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ABSTRACT

Training fair models typically involves optimizing a composite objective account-
ing for both prediction accuracy and some fairness measure. However, due to
a shift in the distribution of the covariates at test time, the learnt fairness trade-
offs may no longer be valid, which we verify experimentally. To address this,
we consider an unsupervised adaptation problem of training fair classifiers when
only a small set of unlabeled test samples is available along with a large labeled
training set. We propose a novel modification to the traditional composite objec-
tive by adding a weighted entropy objective on the unlabeled test dataset. This
involves a min-max optimization where weights are optimized to mimic the im-
portance weighting ratios followed by classifier optimization. We demonstrate
that our weighted entropy objective provides an upper bound on the standard im-
portance sampled training objective common in covariate shift formulations under
some mild conditions. Experimentally, we demonstrate that Wasserstein distance
based penalty for representation matching across protected sub groups together
with the above loss outperforms existing baselines. Our method achieves the best
accuracy-equalized odds tradeoff under the covariate shift setup. We find that, for
the same accuracy, we get up to 2× improvement in equalized odds on notable
benchmarks.

1 INTRODUCTION

Moving away from optimizing only prediction accuracy, there is a lot of interest in understanding
and analyzing Machine Learning model performance along other dimensions like robustness (Silva
& Najafirad, 2020), model generalization (Wiles et al., 2021) and fairness (Oneto & Chiappa, 2020).
In this work, we focus on the algorithmic fairness aspect. When the prediction of a machine learning
classifier is used to make important decisions that have societal impact, like in criminal justice, loan
approvals, to name a few; how decisions impact different protected groups needs to be taken into
account. Datasets used for training could be biased in the sense that some groups may be under-
represented, biasing classifier decisions towards the over-represented group or the bias could be
in terms of undesirable causal pathways between sensitive attribute and the label in the real world
data generating mechanism (Oneto & Chiappa, 2020). It has often been observed (Bolukbasi et al.,
2016), (Buolamwini & Gebru, 2018) that algorithms that optimize predictive accuracy that are fed
pre-existing biases further learn and then propagate the same biases.

While there are various approaches for fair machine learning, a class of methods called in-processing
methods have been shown to perform well (Wan et al., 2021). These methods regularize training of
fair models typically through a composition of loss objective accounting for a specific fairness mea-
sure along with predictive accuracy. Popular fairness measures are based on notions of demographic
parity, equal opportunity, predictive rate parity and equalized odds. After regularized training, the
model attains a specific fairness-accuracy tradeoff. When the test distribution is close or identical to
the training distribution, fairness-accuracy tradeoffs typically hold. However, in practical scenarios,
there could be non-trivial distributional shifts due to which tradeoffs achieved in train may not hold
in the test. For example, Ding et al. (2021) highlights how a classifier’s fairness-accuracy tradeoff
trained on input samples derived from one state does not extend to predict income in other states for
the Adult Income dataset. Similarly, Rezaei et al. (2021); Mandal et al. (2020) demonstrate that the
tradeoffs achieved by state of the art fairness techniques do not generalize to test data under shifts.
In figure 1, we complement these claims by analyzing the under-performance for a state-of-the-art
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fairness method - Adversarial Debiasing (Zhang et al., 2018). We also see similar drop in perfor-
mance under covariate shift in other baselines we consider, which we highlight in our experimental
analysis.
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Figure 1: Both Error (in % left) and Equalized Odds (right)
for SOTA fairness method - Adversarial Debiasing exhibit
strong degradation on increasing the magnitude of covariate
shift. Three scenarios corresponding to no shift, intermedi-
ate shift and high shift are plotted (details on shift construc-
tion are provided in experiments).

In this work, we study covariate shift
where the distribution of covariates
across training and testing changes,
however the optimal label predic-
tor conditioned on input remains the
same. We address the following
question for unsupervised adaptation
of training fair classifiers: Under
the covariate shift setup, given suffi-
cient amount of labeled training sam-
ples and only a few unlabeled test
samples, how can we ensure good
fairness-accuracy trade-offs on the test distribution? While this question has not received much
attention, some recent works like Rezaei et al. (2021) have begun to address this problem. Prior
works rely on explicit density estimation which is then used to adapt to test data. In our work, we
focus on avoiding density estimation steps that do not scale well in high dimensions. Here, we
propose a novel unsupervised adaptation training objective that is theoretically justified. The ob-
jective depends on labeled training samples and unlabeled test samples along with standard fairness
objective involving representation matching across the groups on the test. We report the results on
equalized odds in our experiments and use the related notion of accuracy parity to motivate our
algorithmic design with empirical evidence. Our key contributions are listed as follows:

1. We show that under a scenario of asymmetric covariate shift, where one group exhibits large co-
variate shift while the other does not, accuracy parity degrades despite perfect representation match-
ing across protected groups highlighting the need to tackle covariate shift explicitly. (Section 4)

2. We introduce a composite objective for prediction that involves a novel weighted entropy objec-
tive on the set of unlabeled test samples along with standard a ERM objective on the labeled training
samples for tackling covariate shift. We optimize the weights using min-max optimization: The
outer minimization optimizes the classifier with the composite objective, while the inner maximiza-
tion finds the appropriate weights for each sample that are related to importance sampling ratios
determined implicitly with no density estimation steps. We prove that our composite objective pro-
vides an upper bound on the standard importance sampled training objective common in covariate
shift formulations under some mild conditions. We then combine the above composite objective
with a representation matching loss to train fair classifiers. (Section 5)

3. We experiment on four benchmark datasets, including Adult, Arrhythmia, Communities and
Drug. We demonstrate that, by incorporating our proposed weighted entropy objective, with the
Wasserstein based penalty for representation matching across protected sub-groups, we outper-
form existing fairness methods under covariate shifts. In particular, we achieve the best accuracy-
equalized odds tradeoff: for the same accuracy, we achieve up to ≈ 2× improvement in equalized
odds metric. (Section 6)

2 RELATED WORK

Fairness Metrics: There have been works studying different types of fairness criterion. Group
Fairness metrics have been studied in Hardt et al. (2016b); Kleinberg et al. (2016) while Individ-
ual Fairness metrics were studied in Dwork et al. (2012); Sharifi-Malvajerdi et al. (2019), Causal
Fairness criterions has been studied in Kilbertus et al. (2017); Kusner et al. (2017); Galhotra et al.
(2022); Chiappa (2019); Nabi et al. (2019); Salimi et al. (2019) where causal mechanisms that gener-
ate data are leveraged. Our work addresses questions surrounding statistical Group Fairness metrics
where we address the effect of covariate shift on fairness-accuracy tradeoffs.

Techniques for imposing fairness: Pre-processing techniques that aim to transform the dataset
(Calmon et al., 2017; Swersky et al., 2013; Feldman et al., 2015; Kamiran & Calders, 2012) fol-
lowed by a standard training have been studied. In-processing methods directly modify the learning
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algorithms using techniques, such as, adversarial learning (Madras et al., 2018; Zhang et al., 2018),
(Agarwal et al., 2018; Cotter et al., 2019; Donini et al., 2018; Fish et al., 2016; Zafar et al., 2017;
Celis et al., 2019). Post-processing approaches, primarily focus on modifying the outcomes of the
predictive models in order to make unbiased predictions (Pleiss et al., 2017; Zhao et al., 2017; Hardt
et al., 2016b). Bellamy et al. (2019) provides a comprehensive survey containing a broad variety of
these algorithms. Our method is an in-processing technique and is different from the above methods
in that it operates with a small unlabeled test set along with a standard labeled training set.

Distribution Shift: Research addressing distribution shift in machine learning is vast and is grow-
ing. The general case considers a joint distribution shift between training and testing data (Ben-
David et al., 2006; Blitzer et al., 2007; Moreno-Torres et al., 2012) resulting in techniques like
domain adaptation (Ganin & Lempitsky, 2015), distributionally robust optimization (Sagawa et al.,
2019; Duchi & Namkoong, 2021) and invariant risk minimization and its variants (Arjovsky et al.,
2019; Krueger et al., 2021; Shi et al., 2021). A survey of various methods and their relative perfor-
mance is discussed by Wiles et al. (2021). We focus on the problem of Covariate Shift where the
Conditional Label distribution is invariant while there is a shift in the marginal distribution of the
covariates across training and test samples. This classical setup is studied by Shimodaira (2000);
Sugiyama et al. (2007b); Gretton et al. (2009). Importance Weighting is one of the prominently
used techniques for tackling covariate shifts (Sugiyama et al., 2007a; Lam et al., 2019). However,
they are known to have high variance under minor shift scenarios (Cortes et al., 2010a). Recently
methods that emerged as the de-facto approaches to tackle distribution shifts include popular entropy
minimization (Wang et al., 2021a), pseudo-labeling (French et al., 2017; Xie et al., 2020), batch nor-
malization adaptation (Schneider et al., 2020; Nado et al., 2020), because of their wide applicability
and superior performance. Our work provides a connection between a version of weighted entropy
minimization and traditional importance sampling based loss which may be of independent interest.

