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ABSTRACT

We study robust adversarial training of two-layer neural networks with Leaky
ReLU activation function as a bi-level optimization problem. In particular, for
the inner-loop that implements the PGD attack, we propose maximizing a lower
bound on the 0/1-loss by reflecting a surrogate loss about the origin. This allows
us to give convergence guarantee for the inner-loop PGD attack and precise iter-
ation complexity results for end-to-end adversarial training, which hold for any
width and initialization in a realizable setting. We provide empirical evidence to
support our theoretical results.

1 INTRODUCTION

Despite the tremendous success of deep learning, neural network-based models are highly suscep-
tible to small, imperceptible, adversarial perturbations of data at test time (Szegedy et al., 2014).
Such vulnerability to adversarial examples imposes severe limitations on the deployment of neural
networks-based systems, especially in critical high-stakes applications such as autonomous driving,
where safe and reliable operation is paramount.

An abundance of studies demonstrating adversarial examples across different tasks and application
domains (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017) has led
to a renewed focus on robust learning as an active area of research within machine learning. The
goal of robust learning is to find models that yield reliable predictions on test data notwithstand-
ing adversarial perturbations. A principled approach to training models that are robust to adversarial
examples that has emerged in recent years is that of adversarial training (Madry et al., 2018). Adver-
sarial training formulates learning as a min-max optimization problem wherein the 0-1 classification
loss is replaced by a convex surrogate such as the cross-entropy loss, and alternating optimization
techniques are used to solve the resulting saddle point problem.

Despite empirical success of adversarial training, our understanding of its theoretical underpinnings
remain limited. From a practical standpoint, it is remarkable that gradient based techniques can effi-
ciently solve both inner maximization problem to find adversarial examples and outer minimization
problem to impart robust generalization. On the other hand, a theoretical analysis is challenging be-
cause (1) both the inner- and outer-level optimization problems are non-convex, and (2) it is unclear
a-priori if solving the min-max optimization problem would even guarantee robust generalization.

In this work, we seek to understand adversarial training better. In particular, under a margin separa-
bility assumption, we provide robust generalization guarantees for two-layer neural networks with
Leaky ReLU activation trained using adversarial training. Our key contributions are as follows.

1. We identify a disconnect between the robust learning objective and the min-max formulation of
adversarial training. This observation inspires a simple modification of adversarial training –
we propose reflecting the surrogate loss about the origin in the inner maximization phase when
searching for an “optimal” perturbation vector to attack the current model.

2. We provide convergence guarantees for PGD attacks on two-layer neural networks with leaky
ReLU activation. This is the first of its kind result to the best of our knowledge.

3. We give global convergence guarantees and establish learning rates for adversarial training for
two-layer neural networks with Leaky ReLU activation function. Notably, our guarantees hold
for any bounded initialization and any width – a property that is not present in the previous works
in the neural tangent kernel (NTK) regime (Gao et al., 2019; Zhang et al., 2020).
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4. We provide extensive empirical evidence showing that reflecting the surrogate loss in the in-
ner loop does not have a significant impact on the test time performance of the adversarially
trained models.

Notation. We denote matrices, vectors, scalar variables, and sets by Roman capital letters, Roman
lowercase letters, lowercase letters, and uppercase script letters, respectively (e.g. X, x, x, and
X ). For any integer d, we represent the set {1, . . . , d} by [d]. The `2-norm of a vector x and the
Frobenius norm of a matrix X are denoted as kxk and kXkF , respectively. Given a set C, the operator
⇧C(x) = minx02C kx� x0k projects onto the set C with respect to the `2-norm.

1.1 RELATED WORK

Linear models. Adversarial training of linear models was recently studied by Charles et al. (2019);
Li et al. (2020); Zou et al. (2021). In particular, Charles et al. (2019); Li et al. (2020) give robust
generalization error guarantees for adversarially trained linear models under a margin separability
assumption. The hard margin assumption was relaxed by Zou et al. (2021) who give robust gener-
alization guarantees for distributions with agnostic label noise. We note that the optimal attack for
linear models has a simple closed-form expression, which mitigates the challenge of analyzing the
inner loop PGD attack. In contrast, one of our main contributions is to give convergence guaran-
tees for the PGD attack. Nonetheless, as the Leaky ReLU activation function can also realize the
identity map for ↵ = 1, our results also provide robust generalization error guarantees for training
linear models.

