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ABSTRACT

Diffusion models have become competitive candidates for solving various inverse
problems. Models trained for specific inverse problems work well but are limited
to their particular use cases, whereas methods that use problem-agnostic mod-
els are general but often perform worse empirically. To address this dilemma,
we introduce Pseudoinverse-guided Diffusion Models (ΠGDM), an approach that
uses problem-agnostic models to close the gap in performance. ΠGDM directly
estimates conditional scores from the measurement model of the inverse problem
without additional training. It can address inverse problems with noisy, non-linear,
or even non-differentiable measurements, in contrast to many existing approaches
that are limited to noiseless linear ones. We illustrate the empirical effectiveness of
ΠGDM on several image restoration tasks, including super-resolution, inpainting
and JPEG restoration. On ImageNet, ΠGDM is competitive with state-of-the-art
diffusion models trained on specific tasks, and is the first to achieve this with
problem-agnostic diffusion models. ΠGDM can also solve a wider set of inverse
problems where the measurement processes are composed of several simpler ones.

1 INTRODUCTION
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Figure 1: High-level illustration of ΠGDM. (Top) Problem-agnostic diffusion models perform an it-
erative denoising operation to produce random samples. (Bottom) ΠGDM utilizes problem-agnostic
diffusion models to solve inverse problems, a key component of which is pseudoinverse guidance
(ΠG). ΠG converts the problem-agnostic score function into a problem-specific one, using informa-
tion about the measurements y and measurement model, denoted as h here (h is JPEG compression
+ masking in this figure, best viewed zoomed in). The additional guidance term is a vector-Jacobian
product (VJP) that encourages consistency between the denoising result and the measurements, after
a pseudoinverse transformation h†. ΠGDM applies the denoising process from ΠG in an iterative
fashion to generate valid solutions to the inverse problem.
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Figure 2: ΠGDM applies a single problem-agnostic diffusion model for various inverse problems,
avoiding the cost of training multiple problem-specific ones. Best viewed zoomed in.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021c) have been success-
fully applied to various applications such as text-to-image generation (Rombach et al., 2022; Saharia
et al., 2022b), natural language generation (Li et al., 2022), audio synthesis (Kong et al., 2020), and
time series modeling (Tashiro et al., 2021). The ability to model complex, high-dimensional distri-
butions also makes diffusion models strong candidates for solving inverse problems, where the goal
is to infer the underlying signal from measurements (Bora et al., 2017; Daras et al., 2021; Ongie
et al., 2020; Kadkhodaie & Simoncelli, 2021).

Most methods that solve inverse problems with diffusion models fall into one of the two paradigms.
In the first paradigm, one trains a problem-specific, conditional diffusion model that is limited to
specific inverse problems, such as super-resolution (Saharia et al., 2021; Whang et al., 2021; Saharia
et al., 2022a). In the second paradigm, one uses problem-agnostic diffusion models that are trained
for generative modeling but not train on any specific inverse problem; solutions are obtained via a
“plug-and-play” approach that combines the diffusion model and the measurement process, e.g., via
Bayes’ rule (Venkatakrishnan et al., 2013a; Bardsley, 2012; Laumont et al., 2022; Choi et al., 2021;
Song et al., 2021b; Jalal et al., 2021; Chung et al., 2021; Kawar et al., 2021; 2022a; Chung et al.,
2022b; Daras et al., 2022a). These methods can easily adapt to different tasks without re-training
the diffusion model but tend to perform worse than problem-specific diffusion models.

To achieve the best of both worlds, we introduce pseudoinverse guidance (ΠG), which uses problem-
agnostic diffusion models to reach the empirical performance of problem-specific ones. Conditioned
on the measurements and an explicit measurement model, ΠG estimates the problem-specific score
function via Bayes’ rule and uses these scores to draw samples. However, unlike classifier/classifier-
free guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), ΠG obtains the problem-specific
score directly via the known measurement model, without training additional models. Intuitively,
ΠG guides the diffusion process by matching the one-step denoising solution and the ground-truth
measurements, after transforming both via a “pseudoinverse” of the measurement model (see Fig. 1).
This perspective allows ΠG to be the first guidance-based approach for inverse problem solving that
handles measurements with Gaussian noise, as well as some non-linear, non-differentiable measure-
ment models, such as JPEG compression (Kawar et al., 2022b).

