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Abstract

We consider the design of automated supervised learning systems for data tables1

that not only contain numeric/categorical columns, but text fields as well. Here we2

assemble 15 multimodal data tables that each contain some text fields and stem3

from a real business application. Over this benchmark, we evaluate numerous4

multimodal AutoML strategies, including standard two-stage approaches where5

NLP is used to featurize the text such that AutoML for tabular data can then be6

applied. We identify practically superior strategies based on multimodal adaptations7

of Transformer networks and stack ensembling of these networks with classical8

tabular models. Compared with human data science teams, the best fully automated9

methodology2 discovered through our benchmark manages to rank 1st place when10

fit to the raw text/tabular data in two MachineHack prediction competitions and11

2nd place (out of 2380 teams) in Kaggle’s Mercari Price Suggestion Challenge.12

1 Introduction13

Despite recent data proliferation, the practical value of machine learning (ML) remains hampered14

by an inability to quickly translate raw data into accurate predictions. Automatic Machine Learning15

(AutoML) aims to address this via pipelines that can ingest raw data, train models, and output accurate16

predictions, all without human intervention [35]. Given their immense potential, many AutoML17

systems exist for data structured in tables, which are ubiquitous across science/industry [25, 30, 58].18

Many data tables contain not only numeric and categorical fields (together referred to as tabular19

here), but also fields with free-form text. For example, Table 1 depicts actual data from the website20

Kickstarter. These contain multiple text fields such as the title and description of each funding21

proposal, numerical fields like the goal amount of funding and when the proposal was created,22

as well as categorical fields like the funding currency or country. This paper considers tables of23

this form where rows contain IID training examples (each with a single numeric/categorical value24

to predict, i.e. regression/classification) and the columns used as predictive features can contain25

text, numeric, or categorical values. We refer to the value in a particular row and column as a26

field, where a single text field may actually contain a long text passage (e.g. a multi-paragraph item27

description). Despite their potential commercial value, there are currently few (automated) solutions28

for machine learning with this sort of data that jointly contain numeric/categorical and text features,29

which we refer to as multimodal or text/tabular data. Applying existing AutoML tools to such data30

thus requires either manually featurizing text fields into tabular format [5, 29], or ignoring the text.31

Alternatively, one can use existing natural language processing (NLP) tools to model primarily just32

the text [11, 27, 28, 34, 52].33

⇤Equal contribution.
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This paper considers design choices for automated supervised learning with multimodal datasets34

that jointly contain text, numeric, and categorical features. Even though text commonly appears35

along with numeric/categorical fields in enterprise data tables, how to automatically analyze such36

multimodal data has not been well studied in the literature. This stems from a lack of published37

benchmarks, as well as existing beliefs that basic featurization of the text [14, 29] should suffice for38

tabular models to exhibit strong performance. Here we introduce a new benchmark of 15 multimodal39

text/tabular datasets from real business applications (Section 3), and provide the first comprehensive40

evaluation of generic strategies for supervised learning with such data (Section 7). In particular,41

we consider: multimodal neural networks that jointly operate on text and tabular inputs (Section42

4), featurizing text for tabular models (Section 5), as well as ensemble combinations of text (or43

multimodal) neural networks and tabular models (Section 6).44

Note that we write AutoML to describe any modeling strategy that is robustly performant across a45

diverse set of datasets without manual adjustments. The AutoML method promoted in this paper (stack46

ensembling of tabular models with a multimodal Transformer network) is simply the strategy that47

happened to perform best in our systematic analysis of various modeling strategies over the proposed48

benchmark. Among other discoveries, our benchmark reveals that the conventional strategy of neural49

embeddings to featurize text for tabular models is suboptimal. We hope the public benchmark and50

open-source tooling introduced here spurs further research in this important practical direction.51

2 Related Work52

Today, tools for automated learning with text data remain scarce (e.g. this dearth forced Blohm et al.53

[5] to turn to tabular AutoML tools for automated text prediction). Instead modern NLP applications54

primarily require experts who unanimously favor Transformer networks as their model of choice for55

text [13, 50, 52]. However existing methods to input numeric/categorical features into Transformers56

remain rudimentary [52] and fail to outperform the best tree models for tabular prediction [33]. While57

seemingly relevant, recent work on Transformers for understanding structured text tables [12, 69]58

addresses different tasks than the multimodal text/tabular supervised learning studied in this paper.59

The use of tabular models together with Transformer-like text architectures has received limited60

attention [39, 63], and it remains unclear how to optimally leverage their complementary strengths for61

multimodal data (due to lack of benchmarks). In contrast, a number of entirely-neural architectures62

have been proposed for multimodal settings [36, 53, 54, 66]. However the vast majority of these are63

for {image, text} data [2, 51, 55, 56], but the gap between neural networks and alternative models is64

far greater for images than for tabular data [33].65

Large, sufficiently diverse/representative, public benchmarks have spurred significant progress in66

tabular AutoML [15, 16, 25, 71] and NLP [23, 41, 48, 64]. However we are not aware of any67

analogous benchmarks for evaluating multimodal text/tabular ML. There do exist a few miscellaneous68

text/tabular datasets scattered throughout popular ML data repositories [1, 61], but these are mostly69

small academic datasets that are not representative of modern applications with significant practical70

value. In contrast, multiple prediction competitions each involving a single real-world text/tabular71

dataset have been held, but winning solutions have heavily relied on dataset/domain-specific tricks72