Non-linear models. Wang et al. (2019) propose a first order stationary condition to evaluate the
convergence quality of adversarial attacks found in the inner loop. Zhang et al. (2021) study ad-
versarial training as a bi-level optimization problem and propose a principled approach towards the
design of fast adversarial training algorithms. Most related to our results are the works of Gao et al.
(2019) and Zhang et al. (2020), which study the convergence of adversarial training in non-linear
neural networks. Under specific initialization and width requirements, these works guarantee small
robust training error with respect to the attack that is used in the inner-loop, without explicitly ana-
lyzing the convergence of the attack. Gao et al. (2019) assume that the activation function is smooth
and require that the width of the network, as well as the overall computational cost, is exponential in
the input dimension. The work of Zhang et al. (2020) partially addresses these issues. In particular,
their results hold for ReLU neural networks, and they only require the width and the computational
cost to be polynomial in the input parameters.

Our work is different from that of Gao et al. (2019) and Zhang et al. (2020) in several ways. Here
we highlight three key differences.

• First, while the prior work analyzes the convergence in the NTK setting with specific initializa-
tion and width requirements, our results hold for any initialization and width.

• Second, none of the prior works studies computational aspects of finding an optimal attack
vector in the inner loop. Instead, the prior work assumes oracle access to optimal attack vectors.
We provide precise iteration complexity results for the projected gradient method (i.e., for the
PGD attack) for finding near-optimal attack vectors.

• Third, the prior works focus on minimizing the robust training loss, whereas we provide com-
putational learning guarantees on the robust generalization error.

The rest of the paper is organized as follows. In Section 2, we give the problem setup and introduce
the adversarial training procedure with the reflected surrogate loss in the inner loop. In Section 3,
we present our main results, discuss the implications and give a proof sketch. We support our theory
with empirical results in Section 4 and conclude with a discussion in Section 5.

2 PRELIMINARIES

We focus on two-layer networks with m hidden nodes computing f(x; a,W) = a>� (Wx), where
W 2 Rm⇥d and a 2 Rm are the weights of the first and the second layers, respectively, and
�(z) = max{↵z, z} is the Leaky ReLU activation function. We randomly initialize the weights a
and W such that kak1   and kWkF  !. The top linear layer (i.e., weights a) is kept fixed, and
the hidden layer (i.e., W) is trained using stochastic gradient descent (SGD).

For simplicity of notation, we represent the network as f(x;W), suppressing the dependence on
the top layer weights. Further, with a slight abuse of notation, we denote the function by fW(x)
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Algorithm 1 Atk PGD Attack
Input: Sample (x, y), Weights W, Stepsize ⌘atk, # Iters Tatk

1: Initialize �1  x
2: for t = 1 to T do
3: �t+1  ⇧�(x)(�t + ⌘atkr�`�(yfW(�t)))
4: end for

Output: �⌧ , where ⌧ 2 argmaxt2[T ] `�(yfW(�t))

when optimizing over the input adversarial perturbations, and by fx(W) when training the network
weights.

Formally, adversarial learning is described as follows. Let X ✓ Rd and Y = {±1} denote the
input feature space and the output label space, respectively. Let D be an unknown joint distribution
on X ⇥ Y . For any fixed x 2 X , we consider norm-bounded adversarial perturbations in the set
�(x) := {� : k� � xk  ⌫}, for some fixed noise budget ⌫.

Given a training sample S := {(xi, yi)}ni=1 ⇠ Dn drawn independently and identically from the
underlying distribution D, the goal is to find a network with small robust misclassification error

"rob(W) = ED max
�2�(x)

I[yfW̄(�) < 0], (1)

where W̄ := W/kWkF is the weight matrix normalized to have unit Frobenius norm. Note that,
due to the homogeneity of Leaky ReLU, such normalization has no effects on the robust error what-
soever.

In adversarial training, the 0 � 1 loss inside the expectation is replaced with a convex surrogate
such as cross entropy loss `(z) = log(1 + e�z), and the expected value is estimated using a sample
average:

b"rob(W) :=
1

n

nX

i=1

max
�i2�(xi)

`(yifW̄(�i)) (2)
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Figure 1: The 0-1 loss (red), its convex sur-
rogate, the cross-entropy loss (blue), and the
reflected cross-entropy loss (green).