We evaluate our method, termed Pseudoinverse-Guided Diffusion Models (ΠGDM), on various in-
verse problems, such as super-resolution, inpainting, and JPEG restoration over ImageNet validation
images, and show that it achieves similar performance when compared against state-of-the-art task-
specific diffusion models (Saharia et al., 2021; Dhariwal & Nichol, 2021; Saharia et al., 2022a).
To the best of our knowledge, ΠGDM is the first approach based on problem-agnostic models to
achieve this quality on ImageNet. We further apply ΠGDM to a wider range of inverse problems,
where the measurement process is composed of different types of measurements. This allows us to
easily solve a much wider set of problems, including ones have never been solved with diffusion
models (see Fig. 2), such as low-resolution + JPEG compression + masking.
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2 PRELIMINARIES: DIFFUSION MODELS

Let us denote the data distribution as p0(x0) and define a family of distributions pt(xt) by injecting
i.i.d. Gaussian noise of standard deviation σt to samples of p0(x), i.e., pt(xt|x0) = N (x0, σ

2
t I).

The standard deviation σt is monotonically increasing with respect to time t ∈ [0, T ], with σ0 = 0
and σT being much larger than the standard deviation of the data1. Samples from pt(x) can be
simulated by the following family of stochastic differential equations (SDE), solving from t = T to
t = 0 (Grenander & Miller, 1994; Karras et al., 2022; Zhang et al., 2022):

dx = − σ̇tσt∇x log pt(x)dt︸ ︷︷ ︸
Probabilistic ODE

−βtσ
2
t∇x log pt(x)dt+

√
2βtσtdωt︸ ︷︷ ︸

Langevin process

, (1)

where ∇x log pt(x) is the score function, ωt is the standard Wiener process, and βt is a function
that describes the amount of stochastic noise injected in the process. If βt = 0 for all t, then Eq. 1
becomes an ordinary differential equation (ODE) (Anderson, 1982). A common choice of βt is
ησ̇t/σt, where η = 1 corresponds to the variance-exploding SDE (VE-SDE, Song et al. (2021c))
and η = 0 corresponds to a version of denoising diffusion implicit models (DDIM, Song et al.
(2021a)). Various forms of SDEs used by diffusion models in the literature can be described with
Eq. 1 with certain σt and βt functions, up to a time-dependent scaling factor over x.

Diffusion models, a.k.a. score-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2021c), solve Eq. 1 with two key approximations. The distribution with the highest noise
level, pT (x), is approximated with N (0, σ2

T I), and the score function is approximated with a neu-
ral network ∇x log pt(x) ≈ Sθ(x;σt), trained with denoising score matching objectives (Vincent,
2011). Then, samples are drawn from diffusion models by solving the ODE or SDE in Eq. 1, such as
with Euler’s method, Euler-Maruyama, and higher order ODE solvers (Lu et al., 2022; Karras et al.,
2022; Zhang & Chen, 2022).

3 METHODS

Problem statement Suppose we have measurements y ∈ Rm of some signal x0 ∈ Rn, such that

y = Hx0 + z, (2)

where H ∈ Rn×m is the known measurement matrix (model), and z ∼ N (0, σ2
yI) is an i.i.d.

Gaussian noise vector with known dimension-wise standard deviation σy. Our goal is to solve the
inverse problem and recover x0 ∈ Rn from the measurements y. In later parts of the paper, we may
consider inverse problems whose measurements are not linear, which we denote as y = h(x0).

Diffusion models can solve such inverse problems via Eq. 1, assuming that the problem-specific
scores for all noise levels, i.e., ∇xt

log pt(xt|y), are available. While it is possible to train a condi-
tional diffusion model for a specific H , it is computationally expensive to do this for a large family
of problems, such as sparse reconstruction in medical imaging (Chung & Ye, 2022). Therefore,
we wish to utilize more commonly available problem-agnostic score models Sθ(x;σt) that are not
trained specifically for the target inverse problem. If ∇xt log pt(xt|y) can be effectively approxi-
mated with Sθ(xt;σt), then we can directly plug it in Eq. 1 to solve the inverse problem.