[46]. Here we aggregate multimodal datasets from competitions and other industry sources into one73

benchmark that aims to reveal unifying principles for powerful generic modeling of this form of data.74

Table 1: Example of data in our multimodal benchmark with text (name, desc), numeric (goal,
created_at), and categorical (country, currency) columns. From these features, we want to predict if
a Kickstarter project will reach its funding goal or not (final_status).
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3 Benchmarking Multimodal Text/Tabular AutoML75

We aim to design practical systems for real-world data tables that often contain text. The empirical76

performance of our design decisions is thus what ultimately matters. Representative benchmarks77

comprised of many diverse datasets are critical for proper evaluation of AutoML, whose aim is to78

reliably produce reasonable accuracy on arbitrary datasets without manual user-tweaking. Thus we79

introduce the first public benchmark for evaluating multimodal text/tabular ML, which is comprised of80

15 tabular datasets, each containing at least one text field in addition to numeric/categorical columns.81

Our new benchmark is publicly available, as is the code to reproduce all results presented in this work82

(and also to recreate our modified benchmark datasets from the original data sources).83

Our benchmark strives to represent the types of ML tasks that commonly arise in industry today.84

Appendix B provides detailed descriptions of each dataset. In creating the benchmark, we aimed to85

include a mix of classification vs. regression tasks and datasets from real applications (as opposed86

to toy academic settings) that contain a rich mix of text, numeric, and categorical columns. Table87

2 shows it is comprised of datasets that are quite diverse in terms of: sample-size, problem types,88

number of features, and type of features. 11 of the datasets contain more than one text field (with89

28 text fields in the airbnb dataset). These text fields greatly vary in the amount of text they contain90

(e.g. short product names vs. lengthy product descriptions/reviews). The data (and text vocabulary)91

stem from a mix of of real-world domains spanning: e-commerce, news, social media, question-92

answering, and product listings (jobs, projects, films, Airbnb). Subsequent accuracy results from93

Table 3 indicate the 15 underlying prediction problems also vary greatly in terms of both difficulty and94

how the predictive signal is divided between text/tabular modalities. To reflect real-world ML issues,95

we processed the data minimally (beyond ensuring the features/labels correspond to meaningful96

prediction tasks without duplicate examples) and thus there are arbitrarily-formatted strings and97

missing values all throughout. Systems that can perform well across the diverse set of 15 benchmark98

datasets are thus likely to provide real-world value for an important class of applications.99

Each dataset in our benchmark is provided with a prespecified training/test split (usually 20% of the100

original data reserved for test set). Methods are not allowed to access the test set during training,101

and for validation (model-selection, hyperparameter-tuning, etc.) instead must themselves hold-out102

some data from the provided training data. As the choice of training/validation split is a key design103

decision in AutoML, we leave this flexible for different systems to choose in the learning process.104

To facilitate comparison between the novel AutoML strategies presented in this paper, we always105

used the same AutoGluon-provided training/validation split, which is stratified based on labels in106

classification tasks. Our use of other AutoML frameworks beyond AutoGluon (e.g. H2O) allows107

each framework to choose their own data splitting scheme.108

4 End-to-end Multimodal Learning with Text/Tabular Neural Networks109

We now outline the many possibilities that must be considered in AutoML for multimodal data110

tables with text. Key design choices include what models to use (and for which features), and how111

to optimally combine different models within an overall ML pipeline. Using our benchmark, we112

Dataset ID #Train #Test #Cat. #Num. #Text Task Metric Prediction Target
prod 5,091 1,273 1 0 1 multiclass accuracy sentiment associated with product review
airbnb 18,316 4,579 37 24 28 multiclass accuracy price of Airbnb listing
channel 20,284 5,071 1 15 1 multiclass accuracy news category to which article belongs
wine 84,123 21,031 0 2 3 multiclass accuracy which variety of wine
imdb 800 200 0 7 4 binary roc-auc whether film is a drama
jigsaw 100,000 25,000 2 27 1 binary roc-auc whether social media comments are toxic
fake 12,725 3,182 2 0 3 binary roc-auc whether job postings are fake
kick 86,502 21,626 3 3 3 binary roc-auc whether proposed Kickstarter project will achieve funding goal
ae 22,662 5,666 3 2 6 regression R2 price of American-Eagle inner-wear items on their website
qaa 4,863 1,216 1 0 3 regression R2 subjective type of answer (in relation to question)
qaq 4,863 1,216 1 0 3 regression R2 subjective type of question (in relation to answer)
cloth 18,788 4,698 2 1 3 regression R2 customer review score for clothing item
mercari 100,000 25,000 3 0 6 regression R2 price of Mercari online marketplace products
jc 10,860 2,715 0 2 3 regression R2 price of JC Penney products on their website
pop 24,007 6,002 1 2 1 regression R2 online popularity of news article