Notwithstanding the conventional wisdom, adversarial
training entails maximizing an upper bound as opposed
to a lower bound on the 0 � 1 loss. In contrast, we pro-
pose using a concave lowerbound on the 0 � 1 loss to
solve the inner maximization problem. Let

`�(z) = �`(�z) = � log(1 + ez)

denote the reflected loss. In Figure 1, we plot the 0-1 loss,
the cross-entropy loss, and the reflected cross-entropy
loss. Starting from �1 = x, the PGD attack updates it-
erates via

�t+1 = ⇧�(x)(�t + ⌘atk`�(yfW(�t))),

as described in Algorithm 1. We emphasize that the
only difference between standard adversarial training and
what we propose in Algorithm 2 and Algorithm 1 is that
we reflect the loss (about the origin) in Algorithm 1.

3 MAIN RESULTS

We consider a slightly weaker version of the robust error. In particular, we are interested in adver-
sarial attacks that can fool the learner with a margin – for some small, non-negative constant �, we
define the �-robust misclassification error as: "�(W) = P

�
min�2�(x) yfW̄(�) < ��

 
. In particu-

lar, as � tends to zero, "�(W)! "rob(W). When � is a small positive constant bounded away from
zero, (x, y) contributes to "�(W) only if there exists an attack � 2 �(x) such that fW̄ confidently
makes a wrong prediction on �. In other words, �-robust misclassification error is the probability
that for (x, y) ⇠ D, a �-effective attack exists:
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Algorithm 2 AdvTr Adversarial Training
Input: Stepsize ⌘tr, # Iters Ttr

1: Initialize a and W1 such that kak1   and kW1kF  !
2: for t = 1 to T do
3: Draw (xt, yt) ⇠ D
4: �t  Atk(Wt, xt, yt)
5: Wt+1  Wt � ⌘trrW`(ytf�t(Wt))
6: end for

Definition 3.1 (Effective Attacks). Given a neural networks with parameters (a,W) and a data point
(x, y) and some constant � > 0, we say that �⇤ 2 �(x) is a �-effective attack if yfW̄(�⇤)  ��,
where W̄ = W/kWkF .
Our bounds depend on several important problem parameters. Before stating the main results of the
paper, we remind the reader of these important quantities. ⌫ denotes the attack size.  and ! are the
bounds on the norm of the parameters a and W at the initialization. Finally, ↵ is the Leaky-ReLU
parameter. Our first result stated in the following theorem1 gives convergence rates for Algorithm 1
in terms of the and the negated loss derivative �`0(·) under the assumption that an effective attack
exists. The negative derivative, �`0(·), of the loss function has been used in several previous works
to give an upper bound on the error Cao & Gu (2019); here, we borrow similar ideas from Frei et al.
(2021). In particular, as it will become clear later, we will use positivity and monotonicity of �`0(·)
to give an upper bound on the �-robust loss using Markov’s inequality.
Theorem 3.2. Let �⇤ be a �-effective attack for a given network with weights (a,W) and a given
example (x, y), with � � 2⌫(1 � ↵)

p
m. Then, after Tatk iterations, PGD with step size ⌘atk 

1
2mkWk2

F
generates an attack �atk such that �`0(yfW(�⇤))  �2`0(yfW(�atk)) +

4⌫2

⌘atkTatk
.

Theorem 3.2 establishes that under proper initialization ( = 1/
p
m), when a �-effective attack ex-

ists, Algorithm 1 finds a ✏-suboptimal attack vector in O(�2/✏) iteration. We next study convergence
of Algorithm 2 under the following distributional assumption.
Assumption 3.3. Samples (x, y) are drawn i.i.d. from an unknown joint distribution D that satisfies:

• kxk  R with probability 1.

• There exists a unit norm vector v⇤ 2 Rd, kv⇤k = 1, such that for (x, y) ⇠ D, we have with
probability 1 that y(v⇤ · x) � � > 0.

The first assumption requires that the inputs are bounded, which is standard in the literature and is
satisfied for most practical applications. The second assumption implies that D is linearly separable
with margin � > 0. Of course, we do not need a non-linear neural network to robustly learn a
predictor under such a distributional assumption. But can we even guarantee robust learnability of
neural networks for such simple settings? Nothing is known as far as we know. We note that even for
standard (non-robust) training of two-layer neural networks using SGD, the convergence guarantees
in the hard margin setting were unknown until recently (Brutzkus et al., 2018). The following
theorem establishes that adversarial training can efficiently find a network with small �-robust error.
Theorem 3.4 (Convergence of Algorithm 2). For any ✏ > 0, in at most Ttr 
64(R+⌫)2(1+!�↵

p
m✏)

(��⌫)2↵2✏2 iterations, Algorithm 2 with step-size ⌘tr  1
m2(R+⌫)2 finds an iterate ⌧

that, in expectation over {(xt, yt)}Ttr
t=1, satisfies "�(W⌧ )  2✏ for any � � 2⌫(1 � ↵)

p
m, pro-

vided that for all t 2 [T ], ⌘atk  1
2mkWtk2

F
and Tatk � 8⌫2

⌘atk✏
.