3.1 APPROXIMATING THE PROBLEM-SPECIFIC SCORE FUNCTION

The problem-specific score can be decomposed via Bayes’ rule:

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt),

where the first term can be approximated with the score network Sθ(xt;σt) (Vincent, 2011), and the
second term is a guidance term which is the score of pt(y|xt).

Unfortunately, the score ∇xt
log pt(y|xt) is intractable to compute, and we have to resort to ap-

proximations to efficiently estimate it. To see why this is true, we consider the underlying graphical
model for x0,xt, and y, which is y ← x0 → xt; xt is produced by adding independent Gaussian

1To save space, we use subscript index σt to represent the parentheses index σ(t) for functions of t.
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noise to x0, so it is independent of the measurement y when conditioned on x0. Therefore, we can
write:

pt(y|xt) =

∫
x0

p(x0|xt)p(y|x0)dx0, (3)

which involves a marginalization over x0. The likelihood of p(y|x0) is tractable, yet samples from
p(x0|xt) can only be approximated by the diffusion model with high precision (using the variational
inference argument by Sohl-Dickstein et al. (2015); Ho et al. (2020)); when t → T , sampling from
p(x0|xt) essentially becomes sampling from the entire diffusion model. Even using Monte Carlo
methods, it is computationally infeasible to estimate pt(y|xt), let alone its score (where the Monte
Carlo estimate will also be biased).

Our solution to this issue is to use reasonable approximations to the true pt(x0|xt), such that the
resulting approximation to the score ∇xt

log pt(y|xt) is easy to compute. Intuitively, instead of
representing p(x0|xt) with the entire diffusion model from time t to 0, we use a one-step denoising
process. Specifically, we first approximate pt(x0|xt) with the following Gaussian:

pt(x0|xt) ≈ N (x̂t, r
2
t I), (4)

where the mean is obtained from Tweedie’s formula:

x̂t = E[x0|xt] = xt + σ2
t∇xt

log pt(xt) ≈ xt + σ2
tSθ(x;σt). (5)

Eq. 5 represents the minimum mean squared error (MMSE) estimator of x0 given xt and the noise
standard deviation σt (Stein, 1981; Efron, 2011; Saremi & Hyvärinen, 2019), and rt is a time-
dependent standard deviation value that should depend on the data (see discussion in App. A.3).
Our choice for the mean (MMSE) can be justified using an argument related to variational inference
(App. A.6).

Our next step is to approximate the score of pt(y|xt). Since the measurement model obtains y by
performing a linear transform on x0 and adding independent Gaussian noise (Eq. 2), and pt(x0|xt)
is Gaussian under our approximation (Eq. 4), the distribution of y conditioned on xt is also Gaussian
under our approximation, as follows:

pt(y|xt) ≈ N (Hx̂t, r
2
tHH⊤ + σ2

yI). (6)

Thus, we have the following approximation to the score2:

∇xt log pt(y|xt) ≈
(
(y −Hx̂t)

⊤ (
r2tHH⊤ + σ2

yI
)−1

H︸ ︷︷ ︸
vector

∂x̂t

∂xt︸︷︷︸
Jacobian

)⊤
. (7)

This is a vector-Jacobian product and can be computed with backpropagation.

3.2 EXTENDING TO NON-LINEAR OPERATORS

In many cases, we have that σy = 0, and thus, Eq. 7 can be simplified to:

∇xt log pt(y|xt) ≈ r−2
t

(
(H†y −H†Hx̂t)

⊤ ∂x̂t

∂xt

)⊤
; (8)

where for a matrix with linearly independent rows, H† = H⊤(HH⊤)−1 is the Moore-Penrose
pseudoinverse of H . In this paper, we use the term pseudoinverse guidance (ΠG) to denote our
guidance method, which uses Eq. 8 for noiseless measurements and Eq. 7 for noisy linear ones.

Notably, we only need to perform automatic differentiation explicitly through the score model, but
not through the computational graph with H or H† (see Listing 1 in App. A.1). This allows us to
extend ΠG to measurements that are not necessarily linear or even differentiable. We note that the
matrix pseudoinverse satisfies HH†Hx = Hx for all x ∈ X . Analogously, for some non-linear
measurement function h : Rn → Rm, we may find another function h† : Rm → Rn such that
h(h†(h(x))) = h(x) for all x ∈ Rn, similar to Kawar et al. (2022b). Two examples are as follows:

2We use the numerator layout, so gradient is the transpose of derivative.
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Quantization Let h(x) = ⌊x⌋ be the element-wise floor function of x ∈ Rn. Then we can define
h†(x) := x for all x ∈ Z, and h(h†(h(x))) is still the floor function.