Fairness under Distribution shift: The work by Rezaei et al. (2021) is by far the most aligned to
ours as they propose a method that is robust to covariate shift while ensuring fairness when unlabeled
test data is available. However, this requires the density estimation of training and test distribution
that is not efficient at higher dimensions and small number of test samples. In contrast our method
avoids density estimation and uses a weighted version of entropy minimization that is constrained
suitably to reflect importance sampling ratios implicitly. Mandal et al. (2020) proposed a method
for fair classification under the worst-case weighting of the data via an iterative procedure, but it is
in the agnostic setting where test data is not available. Singh et al. (2021) studied fairness under
shifts through a causal lens but the method requires access to the causal graph, separating sets and
other non-trivial data priors. Zhang et al. (2021) proposed FARF, an adaptive method for learning
in an online setting under fairness constraints, but is clearly different from the static shift setting
considered in our work. Slack et al. (2020) proposed a MAML based algorithm to learn under
fairness constraints, but it requires access to labeled test data. An et al. (2022) propose a consistency
regularization technique to ensure fairness under label shifts, while we consider covariate shift.

3 PROBLEM SETUP

Let X ⊆ Rd be the d dimensional feature space for covariates, A be the space of categorical
group attributes and Y be the space of class labels. In this work, we consider A = {0, 1} and
Y = {0, 1}. Let X ∈ X ,A ∈ A, Y ∈ Y be realizations from the space. We consider a training
dataset DS = {(Xi,Ai,Yi)|i ∈ [n]} where every tuple (Xi,Ai,Yi) ∈ X × A × Y . We also
have an unlabeled test dataset, DT = {Xi,Ai|i ∈ [m]}. We focus on the setup where m << n.
The training samples (Xi,Ai,Yi ∈ DS) are sampled i.i.d from distribution PS(X,Y,A) while the
unlabeled test instances are sampled from PT (X,A).

Let F : X → [0, 1] be the space of soft prediction models. In this work, we will consider F ∈ F
of the form F = h ◦ g where g(X) ∈ Rk (for some dimension k > 0), is a representation that is
being learnt while h(g(X)) ∈ [0, 1] provides the soft prediction. Note that we don’t consider A as
an input to F , as explained in the work of (Zhao, 2021). The parameters of F are denoted as θ(F ).
We denote the class prediction probabilities from F with P (Ŷ = y|Xi), where y ∈ {0, 1}.

The supervised in-distribution training of F is done by minimizing the empirical risk, ÊR
S

as the
proxy for population risk,RS . Both risk measures are computed using the Cross Entropy (CE) loss
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for classification (correspondingly we use ÊR
T

andRT over the test distribution for F ).

RS = EPS(X,A,Y)

(
− logP (Ŷ = Y|X)

)
, ÊR

S
=

1

n

∑
(Xi,Yi,Ai)∈DS

(
− logP (Ŷ = Yi|Xi)

)
(1)

3.1 COVARIATE SHIFT ASSUMPTION

For our work, we adopt the covariate shift assumption as in Shimodaira (2000). Covariate shift as-
sumption implies that PS(Y|X,A) = PT (Y|X,A). In other words, shift in distribution only affects
the joint distribution of covariates and sensitive attribute, i.e. PS(X,A) 6= PT (X,A). We note that
our setup is identical to a recent work of fairness under covariate shift by Rezaei et al. (2021). We
also define and focus on a special case of covariate shift called asymmetric covariate shift.

Definition 1 (Asymmetric Covariate Shift). Asymmetric covariate shift occurs when distribution of
covariates of one group shifts while the other does not, i.e. PT (X|A = 1) 6= PS(X|A = 1) while
PT (X|A = 0) = PS(X|A = 0) in addition to PS(Y|X,A) = PT (Y|X,A)

This type of covariate shift occurs when a sub-group is over represented (sufficiently capturing all
parts of the domain of interest in the training data) while the other sub-group being under rep-
resented and observed only in one part of the domain. In the test distribution, covariates of the
under-represented group assume a more drastic shift.

3.2 FAIRNESS MEASURE

To quantify fairness, we follow Rezaei et al. (2021) and use Equalized Odds (EOdds), proposed by
Hardt et al. (2016a): ∆EOdds = 1

2

∑
y∈{0,1} |P (Ŷ = 1|A = 0,Y = y) − P (Ŷ = 1|A = 1,Y =

y)|. EOdds requires parity in both true positive rates and false positive rates across the groups.
Hardt et al. (2016a) have raised several concerns regarding other widely used fairness metrics, e.g.,
Demographic Parity (DP) and Equalized Opportunity (EOpp). Therefore, we don’t emphasize them
in this work. Another way to interpret EOdds is that it requires I(Ŷ; A|Y) to be small, where I(; |·)
is the conditional mutual information measure. Ideally, we are interested in a classifier, F that
minimizes the objective: RT + λIT (Ŷ; A|Y); where IT (·) is the mutual information measure with
respect to the test distribution. However, EOdds metric requires the true labels Y from the test
distribution. Therefore, we consider optimizing for a related weaker notion, called accuracy parity,
i.e. ∆Apar = |P (Ŷ 6= Y|A = 0)− P (Ŷ 6= Y|A = 1)|. In information theoretic terms, minimizing
accuracy parity entails keeping IT (Ŷ 6= Y ; A) small. We now state the main goal of this work:

Objective min
θ(F )
RT + λ∆Apar. (2)

4 REPRESENTATION MATCHING AND COVARIATE SHIFT

Our objective is to learn a highly accurate classifier on the test distribution while ensuring accuracy
parity as in (2). Despite the lack of test labels, accuracy parity admits a simpler sufficient condition:
Train a classifier F = h ◦ g(X) by matching representation g(X) across the protected sub groups
and learning a classifier on top of that representation (Zhao & Gordon, 2019). Several variants for
representation matching loss have been proposed in the literature for both classification (Jiang et al.,
2020; Wang et al., 2021c) and regression (Zhao, 2021; Chzhen et al., 2020). For implementation
ease, we pick Wasserstein-2 metric to impose representation matching. We recall the definition of
Wasserstein distance:

Definition 2. Let (M, d) be a metric space and Pp(M) denote the collection of all probability
measures µ on M with finite pth moment. Then the p-th Wasserstein distance between measures

µ and ν both ∈ Pp(M) is given by: Wp(µ, ν) =
(

infγ
∫
M×M d(x, y)pdγ(x, y)

) 1
p

; γ ∈ Γ(µ, ν),
where Γ(µ, ν) denotes the collection of all measures onM×Mwith marginals µ and ν respectively.
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We minimize theW2 between the representation g(·) of the test samples from both groups. Empiri-
cally, our representation matching loss is given by:

L̂Wass(DT ) =Wp(µ̂, ν̂), µ̂ =

∑
(Xi,Ai=0)∈DT δg(Xi)

|(Xi,Ai = 0) ∈ DT | , ν̂ =

∑
(Xi,Ai=1)∈DT δg(Xi)

|(Xi,Ai = 1) ∈ DT |
(3)

We arrive at the following objective:

min
θ(F=h◦g)

ÊR
T

+ λL̂Wass(DT ) (4)

However, we still don’t have labeled samples fromDT for realizing the first term. It is natural to op-

timize the following objective: ÊR
S

+λL̂Wass(DT ) where the first term leverages labeled training
data while the second term matches representation across groups using unlabeled test. We illustrate
that under covariate shift, using the test set only for representation matching alone is ineffective. We
also provide strong experimental justification to support this claim in section A.6.2. We now quote
a result from existing literature that bounds accuracy parity under representation matching.