A few remarks are in order.

Beyond Neural Tangent Kernel. As opposed to the convergence results in the previous work (Gao
et al., 2019; Zhang et al., 2020) which requires certain initialization and width requirements specific
to the NTK regime, our results holds for any bounded initialization and any width m.

Role of the Robustness Parameter ⌫. Our guarantee holds only when the desired robustness pa-
rameter ⌫ is smaller than the distribution margin �. Furthermore, the iteration complexity increases

1Proofs are deferred to the appendix.
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gracefully as O(⌫2/(� � ⌫)2) as the attacks become stronger, i.e., as the size of adversarial pertur-
bations tends to the margin. Intuitively, as ⌫ ! 0, the attack becomes trivial, and the adversarial
training reduces to the standard non-adversarial training. This is fully captured by our results —
as ⌫ ! 0, the number of attack iterates Tatk goes to zero, and we recover the overall runtime of
O(��2✏�2) as in the previous work (Brutzkus et al., 2018; Frei et al., 2021).

Computational Complexity. To guarantee ✏-suboptimality in the �-robust misclassification error,
we require Ttr = O((��⌫)�2✏�2) iterations of Algorithm 2. Each iteration invokes the PGD attack
in Algorithm 1, which itself requires Tatk = O(⌫2/✏) gradient updates. Therefore, the overall com-
putational cost of adversarial training to achieve ✏-suboptimality is O( ⌫2

(��⌫)2✏3 ). Note that Tatk is a
purely computational requirement, and the statistical complexity of adversarial training is fully cap-
tured by Ttr. Remarkably, there is only a mild O(�2/(��⌫)2) statistical overhead for �-robustness,
and the computational cost increases gracefully by a multiplicative factor of O

⇣
⌫2�2

(��⌫)2✏

⌘
.

Learning Robust Linear Halfspaces. When ↵ = 1, the Leaky ReLU activation equals the iden-
tity map, and the network reduces to a linear predictor. In this case, we retrieve strong robust
generalization guarantees for learning halfspaces, as the lower bound required for � in Theorem 3.4
vanishes. The following corollary instantiates such a robust generalization guarantee.
Corollary 3.5. Let  = 1/

p
m, ! = 1/�, and ⌘tr = (R + ⌫)�2. For any ✏ > 0, in at most

Ttr  128(R+⌫)2

(��⌫)2✏2 iterations, Algorithm 2 finds an iterate ⌧ , that in expectation over {(xt, yt)}Ttr
t=1,

satisfies "rob(W⌧ )  2✏, provided that for all t 2 [T ], ⌘atk  kWtk�2
F and Tatk � 8⌫2

⌘atk✏
.

Dependence on the Norm of Iterates. The iteration complexity of Algorithm 1 is inversely
proportional to the learning rate ⌘atk, and therefore increases with kWtk2F . Thus, when cal-
culating the overall computational complexity, one needs to compute an upper bound on the
norm of the iterates. As we show in Equation (6) in the appendix, it holds for all iterates that
kWt+1k2F  kW1k2F + 3⌘trt. Therefore, if we set  = 1/

p
m and !2 = 3/(R+ ⌫)2, we have the

following worst-case weight-independent bound on the overall computational cost:

T 
TtrX

t=1

8⌫2

⌘atk✏


TtrX

t=1

8⌫2kWtk2F
✏


TtrX

t=1

8⌫2(!2 + 3⌘tr(t� 1))

✏


TtrX

t=1

24⌫2t

(R+ ⌫)2✏
 12⌫2T 2

tr

(R+ ⌫)2✏
 196608⌫2(R+ ⌫)2

(� � ⌫)4↵4✏5
.

Therefore, the worst-case overall computational cost is of order O((� � ⌫)�4✏�5). We note
again that this cost is purely computational – the statistical complexity is still in the order of
O
�
(� � ⌫)�2✏�2

�
.

Adversarial Robustness for any �. As we discussed earlier, as � ! 0, the �-robust error tends
to the robust error, i.e., "�(W)! "rob(W). Although Theorem 3.4 does not hold for � = 0 (except
for the linear case discussed above), it is possible to guarantee robust generalization with arbitrarily
small �, as stated in the following corollary.