JPEG encoding Let h(x) be the JPEG encoding function, where quantization occurs after a dis-
crete cosine transform operation. The corresponding JPEG decoding algorithm does not modify the
values produced after quantization, so we can simply define h†(x) as the JPEG decoding algorithm.

This idea can also be applied to other measurement models, such as the formation of a low dynamic
range image (details in App. A.5). The corresponding ΠG term would then become:

∇xt
log pt(y|xt) ≈ r−2

t

(
(h†(y)− h†(h(x̂t)))

⊤ ∂x̂t

∂xt

)⊤
, (9)

which generalizes the linear case (Eq. 8) when h(x) = Hx and h†(x) = H†x for all x ∈ Rn.

3.3 ADAPTIVE WEIGHTS IN GUIDED DIFFUSION MODELS

Similar to the guidance scalar in the classifier(-free) guidance literature (Dhariwal & Nichol, 2021;
Ho & Salimans, 2022), we introduce a scalar weight in front of the guidance term∇xt log pt(y|xt).
However, unlike most existing methods that apply a fixed weight for different diffusion times, we
introduce a heuristic that implicitly adapts the guidance weights according to the timestep. We use
f(xt; s, t, η) to denote the one step update using the problem-agnostic score model from time t to
times s (assuming s < t), using the sampler introduced in the DDIM paper (Song et al., 2021a),
with η ∈ [0, 1] being a hyperparameter (details in App. A.4). Our one-step sampling update from
time t to time s with pseudoinverse guidance is:

xs = f(xt; s, t, η) + r2t∇xt log pt(y|xt). (10)

If we use the noiseless case in Eq. 9, this becomes:

xs = f(xt; s, t, η) +

(
(h†(y)− h†(h(x̂t)))

⊤ ∂x̂t

∂xt

)⊤

. (11)

We describe the algorithm in Algorithm 1 (App. A.1). As the coefficients for the problem-agnostic
score∇xt log pt(xt) depend on the step t→ s, this is equivalent to using the original DDIM sampler
but adapting the weights to the pseudoinverse guidance term at different timesteps. To illustrate this,
we can compare the ratio between the weights of our approach and the ones with wr = 1 in Ho et al.
(2022) (see Fig. 6). Intuitively, our approach increases the weights during the initial sampling phase
and then decreases it to one towards the end. We also compare our weights with the ones used in Ho
et al. (2022) on image restoration problems, both of which use the pseudoinverse guidance with 100
diffusion steps and η = 0.2. On the super-resolution case (Fig. 7), our weights consistently produce
sharp images. We further illustrate the advantages of our weights on JPEG restoration in App. A.4,
where large, fixed weights that worked better in super-resolution could be unstable in another task.

3.4 DIFFERENCES FROM EXISTING GUIDANCE METHODS

Table 1: Comparison of different guidance methods.

Guidance Expression xt → y differentiable Train on (xt,y) Noisy y

Classifier ∇xt
log q(y|xt) Required Yes -

Reconstruction ∇xt
∥y −Hx̂t∥22 Required No No

Pseudoinverse Eqs. 7 to 9 Not required No Yes

Our approach is notably different from prior guidance-based methods in terms of how the condi-
tional score ∇xt

log p(y|xt) is approximated (see Tab. 1). Compared with classifier / classifier-free
guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), we do not require training on pairs of
(xt,y) (noisy data and measurements). Compared with reconstruction guidance (Ho et al., 2022;
Chung et al., 2022b; Ryu & Ye, 2022), ΠG has three advantages:

5



Under review as a conference paper at ICLR 2023

• Our approximation of p(x0|xt) is consistent, i.e., it does not depend on the measurement
model H . The same cannot be said for reconstruction guidance, which makes isotropic
Gaussian assumptions on y (see App. A.2).

• In reconstruction guidance, the pseudoinverse H† is replaced with matrix transpose H⊤

(see App. A.2), which is different for linear H whose singular values are not all 0 or 1.
• ΠG can be applied to noisy, non-linear, or non-differentiable measurement models, as dis-

cussed in Sec. 3.2. In cases like JPEG, it is easier to define a generalized notion of pseu-
doinverse than a generalized notion of transpose (or adjoint).