Table 2: The 15 multimodal datasets that comprise our benchmark. ‘#Cat.’, ‘#Num.’ and ‘#Text’
count the number of categorical, numeric, and text features in each dataset, and ‘#Train’ (or ‘#Test’)
count the training (or test) examples. In PDF, click on each Dataset ID for link to original data source.
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Figure 1: Options for fusing modalities in Multimodal-Net (Section 4.2). Two dense layers (not
shown) are added on top of each network in (a)-(c) to output a prediction (real value for regression,
logit vector for classification). Over our benchmark, option (c) aggregated with concatenation
performs best and is the chosen Multimodal-Net architecture in our proposed AutoML strategy.

present a systematic study that aims to cover the major variants of modeling paradigms used by113

practitioners today, including: NLP models to featurize text for tabular models [5, 14, 29], ensembling114

of independently-trained text and tabular models [46], or end-to-end learning with neural networks115

that jointly operate on inputs across text and tabular modalities [36, 52, 53]. In this section, we first116

consider the latter paradigm of multimodal neural network models, which in subsequent sections are117

also considered for text featurization and ensembling with tabular models.118

4.1 Transformer Models for Text119

We first consider solely inputting the text into our neural network and then discuss how to extend the120

network to additional numeric/categorical inputs in Section 4.2. While many neural architectures have121

been proposed to model text, pretrained Transformer networks now dominate modern NLP. These122

models are first pretrained in an unsupervised manner on a massive text corpus before being fine-tuned123

over our (smaller) labeled dataset of interest [13, 52]. This allows our supervised learning to benefit124

from information gleaned from the external text corpus that would otherwise not be available in our125

limited labeled data. The Transformer also effectively aggregates information from various aspects of126

a training example, using a self-attention mechanism to contextualize its intermediate representations127

based on particularly informative features [62]. Since BERT [13] first demonstrated the power of128

Transformer pretraining via Masked Language Modeling (MLM), superior pretraining techniques129

have been developed. RoBERTa [45] dynamically generates masks and pretrains on a larger corpus for130

a longer time, employing the same MLM objective as BERT in which random tokens are masked for131

the Transformer to guess their original value. ELECTRA [10] is an alternative pretraining technique132

in which a simple generative model randomly replaces tokens and the Transformer must classify133

which tokens were replaced.134

Given a dataset with multiple text columns, we feed the tokenized text from all columns jointly135

into our Transformer (with special [SEP] delimiter tokens between fields and a [CLS] prefix token136

appended at the start [13]), as detailed in Appendix A.2. A single embedding vector for all text fields137

is obtained from the Transformer’s representation at the [CLS] position after feeding the merged138

input into the network [13]. Similarly, just a single text field can be embedded via the Transformer’s139

vector representation at the [CLS] position, after feeding only this field into the network.140

4.2 Extending Transformer Architectures to Multimodal Inputs141

In many multimodal datasets, some of the predictive signal solely resides in text fields, while other142

predictive information is restricted to tabular feature values, or complex interactions between text and143

tabular values. To enjoy the benefits of end-to-end learning without sacrificing accuracy, we consider144

how to adapt a Transformer network to simultaneously operate on inputs from both modalities,145
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referring to the resulting network as Multimodal-Net. A natural approach in our setting is to enhance146

the Transformer such that its attention mechanism can contextualize representations of individual text147

tokens based not only on other parts of the text, but also on the values of relevant tabular features as148

well. Below we discuss three different options for implementing the Multimodal-Net that are depicted149

in Figure 1 (with details in Appendix A.3). These options differ in whether information is fused150

across text and tabular modalities: at the input layer (All-Text), in the earlier layers of the network151

near the input (Fuse-Early), or in the later layers of the network near the output (Fuse-Late).152

All-Text A simple (yet crude) option is to convert numeric and categorical values to strings and153

subsequently treat their columns also as text fields [52]. Through its byte-pair encoding, a pretrained154

Transformer can handle most categorical strings and may be able to crudely represent numeric values155

within a certain range (here we round all numbers to 3 significant digits in their string representation).156

Fuse-Early Rather than casting them as strings, we can allow our model to adaptively learn token157

representations for each numeric and categorical feature via backpropagation (see Figure 1b). We158

introduce an extra factorized embedding layer [26, 42] to map categorical values into the same159

Rd vector representation encoded by the pretrained Transformer backbone for text tokens (with160

different embedding layers used for different categorical columns in the table). All numeric features161

are encoded via a single-hidden-layer Multi-layer Perceptron (MLP) to obtain a unified Rd vector162

representation. The resulting d-dimensional vector representations from each modality are jointly fed163

into a 6-layer Transformer encoder whose self-attention operations can model interactions between164

the embeddings of text tokens, categorical values, and numeric values. We refer to this strategy165

as Fuse-Early because only a minimal (yet adaptive) input processing layer is added to convert166

the tabular features into a common vector form which can be jointly fed through many shared167