Corollary 3.6. For any desirable � > 0, let  = �
2⌫(1�↵)

p
m

. For any ✏ > 0, in at most Ttr 
64(R+⌫)2(1+!�↵�✏/(2⌫(1�↵)))

(��⌫)2↵2✏2 iterations, Algorithm 2 with step-size ⌘tr  4⌫2(1�↵)2

�2(R+⌫)2 finds an iterate
⌧ that, in expectation over {(xt, yt)}Ttr

t=1 , satisfies "�(W⌧ )  2✏ provided that for all t 2 [T ],
⌘atk  4⌫2(1�↵)2

�2kWtk2
F

and Tatk � 2(1�↵)2

�2kWtk2
F ✏

.

3.1 PROOF SKETCH

In this section, we highlight the key ideas and insights based on our analysis, and give a sketch of
the proof of the main result. Using Definition 3.1, the proof of Theorem 3.4 crucially depends on
the following two facts. First, whenever there exists a �-effective attack, Algorithm 1 will efficiently
find a sufficiently good attack (in the sense of Theorem 3.2). Second, as long as the attack size ⌫ is
smaller than the margin �, robust training is not much harder than standard training. In particular,
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the following Lemma establishes that the expected value of the negative loss derivative eventually
becomes arbitrarily small.
Lemma 3.7. For any ✏ > 0, Algorithm 2 with stepsize ⌘tr  m�1�2(R + ⌫)�2 finds an iterate
⌧ that, in expectation over {(xt, yt)}Ttr

t=1, satisfies ED[�`0(yfW⌧ (�atk(x)))]  ✏ in at most Ttr 
4(1+kW1kF �↵

p
m✏)

⌘tr(��⌫)2↵22m✏2 iterations.

We remark that the result in Lemma 3.7 holds for any attack algorithm Atk, as long as it respects
the condition �atk(x) 2 �(x) for all x. We are now ready to present the proof of the main result.

Proof of Theorem 3.4. Recall, that �-robust misclassification error is defined as:

"�(W) = P
⇢

min
�2�(x)

yfW̄(�) < ��
�

= P
⇢

min
�2�(x)

yfW(�) < ��kWkF
�

(Homogeneity of f )

A key step in the proof is to give an upper bound on ✏� in terms of the attack returned by PGD, i.e.,
�atk(x), rather than the optimal attack min�2�(x) yfW(�). Theorem 3.2 does provide us with such
an upper bound; however, (1) it only holds in expectation, and 2) it is conditioned on existence of
an effective attack at the given example (x, y) and the weights W. Naturally, we can use Markov’s
inequality to bound the probability above. In order to address the conditional nature of the result in
Theorem 3.2, we introduce a truncated version of the negative loss derivative. In particular, for any
c, let `0c(z) = `0(z)I[z  c] be the loss derivative thresholded at c. Note that z  c implies that
�`0c(z) � �`0c(c) – therefore, P{z  c}  P{�`0c(z) � �`0c(c)}. Let �⌧ := �kW⌧kF , where W⌧

is the iterate guaranteed by Lemma 3.7. We have

"�(W⌧ ) = P
⇢

min
�2�(x)

yfW⌧ (�)  ��⌧

�
 P

⇢
�`0��⌧

( min
�2�(x)

yfW⌧ (�)) � �`0��⌧
(��⌧ )

�


ED

h
�`0��⌧

(min�2�(x) yfW⌧ (�))
i

�`0��⌧
(��⌧ )

(Markov’s inequality)

 2ED


�`0��⌧

( min
�2�(x)

yfW⌧ (�))

�
(�`0��⌧

(z) � 1/2 for z  0)

Given W⌧ , for any (x, y) ⇠ D, one of the two following cases can happen:
1. There exists a �-effective attack. In this case, by Definition 3.1, it holds that

min�2�(x) yfW⌧ (�)  ��kW⌧kF = ��⌧ . Therefore, by definition of the truncated nega-
tive loss derivative, it also holds that �`0�⌧

(min�2�(x) yfW⌧ (�)) = �`0(min�2�(x) yfW⌧ (�)).
Now, using Theorem 3.2, we get that

�`0��⌧
( min
�2�(x)

yfW⌧ (�))  �2`0(yfW⌧ (�atk(x))) +
4⌫2

⌘atkTatk
(3)

2. There does not exist a �-effective attack. In this case, by Definition 3.1, it holds that
min�2�(x) yfW⌧ (�) > ��kW⌧kF = ��⌧ . Therefore, by definition of the truncated nega-
tive loss derivative, it also holds that�`0�⌧

(min�2�(x) yfW⌧ (�)) = 0, which is trivially bounded
by the upper bound in the first case above, given by Equation (3).

