ai, d
t
i, e

t
i]X

t
j = [aj , d

t
j , e

t
j ],

where dti = E, eti = −1, dtj = I and dtj ∈ {0, . . . t − 1}

respectively. The rate of transmission at any step t primarily
depends upon: (i) infectiousness of the pathogen at time t
(Rt), (ii) susceptibility of infectee i to transmission (Si), and
(iii) transmissibility of the infector j (Tj) and (iv) time since
exposure for infector (∆Et

j = t− etj). The infectiousness
varies over time, starting at zero when the agent is infected,
peaks at an intermediate time and eventually tends to zero
and is modeled using a gamma distribution [5]. The suscep-
tibility of the infectee is age-stratified as described in [31].
The probability of transmission (q(.; .)) from the interaction
is represented as: q(dti, d

t
j) = 1− e−λ(R,Si,Tj ,∆Et

j), where,

λ(R,Si, Tj ,∆Et
j) =

RSiTj

Îi

∫
∆Et

j

∆Et
j−1

GΓ(u;µj , σ
2
j )du

models the rate of transmission in the interaction, Îi is the
expected number of interactions for agent i, q(dti, d

t
j) is then

aggregated over all interactions for any agent i and then the
aggregated value is used to parameterize a Bernoulli distribu-
tion and sample a discrete transmission event. A successful
exposure then causes an update in Xt

i (dti and etj).

Progression Model Once successfully exposed (as ex-
plained in the Transmission Model) or when in an infected
state, an agent j enters a hierarchy of disease stage progres-
sion which triggers subsequent changes in the state of the
agent. We follow a slightly modified SEIRM [57] progres-
sion model. Susceptible (S) agents may become exposed
(E) as explained in the Transmission model above, and ex-
posed agents progress to infection (I) and eventually end
in a stage of recovery or mortality (R,M ). The Progres-
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sion Model is parameterized by stage transition times and
mortality rate. The key difference between our model and
the SEIRM-like models is that we track states of individual
agents rather than just the aggregate numbers of agents in
various disease stages. Furthermore, we model the S → E
exposure step, using interaction networks which take into
account local agent interactions, which is different from the
standard SEIRM-like models. This model can be parame-
terized to study multiple infectious diseases, and through
experiments we validate generality for COVID-19 and in-
fluenza, with possible changes in the type and number of
disease stages.

Forward Simulation with GRADABM We combine these
components of the epidemiological model to simulate the
disease dynamics over a horizon of K steps. The input
to the simulator are the time-dependent parameters which
govern the transmission and progression models, denoted
as θtT = [Rt, S, T ], θtP = [m, τEI , τIR, τIM ] respectively,
where t ∈ {0, . . . ,K}. Here Rt is the time-dependent
disease reproduction number (measure of infectiousness),
S is the age-stratified susceptibility, T is the age-stratified
infection transmissibility, m is the mortality rate (fraction
of expired agents amongst all agents in the {R,M} disease
stage), τEI , τIR, and τIM are the stage transition times. At
each step t, every agent i interacts with a set of neighbors
{j : j ∈ Ni} and may accumulate or transmit infection.
This disease stage evolution, at any step t, is given by:

dt+1
i = Update(Xt

i ,Ni, (X
t
j)j∈Ni

, θtT , θ
t
P ), (1)

where Update(Xt
i ,Ni, (X

t
j)j∈Ni , θ

t
T , θ

t
P ) is

=

{
Transmit(Xt

i ,Ni, (X
t
j)j∈Ni , θ

t
T ), if dti = S,

Progress(Xt
i , θ

t
P ), if dti ∈ {E, I}.

(2)

The transmission model is
Transmit(Xt

i ,Ni, (X
t
j)j∈Ni , θT ) where Rt, Si, Tj

are obtained from θT and etj from Xj
t is written as:

dt+1
i = Q̂(

⋃
j∈Ni

(λ(Rt, Si, Tj , e
t
j))), (3)

where, λ denotes the rate of transmission from a single
interaction,

⋃
is an aggregation function which accumu-

lates transmission over multiple interactions and Q̂ =
Bernoulli(1 − eq(t)) maps this transmission to a proba-
bility of infection. Following the invariance of infection
transmission noted in section 2 (more in appendix),

⋃
is

the summation (
∑

) function in our implementation. The
progression model Progress(Xt

i , θP ) updates the dis-
ease stage from E → I or from I → {R,M} at times
determined by the stage transition time parameters. Fi-
nally, the aggregate cumulative deaths is determined as:

ŷ = Aggregate(dTi ) = m ∗ (dTi ∈ {R,M})i∈{1,...,n},
where m ∈ θP .