Theorem 1 (Zhao & Gordon (2019)). Consider any soft classifier F = h ◦ g(X) ∈ [0, 1] and the
hard decision rule Ŷ = 1F (X)>1/2. Let the Bayes optimal classifier for group a under representation
g(·) be: 1PT (Y=1|g(X),A=a)>1/2 = sa(X). Let the Bayes error for group a under representation
g(·) be erra. Then we have:

∆Apar ≤
∑
a

erra + ‖PT (g(X)|A = 1)− PT (g(X)|A = 0)‖1 + min
a

(EPT (X|a)|s1(X)− s0(X)|)

Here, ‖P(·)−Q(·)‖1 is the total variation distance between measures P and Q.

This suggests applying a loss for representation matching to enforce accuracy parity as it would
drive the purely label independent middle term to zero. However, we argue that, under asymmetric
covariate shift (Definition 1), accuracy parity is approximately the third term in Theorem 1, even
when the second term is set to 0.

Representation Matching does not work under Asymmetric Covariate Shift: Consider the co-
variate shift scenario given by Definition 1. Suppose one is also able to find a representation g(·) that
matches across groups exactly in the test, i.e. PT (g(·)|A = 1) = PT (g(·)|A = 0). Due to the asym-
metric covariate shift assumption between train and test, we have PT (g(·)|A = 0) = PT (g(·)|A =
1) = PS(g(·)|A = 0). Since there is no covariate shift for group A = 0, optimal scoring function
s0(X) remains the same even for the training set, given the representation.

Since a classifier h is learnt on top of representation g, and only training distribution of groupA = 0
under g overlaps (completely) with the test, classifier h would be trained overwhelmingly with the
correct labels for A = 0 in the region where test samples are found. Over the test distribution, the
hard decision score function will be approximately s0(X). Therefore, the error in the group 0 would
be small. While the test error in group 1 will be approximately EPT (·|A=1) (|s0(X)− s1(X)|) which
matches the third term in Theorem 1.

Therefore, in this setting it is essential to use training samples and unlabeled test samples to address
covariate shift problem for group 1. Samples for group 1 in the training distribution (not just that
belong to group A = 0) must be emphasized more. This motivates the need for performing unsu-
pervised adaptation using unlabeled test samples focusing on accuracy improvement and combining
it with representation matching.

5 METHOD AND ALGORITHM

Recall that the objective we are interested in is (4). One needs a proxy for the first term due to
lack of labels. From considerations in the previous section, training has to be done in a manner that
can tackle covariate shift despite using representation matching. Building over the analysis from
the previous section, we derive a novel objective in Theorem 2 based on the weighted entropy over
instances in DT along with empirical loss over DS and show that is an upper bound toRT .
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Theorem 2. Suppose that PT (·) and PS(·) are absolutely continuous with respect to each other over
domain X . Let ε ∈ R+ be such that PT (Y=y|X)

P (Ŷ=y|X)
≤ ε, for y ∈ {0, 1} almost surely with respect to

distribution PT (X). Then, we can upper boundRT usingRS along with an unsupervised objective
over PT as:

RT ≤ RS + ε× EPT (X)

[
e

(
− PS(X)

PT (X)

)
H(Ŷ|X)

]
(5)

where H(Ŷ|X) =
∑
y∈{0,1}−P (Ŷ = y|X) log(P (Ŷ = y|X)) is the conditional entropy of the

label given a sample X.

Proof Sketch. The proof is relegated to the appendix A.1. To arrive at this bound, we manipulate the
importance sampled population training loss (Sugiyama et al., 2007b).

Figure 2: High level architecture of our method.
Colored blocks represent parameterized sub-
networks.

We emphasize that this result also provides an
important connection and a rationale for us-
ing entropy based objectives as an unsupervised
adaptation objective from an importance sam-
pling point of view that has been missing in the
literature (Wang et al., 2021a; Sun et al., 2019).

Entropy objective is imposed on points that are
more typical with respect to the test than the
training. Conversely, in the region where sam-
ples are less likely with respect to the test dis-
tribution, since it has been optimized for label
prediction as part of training, the entropy objec-
tive is not imposed strongly. The above bound
however hinges on the assumption that pointwise in the domain X , F approximates the true soft
predictor by at most a constant factor ε. To ensure a small value of ε, we resort to pre-training F
with only DS samples for a few epochs before imposing any other type of regularization.

5.1 WEIGHTED ENTROPY OBJECTIVE

Implementing the objective in (5), requires computation of the Radon-Nikodym derivative dPS(X)
dPT (X)

.
This is challenging when m (amount of unlabeled test samples) is small and typical way of den-
sity estimation in high dimensions is particularly hard. Therefore, we propose to estimate the ratio
dPS(X)
dPT (X)

by a parametrized network Fw : X → R, where Fw(X) shall satisfy the following con-
straints: EX∼PT (X)[Fw(X)] = 1, and EX∼PS(X)[1/(Fw(X))] = 1. By definition of the Radon-
Nikodym derivative, these constraints must be satisfied.

Building on (5), we solve for the following upper bound in Theorem 2:

max
θ(Fw)

RS + ε× EPT (X)

[
e(−Fw(X))H(Ŷ|X)

]
s.t. EX∼PT (X)[Fw(X)] = 1, EX∼PS(X)[1/(Fw(X))] = 1 (6)

Finally, we plug in the empirical risk estimator forRS , approximate the expectation in second term
with the empirical version over DT , posit ε as a hyperparameter and add the unfairness objective in
eq 3 to minimize the following:

min
θ(F )

max
θ(Fw)

L(θ(F ), θ(Fw)) = ÊR
S

+ λ1
1

m

∑
Xi∈DT

[
e(−Fw(Xi))H(Ŷ|X)

]
+ λ2L̂Wass(DT )

s.t. C1 =
1

m

∑
Xi∈DT

Fw(Xi) = 1, and C2 =
1

n

∑
Xi∈DS

1

Fw(Xi)
= 1 (7)

Here λ1 and λ2 are hyperparameters governing the objectives. C1 and C2 refer to the constraints.
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Algorithm 1: Gradient Updates for the proposed objective to learn fairly under covariate shift

Input: Training data DS , Unlabelled Test data DT , model F , weight estimator Fw, decaying
learning rate ηt, number of pre-training steps Ẽ , number of training steps E for eq 8,
λ1, λ2

Output: Optimized parameters θ∗(F )
1 θ0(F )← random initialization
2 for t← 1 to Ẽ do
3 θt(F )← θt−1(F )− ηt∇θt−1(F )ÊR

S

4 θẼ(Fw)← random initialization
5 for t← Ẽ + 1 to E + Ẽ do
6 θt(Fw)← θt−1(Fw) + ηt∇θt−1(Fw)L(θt−1(F ), θt−1(Fw)) ; subject to C1 and C2
7 θt(F )← θt−1(F )− ηt∇θ(F )L(θt−1(F ), θt(Fw)); /* We apply gradient stopping through

Fw during backpropagation in this step */

8 θ∗(F )← θE+Ẽ(F )

Since the function has a representation layer followed by a classifier, i.e. F = h ◦ g, in our imple-
mentation we apply the weighing function on g(·). Therefore, we have the following formulation:

min
θ(F )

max
θ(Fw)

L(θ(F ), θ(Fw)) = ÊR
S

+ λ1
1

m

∑
Xi∈DT

[
e(−Fw(g(Xi)))H(Ŷ|X)

]
+ λ2L̂Wass(DT )

s.t. C1 =
1

m

∑
Xi∈DT

Fw(g(Xi)) = 1, and C2 =
1

n

∑
Xi∈DS

1

Fw(g(Xi))
= 1 (8)

We use alternating gradient updates to solve the above min-max problem. Our entire learning proce-
dure consists of two stages: (1) pre-training F for some epochs with onlyDS and (2) further training
F with (8). The procedure is summarized in Algorithm 1 and a high level architecture is provided
in Figure 2.