4 RELATED WORK

Deep neural networks have been extensively used as priors for solving inverse problems (Venkatakr-
ishnan et al., 2013b). Here, we focus on the setting where we can train models based on clean
data but not on the problem, which is only known at inference time. This is reasonable in many
real-world applications, such as medical imaging (Jalal et al., 2021; Chung & Ye, 2022) and JPEG
restoration (Ehrlich et al., 2020). These inverse problem solvers may use different types of neural
networks, such as randomly initialized networks (Ulyanov et al., 2018), denoisers (Romano et al.,
2016), robust classifiers (Santurkar et al., 2019), and generative models (Bora et al., 2017). Methods
based on generative adversarial networks (GANs, Goodfellow et al. (2014)) search for the latent
variables and/or the generator parameters that would produce images aligning with the measure-
ments (Bora et al., 2017; Pan et al., 2021; Menon et al., 2020); these methods often require hundreds
if not thousands of iterations, despite recent methods with improved efficiency (Daras et al., 2022a).

As another family of generative models, diffusion models are also used as inverse problem solvers,
with two notable advantages over GANs: (i) it is trained with regression objectives over noisy data,
so it can naturally deal with measurement noise without having to perform inversion like in GANs;
(ii) its close connections to SDE/ODE solvers allow the use of more efficient iterative updates. In
particular, Denoising Diffusion Restoration Models (DDRM, Kawar et al. (2022a)) leverage both to
derive efficient inverse problem solvers for both noisy and noiseless measurements.

Similar to DDRM, many works adopt a “replacement” approach, where consistency with the mea-
surements are enforced by replacing parts of its intermediate predictions from the one-step denoiser
with the measurements, sometimes in a transformed space (Song et al., 2021c; Choi et al., 2021;
Song et al., 2021b; Chung et al., 2021; Kawar et al., 2021). Despite being successful in many tasks,
they have trouble dealing with sparse measurements, where the replacements have weaker impact on
the sampling process. By computing additional gradients through the diffusion model, ΠG allows
the measurements to impact all the predicted values during the updates, regardless of sparsity. This
is similar to reconstruction guidance, which also differentiates through the diffusion model during
its updates (Ho et al., 2022; Ryu & Ye, 2022; Chung et al., 2022b). In fact, ΠG is identical in
the noiseless, linear case if the transpose of the measurement matrix is equal to its pseudoinverse
(App. A.2). Nevertheless, ΠG introduces principled ways of dealing with noisy, non-linear, or even
non-differentiable measurements, as discussed in Sec. 3.4.

5 EXPERIMENTS

Our approach, named Pseudoinverse-guided Diffusion Models (ΠGDM), combines ΠG (Eqs. 7 to 9)
and the adaptive weight schedule (Eq. 10). While we use a sampler based on DDIM here, we
note that other samplers can be used as well. We evaluate quantitative results on the ImageNet
dataset (Russakovsky et al., 2015) with publicly available diffusion models trained on images of
size 256 × 256, as there are extensive prior results with problem-specific diffusion models trained
on ImageNet (Dhariwal & Nichol, 2021; Saharia et al., 2021; 2022a).

• First, we compare ΠGDM against problem-specific models on 4× super-resolution, in-
painting, and JPEG restoration. Despite the “unfair” advantage held by problem-specific
models, ΠGDM is on par with them in terms of performance.

• Next, we perform an ablation study over the two components introduced in this paper.
• Finally, we apply ΠGDM to inverse problems where the measurement process is composed

of several steps, such as JPEG + super-resolution + inpainting, denoising + inpainting, etc..
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JPEG (QF = 5) Palette GDM Reference

Figure 3: Results on JPEG restoration. From left to right: the compressed JPEG image, restoration
results from Palette (task-specific) and ΠGDM (task-agnostic), and the reference image.

The compositional nature of these problems makes it infeasible to train diffusion models
for each problem and highlights the strength of ΠGDM.