3.2. Calibration and Forecasting

Training In order to use GRADABM for real-world applica-
tions, we need to be able to calibrate its parameters (θtT , θ

t
P )

in such a way that the aggregate predicted quantities from
the model such as cumulative deaths match the observed val-
ues from real-world data. This is done using the calibration
and training setup (the outer loop in Fig. 2). This is a W step
loop, with each step w comprising the following four stages
as shown in the figure. Stage 1: Generating epidemiological
parameters (θtT , θ

t
P )

w
t∈{0,...,K} using CALIBNN (f ) with

neural network parameters ϕw at step w and input as the
auxiliary data (D) from sources as described in section 4.
For ease of exposition, we drop the t ∈ {0, . . . ,K} sub-
script and refer to this input as (θtT , θ

t
P )

w. Then, we have
(θtT , θ

t
P )

w = f(D;ϕw) Stage 2 Performing a K-step sim-
ulation using GRADABM (the inner loop in Fig. 2) with
(θtT , θ

t
P )

w from CALIBNN in the previous stage. Stage 3:
The output of GRADABM is aggregated to compute cumula-
tive deaths. This macro value is compared with correspond-
ing ground truth values and the following loss is computed:
L(ŷw, y; (θtT , θtP )w) = MSE(ŷw, y), where y is the ground
truth data representing cumulative deaths, ŷw is the cumula-
tive deaths predicted by the epidemiological model at the the
wth training step with input parameters (θtT , θ

t
P )

w) and MSE
denotes the mean-squared error function. Stage 4: Once
this loss is computed, we use automatic differentiation to
estimate gradient for minimizing the loss. The gradient is
computed over the K-steps of the epidemiological model
GRADABM (which recursively calls Update(·; ·)) and cal-
ibration model CALIBNN which is parameterized with a
neural network. In practice, auto-diff packages such as Py-
torch implement back-propagation through such a ‘for loop’
by unrolling this loop in the internal computational graph
that the library tracks to enable end-to-end differentiation.
The only requirement is that all steps within the loop be
differentiable, which we establish by showing that the com-
ponents of our epidemiological model - Transmission model
and Progression model are differentiable.

The Transmission Model is differentiable as the functions
comprising it, which are: λ is a smooth function,

⋃
is a

permutation invariant function (
∑

) and is linear. In order
to make the sampling from Q̂ differentiable, we utilize a
continuous relaxation with Gumbel-Softmax reparametriza-
tion [33]. Next, the Progression Model is differentiable as
it is effectively a linear deterministic model, with the pa-
rameters being the transition times. Thus, the entire K step
epidemiological model is differentiable.

The final step of this gradient computation involves back-
propagation through the parameters of the CALIBNN neural
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network (ϕ) as well. Once the gradient is thus determined,
the parameters of CALIBNN are then updated as given
below:

ϕw+1 = ϕw − α
∂L(ŷw, y; (θtT , θtP )w)

∂ϕ
, (4)

where α is the learning rate, (θtT , θ
t
P )

w = f(D;ϕw) and
ŷw is computed by calling Update K times with same
parameters (θtT , θ

t
P )

w. This training is continued till an
acceptable level of aggregate prediction error is achieved.
This process of learning via gradient descent requires mul-
tiple runs of the K-step epidemiological model. Hence,
for this training to be feasible, our epidemiological model
should be fast and also scalable to enable real-world relevant
simulations. Thus, we note that the two key properties of
GRADABM which make such iterative gradient-based opti-
mization tractable are: i) fast simulations at realistic scale -
with sparse tensor calculus; ii) differentiable simulations for
gradient-based optimization.