6 EXPERIMENTS

We demonstrate our method on 4 widely used benchmarks in the fairness literature, i.e. Adult,
Communities and Crime, Arrhythmia and Drug Datasets with detailed description in appendix A.2.
The baseline methods used for comparison are: MLP, Adversarial Debias (AD) (Zhang et al., 2018),
Robust Fair (RF) (Mandal et al., 2020), Robust Shift Fair (RSF) (Rezaei et al., 2021) and Z-Score
Adaptation (ZSA) with detailed description in appendix A.3. The implementation details of all the
methods with relevant hyperparameters are provided in section A.5. The procedure for constructing
the covariate shift is described in section A.4. To summarize, we use the Principal Component
Analysis (PCA) direction to generate covariate shifted test set similar to Rezaei et al. (2021); Gretton
et al. (2008). The evaluation of our method against the baselines is done via the trade-off between
fairness violation (using ∆EOdds) and error (which is 100− accuracy). All algorithms are run 50
times before reporting the mean and the standard deviation in the results.

6.1 COMPARATIVE RESULTS

The experimental results for the shift constructed using procedure in section A.4 are shown in Figure
3. The results closer to the bottom left corner in each plot are desirable. In some cases, the standard
deviation bars in the figure stretch beyond 0 in R− due to skewness when we plot standard error
bars, however all the numbers across the runs are positive.

Our method provides better error and fairness tradeoffs against the baselines on all the benchmarks.
For example, on the Adult dataset, we have the lowest error rate at around 15% with ∆EOdds at
almost 0.075 while the closest baselines MLP and RF fall short on either of the metrics. On Ar-
rhythmia and Communities, our method achieves very low ∆EOdds (best on Arrhythmia with a
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Figure 3: Comparison of our method against the baselines under Covariate Shift. The bars provide
the standard deviation intervals both error (vertical) and ∆EOdds (horizontal).

margin of ∼ 30%) with only marginally higher error as compared to MLP and RF respectively. On
the Drug dataset, we achieve the best numbers for both the metrics. For the same accuracy, we obtain
1.3x-2x improvements against the baselines methods on most of the benchmarks. Similarly for the
same ∆EOdds, we achieve up to 1.5x lower errors. It is also important to note that all the other unsu-
pervised adaptation algorithms perform substantially worse and are highly unreliable. For example,
ZSA performs well only on the Drug dataset, but shows extremely worse errors (even worse than
random predictions) on Communities and Adult. The adaptation performed by ZSA is insufficient
to handle covariate shift. RSF baseline is consistently worse across the board. This is because it
tries to explicitly estimate PS(X) and PT (X) which is extremely challenging whereas we implicitly
estimate the importance ratio. While there is extensive evidence in the literature suggesting that fair-
ness is achieved at the expense of performance (Menon & Williamson, 2018; Zhao, 2021; Zliobaite,
2015), we attribute the low errors achieved by our method to the novel entropy formulation, where
we in fact minimize the worst case weighting of entropy under the constraints. The saddle-point
solution optimizes the entropy on points far from the training distribution, via appropriate scaling
(importance weighting).

6.2 RESULTS ON ASYMMETRIC SHIFT

We also study the problem of covariate shift under a new lens where the degree of shift is substan-
tially different across the groups, which also motivates our novel formulation (section 4).

To construct this, we follow the same procedure as described in section A.4, but operate on data for
the two groups differently. The shift is introduced in one of the groups while for the other group,
we resort to splitting it randomly into train-val-test. Figure 4 provides the results for the setup when
shift is created in group A = 0 whereas figure 5 provides the result for shift in group A = 1.
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Figure 4: Comparison of our method against the baselines under asymmetric covariate Shift for
group A = 0.

We again observe that our method provides better tradeoffs across the board. For the shift in group
A = 0, we have substantially better results on Adult and Arrhythmia with up to ∼ 2x improvements
on ∆EOdds for similar error and up to ∼ 1.4x improvements in error for similar ∆EOdds. On the
Communities dataset, MLP and AD show similar performance to ours, but much worse on the
Drug dataset for both the metrics. ZSA performs comparably to our method only on Drug, but is
substantially worse on other datasets. This confirms the inconsistency of the baselines under this
setup as well. For the shift in group A = 1, we observe a similar behavior. On the Drug dataset,
we clearly obtain the best tradeoff compared to all other baselines. MLP and AD achieve similar
performance to our method on Communities, but show up to 2x worse ∆EOdds on Arrhythmia with
marginal improvements in error. On the Adult dataset, we observe up to 1.5x improvements against
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Figure 5: Comparison of our method against the baselines under asymmetric covariate Shift for
group A = 1.

MLP and AD in ∆EOdds. RF baseline performs strictly worse than ours on Adult and Arrhythmia
datasets where it’s marginally better on either metrics on Communities and Drug, but at the expense
of the other metric. It is also important to note that the errors are lower for all the methods as
compared to figure 3 since only one group exhibits substantial shift while degradation in equalized
odds is higher. This is in line with the reasoning provided in section 4 based on theorem 1.

6.3 RATIO ESTIMATED VIA Fw(g(X))
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Figure 6: Comparison of the ratio esti-
mated via Fw(g(X)) across DT and DS .
The network learns the importance ratios
w.r.t PT and PS .

We empirically justify the use of Fw(g(X)) by compar-
ing the distribution of the learned ratio across samples
from DT and DS in figure 6.

It is evident that the parametrized weight network can
approximately learn importance ratios w.r.t PT and PS .
The ratio computed for the test points lie mostly be-
tween 0 and 1 in order to satisfy C1 (in eq 8) whereas the
ratio computed for the training points are mostly > 1 in
order to satisfy C2 (in eq 8). More importantly, Fw is
learned end to end via optimization and doesn’t incur
any significant overhead compared to explicit density
estimation.

6.4 EXTENDED ANALYSIS

Extensive experimental results and analysis across multiple settings are provided in Appendix (due
to lack of space). We empirically justify the motivation for unsupervised adaptation (described in
section 4) in section A.6.1. Ablation studies for the hyperparameters λ1 and λ2 are performed in
section A.6.2, for the magnitude of shift in section A.6.3 and for value of m in section A.6.4. In
section A.6.5 we derive the connection to standard entropy loss over unlabeled test samples (akin to
the work by Wang et al. (2021a)) and demonstrate that our formulation achieves substantially better
trade-off.

7 CONCLUSION

In this work, we considered the problem of unsupervised test adaptation under covariate shift to
achieve good fairness-accuracy trade-offs when a small amount of unlabeled test data is available.
We showed how fair representation matching alone is insufficient due to covariate shift. We pro-
posed a composite objective that involves weighted entropy loss on the unsupervised test and a rep-
resentation matching loss across protected groups. Finally, we experimentally demonstrate that our
composite objective outperforms many baselines on benchmarks in achieving non trivial accuracy-
fairness trade-offs.
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8 REPRODUCIBILITY STATEMENT

We have described all the relevant implementation details required to reproduce the experiments in
the appendix. The details for all the benchmarks as well as the baselines are provided comprehen-
sively. We will publicly release the source code after the review process.

9 ETHICS STATEMENT

This work aims to address the concerns related to the unfairness and bias issues that manifest when
there is a shift in distribution across training and the testing phase of a model. With the ever in-
creasing real-world deployment of machine learning models, especially in life-altering scenarios
like jurisdiction and college admissions, we hope to tackle these issues with this work and expect a
cumulative social gain.
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Benjamin Fish, Jeremy Kun, and Ádám D Lelkes. A confidence-based approach for balancing
fairness and accuracy. In Proceedings of the 2016 SIAM international conference on data mining,
pp. 144–152. SIAM, 2016.

Geoffrey French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adapta-
tion. arXiv, 2017.

Sainyam Galhotra, Karthikeyan Shanmugam, Prasanna Sattigeri, and Kush R. Varshney. Causal
feature selection for algorithmic fairness. In Proceedings of the 2022 International Conference
on Management of Data, SIGMOD ’22, pp. 276–285, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392495. doi: 10.1145/3514221.3517909. URL https:
//doi.org/10.1145/3514221.3517909.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and Bernhard
Schölkopf. 131Covariate Shift by Kernel Mean Matching. In Dataset Shift in Machine Learning.
The MIT Press, 12 2008. ISBN 9780262170055. doi: 10.7551/mitpress/9780262170055.003.
0008. URL https://doi.org/10.7551/mitpress/9780262170055.003.0008.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and Bernhard
Schölkopf. Covariate shift by kernel mean matching. Dataset shift in machine learning, 3(4):5,
2009.