Transformer layers. Huang et al. [33] considered a similar strategy for applying Transformers to168

entirely numeric/categorical data, albeit without text components that are a major focus here.169

Fuse-Late Rather than aggregating information across modalities in early network layers, we can170

perform separate neural operations on each data type and only aggregate per-modality representations171

into a single representation near the output layer (see Figure 1c). This multi-branch design allows172

each branch to extract higher-level representations of the values from each modality, before the173

network needs to consider how modalities should be fused. Here we use a multi-tower architecture174

in which numeric and categorical features are fed into separate MLPs for each modality. The text175

features are fed into a (pretrained) Transformer network. The topmost vector representations of all176

three networks are pooled into a single vector (via either: mean/max pooling or concatenation) from177

which predictions are output via two dense layers.178

5 Featurizing Text for Tabular Models179

Despite their success for modeling text, the application of Transformer architectures to tabular180

data remains limited [17, 18, 33]. The use of tabular models together with Transformer-like text181

architectures has also received little attention [39, 63]. Note that ‘tabular models’ throughout are182

those trained on only numeric/categorical features, e.g. different types of decision tree ensembles.183

In this paper, all tabular (numeric/categorical) modeling is simply done via AutoGluon-Tabular,184

an easy-to-use and highly accurate open-source tool for automated supervised learning on tabular185

data [4, 15, 18, 19, 70]. AutoGluon achieves strong performance by ensembling a diverse suite of186

high-quality models for tabular data, including: multiple variants of Gradient Boosted Decision Trees187

[9, 38, 49], Extremely Randomized Trees [24], and fully-connected Neural Networks (MLP) [15].188

While neural networks are typically favored for unstructured data like text, decision tree ensembles189

have proven to be one of the most consistently performant models for tabular data [3, 18, 33]. While190

deploying home-grown ensembles can be tricky, AutoGluon automatically constructs and deploys its191

ensembles without any engineering overhead for the user. For real-time applications with latency192

constraints, AutoGluon provides many options to accelerate ensemble inference via pruning or193

distillation [18]. Since we have contributed the multimodal ensembling techniques of this paper into194

AutoGluon, our strategies can be utilized with all of the same benefits. Furthermore, AutoGluon195

optionally provides sophisticated hyperparameter-tuning [40] for all of its models, which can now be196

easily applied to our proposed text/tabular modeling pipeline as well.197

To allow tabular models to access information in text fields, the text is typically first mapped to a198

continuous vector representation which replaces a text column in our data table with multiple numeric199
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Figure 2: Options for combining Multimodal-Net with classical tabular models. Five particular
tabular models are used in this paper: extremely randomized trees, a simple MLP, and three different
types of gradient boosted decision trees. Over our benchmark, option (c) performs the best and is
chosen as the strategy for aggregating text and tabular models in our proposed AutoML solution.

columns (one for each vector dimension). One can treat each text column as a document, and each200

individual text field as a paragraph within the document, such that each text field can be featurized via201

NLP methods for computing text representations [14, 47, 54] before the tabular models are trained.202

5.1 Neural Embedding of Text as Tabular Features203

Rather than classical NLP methods like N-grams or word embeddings [14], a Transformer can204

instead be used to map the text fields into a vector representation via contextual embedding [5,205

13]. Subsequently, the text fields are replaced in the data table by additional numeric columns206

corresponding to each dimension of the embedding vector (Embedding-as-Feature in Figure 2a). We207

consider three ways to featurize text using a Transformer.208

Pre-Embedding Most straightforward is to embed text via a pretrained Transformer (not fine-tuned209

on our labeled data), and subsequently train tabular models over the featurized data table [5].210

Text-Embedding The Pre-Embedding strategy is not informed about our particular prediction211

problem and the domain of the text data. In Text-Embedding, we further fine-tune the pretrained212

Transformer to predict our labels from only the text fields, and use the resulting Text-Net to embed213

the text. By adapting to the domain of the specific prediction task, Text-Embedding is able to extract214

more relevant textual features that can improve the performance of tabular models. This is particularly215

true in settings where the target only depends on one out of many text fields, since the fine-tuning216

process can produce representations that vary more based on the relevant field vs. irrelevant text.217

Multimodal-Embedding Text representations may improve when self-attention is informed by218

context regarding numeric/categorical features. Thus we also consider embedding text via our219

best multimodal network from Section 4.2 (depicted in Figure 1c). These models are again fine-220

tuned using the labeled data and now produce a single vector representation for all columns in the221

dataset, regardless of their type. Since Transformers are better suited for modeling text than tabular222

features, we only replace the text fields with the learned vector, all other non-text features are kept223

and used for subsequent tabular learning. Thus the sole difference between Text-Embedding and224

Multimodal-Embedding is that the embeddings used to replace text are additionally contextualized on225

numeric/categorical feature values in the latter method.226

6 Aggregating Text & Tabular Models227

Rather than merely leveraging the Transformers for their embedding vector representations as in228