Inference Once trained, the hybrid pipeline with CALIBNN
and GRADABM can be used to forecast in unseen scenarios
as well as aid in policy decision making. These unseen sce-
narios may include predicting future the evolution of multi-
ple infections for a county/region, or it may involve making
predictions for a new county/region for which historical data
for calibration is not available, or it may involve making
predictions even when the data (inputs to CALIBNN) for a
county/region is noisy. In each of these scenarios, the data
available for the county/region is fed to CALIBNN, which
then outputs time-space personalized parameters to be used
in the GRADABM. GRADABM is then run for K steps
using these parameters and the simulation results are used
to make the desired predictions.

4. Experimental Setup
We conduct experiments for COVID-19 and influenza on
multiple counties of the state of Massachusetts, USA, and
we learn personalized parameters for each county. To predict
county-specific parameters, we design CALIBNN (Sec. 3.2)
which ingests diverse data sources and is optimized using
gradients from the prediction error of GRADABM. Next,
we describe the data sources used to build the simulator and
training pipeline. • Heterogeneous Data Sources GRAD-
ABM allow bringing together data across multiple granu-
larities (individual, census-block, county, city, country) and
modalities (mobility, policy, clinical, digital surveys) due
to flexibility of agent-based simulators. We collected im-
portant publicly available1 datasets from a variety of trusted
sources. Here we introduce our data sources in the order of
our training pipeline in Fig. 2. i) We use county-level time-

1Data links: delphi.cmu.edu; goo.gle/
covid19symptomdataset; safegraph.com; coronavirus.jhu.edu;
gis.cdc.gov/grasp/fluview/fluportaldashboard.html

varying features that are ingested by CALIBNN. Specifically,
for COVID-19 we use 5 signals including insurance claims
data, online symptoms surveys from Facebook, and line-list
data. For flu, we use the 14 signals from the Google symp-
tom dataset. Flu data is reported at state-level, so we utilize
the same data for all counties. ii) GRADABM leverages
individual-level data to set agents’ states created based on
demographic information from the US Census [2]. iii) Our
interaction networks are created using census block level
mobility data from Safegraph. Specifically, we use MCMC
sampling to generate synthetic contact graphs inside each
census-block using demographic information (e.g., age).
iv) To set some of the parameters of our transmission and
progression models, we utilize clinical data from reliable
sources such as CDC [3] and clinical papers [31, 28]. The
target variable for COVID-19 is COVID-associated mortal-
ity, while in flu we use influenza-like-illness (ILI) counts,
which is collected by the CDC. The ground truth data for
the target variables is obtained from JHU and CDC. Addi-
tional details are in the appendix. • Baselines We compare
GRADABM against multiple popular approaches for cal-
ibrating an ABM - Vanilla-ABM: Following [31, 48], it
uses parameters set with expert and/or authoritative infor-
mation with randomized search. For COVID-19, we get R0

and case-fatality rate from [13, 4] and R0 for flu from [21].
PC-ABM: Following [5], it uses R0 and initial infections
learned using a compartmental model (SEIRM and SIRS for
COVID-19 and flu, respectively). We also perform studies
to compare different configurations of GRADABM. GRAD-
ABM (w/o TL, w/o CALIBNN): Removes CALIBNN and
its data inputs, and instead uses scalar learnable parame-
ters. GRADABM (w/o TL): trains with only data from one
county and one ABM; instead we use transfer learning in
GRADABM to learn a single CALIBNN that can predict
for all counties. • Metrics For forecasting error metrics,
we adopt standard metrics used by previous work for eval-
uating epidemic predictions [54, 6]. Specifically, we use
normal deviation (ND), root mean squared error (RMSE)
and mean absolute error (MAE) which are detailed in our
appendix. Following CDC forecasting guidelines [12, 22],
we make weekly predictions for 1 to 4 weeks ahead in the
future. Our evaluation for both diseases is of at least 4
months in 10 counties. Specific counties and evaluation pe-
riods are in the appendix. • Implementation Details Data
preparation: We process the time series data into padded
sequences which are normalized per region. Architecture de-
tails: CALIBNN is an encoder-decoder neural architecture
based on GRUs [19] and self-attention [56]. ABM parame-
ters (θP , θT ): Our time-varying ABM parameters have the
flexibility to be changed on each time step of the simulator
(daily), but we found this to be challenging for learning.
Thus, we opted to use the same set of ABM parameters for
every 7 days (i.e., we learn a new set of parameters for every
week). Details can be found in the appendix. Our code and

delphi.cmu.edu
goo.gle/covid19symptomdataset
goo.gle/covid19symptomdataset
safegraph.com
coronavirus.jhu.edu
gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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data are publicly available2.