11

https://proceedings.neurips.cc/paper/2020/file/51cdbd2611e844ece5d80878eb770436-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/51cdbd2611e844ece5d80878eb770436-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/59c33016884a62116be975a9bb8257e3-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/59c33016884a62116be975a9bb8257e3-Paper.pdf
http://jmlr.org/papers/v20/18-616.html
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/3514221.3517909
https://doi.org/10.1145/3514221.3517909
https://doi.org/10.7551/mitpress/9780262170055.003.0008


Under review as a conference paper at ICLR 2023

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning, 2016a.
URL https://arxiv.org/abs/1610.02413.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances
in neural information processing systems, 29, 2016b.

Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair
classification. In Ryan P. Adams and Vibhav Gogate (eds.), Proceedings of The 35th Uncertainty
in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research,
pp. 862–872. PMLR, 22–25 Jul 2020. URL https://proceedings.mlr.press/v115/
jiang20a.html.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrim-
ination. Knowledge and information systems, 33(1):1–33, 2012.

Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct im-
portance estimation. Journal of Machine Learning Research, 10(48):1391–1445, 2009. URL
http://jmlr.org/papers/v10/kanamori09a.html.

Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing,
and Bernhard Schölkopf. Avoiding discrimination through causal reasoning. 2017. doi: 10.
48550/ARXIV.1706.02744. URL https://arxiv.org/abs/1706.02744.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. arXiv preprint arXiv:1609.05807, 2016.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
a486cd07e4ac3d270571622f4f316ec5-Paper.pdf.

Henry Lam, Fengpei Li, and Siddharth Prusty. Robust importance weighting for covariate shift,
2019. URL https://arxiv.org/abs/1910.06324.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normaliza-
tion for practical domain adaptation, 2017. URL https://openreview.net/forum?id=
BJuysoFeg.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and
transferable representations. In International Conference on Machine Learning, pp. 3384–3393.
PMLR, 2018.

Debmalya Mandal, Samuel Deng, Suman Jana, Jeannette Wing, and Daniel J Hsu. Ensuring fair-
ness beyond the training data. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 18445–18456. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/d6539d3b57159babf6a72e106beb45bd-Paper.pdf.

Aditya Menon and Cheng Soon Ong. Linking losses for density ratio and class-probability es-
timation. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learn-
ing Research, pp. 304–313, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/menon16.html.

12

https://arxiv.org/abs/1610.02413
https://proceedings.mlr.press/v115/jiang20a.html
https://proceedings.mlr.press/v115/jiang20a.html
http://jmlr.org/papers/v10/kanamori09a.html
https://arxiv.org/abs/1706.02744
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://arxiv.org/abs/1910.06324
https://openreview.net/forum?id=BJuysoFeg
https://openreview.net/forum?id=BJuysoFeg
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://proceedings.neurips.cc/paper/2020/file/d6539d3b57159babf6a72e106beb45bd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d6539d3b57159babf6a72e106beb45bd-Paper.pdf
https://proceedings.mlr.press/v48/menon16.html


Under review as a conference paper at ICLR 2023

Aditya Krishna Menon and Robert C. Williamson. The cost of fairness in binary classification.
In FAT, pp. 107–118, 2018. URL http://proceedings.mlr.press/v81/menon18a.
html.

Jose G Moreno-Torres, Troy Raeder, Rocı́o Alaiz-Rodrı́guez, Nitesh V Chawla, and Francisco Her-
rera. A unifying view on dataset shift in classification. Pattern recognition, 45(1):521–530, 2012.

Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. Learning optimal fair policies. In International
Conference on Machine Learning, pp. 4674–4682. PMLR, 2019.

Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate
shift. arXiv, 2020.

Luca Oneto and Silvia Chiappa. Fairness in machine learning. In Recent Trends in Learning From
Data, pp. 155–196. Springer, 2020.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. Advances in neural information processing systems, 30, 2017.

Ashkan Rezaei, Anqi Liu, Omid Memarrast, and Brian D Ziebart. Robust fairness under covariate
shift. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9419–
9427, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Capuchin: Causal database repair for
algorithmic fairness. arXiv preprint arXiv:1902.08283, 2019.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 11539–11551. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
85690f81aadc1749175c187784afc9ee-Paper.pdf.

Saeed Sharifi-Malvajerdi, Michael Kearns, and Aaron Roth. Average individual fairness: Algo-
rithms, generalization and experiments. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-
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A APPENDIX

A.1 PROOFS

Proof of Theorem 2. We start with rewriting the expected cross entropy loss on the test as impor-
tance sampled loss on the training distribution.

RT = EPT (X)

 ∑
y∈{0,1}

−PT (Y = y|X) log(P (Ŷ = y|X))

 (9)

a
= EPS(X)


(
dPT (X)

dPS(X)

) ∑
y∈{0,1}

−PS(Y = y|X) log(P (Ŷ = y|X))

 (10)

(a) is the Importance Weighting technique proposed by (Sugiyama et al., 2007b) and dPT (X)
dPS(X)

is the
Radon-Nikodym derivative because the two distributions are absolutely continuous with respect to
each other.

= RS + EPS(X)

(
dPT (X)

dPS(X)
− 1

) ∑
y∈{0,1}

−PS(Y = y|X) log(P (Ŷ = y|X))

 (11)

= RS + EPT (X)

(
1− dPS(X)

dPT (X)

) ∑
y∈{0,1}

−PT (Y = y|X) log(P (Ŷ = y|X))

 (12)

b
≤ RS + ε× EPT (X)


(

1− dPS(X)

dPT (X)

) ∑
y∈{0,1}

−P (Ŷ = y|X) log(P (Ŷ = y|X))

 (13)

c
≤ RS + ε× EPT (X)

[
e

(
− dPS(X)

dPT (X)

)
H(Ŷ|X)

]
, (14)

(b) is because of the assumption that PT (Y|X)

P (Ŷ|X)
≤ ε almost surely with respect to X ∼ PT .

(c) This is because 1− x ≤ e−x, x ≥ 0.

A.2 DATASET DESCRIPTION

The detailed description of the datasets used in this work are as follows:

• Adult is a dataset from the UCI repository containing details of individuals. The output
variable is the indicator of whether the adult makes over $50k a year. The group attribute
is gender. Following Mandal et al. (2020), we use the processed data with 2213 examples
and 97 features.

• Arrhythmia is a dataset from the UCI repository where each example is classified be-
tween the presence and absence of cardiac arrhythmia. The group attribute is gender. Fol-
lowing Rezaei et al. (2021), we used the dataset used containing 452 examples and 279
features.

• Communities and Crime is a dataset from the UCI repository where each example rep-
resents a community. The output variable is the community having a violent crime rate in
the 70th percentile of all the communities. The group attribute is the binary indicator of
the presence of the majority white population. Following Mandal et al. (2020), we use the
dataset with 2185 examples and 122 features.

• Drug is a dataset from the UCI repository where the task is to classify the type of drug
consumer based on personality and demographics. The group attribute is race. Follow-
ing Rezaei et al. (2021), we used the dataset with 1885 samples and 11 features.
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A.3 BASELINES

We use the following baselines for comparison. This covers the exhaustive set of relevant methods
described in section 2.

• MLP is the standard Multi Layer Perceptron classifier that doesn’t take into account shift
and fairness properties. In the standard in-distribution evaluation settings, such a model
usually provides the upper bound to the accuracy without considering fairness, however
the scenario differs as we are dealing with distribution shifts.

• Adversarial Debiasing (AD) (Zhang et al., 2018) is one of the most popular debiasing
methods in the literature. This method performs well on the fairness metrics under the
standard in-distribution evaluation settings, but fails to do so in the shift setting.

• Robust Fair (RF) (Mandal et al., 2020) proposes a framework to learn classifiers that are
fair not only with respect to the training distribution, but also for a broad set of distributions
characterized by any arbitrary weighted combinations of the dataset.

• Robust Shift Fair (RSF) (Rezaei et al., 2021) is a recent and most relevant baseline to this
work. The authors propose a method to robustly learn a classifier under covariate shift, with
fairness constraints. A severe limitation of this method is that it requires explicit estimation
of both source and target covariates’ distributions.

• Z-Score Adaptation (ZSA) following the thread of work under Batch Norm Adaptation (Li
et al., 2017; Schneider et al., 2020) literature, we implement a baseline that adapts the pa-
rameters of the normalizing layer by recomputing the z-score statistics from the unlabeled
test data points.