Section 5.1, an alternative multimodal text/tabular modeling strategy is to instead consider their229

predictions and ensemble these with predictions from tabular models. Utilized by most AutoML230

frameworks [15, 21, 43], model ensembling is a straightforward technique to boost predictive accuracy.231

Ensembling is particularly suited for multimodal data, where different models may be trained with232

different modalities. However, the resulting ensemble may then be unable to exploit nonlinear233

predictive interactions between features from different modalities. To remedy this, we advocate for234

the use of our multimodal Transformers (from Section 4.2) that fuse information from text and tabular235

inputs. Furthermore, we propose stack ensembling with nonlinear aggregation of model predictions236

that can exploit inter-modality interactions between different base models’ predictions, even when237

base models do not overlap in modality.238
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Weighted-Ensemble We first consider straightforward aggregation via a weighted average of the239

predictions from our Transformer model and various tabular models (like those trained by AutoGluon-240

Tabular). Here, our Transformer and other models are independently trained using a common241

training/validation split. Subsequently, we apply ensemble selection, a forward-selection algorithm242

to fit aggregation weights over all models’ predictions on the held-out validation data [8]. Unlike243

regression for fitting the aggregation weights [43, 60], ensemble selection is favored by many tabular244

AutoML tools like AutoGluon as it is more computationally efficient, less prone to overfitting, and245

naturally favors sparse weights [15, 22].246

Stack-Ensemble Rather than restricting the aggregation to a linear combination, we can use247

stacking [68]. This trains another ML model to learn the best aggregation strategy. The features248

upon which the ‘stacker’ model operates are the predictions output by all base models (including249

our Transformer), concatenated with the original tabular features in the data. Following Erickson250

et al. [15], we try each type of tabular model in AutoGluon-Tabular as a stacker model (see Appendix251

A.5). To output predictions, a weighted ensemble is constructed via ensemble selection applied to the252

tabular stacker models (Figure 2c). We do not consider our larger Transformer model as a stacker253

since lightweight aggregation models are preferred in practice. Overfitting is a key peril in stacking,254

and we ensure that stacker models are only trained over held out predictions produced from base255

models via 5-fold cross-validation (bagging) [15, 60].256

7 Experiments257

Here we empirically evaluate the many aforementioned multimodal AutoML strategies. To keep our258

study tractable, we adopt a sequential decision making process that decomposes the overall design259

into three stages: 1) determine the appropriate Transformer backbone and fine-tuning strategy for260

text data alone (Section 4.1), 2) determine the best way to extend this Transformer to text and tabular261

inputs (Section 4.2), and 3) choose the best method to combine text and tabular models (Sections 5262

and 6). At each subsequent stage of the study, we explore modeling choices that are specific to that263

stage and simply use the best choice found in the empirical comparisons of the options available in264

previous stages. Myopic sequential design may fail to identify particularly synergistic choices across265

all stages of the AutoML pipeline as it favors choices which are independently performant at each266

stage and complement the choices made in previous stages. There is however no way to practically267

evaluate a larger combinatorial assortment of possible choices, and our sequential restriction may268

actually lead to a more robust/modular AutoML solution that better generalizes to new datasets with269

unique characteristics not found in our benchmark.270

Each modeling strategy is run over our benchmark of 15 tabular datasets with text fields, detailed271

in Section 3. For straightforward comparison, we employ the most commonly used classifica-272

tion/regression evaluation metrics that are bounded in [0, 1] with higher values indicating superior273

performance. We evaluate regression tasks via the coefficient of determination R2, multiclass274

classification tasks via accuracy, and binary classification tasks via area under the ROC curve (AUC).275

Choice of Transformer Backbone Our first decision concerns the Transformer network itself,276

including what architecture and pretraining objective to employ. Existing results may not translate to277

our setting, since Transformers are typically applied to datasets with at most a couple text fields per278

training example [64, 65]. Here we choose between the (standard, already pretrained) base version of279

RoBERTa [45] or ELECTRA [10], two popular backbones used across modern NLP applications.280

We first fine-tune the pretrained Transformer models as our sole predictors, using only the text281

features in each dataset. This helps identify which model is better at handling the types of text in282

our multimodal datasets. During fine-tuning of both of the RoBERTa or ELECTRA networks, we283

additionally consider two tricks to boost performance: 1) Exponentially decay the learning rate of the284

network parameters based on their depth [57]. We use a per-layer learning rate multiplier of ⌧d in285

which d is the layer depth and ⌧ is the decay factor (set = 0.8 throughout). 2) Average the weights of286

the models loaded from the top-3 training checkpoints with the best validation scores [62].287