5. Results
First, we show that GRADABM integrates with CalibNN
to improve ABM forecasting performance on multiple in-
fectious diseases. Next, we show that GRADABM is robust
to noisy data, can seamlessly scale to simulate large pop-
ulations and be used to evaluate policy interventions for
decision making.

5.1. Forecasting multiple infectious diseases

Results presented in Table 1 shows that GRADABM consis-
tently outperforms typical ABM calibration methods when
forecasting infection spread of COVID-19 and Influenza,
across all metrics (rows 1-3 in Table 1)3. For instance,
GRADABM improves ND to 0.97 from 8.75 in Vanilla-
ABM and 2.21 in PC-ABM on COVID-19; and to 0.41 from
0.57 in Vanilla-ABM and 0.59 in PC-ABM on Influenza.
Specifically, we observe that GRADABM achieves a consis-
tent gain of 8x to 12x over Vanilla-ABM on all metrics in
COVID-19. This performance benefit is attributed to three
key features of GRADABM which allow us to learn person-
alized time-varying parameters: gradient-based calibration,
integration of heterogeneous data sources via CALIBNN,
and transfer learning from joint county training. We also
conduct ablation studies to analyse these features (rows 3-5
in Table 1) and note some observations. First, using CAL-
IBNN is significant to performance gain as it allows: i)
integration of heterogeneous data sources for learning pa-
rameters and ii) rich and flexible optimization by coupling
the ABM with a neural network. Second, training counties
independently result in marginal fall in performance (e.g.:
ND goes from 0.97 to 1.26 in COVID) when compared to
joint training which utilizes transfer learning. This indicates
that GRADABM can automatically take advantage of what
is being learned in one county can be useful for another
county, but, in contrast to other methods that directly copy
the learnt values, our method personalizes appropriately.
Finally, we note that transfer learning does not help in In-
fluenza like in the COVID-19 case. As noted in Sec. 4, this
results from shared state-level influenza data for all counties
and hence CALIBNN cannot personalize parameters across
counties.

5.2. Robustness, Scalability and Decision Making

Here, we study the effectiveness of deploying GRADABM
to real-world scenarios by focusing on three key consid-

2Code: https://github.com/AdityaLab/GradABM
3We performed the unpaired t-test test (α = 0.05) over 5

runs to verify GRADABM performance gains w.r.t other ABM
calibration methods are statistically significant

Figure 3. GRADABM run-time scales linearly with the number of
interactions and is roughly 300x faster than prior-art. This benefit
is due to the sparse-tensor calculus based design.

erations: i) scalability to a large real-world population, ii)
robustness to noisy data, iii) utility for practical decision
making by evaluating policy interventions.

GRADABM runs fast forward simulations on large pop-
ulations Figure 3 shows that the run-time for GRADABM
scales linearly with number of interactions (and agents)
in the population and executes very quickly (even as the
adjacency matrix scales quadratically). For instance, GRAD-
ABM executes a simulation with 800,000 agents (5 million
interactions) over 133 steps in 4 seconds on a GPU (and 60
seconds on CPU). This is roughly 300x faster than the equiv-
alent Mesa implementation. This performance efficiency
can be attributed to the design of a sparse tensor-calculus
based implementation of GRADABM. We note that the fast
execution of forward simulations provides the following
benefits for practical use: i) makes it possible to conduct
sensitivity analyses of results through multiple runs with
different hyperparameters, ii) essential for integrating with
DNN pipelines for parameter calibration with requires a
simulation runs in each optimization step.