Putting back the above cases in the upper bound on the �-robust error, we arrive at:
1

2
"�(W⌧ )  2ED[�`0(yfW⌧ (�atk(x)))] +

4⌫2

⌘atkTatk
 ✏

2
+

4⌫2

⌘atkTatk
 ✏

2
+

✏

2

where the first inequality follows from Theorem 3.2, the second inequality follows from Lemma 3.7
given the proper choice of TTr, and the final inequality holds by setting Tatk � 8⌫2

⌘atk✏
.

4 EMPIRICAL RESULTS

Adversarial training is widely used in training robust models and has been shown to be fairly effec-
tive in practice. The goal of this section is not to attest or reproduce previous empirical findings.
Instead, since the focus in this paper is on the theoretical analysis of adversarial training in non-
linear networks, the goal of this section is merely to empirically study the effect of using reflected
loss in Algorithm 1.
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Figure 2: Number of the top-k attack vectors that are optimal, i.e., can induce a label flip, for the
cross entropy loss (blue) and the reflected version (red), for different values of k: Left: k = 10,
Middle: k = 100, and Right: k = 1000.

The experimental results are organized as follows. First, in Sec. 4.1, we compare the optimal attacks
found by a grid search on the surrogate loss and its reflected version. In Sec. 4.2, we empirically
study adversarial training with reflected loss in the binary classification setting. Finally, in Sec. 4.3,
we generalize the reflected loss, which is key to our theoretical analysis, to multi-class classification
setting. We then report the results on the CIFAR-10 dataset using a deep residual network.

4.1 GRID SEARCH OPTIMIZATION

We look at the following simple 3-dimensional 3-class classification problem. Consider the point
(x, y) where x = [3, 2, 1] and y = 1. We focus on the simplest non-trivial function, i.e., the
identity mapping, given by f(x) = x. Obviously, f correctly assigns x to the first class because the
first dimension is larger than the others. Also, a perturbation of the form � = [�0.501, 0.5, 0] with
k�k = 0.7078 can flip the label, since f(x+�) = [2.499, 2.5, 1] incorrectly predicts the second class.

We restrict the attack to the set {� 2 (�0.51,+0.51)3| k�k  0.7078}. We look at every possible
attack vector on a grid of size 800 ⇥ 800 ⇥ 800. We then sort these vectors in a descending order
of the corresponding loss function, i.e., the cross entropy loss and its reflected version, and simply
count how many of the top-k attack vectors actually induce a label flip. We take this as a measure
of how effective is the corresponding loss maximization problem at finding a good attack vector. As
we can see in Figure 2, the proposed method of maximizing the reflected cross entropy loss is a far
more effective way of generating the attacks than maximizing the cross entropy loss.

4.2 BINARY CLASSIFICATION

Experimental Setup. We extract digits 0 and 1 from the MNIST dataset (LeCun et al., 1998),
which provides a (almost) separable distribution, consistent with our theoretical setup. The dataset
contains 12665 training samples and 2115 test samples. We evaluate the generalization error as well
as the robust generalization error of fully-connected two-layer neural networks which are adversar-
ially trained with and without reflecting the loss. The network has 100 hidden nodes with ReLU
activations.

The outer loop consists of 20 epochs over the training data with batch size equal to 64, randomly
shuffled at the beginning of each epoch. The initial learning rate is set to 1, and is decayed by a
multiplicative factor of 0.2 every 5 epochs. We use several benchmark attacks with and without
reflecting the loss. The benchmarks include the Fast Gradient Sign Method (FGSM) Goodfellow
et al. (2015), the Basic Iterative Method (BIM) Kurakin et al. (2017), and the PGD attack with
`2 constraint (PGD-2) and `1 constraint (PGD-1). For each of these attack strategies, we have a
corresponding approach that involves reflecting the surrogate loss – we denote the resulting methods
as R-FGSM, R-BIM, R-PGD-2, and R-PGD-1, respectively. The perturbation size for FGSM,
PGD-1, and BIM (and their corresponding reflected version) is set to ⌫ = 0.1. For PGD-2 and R-
PGD-2, we let a larger perturbation size of ⌫ = 2 as recommended in the Adversarial ML Tutorial.