5.1 QUANTITATIVE RESULTS

We consider two popular metrics, Frechet Inception Distance (FID, (Heusel et al., 2017)) and Clas-
sifier Accuracy (CA) of a pre-trained ResNet50 model (He et al., 2015). Unless specified otherwise,
we use the noiseless version for pseudoinverse guidance (Eq. 8). We report super-resolution results
on the full ImageNet validation set, and to follow the earlier practice established in Saharia et al.
(2022a), we report inpainting and JPEG restoration results on a subset that contains 10k images3.
The ImageNet models that we use are trained with 1000 discrete timesteps, corresponding to 1000
discrete noise levels (Dhariwal & Nichol, 2021). For simplicity, we always use uniform spacing
when we iterate the timesteps. Performance may further improve with better timestep scheduling,
such as the one that iterates more frequently at lower noise levels (Karras et al., 2022). We use 100
iterations and η = 1.0 for ΠGDM, and include additional task-specific details in App. B.

5.1.1 SUPER-RESOLUTION

We apply average pooling (Pool) and bicubic interpolation (Bicubic, which applies a convolution to
the image) to produce two sets of 64 × 64 images, and then apply our 4× super-resolution algo-
rithms to each. We consider both class-conditional (denoted as cc in Tab. 2) and class-unconditional
models as the base generative model. In Tab. 2, we report results from ΠGDM and three other
baselines: DDRM (Kawar et al. (2022a)), SR3 (Saharia et al. (2021)), and ADM-U (Dhariwal &
Nichol (2021)). DDRM uses task-agnostic models, whereas SR3 and ADM-U use diffusion models
specifically for the 64 → 256 super-resolution problem. On Pool, ΠGDM significantly outper-
forms DDRM, while only being slightly worse than ADM-U; on Bicubic, ΠGDM outperforms all
three baselines. Perhaps surprisingly, the ADM-U model performs much worse in Bicubic than Pool
because it was trained on low-resolution images generated by average pooling4 (i.e., the Pool prob-
lem); when Bicubic images are used, the generated results become more blurry. This suggests that
problem-specific diffusion models may fail to generalize beyond settings that they are trained on.

5.1.2 INPAINTING

We use the two types of inpainting masks used in (Saharia et al., 2022a): the center 128 × 128
pixels (Center), and freeform masks simulating brushstrokes that contain roughly 20% − 30% of
the pixels in each image (Freeform). In addition, we report ΠGDM results over the noisy inpainting
problem with i.i.d. Gaussian noise of σy = 0.05 (the pixel intensity range is [0, 1]); the problem
becomes harder as the model has to perform denoising and inpainting at the same time. For the noisy

3https://bit.ly/eval-pix2pix
4https://github.com/openai/guided-diffusion/blob/main/scripts/super_res_train.py.
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Reference Mask + 0.1 Gaussian Reconstruction Guidance GDM

Reference Mask + 0.1 Gaussian Reconstruction Guidance GDM

Figure 4: Results on noisy inpainting problems. Reconstruction guidance (third column) does not
handle measurement noise and will keep the noisy measurements, so only the masked regions are
denoised.

Table 2: 4× super-resolution results. Dark-colored
rows indicate methods using problem-specific models.

Filter Method FID ↓ CA ↑

Pool

ADM (cc, Dhariwal & Nichol (2021)) 3.1 73.4%
DDRM (Kawar et al., 2022a) 14.8 64.6%
ΠGDM (Ours) 3.8 72.3%
DDRM (cc, Kawar et al. (2022a)) 14.1 65.2%
ΠGDM (cc, Ours) 3.6 72.2%

Bicubic

SR3 (Saharia et al., 2021) 5.2 68.3%
ADM (cc, Dhariwal & Nichol (2021)) 14.8 66.7%
DDRM (Kawar et al., 2022a) 21.3 63.2%
ΠGDM (Ours) 3.6 72.1%
DDRM (cc, Kawar et al. (2022a)) 19.6 65.3%
ΠGDM (cc, Ours) 3.2 75.1%

Table 3: Inpainting results. Dark-colored rows indi-
cate methods using problem-specific models.