The first section of Table 3 shows that ELECTRA performs better than RoBERTa across the text288

columns in our benchmark datasets. Our exponential decay and checkpoint-averaging tricks further289

boost performance, with the majority of additional gains produced by exponential decay. In subse-290

quent experiments, we thus fix ELECTRA fine-tuned with both exponential decay and checkpoint-291

averaging as the model used to handle text features and call it Text-Net.292
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Method prod qaq qaa cloth airbnb ae mercari jigsaw imdb fake kick jc wine pop channel avg " mrr "
Choosing Text-Net: NLP Backbones and Fine-tuning Tricks (Section 4.1)
RoBERTa 0.588 0.412 0.268 0.700 0.344 0.953 0.561 0.960 0.731 0.929 0.751 0.615 0.811 -0.000 0.301 0.595 0.07
ELECTRA 0.705 0.410 0.356 0.718 0.349 0.955 0.586 0.965 0.750 0.824 0.754 0.606 0.813 0.003 0.315 0.607 0.17
+ Exponential Decay ⌧ = 0.8 0.728 0.436 0.431 0.743 0.337 0.953 0.579 0.963 0.852 0.963 0.760 0.664 0.808 0.004 0.308 0.635 0.09
+ Average 3 F 0.729 0.451 0.432 0.746 0.350 0.954 0.581 0.965 0.858 0.961 0.766 0.656 0.807 0.004 0.307 0.638 0.12

Choosing Multimodal-Net: Fusion Strategy (Section 4.2, Figure 1)
All-Text 0.907 0.454 0.419 0.746 0.366 0.957 0.599 0.967 0.840 0.967 0.799 0.645 0.810 0.013 0.480 0.665 0.19
Fuse-Early 0.913 0.441 0.418 0.745 0.377 0.953 0.596 0.967 0.843 0.960 0.770 0.653 0.806 0.013 0.474 0.662 0.24
Fuse-Late, Concat F 0.907 0.449 0.445 0.747 0.395 0.958 0.603 0.966 0.857 0.961 0.773 0.639 0.812 0.015 0.481 0.667 0.17
Fuse-Late, Mean 0.912 0.458 0.431 0.748 0.399 0.955 0.602 0.967 0.869 0.963 0.773 0.625 0.807 0.015 0.478 0.667 0.09
Fuse-Late, Max 0.910 0.452 0.429 0.747 0.401 0.956 0.599 0.966 0.863 0.957 0.761 0.634 0.808 0.015 0.484 0.665 0.12

Choosing Aggregation: Multimodal Model Aggregation (Sections 5.1 and 6, Figure 2)
Pre-Embedding 0.895 0.216 0.247 0.642 0.449 0.972 0.433 0.586 0.871 0.926 0.743 0.491 0.680 0.012 0.526 0.579 0.13
Text-Embedding 0.867 0.446 0.432 0.748 0.430 0.972 0.434 0.587 0.855 0.962 0.790 0.658 0.830 0.008 0.502 0.635 0.20
Multimodal-Embedding 0.907 0.439 0.437 0.749 0.438 0.974 0.432 0.587 0.847 0.967 0.794 0.683 0.829 0.007 0.517 0.640 0.18
Weighted-Ensemble 0.907 0.439 0.429 0.744 0.453 0.976 0.597 0.957 0.876 0.923 0.787 0.641 0.814 0.018 0.554 0.674 0.39
Stack-Ensemble F 0.909 0.456 0.438 0.751 0.459 0.977 0.605 0.967 0.878 0.964 0.797 0.624 0.836 0.020 0.556 0.683 0.59

Tabular AutoML + Feature Engineering Baselines (Section 5)
AG-Weighted 0.891 0.046 0.076 -0.002 0.426 0.841 0.098 0.587 0.845 0.686 0.668 0.004 0.173 0.016 0.549 0.394 0.11
AG-Stack 0.891 0.046 0.077 0.001 0.435 0.841 0.098 0.587 0.844 0.697 0.670 0.003 0.175 0.017 0.550 0.395 0.10
AG-Weighted+ N-Gram 0.892 0.426 0.382 0.610 0.450 0.978 0.526 0.909 0.842 0.966 0.772 0.357 0.829 0.019 0.546 0.633 0.11
AG-Stack+ N-Gram 0.895 0.414 0.383 0.654 0.466 0.979 0.569 0.915 0.850 0.968 0.775 0.612 0.842 0.020 0.548 0.659 0.19
H2O AutoML 0.869 0.247 0.159 0.163 0.329 0.976 0.430 0.531 0.813 0.756 0.669 0.411 0.478 0.014 0.530 0.492 0.11
H2O AutoML + Word2Vec 0.859 0.244 0.285 0.624 0.347 0.973 0.534 0.847 0.827 0.943 0.755 0.443 0.778 0.013 0.524 0.600 0.16
H2O AutoML + Pre-Embedding 0.846 0.227 0.312 0.644 0.367 0.969 0.282 0.572 0.874 0.893 0.738 0.549 0.571 0.007 0.501 0.557 0.12

Table 3: Accuracy (and R2, AUC) of AutoML strategies over our multimodal benchmark. Column
avg lists each method’s average score across datasets (i.e. how much methods differ in overall
performance) and mrr its mean reciprocal rank among all evaluated methods (i.e. how often a method
outperforms others). Each subsection encapsulates a design stage (F marks variant with best avg).