GRADABM is robust to noisy data Figure 4 shows that
GRADABM outperforms baselines even when trained with
noise data. Data quality issues are very common in pub-
lic health data [35, 47] and we evaluate performance of
GRADABM in such scenarios. To study this, we introduce
Gaussian noise to the ground truth target with µnoise = 0 and
several scales of standard deviation snoise. For each county,
we first obtain the standard deviation of the target and multi-
ply it by the factor λ to get the snoise. We utilize 4 different
values of λ. Specifically, we observe that even with large
amount of noise (λ = 4) our error on all metrics is lower
than the other baselines that were trained without noise.
This is attributed to our differentiable design which allows
integrating with CALIBNN such that: i) heterogeneous data
sources are used to learn simulation parameters, ii) simula-
tion parameters are not represented as scalar variables but
the outputs of a neural network.

GradABM helps in evaluating policy interventions:
What if we delay the second dose of COVID-19 vaccine?
Here, we investigate the utility of GradABM for policy de-

https://github.com/AdityaLab/GradABM
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Table 1. Forecasting results for COVID-19 and influenza over 5 runs. GRADABM is the only one consistently among the best performing
for all (lower error metrics is better). TL - Transfer Learning

COVID-19 Influenza

Model ND RMSE MAE ND RMSE MAE

Vanilla-ABM [48] 8.75 689.92 270.13 0.57 2.03 1.72
PC-ABM [5] 2.21 ± 1.36 121.87 ± 63.97 68.20 ± 41.84 0.59 ± 0.02 2.17 ± 0.05 1.77 ± 0.05

GRADABM 0.97 ± 0.18 50.99 ± 12.12 30.02 ± 5.60 0.41 ± 0.02 1.47 ± 0.06 1.22 ± 0.06

GRADABM (w/o TL) 1.26 ± 0.43 78.22 ± 78.22 38.74 ± 13.35 0.41 ± 0.02 1.47 ± 0.06 1.22 ± 0.06
GRADABM (w/o TL, w/o CALIBNN) 2.39 ± 0.35 205.14 ± 42.56 73.66 ± 10.88 0.88 ± 0.14 2.97 ± 0.44 2.64 ± 0.43

Figure 4. GRADABM is robust to noisy data. GRADABM
achieves lower forecasting error than all baselines even when it is
trained with noisy data (λ > 0) while the baselines receive original
data. This is achieved due to differentiable design which allows
encoding simulation parameters with CALIBNN and learning us-
ing heterogeneous data sources.

cision making and focus on the question of delaying the
second dose. We follow the clinical setup as in [48] and
study sensitivity of the decision to protection of first dose
(50%, 60%, 70%, 80%) and calibration mechanism (Vanilla-
ABM vs GRADABM). We compare cumulative deaths for
Franklin County in MA under the two prioritization sched-
ules — S1: Prioritized second dose, S2: Delayed second
dose. The sensitivity of this prioritization decision is shown
in Fig. 5, where the Y-axis shows the ratio of cumulative
deaths under strategy S1 to S2. Whenever this ratio is be-
low 1 (referenced by the green line in the figure), S1 is
recommended over S2 and vice-versa. It is evident from
our experiment that at vaccine first dose protection of 60%,
GRADABM and Vanilla-ABM provide different recommen-
dations, where the main difference is the calibration ap-
proach. Since, GRADABM learns personalized calibration
parameters which provide better forecasts, it also helps in
better policy decision making. More details in the appendix.

6. Discussion
We introduce GRADABM, a differentiable ABM that can
simulate million-scale populations in a few seconds on com-
modity hardware and be merged with DNNs for end-to-end
learning. The key idea of GRADABM is a general-purpose
differentiable sparse tensor-calculus based implementation

Figure 5. GRADABM helps in evaluating policy interventions. We
analyse the decision of delaying the 2nd dose of COVID-19 vac-
cine and observe that it is sensitive to both efficacy of 1st dose and
calibration mechanism. GRADABM learns personalized calibra-
tion parameters which provide better forecasts and also helps in
better policy decision making. See sec 5.2 to interpret this figure.