A.4 SHIFT CONSTRUCTION

To construct the covariate shift in the datasets, i.e., to introduce PS(X,A) 6= PT (X,A), we utilize
the following strategy akin to the works of Rezaei et al. (2021); Gretton et al. (2008). First, all the
non-categorical features are normalized by z-score. We then obtain the first principal component of
the of the covariates and further project the data onto it, denoting it by PC . We assign a score to each
point PC [i] using the density function Ξ : PC [i] → eγ·(PC [i]−b)/Z . Here, γ is a hyperparameter
controlling the level of distribution shift under the split, b is the 60thh (percentile) of PC and Z is
the normalizing coefficient computed empirically. Using this, we sample 40% instances from the
dataset as the test and remaining 60% as training. To construct the validation set, we further split the
training subset to make the final train:validation:test ratio as 5 : 1 : 4, where the test is distribution
shifted.

Note that for large values of γ, all the points with PC [i] > b will have high density thereby
increasing the probability of being sampled into the test set. This generates a sufficiently large
distribution shift. Correspondingly, for smaller values of γ, the probability of being sampled is
not sufficiently high for these points thereby leading to higher overlap between the train and test
distributions.

A.5 IMPLEMENTATION DETAILS

We use the same model architecture across MLP and our method in order to ensure consistency.
Following Wang et al. (2021b), a Fully Connected Network (FCN) with 4 layers is used, where the
first two layers compose g and the subsequent layers compose h. For AD, we use an additional 2
layer FCN that serves as the adversarial head a : g(X)→ A (similar to (Wang et al., 2021b)).

Without further specification, we use the following hyperparameters to train MLP, AD and ZSA.
The number of epochs is set to 50 with Adam as the optimizer (Kingma & Ba, 2014) and weight
decay of 1e−5 (for Adult dataset, the weight decay is 5e−4). The learning rate is set to the value
of 1e−3 initially and is decayed to 0 using the Cosine Annealing scheduler (Loshchilov & Hutter,
2017). A batch size of 32 is generally used to train the models. The gradients are clipped at the
value of 5.0 to avoid explosion during training. The dropout (Srivastava et al., 2014) rate is set to
0.25 across the layers. For AD, the adversarial loss hyperparameter post grid search is used.
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RF and RSF works have tuned their model for the specific architecture and corresponding hyperpa-
rameters (different from the aforementioned specifics). We perform another grid search over these
hyperparameters and report the best results for comparison.

For our proposed method, we pre-train the model for 15 epochs with only ÊR
S

. For the next 35
epochs we use the objective in eq 8, but with a higher training data batch size to reduce variance
in the Monte Carlo Estimation of the second constraint

(
1
n

∑
Xi∈DS

1
Fw(g(Xi))

= 1
)

. The value

of m (size of DT ) is kept at 50 for the main experiments, which is << size of DS . The primary
experiments are run with the shift magnitude γ = 10 (with ablations provided in section A.6.3). The
constraints C1 and C2 as mentioned in 8 are implemented as squared error terms where we minimize

c1 ·
((

1
m ·
∑

Xi∈DT Fw(g(Xi))
)
− 1
)2

+ c2 ·
((

1
n ·
∑

Xi∈DS
1

Fw(g(Xi))

)
− 1
)2

, where c1 and c2
are hyperparameters to control the relative importance of each constraint. The values of the tuple
(λ1, λ2) are set to the following - Adult : (1, 0.01) ; Arrhythmia : (0.01, 0.005) ; Communities :
(0.005, 0.0001) and Drug : (0.1, 0.1) post grid search. All experiments are run on single NVIDIA
Tesla V100 GPU.

A.6 ANALYSIS

A.6.1 UNSUPERVISED ADAPTATION WITH OUR ENTROPY FORMULATION UNDER
ASYMMETRIC SHIFT

The asymmetric shift setup described in section 3.1 provides a well grounded motivation (section 4)
and use case for explicitly handling shifts along with the unfairness objective. We complement the
claim with empirical evidence here. The results in table 1 provide comparison of the performance
across the metrics with and without our proposed formulation. The wasserstein objective in eq 3 is
retained in both settings. We observe significant improvements on both error and ∆EOdds with our
formulation. Particularly on the Drug dataset, we see an improvement of almost 4% in error and
around 13× in the ∆EOdds, which is also notable on Arrhythmia.

Table 1: Comparison of the performance on using the unfairness objective without and with the
unsupervised adaptation (our proposed entropy formulation). We observe substantial improvements
in both error and ∆EOdds. Numbers in the parenthesis represent standard deviation across the 50
runs.

Dataset Arrhythmia Drug
Entropy Variation Without Entropy With Entropy (eq 8) Without Entropy With Entropy (eq 8)

Error % 28.648 (3.079) 27.617 (2.978) 35.859 (3.437) 31.910 (0.186)
∆EOdds 0.080 (0.032) 0.071 (0.037) 0.076 (0.043) 0.006 (0.013)

A.6.2 VARIATION OF λ1 AND λ2

In this section, we study the variation of the performance of our method against the hyperparame-
ters governing error (λ1) and ∆EOdds (λ2). While studying the effect of either, we keep the other
constant.

Table 2: Variation of the performance of our method with Entropy Regularizer λ1 on Adult dataset.

λ1 −→ 0 0.001 0.005 0.01 0.1 1.0
Error (in %) 23.819 (8.593) 22.047 (6.631) 20.510 (6.706) 20.851 (7.829) 14.626 (1.318) 14.787 (1.326)

∆EOdds 0.131 (0.038) 0.126 (0.037) 0.129 (0.037) 0.129 (0.029) 0.104 (0.033) 0.075 (0.30)

Table 2 reports the variation for λ1 keeping λ2 = 0.01 fixed. It is evident from the numbers that
increasing λ1 has strong correlation with the reduction in error, which exhibits a saturation at 0.1.
Higher values of λ1 emphasize the minimization of the worst-case weighted entropy thus helping
in calibration of the network in regions across PT . Furthermore, we observe significant improve-
ments in ∆EOdds which is inline with the motivation of handling shifts along with an unfairness
objective (section 4). Increasing λ1 doesn’t help post a threshold value as the correct estimation of

18



Under review as a conference paper at ICLR 2023

the true class for a given X under PT becomes harder, particularly in regions far from the labeled
in-distribution data. Imposing very strong λ1 can hurt the model performance.

The variation against λ2, keeping λ1 = 1 fixed is reported in table 3. As λ2 increases, we observe
a gradual improvement in ∆EOdds. This exhibits a maxima after which the performance degrades
drastically. This is because strongly penalizing L̂Wass(DT ) with a small number of samples m
leads to overfitting (illustrated by the large standard deviation) while matching PT (X|A). This also
hurts the optimization as demonstrated by the substantial increase in error.

Table 3: Variation of the performance of our method with Wasserstein Regularizer λ2 on Adult
dataset.

λ2 −→ 0 0.001 0.005 0.01 0.1 1.0
Error (in %) 15.049 (1.424) 15.849 (1.437) 14.901 (1.352) 14.787 (1.326) 17.936 (15.962) 42.280 (32.581)

∆EOdds 0.091 (0.031) 0.099 (0.034) 0.098 (0.032) 0.075 (0.030) 0.074 (0.036) 0.093 (0.064)

A.6.3 SHIFT MAGNITUDE

We study the variation of the performance of our method against the magnitude of shift γ on Ar-
rhythmia. A comparison against the best baseline ZSA is also provided. The variation of error is
plotted in the left subfigure of 7. With no shift in the data, γ = 0, we observe that both the methods
exhibit small errors as DT follows in-distribution. With the increase in the value of γ, ZSA shows a
sudden increment in the error with an unstable pattern whereas our method exhibits a more gradual
pattern and lower error as compared to ZSA. This justifies that the weighted entropy objective helps.
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Figure 7: Variation of error against γ (left subfigure) and ∆EOdds against γ (right subfigure) on
Arrhythmia Dataset. We observe that our method performs better in both metrics against the best
baseline ZSA. While the error increases gradually, but we observe substantially better ∆EOdds for
our method.

On the contrary, we observe that our method is highly stable over ∆EOdds and performs consistently
better for larger shifts as compared to ZSA. We attribute this effect to the proposed objective which
optimizes the model to learn fairly under the shift and over the worst case scenario.