Best Multimodal Network Next, we explore the best way to extend the Text-Net model to operate293

across numeric/categorical inputs in addition to text fields. Three multimodal network variants294

are considered here: All-Text, Fuse-Early, Fuse-Late (see Figure 1). Across our datasets, Table295

3 shows that the Fuse-Late strategy outperforms the other options for producing predictions from296

multimodal inputs using a single neural network (including Text-Net). We thus fix this model as our297

Multimodal-Net used in subsequent experiments.298

Aggregating Transformers and Tabular Models Having identified a good neural network archi-299

tecture for multimodal text/tabular inputs, we now study combinations of such models with classical300

learning algorithms for tabular data. Where not specified, the tabular models are those trained by301

AutoGluon-Tabular (see Appendix A.5). Here we considered the following aggregation strategies:302

Pre-Embedding, Text-Embedding, Multimodal-Embedding, Weighted-Ensemble, Stack-Ensemble.303

The third section of Table 3 illustrates that Stack-Ensemble is overall the best aggregation strategy. As304

expected, Text-Embedding and Multimodal-Embedding outperform Pre-Embedding, demonstrating305

how domain-specific fine-tuning improves the quality of learned embeddings. Multimodal-Embedding306

performs better than Text-Embedding on some datasets and similarly across the rest, showing it can307

be beneficial to use text representations contextualized on numeric/categorical information.308

AutoGluon Baselines As most of our results are based around the tabular models in AutoGluon309

[15], we also compare different variants of AutoGluon (without our Multimodal-Net) as baselines:310311

AG-Weighted / AG-Stack: We train AutoGluon with weighted / stack ensembling of its tabular312

models, here ignoring all text columns.313314

AG-Weighted + N-Gram / AG-Stack + N-Gram: Similar to AG-Weighted / AG-Stack, except we first315

use AutoGluon’s N-Gram featurization [14] to encode all text in tabular form.316

The performance gap between AutoGluon-Tabular with and without N-Grams can reveal (an approxi-317

mate lower bound for) how much extra predictive value is provided by the text features in each dataset.318

Inspecting these gaps, we find that, compared to the tabular features, text features contain most of the319

predictive signal in some datasets (qaq, qaa, cloth, mercari, jc), and far less signal in other datasets320

(prod, imdb, channel). Note that our proposed Stack-Ensemble performs relatively well across321

all types of datasets, regardless how the predictive signal is allocated between text and tabular features.322323

H2O Baselines In addition to AutoGluon, we also run another popular open-source AutoML tool324

offered by H2O. Since H2O AutoML is not designed for the text in our multimodal data tables, we325

try combining H2O’s NLP tool [29] and tabular AutoML tool [43].326327

H2O AutoML: We run H2O AutoML directly on the original data of our benchmark. It is assumed328

that H2O AutoML ignores all text features (as a tabular AutoML framework), but H2O categorizes329

8



(a) Permutation importance in “mercari”. (b) Permutation importance in “imdb”.

Figure 3: Importance of text vs. tabular features for three models in two datasets (text features in red).

text vs. other feature types slightly differently than us.330331

H2O AutoML + Word2Vec: We run H2O’s word2vec algorithm to featurize text fields and then H2O332

AutoML on the featurized data, following their recommended procedure [29].333334

H2O AutoML + Pre-Embedding: We featurize each text field using embeddings from a pretrained335

ELECTRA Transformer, as in Pre-Embedding, followed by H2O AutoML on the featurized data table.336337

The last section of Table 3 shows that while these powerful AutoML ensemble predictors can338

outperform our individual neural network models (particularly for datasets with more tabular-signal),339

our proposed Stack-Ensemble and Weighted-Ensemble are superior overall. Given the success of340

pretrained Transformers across NLP, we are surprised to find both N-Grams and word2vec here341

provide superior text featurization than Pre-Embedding.342

Performance in Real-world ML Competitions Some datasets in our multimodal benchmark343

originally stem from ML competitions. For these (and other recent competitions with text/tabular344

data), we fit our automated solution using the official competition dataset, without manual adjustment345

or data preprocessing. We then submit its resulting predictions on the competition test data to be346

scored, which enables us to see how they fare against the manual efforts of human data science teams.347

Our Stack-Ensemble model achieves 1st place historical leaderboard rank in two MachineHack348

prediction competitions: Product Sentiment Classification3 and Predict the Data Scientists Salary in349

India4, and this model achieves 2nd place in another: Predict the Price of Books5, as well as a Kaggle350

competition: California House Prices6. Simply training only our Multimodal-Net suffices to achieve351

2nd place in a very popular Kaggle competition in which 2380 teams participated: Mercari Price352

Suggestion Challenge7 (which offered a $100,000 prize). These results demonstrate that, without any353

manual adjustment, the AutoML strategy identified from our benchmark is competitive with human354

data scientists on real-world text/tabular datasets that possess great commercial value.355

Feature Importance Analysis Feature importance helps us understand what drives a ML system’s356

accuracy and whether text fields in a dataset are worth their overhead. We compute permutation357

feature importance [6] for our models, which is defined as the drop in prediction accuracy after358

values of only this feature (which are entire text fields for a text column) are shuffled in the test data359