In the inner-loop, if the attack is iterative, we use a step-decay scheduler with initial step-size of
10, which decreases the step-size every 10 steps by a multiplicative factor of 0.2. In Table 1, we
report the standard test accuracy as well as the adversarial test accuracy of the trained models over
10 independent random runs of the experiment. Different rows and columns correspond to different
training algorithms and different attack models, respectively.
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PPPPPPTrg.
Atk. FGSM R-FGSM PGD-1 R-PGD-1 BIM R-BIM PGD-2 R-PGD-2

Standard 0.236 0.236 0.033 0.286 0.286 0.286 0.003 0.256
PGD-1 0.004 0.004 0.005 0.005 0.005 0.005 0.003 0.05

R-PGD-1 0.003 0.003 0.004 0.004 0.004 0.004 0.002 0.042
PGD-2 0.013 0.013 0.022 0.024 0.024 0.024 0.002 0.034

R-PGD-2 0.004 0.004 0.005 0.006 0.006 0.006 0.0 0.008

Table 1: Robust test error of several adversarially trained models with and without reflecting the
loss (Standard training, PGD-1, R-PGD-1, PGD-2, R-PGD-2), for different attack benchmarks
(FGSM, R-FGSM, PGD-1, R-PGD-1, BIM, R-BIM, PGD-2, and R-PGD-2).

Analysis. We make the following observations in Table 1. First, reflecting the loss has a mini-
mal effect on FGSM and BIM attacks, in terms of robust test accuracy of the trained models. In
particular, the columns 1 and 2 (similarly columns 5 and 6) are identical up to the third decimal
point.

Second, in PGD-2 attacks, reflecting the loss generally yields a stronger attack – note the striking
differences in the last two columns between PGD-2 and R-PGD-2. We observe a milder trend
for PGD-1 attacks, where R-PGD-1 attacks turns out to be only slightly stronger, except for the
standard training setting where reflecting the loss has a huge impact on the robust error.

Third, we would like to remark on the performance of adversarially trained models. We can see
that reflecting the loss in general helps robustness. In particular, second and fourth rows (PGD-
1 and PGD-2) are completely dominated by the third and fifth rows (R-PGD-1 and R-PGD-2),
respectively.

Finally, it is notable that even though PGD-2 and PGD-1 are much weaker than their reflected
counterparts, they are still competitive in terms of the robustness when used in adversarial training.
Thissuggests that finding a “strong” attack is not a necessity for adversarial training to succeed.

4.3 EXTENSION TO MULTI-LABEL SETTING

In binary classification using the logistic loss, in essence, adversarial training finds an attack that
minimizes the log-likelihood of the correct class. Using the reflected loss, instead, we aim at maxi-
mizing the log-likelihood of the wrong class. In a multiclass classification scenario, there are mul-
tiple such wrong classes. Therefore, an important design question is which wrong class should
be targeted in the attack phase? Here, we focus on the most natural choice: we target the wrong
class with the highest log-likelihood. This greedy approach is easy to implement, and has minimal
computational overhead over standard adversarial training.

We emphasize though that the greedy approach (described above) is sub-optimal, even in a simple
linear setting. Intuitively, when the parameters are such that the logits for the true class correlate
with the logits for the most likely wrong class, the greedy approach fails. In particular, consider the
following 3-class classification problem in R2. Let fW(x) = Wx, where W = [2e1, e1, 10e2] 2
R3⇥2. Here, ei denotes the i-th standard basis. Consider the point x = [1, 0]. Clearly, class 1 and 3
have the highest and the smallest likelihoods, respectively. Given a perturbation size kx0�xk  0.3,
the likelihood of the second class will never dominate that of the first class:

w>
1 (x + �) = 2e>1 (x + �) = 2(x1 + �1) > (x1 + �1) = e>1 (x + �) = w>

2 (x + �),

where the inequality follows by using the fact that x1 = 1 and |�1|  0.3. Therefore, the greedy
approach fails here. Whereas, within the specified perturbation budget, maximizing the likelihood
of the third class can indeed find a label-flipping attack. For example, with � = [0, 0.3], the point
x0 = [1, 0.3] will be assigned to the third class, because w>

3 x
0 = 3 > w>

1 x = 2 > w>
2 x = 1.