A.6.4 VARIATION OF SIZE OF DT

Here, we study the dependence of the methods on the size of DT . The left subfigure in 8 plots
the variation of error against m. The error gradually decreases for our method and RSF as the
estimation of the true test distribution improves and the optimization procedure covers a larger region
of PT . This also makes the approximation by Fw much more reliable and closer to true ratios.
Although, the results don’t show notable improvements after a certain threshold as we are dealing in
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an unsupervised regime over PT . It becomes increasingly harder to correctly estimate the true class
for a given X under PT , particularly in regions far from the labeled in-distribution data. Interestingly,
ZSA doesn’t exhibit any improvements which demonstrates that merely matching first and second
order moments across the data is not sufficient to handle covariate shifts.

The right subfigure in 8 plots the variation of ∆EOdds against m. Here, we observe a consistent
reduction in ∆EOdds as more data from PT helps is matching representations via improved approx-
imation of PT (X|A). Further this objective only deals with matching representations across the
groups and doesn’t stagnate as quickly with increasing m as the error margins, which suffers from
lack of reliable estimation in regions far from in-distribution.

We consistently outperform RSF in both very small and larger regimes of m, partly verifying the
importance of Fw rather than a direct estimation of PS and PT as RSF does. ZSA is substantially
worse than both RSF and our method in terms of errors. In terms of ∆EOdds its only marginally
better than our method for m = 10 and m = 20, but at a huge expense of prediction performance.
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Figure 8: Variation of error against m (left subfigure) and ∆EOdds against m (right subfigure) on
Adult Dataset. We see reduction in both error and ∆EOdds with increasing value of m.

A.6.5 UNWEIGHTED ENTROPY VS OUR WEIGHTED ENTROPY FORMULATION

It is easy to observe that we can recover the standard unlabeled test entropy minimization using our
derivation. Formally specifying, we can upper bound eq 14 to obtain entropy as follows:

RS + ε× EPT (X)

[
e

(
− dPS(X)

dPT (X)

)
H(Ŷ|X)

]
< RS + ε× EPT (X)

[
H(Ŷ|X)

]
,∵ e−x ≤ 1,∀x ≥ 0

(15)

Our formulation particularly provides a tighter bound as compared to standard entropy and implicitly
accounts for points in DT that are close to PS by assigning low weight. The experimental results
comparing the two settings both with and without the unfairness objective are provided in table 4.
Our formulation achieves substantially better results with a relative improvement of around 33%
in error. Note that due to the fairness-error tradeoff, the standard (unweighted) entropy achieves
better ∆EOdds, but that is achieved at the expense of a nearly random classifier as evident from
the error rate of nearly 50%. We also highlight the large standard deviation in the results achieved
by unweighted entropy. This is largely because it seeks to minimize entropy across all m points
whereas our objective is more adaptive based on the approximation of importance ratio.

Table 4: Comparison of the performance of Standard Unweighted Entropy v/s our Weighted Entropy
formulation on Communities dataset.

Without Wasserstein Objective (eq 3) With Wasserstein Objective (eq 3)
Entropy Variation −→ Unweighted Entropy Weighted Entropy (Ours) Unweighted Entropy Weighted Entropy (Ours)

Error % 45.787 (12.900) 34.291 (4.463) 45.654 (13.090) 35.549 (3.748)
∆EOdds 0.204 (0.194) 0.359 (0.074) 0.201 (0.200) 0.328 (0.073)
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A.6.6 COMPARISON TO OTHER DENSITY RATIO ESTIMATION METHODS

As the explicit computation of the density values can be hard, we estimate the ratio dPS(X)
dPT (X)

via a
parametrized network for this class of baselines. Density ratio estimation methods were previously
proposed in the works by Sugiyama et al. (2007c) (KLIEP), Kanamori et al. (2009) (LSIF). Menon
& Ong (2016) analysed these methods in a unifying framework.
To experimentally demonstrate the efficacy of our method over the aforementioned, we use the
density ratio estimation methods of KLIEP and LSIF in the following manner. First, the importance
ratio dPS(X)

dPT (X)
is estimated using unsupervised test samples and the training samples available based

on the KLIEP and LSIF losses (given in Menon & Ong (2016)) via a parameterized weight network
s(X). Then, we train a classifier based on the following instance weighted cross entropy loss and
representation matching loss:

min
θ(F=h◦g)

1

n

∑
(Xi,Yi,Ai)∈DS

s(Xi)
(
− logPθ(F )(Ŷ = Yi|Xi)

)
+ λL̂Wass(DT ) (16)

where s(X) is a non-negative function which is obtained by minimizing:

LKLIEP(s(X)) =
1

m

∑
Xi∈DT

− log s(Xi) +

 1

n

∑
Xi∈DS

s(Xi)− 1

2

(17)

or,

LLSIF(s(X)) =
1

m

∑
Xi∈DT

−s(Xi) +
1

2

 1

n

∑
Xi∈DS

(s(Xi))
2

 (18)

The results are stated in tables 5 and 6. First, we observe that our method consistently outperforms
these algorithms across the datasets. The relative improvement of our method is as high as ∼ 31%
in error on Adult dataset and ∼ 32.5× in ∆EOdds on Drug dataset against LSIF. Similar non-trivial
margins can be noted on other datasets. Second, the variance in accuracies of the KLIEP and LSIF
based importance is very high on the Drug dataset. Particularly, both KLIEP and LSIF exhibit up to
20− 40 times higher variance in error and up to 10− 12 times in ∆EOdds.

Key Takeaway: We can attribute this to the phenomenon that in the small sample regime, impor-
tance weighted training on training dataset alone may not bring any improvements for covariate shift
due to variance issues and thus estimating the ratio can be insufficient. In fact, this has been pointed
out in Menon & Ong (2016). We, on the other hand propose a new formulation to optimize for an
upper bound based on the ratio estimation but due to the negative exponent of the importance ratio,
the importance ratio’s effect on the loss does not induce such high variance and it also leverages
unsupervised test samples at training time.

Table 5: Comparison of our method against popular density ratio estimation methods: KLIEP and
LSIF on Drug and Adult datasets.

Dataset Drug Adult
Method Error % ∆EOdds Error % ∆EOdds

KLIEP 34.782 (3.879) 0.043 (0.042) 20.787 (4.368) 0.124 (0.028)
LSIF 39.517 (5.944) 0.065 (0.049) 19.428 (3.203) 0.107 (0.028)
Ours 32.928 (0.143) 0.002 (0.004) 14.787 (1.326) 0.075 (0.030)

A.6.7 FAIRNESS-ERROR TRADEOFF CURVES

To further demonstrate the effectiveness of our method, we plot the Pareto Frontier in figure 9
(variance bars are removed to retain clarity), similar to Agarwal et al. (2018). Achievable trade-
offs for the baselines are plotted along with our Pareto curve for comparison. We observe that
the curve corresponding to our method is closer to the left axis with a high gradient. The error
reduces drastically for a small increase in ∆EOdds while providing better tradeoffs as compared to
the optimal performance of the baselines.
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Table 6: Comparison of our method against popular density ratio estimation methods: KLIEP and
LSIF on Communities and Arrhythmia datasets.

Dataset Communities Arrhythmia
Method Error % ∆EOdds Error % ∆EOdds

KLIEP 38.466 (4.403) 0.323 (0.062) 30.630 (3.605) 0.085 (0.044)
LSIF 38.842 (3.518) 0.340 (0.055) 30.972 (3.467) 0.081 (0.042)
Ours 34.549 (3.748) 0.328 (0.073) 29.746 (3.519) 0.077 (0.036)
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Figure 9: Fairness-Error Tradeoff Curves for our method (Pareto Frontier) against the optimal per-
formance of the baselines. Our method provides better tradeoffs in all cases. (On Drug dataset, the
performance is concentrated around the optimal point). Variance bars are removed to retain clarity
in the plots.

A.6.8 EMPIRICAL INVESTIGATION OF THE BOUND ε IN THEOREM 2

We compare the ratio of the prediction probabilities for the classes (y ∈ {0, 1}) on the validation
set (which is not available during training to our algorithm) between a classifier trained only on the
training set (Train) and a classifier trained only on the held-out test set (Test).

We plot the ratios in figure 10 with outliers removed. The subfigures (a),(b) demonstrate the ratio
for the true class label for the samples. Subfigures (c),(d) demonstrate the ratio for class y = 0
and subfigures (e),(f) demonstrate the ratio for class y = 1. Correspondingly, in figure 11 we plot
the ratios with outliers. Note that atmost 4 points in every plot are outliers with ratios > 5. This
empirically justifies that ε can be set not too high with high probability except for a few outliers.