(across rows). We only shuffle original column values so our importance scores are not biased by360

preprocessing/featurization decisions (except in how these directly affect model accuracy). Figure 3361

shows that both our Multimodal-Net and Stack-Ensemble containing this network rely more heavily362

on text features than the AG-Stack+N-Gram baseline. With more powerful modeling of text fields,363

models often begin to rely more heavily on the text fields. An exception here is the brand_name364

feature in mercari, but this feature usually contains just a single word in its fields.365

3https://www.machinehack.com/hackathons/product_sentiment_classification_weekend_hackathon_19/overview
(“Anonymous Submission ID 1556” entry)

4https://machinehack.com/hackathons/predict_the_data_scientists_salary_in_india_hackathon/overview
(“Xingjian Shi” entry)

5https://machinehack.com/hackathons/predict_the_price_of_books/overview
6https://www.kaggle.com/c/california-house-prices (“sxjscience” entry)
7Multimodal-Net achieved a score of 0.38685 on the private leaderboard: https://github.com/submission001/

anonymoussubmission_automl/blob/master/competition_submissions/mercari_submission_screenshot.png.
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8 Discussion366

Lacking public benchmarks, academic research on ML for multimodal text/tabular data has not367

matched industry demand to derive practical value from such data. This paper provides evidence368

that generic best practices for such data remain unclear today: we simply evaluated a few basic369

strategies on our benchmark and found a single automated strategy that turns out to outperform top370

human data scientists in numerous historical prediction competitions involving diverse text/tabular371

data. This strategy uses a stack ensemble (Section 6) of tabular models trained on top of predictions372

from other tabular models and a Multimodal-Net (depicted in Figure 2c). The latter network is373

based on a Fuse-Late architecture (depicted in Figure 1c) with concatenation of text, numeric, and374

categorical representations (where text representations are produced via the ELECTRA Transformer375

backbone) and is trained via fine-tuning with exponential learning rate decay and checkpoint averaging.376

The competitive performance of this empirically-identified strategy supports the premise that our377

benchmark is sufficiently diverse and representative of real-world text/tabular prediction tasks. Our378

rigorous benchmark challenges conventional beliefs:379

• Neural embedding of text followed by tabular modeling (Pre/Text-Embedding) [5, 29] is380

often outperformed by N-gram featurization (AG-Stack + N-Gram) or leveraging predictions381

from text neural networks (Stack-Ensemble) rather than their representations (embeddings).382

• In the architecture of multimodal networks for classification/regression, newer ideas to fuse383

modalities in early layers (i.e. Fuse-Early/All-Text Transformers with cross-modality atten-384

tion [32, 52, 55]) are not necessarily superior to older multi-tower Fuse-Late architectures385

that fuse representations in higher layers closer to the output [2, 36, 53].386

• An end-to-end multimodal neural network is surpassed by stack ensembling this Multimodal-387

Net with tabular models trained in separate stages rather than end-to-end (Stack-Ensemble).388

389
Previously anticipated conclusions that are empirically validated by our benchmark include:390

• Text featurization is better via fine-tuned networks (Text-Embedding) than pretrained ones391

(Pre-Embedding), and slightly better via a fine-tuned multimodal network (Multimodal-392

Embedding), whose text embeddings benefit from contextualization on the tabular features.393

• Naively casting numeric/categorical features as strings (All-Text) is simple yet effective [52].394

• Able to exploit predictive interactions between different modalities, stack ensembling395

outperforms simple weighted ensembling, yet it still facilitates modular system design.396

Further analysis of our benchmark can reveal many more practical ML insights. Important questions397

not considered here include how to best: Handle many long text fields? Perform multimodal feature398

selection? Apply feature engineering that combines synergistically with learned neural network399

representations? Allocate limited training/HPO time between cheaper tabular models and more400

expensive text neural networks? We consider the study presented in this paper as a starting point401

for multimodal AutoML with text/tabular data. welcome contributions to improve them further.402

Our public benchmark and open-source methods will hopefully stimulate the AutoML community403

to broaden the applicability of their methods to more heterogeneous data types, especially those404

modalities that commonly co-occur in real-world ML applications.405

We caution our benchmark only contains text in the English language and primarily from commercial406

domains. Thus its conclusions will only hold for particular types of applications. To ensure similar407

advancements for text/tabular data with low-resource languages [31, 37, 41], we encourage the408

development of a similar benchmark with non-English text. We also caution that analysis of text fields409

may raise privacy concerns as such fields may expose arbitrary personal information [7, 20]. Since410

text fields may contain arbitrary information, they are also prone to introducing spurious correlations411

in training data that may harm accuracy during deployment [59] and may be undesirably coupled to412

protected attributes such as race, gender, or socioeconomic status [67]. Basing automated business413

decisions on customer-generated text could also be more susceptible to adversarial manipulation [44]414

than tabular features that customers cannot as easily control.415
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