Mask Method FID-10k ↓ CA ↑

Center

DeepFillv2 (Yu et al., 2019) 18.0 64.3%
Palette (Saharia et al., 2022a) 6.6 69.3%
DDRM (Kawar et al., 2022a) 24.4 62.1%
ΠGDM (Ours) 7.3 72.6%
ΠGDM (noisy, Ours) 9.5 72.2%

Freeform

DeepFillv2 (Yu et al., 2019) 9.4 68.8%
Palette (Saharia et al., 2022a) 5.2 72.3%
DDRM (Kawar et al., 2022a) 8.6 71.9%
ΠGDM (Ours) 5.3 75.3%
ΠGDM (noisy, Ours) 7.3 74.5%

setting, we use Eq. 7 for ΠG. In Tab. 3, we report quantitative results on the two inpainting tasks,
mainly comparing with Palette (Saharia et al., 2022a), which trains a diffusion model specifically
on the inpainting task. While ΠGDM achieves a slightly worse FID compared with Palette, it has a
higher classifier accuracy in both cases. Moreover, ΠGDM suffers merely a small performance drop
when applied to the more challenging denoising + inpainting task, demonstrating its robustness to
noisy measurements. Methods based on reconstruction guidance, however, fail to perform denoising
effectively, as there are no mechanisms to address measurement noise (see Fig. 4).

5.1.3 JPEG RESTORATION

We consider the three JPEG quality factors (QFs) used in Saharia et al. (2022a), which are 5, 10,
and 20. In Tab. 4, we report quantitative results on JPEG, where we compare against a regression-
based baseline and Palette, both of which are trained specifically for JPEG images with QFs ranging
from 5 to 30. Compared with Palette, ΠGDM achieves a slightly worse FID (less than 0.6) but
higher classifier accuracy on QFs 10 and 20. We note that the model used in ΠGDM has never seen
any JPEG images compressed to these quality factors, demonstrating the strength of task-agnostic
diffusion models.

5.2 ABLATION STUDIES

ΠGDM introduces two key components: pseudoinverse guidance (ΠG) for problem-specific score
estimation and the adaptive guidance weight schedule for sampling (AW). To illustrate their ef-
fectiveness, we compare with alternative approaches. The alternative to ΠG is the reconstruction
guidance, whereas the alternative to AW is the standard weight schedule set with wr ∈ {1, 2, 5} in
Ho et al. (2022) (the wr with best performance is reported).

8
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Table 4: JPEG restoration results. Dark-colored rows
indicate methods using problem-specific models.

QF Method FID-10k ↓ CA ↑

5
Regression (Saharia et al., 2022a) 29.0 52.8%
Palette (Saharia et al., 2022a) 8.3 64.2%
ΠGDM (Ours) 8.6 64.1%

10
Regression (Saharia et al., 2022a) 18.0 63.5%
Palette (Saharia et al., 2022a) 5.4 70.7%
ΠGDM (Ours) 6.0 71.0%

20
Regression (Saharia et al., 2022a) 11.5 69.7%
Palette (Saharia et al., 2022a) 4.3 73.5%
ΠGDM (Ours) 4.7 74.4%

Table 5: Ablation studies on pseudoinverse guidance
(ΠG) and our adaptive weight schedule (AW).

Deblur Bicubic
ΠG AW PSNR ↑ KID-1k ×103 ↓ FID-10k ↓ CA ↑
✗ ✗ 21.98 41.03 18.6 40.6%
✗ ✔ 20.97 42.56 18.9 60.4%
✔ ✗ 31.95 0.98 15.4 67.6%
✔ ✔ 39.36 0.00 6.2 72.4%

We consider the uniform kernel deblurring (Deblur) and bicubic 4× super-resolution (Bicubic) tasks
discussed in (Kawar et al., 2022a). The measurement matrix for both tasks have varying singular
values (see Fig. 5 in App. A.2), so ΠG and reconstruction guidance updates are quite different since
H⊤ ̸= H†. From Tab. 5, we can see that methods that use ΠG achieves a significant improvement
over reconstruction guidance, and switching to the pseudoinverse in the guidance term is critical.
ΠG itself achieves superior performance with AW, illustrating the importance of having a good
sampling algorithm along with the guidance term. We provide additional experimental details and
further ablation studies on the number of iterations per sample and η in App. B.