which we validate for epidemiology here. We demonstrate
the utility of GRADABM to learn personalized time-varying
parameters using heterogeneous data sources to better in-
form forecasting and policy decision making. Future work
could explore other benefits like the incorporation of mul-
tiple hierarchies of data (also known as macro-micro pre-
dictions [58]). In our experiments, we found that even with
sparse optimization, GRADABM utilizes a high amount of
CPU/GPU memory (especially in the backward computa-
tion) which could be an issue for simulations of 6+ months.
Addressing this limitation could be an interesting future di-
rection. Our ABM used a linear deterministic model for the
disease progression. Future work could explore how to in-
corporate more complex and stochastic disease progression
models (e.g., [48]).
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A. Extended related work
Permutation invariance: key insights and assumptions
We begin by highlighting some key assumptions that
are followed by epidemiologists and then leverage them
to motivate the specific implementation of GRADABM.
The key insight of GRADABM is to utilize differentiable
sparse-tensor computation in interaction networks and
symmetries of the transmission model for fast and end-
to-end differentiable simulations. Furthermore, we note
that: i) clinical data shows that the natural infection takes
multiple days to incubate, ii) CDC policy decisions are
guided by 4-week ahead forecasting and analysis. These
considerations motivate the following standard assumptions
in epidemiological simulation work: Assumptions: Several
works in epidemiological ABMs [20, 31, 5, 48] ratify the
following assumptions: A1: the granularity of each step of
the simulator is one day, A2: infectious interactions ”do not
collide” i.e. on any given day, an agent can not also infect
other agents the day it is exposed, A3: an agent cannot be
reinfected while already infected, A4: an agent cannot be
infected when it is in the RM , i.e. recovered or mortality
stage, i.e., there are no reinfections (this assumption can be
relaxed based on the nature of the disease being modelled)
A5: cumulative transmission over multiple interactions
can cause infection, A6: infection does not accumulate
over days. It is important to note that real-world interaction
networks routinely have low degree and high centrality and
are modeled as small-world graphs as in [5, 48]. This allows
use of sparse tensors to represent and process interaction
networks; and scale to realistic populations (larger n) which
improves performance when outputs are scale dependent.
Also, Assumptions A2-A5 together imply that the order of
interactions within a step does not matter. This enables us
to invoke permutation invariance in interactions and makes
the transmission model differentiable.

B. CALIBNN details
For CALIBNN, we encode the feature time series until tN
by passing it through a Gated Recurrent Unit (GRU) [19] to
obtain a condensed representation for each time step:

{ht}tNt=t0 = GRU(
{

xt
}tN

t=t0
) (5)

where ht is the hidden state of the GRU for time step t. To
capture long-term relations and prevent over-emphasis on
last terms of sequence we use self-attention layer:{

λt
}tN

t=t0
= Self-Atten({ht}tNt=t0), (6)

where Self-Atten [56] involves passing the embeddings into
linear layers to extract meaningful similarities before nor-
malizing the similarities using Softmax. Then, we use the
attention weights to combine the latent representations and

obtain a single embedding representing the time series of
features from t0 to tN : ut0:tN =

∑tN
t=t0

λtht,

U = Softmax
(QKT

√
dk

)
V ut0:tN =

tN∑
t=t0

ut (7)

therefore, our vector ut0:tN summarizes the input sequence
and represents the context to be given to the decoder. Next,
we use another GRU as a decoder, which takes the context
ut0:tN and a positional encoding τk that informs the model
of how many days in the future we want to predict. We
simply use τk to be a float between 0 and 1.

{ot}tKt=t1 = GRU({τk}Kk=1;ut0:tN ) (8)

We want to unroll our decoder to predict not only the values
of the simulator, but also the future ones. For this, we pass
the decoder output through a feedforward network FFN(ot).
We found the optimization can be challenging if we directly
use the output of the neural network as parameters of our
simulator. Therefore, we bound the output in a similar
manner as [8]: θt = θL + (θU − θL) · σ(FFN(ot)), where
θL and θU are the lower and upper bounds of θt for all t,
and σ is the Sigmoid function.

C. More details on experimental setup
Code and data are publicly available4. Please refer to the
README in code repository for more details.

Computational setup. All experiments were conducted
using a 4 Xeon E7-4850 CPU with 512GB of 1066 Mhz
main memory and 4 GPUs Tesla V100 DGXS 32GB. Our
method implemented in PyTorch trains on GPU in 15 mins.
Inference is takes only a few seconds.