0

1

2

3

4

5
a) Test/Train Ratio

ytrue

0

1

2

3

4

5
b) Train/Test Ratio

ytrue

0

1

2

3

4

5
c) Test/Train Ratio

y = 0

0

1

2

3

4

5
d) Train/Test Ratio

y = 0

0

1

2

3

4

5
e) Test/Train Ratio

y = 1

0

1

2

3

4

5
f) Train/Test Ratio

y = 1

Figure 10: The subfigures demonstrate the ratio of the prediction probabilities for the classes
(y ∈ {0, 1}) on the validation set between a classifier trained only on the training set (Train) and a
classifier trained only on the held-out test set (Test), with outliers removed. Note that ε = 5 provides
a reasonable threshold and holds for all the samples but for 4 outliers (shown in figure 11).

A.6.9 COMPARISON OF ACCURACY PARITY

We further demonstrate that our method is better as compared to the baselines when the fairness
metric is Accuracy Parity. The results for Adult dataset are provided in table 7.
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Figure 11: The subfigures demonstrate the ratio of the prediction probabilities for the classes
(y ∈ {0, 1}) on the validation set between a classifier trained only on the training set (Train) and a
classifier trained only on the held-out test set (Test), with outliers. Atmost 4 points in every plot are
outliers with ratios > 5.

Table 7: Comparison of Accuracy Parity as well as Error for all the methods. We outperform the
baselines, particularly KLIEP and LSIF that are prone to poor results due to high variance.

Method -> MLP AD RF RSF ZSA KLIEP LSIF Ours
Error % 17.735 18.356 22.525 33.591 63.396 20.787 19.428 14.787
Accuracy Parity % 5.764 3.156 6.094 11.851 11.131 4.417 6.677 2.990

A.7 COMPARISON OF GENERALIZATION BOUNDS BETWEEN IMPORTANCE SAMPLED
TRAINING LOSS AND OUR OBJECTIVE

In this section, we would like contrast Generalization bounds between our objective (Right Hand
Side of 5) and the left hand side which is importance sampled training loss.

The main intention is to bring out dependence on the variance of importance ratios. Therefore, we
make the following simplifying assumptions:
Assumption 3. • Let Θ = {θ1 . . . θk} be parameters of a finite set of classifiers of the form

Pθ(Ŷ |X).

• Let us assume the loss function `1(Y,X; θ) = − logPθ(Y |X) is bounded between [0, 1] in
the domain {0, 1} × X for all θ ∈ Θ.

• Let the loss function `2(X; θ) =
∑
y∈{0,1}−Pθ(Ŷ = y|X) logPθ(Ŷ = y|X) be also be

bounded between [0, 1] in the domain {0, 1} × X for all θ ∈ Θ.

• Let us assume we have access to the exact importance weight w(X) = PT (X)
PS(X)

. Since, we
assume PT (·) and PS(·) are absolutely continuous with respect to each other, w(X) >

0, ∀X ∈ X . For convenience of notation, let w̃(X) = PS(X)
PT (X)

.

• Let sup
X∈X

w(X) = M . Let the variance of the importance ratio with respect to the training

distribution be EX∼PS [w2(X)] = σ2.

Remark: We have assumed `1 is bounded in [0, 1]. If the log loss over a suitable function class is
Lipschitz and domain is bounded, then the loss is also bounded. Therefore, it is not a very heavy
assumption and we wanted to keep the analysis simple and normalized.

There are two loss functions we compare:

1. RIS(θ) =
∑

(Xi,Yi)∼DS

w(Xi)`1(Yi,Xi; θ) and

2. RWE(θ) =
∑

(Xi,Yi)∼DS

`1(Yi,Xi; θ) + λ
∑

(Xi,Yi)∼DT

e−w̃(Xi)`2(Yi,Xi; θ).
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RIS(θ) is the empirical importance sampled loss while RWE is the weighted entropy objective of
Theorem 2. We recall some generalization bounds for finite hypothesis classes with bounded risks.

Definition 3. Rademacher complexityR(A) for a finite set A = {a1, a2 . . . aN} ⊂ Rn is given by:

R(A) = Eσ[sup
a∈A

∑
i

σia[i]] (19)

where σ is a sequence of n i.i.d Rademacher variables each uniformly sampled from {−1,−1} and
a[i] is the i-th coordinate of vector a.

Empirical Rademacher complexity of a class of finite number of functions F on a data set D with
m samples is given byR(F(D)) where F(D) = {vec(f(x), ∀x ∈ D), ∀f ∈ F}. Here, vec(·) is a
vector of entries.

Theorem 4 (Bousquet et al. (2003)). R(F(D)) ≤
(

sup
f∈F,x∈D

|f(x)|
)√

2 log|F|
|D| .

Theorem 5. [Bousquet et al. (2003)] When a datasetD is sampled i.i.d from distribution P(X) and
f is uniformly bounded by L over the domain of P, then with probability 1− δ over the draw of D,

Ex∼P[f(x)] ≤ 1

|D|
∑
x∈D

f(x) + 2R(F(D)) + 3L

√
ln(2/δ)

2|D|

≤ 1

|D|
∑
x∈D

f(x) + 2L

√
2 log|F|
|D| + 3L

√
ln(2/δ)

2|D| , ∀f ∈ F (20)

Theorem 6. Under Assumption 3, we have that with probability 1− 2δ over the draws of DS ∼ PS
and DT ∼ PT , we have ∀θ ∈ Θ

EPS ,PT [RWE(θ)] ≤ RWE(θ) + 2

√
2 log|Θ|
|DS | + 2λ

√
2 log|Θ|
|DT | + 3

√
ln(2/δ)

2|DS | + 3λ

√
ln(2/δ)

2|DT |
(21)

Proof. We apply Theorem 5 to `1(·) (which is bounded by 1) and e−w̃(·)`2(·) where `2(·) ≤
1, e−w̃(·) ≤ 1 with the appropriate datasets in Assumption 3. We then use union bound over
the two error events that result from application of the theorem twice.

For finite hypothesis classes, we recall generalization bounds for importance sampled losses from
Cortes et al. (2010b).

Theorem 7 (Cortes et al. (2010b)). Suppose that a dataset D is sampled i.i.d from distribution
P(X), f is uniformly bounded by L over the domain of P, and a fixed weighing function w(x) is
such that supw(x) = M, Ex∼P[w(x)2] ≤ σ2. Consider the loss function f̃(x) = w(x)f(x). We
denote f̃ = w ◦ f . then with probability 1− δ over the draw of D, we have:

Ex∼P[f̃(x)] ≤
∑
x∈D

f̃(x) +
2M(log|Θ|+ log(1/δ))

3DS + L

√
2σ2

(log|F|+ log(1/δ))

|D| ,

∀f̃ ∈ {w ◦ f, f ∈ F} (22)

Applying Theorem 7 to RIS(θ) we have the following result.

Theorem 8. Under Assumption 3, we have that with probability 1− δ over the draws of DS ∼ PS ,
we have ∀θ ∈ Θ

EPS [RIS(θ)] ≤ RIS(θ) +
2ML(log|Θ|+ log(1/δ))

3|DS | +

√
2σ2

(log|Θ|+ log(1/δ))

|DS | (23)

24



Under review as a conference paper at ICLR 2023

Proof. The proof is a direct application of Theorem 7 to RIS(θ) under Assumption 3.

Key Takeaways: Comparing Theorem 6 and Theorem 8, we see that the generalization bounds for
importance sampled training loss depends on variance of importance ratio and also the worst ratio
over the training set (M and σ2). In contrast, our objective does not depend on these parameters
primarily due to negative exponential dependence on w̃. We also note that RWE depends on size
of test set also while the other does not seem to. However, RIS needs to estimate importance ratios
- which will depend on the test set . We have analyzed both losses when the importance ratios are
assumed to be known just to bring out the difference in dependencies on other parameters.

Remark: In Assumption 3, we have assumed a finite hypothesis class Θ. However, our result
for Theorem 6 would generalize (as is) with rademacher complexity or covering number based
arguments of infinite functions classes `1 and `2. Cortes et al. (2010b) also point out analogous
generalization for the importance sampling loss.
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