We use adversarial training with and without reflected loss (denoted by R-PGD and PGD, respec-
tively) to train a PreActResNet (PARN) He et al. (2016) on the CIFAR-10 dataset Krizhevsky et al.
(2009). In the training phase, we conduct experiments for attack size ⌫ 2 {2, 4, 8, 16}/255. We
build on the PyTorch implementation in Zhang et al. (2021), and we follow their experimental setup,
which is described next. We use a SGD optimizer with a momentum parameter of 0.9 and weight
decay parameter of 5 ⇥ 10�4. We set the batch size to 128 and train each model for 20 epochs.
We use a cyclic scheduler which increases the learning rate linearly from 0 to 0.2 within the first

8



Under review as a conference paper at ICLR 2023

Attack Size ⌫ = 2/255
Steps = 2 Steps = 4 Steps = 16 Steps = 32

RA SA RA SA RA SA RA SA
PGD 14.182 91.254 20.702 90.424 21.014 90.132 20.848 90.09

R-PGD 14.338 91.208 20.726 90.384 20.958 90.06 20.746 89.992

Attack Size ⌫ = 4/255
PGD 17.764 90.748 30.344 88.736 37.564 86.65 37.304 86.572

R-PGD 17.162 90.114 30.34 88.826 37.4 86.734 37.374 86.522

Attack Size ⌫ = 8/255
PGD 20.064 90.478 34.21 87.746 48.916 78.402 48.936 77.926

R-PGD 20.1 90.564 34.19 87.852 48.792 78.382 48.828 77.982

Attack Size ⌫ = 16/255
PGD 16.19 85.908 21.524 86.816 48.722 68.37 45.292 58.526

R-PGD 15.986 89.708 21.362 86.83 48.742 68.456 44.778 58.486

Table 2: Robust test accuracy (RA) of adversarially trained models with and without reflecting the loss, for dif-
ferent values of the attack size ⌫ 2 {2, 4, 8, 16}/255 and number of steps in the attack Steps 2 {2, 4, 16, 32}.
We report the results for test-time attack size ⌫ = 8/255; the better performance is highlighted in gray, where
the intensity corresponds to difference in performance.

10 epochs and then reduces it back to 0 in the remaining 10 epochs. We report robust test accuracy
(RA) of an adversarially-trained model against PGD attacks Madry et al. (2018) (RA-PGD), where
we take 50-step PGD with 10 restarts. We report the results for test-time attack size ⌫ = 8/255.
Based on our empirical results, using the (greedy) reflected loss in adversarial training does not
significantly impact the standard/robust generalization performance of the learned models.

5 DISCUSSION

We study robust adversarial training of two-layer neural networks as a bi-level optimization problem.
We propose reflecting the surrogate loss about the origin in the inner maximization phase when
searching for an “optimal” perturbation vector to attack the current model. We give convergence
guarantee for the inner-loop PGD attack and precise iteration complexity results for end-to-end
adversarial training, which hold for any width and initialization under a margin assumption. We
also provide an empirical study on the effect of reflecting the surrogate loss in real datasets. Next,
we list few natural research directions for future work.

Extension to multiclass setting. In binary classification, which is the focus of this paper, reflecting
the loss about the origin provides a concave lower-bound for the zero one loss (see Figure 1). Max-
imizing the reflected loss then corresponds to maximizing the likelihood of the wrong class. This
simple modification enables us to guarantee the convergence of PGD-2 attacks, and yield stronger
attacks in our experiments. However, extending this idea to the multiclass setting is not trivial. In
particular, the idea of maximizing the likelihood of the wrong class does not trivially generalize to
the multiclass setting due to plurality of wrong classes. Nonetheless, as we show in the experimental
section, a naive greedy approach to choose a wrong class seems to provide competitive performance
in terms of standard/adversarial test error. Is there a simple, principled approach to obtain a lower-
bound for the misclassification error in the multiclass setting? It would be interesting to explore
theoretical and empirical aspects of such possible extensions.

Beyond �-robustness. The notion of �-robustness is crucial in our analysis. Although we provide
robustness guarantees for arbitrarily small positive � (see Corollary 3.6), our current analysis does
not allow for standard robustness guarantees (� = 0) except for the linear setting (↵ = 1). At a high
level, the main challenge here is to guarantee that the attack can always find an adversarial example
– if there exists one – regardless of whether the attack is �-effective or not. This is, in particular,
challenging to establish for iterative attacks such as PGD, because they can only guarantee getting
sufficiently close to an optimal attack in finite time. Therefore, if the optimal attack can just barely
flip the sign, the computational time for finding it can grow unboundedly. Therefore, providing
robust generalization guarantees (� = 0) is an interesting research direction for future work.

Optimization geometry. In our theoretical results, we focus on PGD-2 attacks, which are based
on steepest descent with respect to the `2 geometry. In our experiments, we also provide empirical
results for steepest descent attacks with respect to `1 geometry (including FGSM and BIM) on the
reflected loss. We leave the theoretical analysis of such attacks to future work.
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