Real-time forecasting. We follow the literature on evalu-
ating epidemic forecasting methodologies [52, 34, 6] and
use the real-time forecasting setup. We simulate real-time
forecasting by making models train only using data available
until each of the prediction weeks and make predictions for
1 to 4 weeks ahead in the future. Data revisions in public
health data are large and may affect evaluation and conclu-
sions [35, 22], therefore, we utilize fully revised data fol-
lowing previous papers on methodological advances [6, 46].

Evaluation. As evaluation is on weekly predictions, we
aggregate daily predictions to obtain weekly predictions
(sum for COVID-19 and average for flu). As stated in the
main paper, we opted to use the same set of ABM parameters
for every 7 days (i.e., we learn a new set of parameters for
every week). This is a reasonable assumption as it has
been often found that the parameters of mechanistic models
do not change much from one day to the other [44]. In

4https://github.com/AdityaLab/GradABM

https://github.com/AdityaLab/GradABM
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our evaluation, we work with the following counties in
Massachusetts: 25001, 25003, 25005, 25009, 25011, 25013,
25015, 25021, 25023, 25027. The specific evaluation period
is determined with epidemic weeks5 which is the standard
in CDC’s epidemic prediction initiatives6. For COVID-
19 these are 202014, 202016, 202018, 202020, 202022,
202024, 202026, 202028, 202030. For flu, we evaluate in
epidemic weeks 201746, 201748, 201750, 201752, 201802,
201804, 201806, 201808, 201810. As noted before, this
means that for each epidemic week, we make 4 predictions
in the future.

Metrics. Let ŷw,τ be the prediction week w for τ -weeks
ahead in the future, yw,τ be the corresponding ground truth
value, and ew,τ = ŷw,τ − yw,k. In this paper τ takes from 1
to T = 4. Then, we define our metrics as follows: ND =∑

|ew,τ |/
∑

|yw,τ |, RMSE =
∑

e2w,τ/WT and MAE =∑
|ew,τ |/WT .

Implementation details. • Data preparation: All our time
series data that enter to CALIBNN are padded with a mini-
mum sequence length of 20 for COVID and 5 for influenza.
We also normalize each features with mean 0 and variance
1. To inform CALIBNN of the county to predict, we use
a one hot encoding for counties. • Architecture details:
In CALIBNN, the encoder is a 2-layer bidirectional GRU
and decoder is a 1-layer bidirectional GRU, both with hid-
den size of 32. Output layer has two linear layers of size
32x16xD with ReLU activation function and D is ABM
parameter dimensions dimensions: D = 3 for COVID-19
and D = 2 for flu. • Hyperparameters: We found a learning
rate of 10−3, Xavier initialization, and the Adam optimiza-
tion algorithm work best. • ABM parameters (θP , θT ):
For COVID-19, we have three parameters: R0, mortality
rate, and initial infections percentage. These are bounded
with θL = [1.0, 0.001, 0.01] and θU = [8.0, 0.02, 1.0]. For
flu, we have two parameters: R0 and initial infections per-
centage. These are bounded with θL = [1.05, 0.1] and
θU = [2.6, 5.0]. The initial infections percentage is the
percentage of the population that is infected at time step
t = 0 of the simulation. • ABM clinical parameters: To
set some of the parameters of our transmission and progres-
sion models, we utilize clinical data from reliable sources.
Specifically, for COVID-19 we use age-stratified suscep-
tibility and parameters of a scaled gamma distribution to
represent infectiousness as a function of time as per [31, 28].
For influenza, we set those parameters based on CDC flu
facts [3].

Target variables. The target variable for COVID-19 is
COVID-associated mortality, while in flu we use influenza-
like-illness (ILI) counts, which is collected by the CDC. ILI

5https://ndc.services.cdc.gov/wp-content/
uploads/MMWR_Week_overview.pdf

6https://predict.cdc.gov/

measures the percentage of healthcare seekers who exhibit
influenza-like-illness symptoms, defined as ”fever (tempera-
ture of 100°F/37.8°C or greater) and a cough and/or a sore
throat without a known cause other than influenza” [1]. The
ground truth data for the target variables is obtained from
JHU CSSE COVID-19 data repository and ILI from CDC
influenza dashboard.

Details on baseline implementation. Vanilla-ABM: As
noted in the main paper, R0 and case-fatality rate are ob-
tained from authoritative sources. To set the initial infections
percentage for this baseline, we set it to the mean value of
the search range. PC-ABM: We present details on each of
the ODE models we used for this baseline.

(COVID-19) SEIRM [57]: The SEIRM model consists of
five compartments: Susceptible (S), Exposed (E), Infected
(I), Recovered (R), and Mortality (M ). It is parameterized
by four variables Ω = {β, α, γ, µ}, where β is the infectiv-
ity rate, 1/α is the mean latent period for the disease, 1/γ is
the mean infectious period, and µ is the mortality rate. The
basic reproductive number R0 = β/(γ + µ).

dSt

dt
= −βt

StIt
N

dE

dt
= βt

StIt
N

− αtEt (9)

dIt
dt

= αtEt − γtIt − µtIt
dRt

dt
= γtIt

dMt

dt
= µtIt

(Flu) SIRS [53]: This model consists of three compartments:
Susceptible (St), Infected (It), and Recovered (Rt). It is
parameterized by three variables Ω = {β,D,L}, where β
is the infectivity rate, D is the mean duration of immunity,
and L is the mean duration of the immunity period. The
basic reproductive number R0 = βD.

dSt

dt
=

N − St − It
Lt

− βtItSt

N
(10)

dIt
dt

=
βtItSt

N
− It

Dt

D. More details on evaluating policy
interventions

We reproduce the experimental setup in [48]. For inter-
ventions, we simulate standard COVID-19 vaccination ver-
sus delayed second dose vaccination prioritizing the first
dose. Sensitivity analyses included first dose vaccine ef-
ficacy of 50%, 60%, 70%, 80%, and 90% after day 12
post-vaccination with a vaccination rate of 0.3% population
per day; assuming the vaccine prevents only symptoms but
not asymptomatic spread (that is, non-sterilizing vaccine).
We measure cumulative COVID-19 mortality, cumulative
SARS-CoV-2 infections, and cumulative hospital admis-
sions due to COVID-19 over 74 days. We explicitly mod-
eled the confirmation of infections with polymerase chain
reaction testing and quarantining of known infected agents

https://ndc.services.cdc.gov/wp-content/uploads/MMWR_Week_overview.pdf
https://ndc.services.cdc.gov/wp-content/uploads/MMWR_Week_overview.pdf
https://predict.cdc.gov/
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Table 2. Visualization of different vaccination prioritization strategies we compare using GRADABM

Name of Strategy Description Priority list under
the strategy will be

Standard dosing
(two doses on schedule)

Age prioritized vaccination with second dose
at 21 days

Betty, David, Frank,
Adam, Charlie, Eleanor

Delayed second dose Age prioritized vaccination prioritizing
vaccination of first-dose eligible individuals

Adam, Charlie, Eleanor,
Betty, David, Frank

with imperfect compliance over time. To simulate a natu-
ral pattern of infection at the point vaccinations begin, we
started our simulation with 10 agents infected and ran the
simulation for 20 days before starting vaccinations, which
corresponds to a cumulative infection rate of 1%, similar
to the one in the US, UK, and most of Europe when vacci-
nations were started and corresponding to the time horizon
used in our analysis. In both our vaccination strategies, we
started administering vaccines on the basis of age, starting
with people over 75, then those over 65, and so on.

We compare different vaccine regimens and prioritization
schedules. Consider the following six hypothetical individ-
uals with their age and dose eligibility on any given step
of the simulations: i) Adam - first dose eligible 78 yr old;
ii) Betty - second dose eligible 78 yr old; iii) Charlie - first
dose eligible 68 year old; iv) David - second dose eligible
68 year old; v) Eleanor - first dose eligible 40 year old; vi)
Frank - second dose eligible 40 year old. Table 2 shows the
order in which these individuals are prioritized for vaccine
administration under the strategies we compare.