5.3 INVERSE PROBLEMS WITH COMPOSED MEASUREMENTS

Finally, we discuss cases where the measurement process consists of several simpler measurements,
leading to some applications such as JPEG restoration with super-resolution + inpainting, etc., where
the compositional nature of the measurements makes it too expensive to train problem-specific dif-
fusion models individually. Specifically, let h(x) = h1 ◦ h2 . . . ◦ hk(x) be a measurement model
composed of k smaller measurements. For certain measurements, such as low-resolution filtering,
JPEG, and masking, we can approximate h†(x) with h†

k ◦ . . . ◦ h
†
2 ◦ h

†
1(x), and then use ΠGDM

with Eq. 9 directly. We illustrate some examples in Fig. 2 and Fig. 13 (App. B.3). To the best of our
knowledge, many of these problems have not been solved with problem-agnostic diffusion models
before (such as super-resolution + JPEG + inpainting).

6 DISCUSSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we introduced ΠGDM, an inverse problem solver using unconditional diffusion mod-
els. On various tasks, ΠGDM achieves competitive quality with conditional models while avoiding
expensive problem-specific training. As a result, we can use problem-agnostic diffusion models to
solve certain problems that would be cost-ineffective to address individually with conditional diffu-
sion models, leading to a much wider set of applications. The ability to handle measurement noise
also gives ΠGDM the potential to address certain real-world applications, such as MRI imaging with
Gaussian noise (Sijbers & Den Dekker, 2004).

Despite having better restoration results than DDRM (Kawar et al., 2022a), ΠGDM is slower, as
each iteration costs more memory and compute due to the vector-Jacobian product over the score
model. Therefore, it would be helpful to explore more efficient sampling techniques. It is also
interesting to investigate if similar ideas as ΠG can be used for diffusion models that do not directly
operate on the data space (Vahdat et al., 2021; Rombach et al., 2022; Sinha et al., 2021), or are based
on alternative forward diffusion models (Jing et al., 2022; Rissanen et al., 2022; Daras et al., 2022b;
Hoogeboom & Salimans, 2022).

Reproducibility statement We have made the following efforts to facilitate reproducibility of our
work. (i) Our experiments are conducted on publicly available datasets and model checkpoints5

(Sec. 5). (ii) We include a detailed description of our algorithm in Algorithm 1. (iii) We discuss
all the key hyperparameters and evaluation metrics to reproduce our experiments in Sec. 3.3 and
App. B. (iv) We provide more explanations to some statements in the main paper in App. A.2 to A.5.

5https://github.com/openai/guided-diffusion
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A ADDITIONAL METHOD DETAILS

A.1 ALGORITHM DETAILS

We illustrate a PyTorch-like implementation for computing the pseudoinverse for the noiseless case
in Listing 1. For a different inverse problem, we only need to change the definitions for functions
H and H pinv. In practice, many diffusion model architectures adopt the Variance-Preserving (VP)
SDE, which scales the signal x0 down as the noise level increases, specifically:

xt = x0 + σtϵ (VE) ⇐⇒ x̃t =
√
αtx0 +

√
1− αtϵ (VP). (12)

To adjust for this in ΠGDM, we need to scale the guidance term by
√
αt (Dhariwal & Nichol, 2021).

We list the full algorithm for ΠGDM for VP-SDE in Algorithm 1.

# "H_pinv": (b, m) -> (b, n), "H": (b, n) -> (b, m) are functions over batches
# "y" has shape (b, m); "x_t" has shape (b, n)
# "hatx_t" with shape (b, n) is the solution from the denoiser
hatx_t = denoise(x_t, sigma_t)
# Compute the fixed coefficient; "mat" has shape (b, n)
mat = H_pinv(y) - H_pinv(H(hatx_t))
# Compute the inner product between "hatx_t" and "mat", and then sum over batch
mat_x = (mat.detach() * hatx_t).sum()
# Compute the guidance term (without r_t).
guidance = torch.autograd.grad(mat_x, x_t)[0]

Listing 1: Pseudocode for computing the pseudoinverse guidance for the noiseless case.

Algorithm 1 ΠGDM for VP-SDE.

Inputs: y, h(x) (noiseless) or H, σy (noisy), xt, η ∈ [0, 1], ϵ-prediction diffusion model.
Find a sequence of timesteps {vi}Ni=0, where v0 = 0 and vN = T .
Initialize x ∼ N (0, I).
for i = N, · · · , 1 do

t← vi, s← vi−1 ▷ Get start and end times for this iteration
αt ← 1

1+σ2
t

▷ Get α in VP-SDE
ϵθ ← ϵ-prediction(x; t) ▷ Predict the (standardized) noise
x̂t ← x−

√
1−αtϵθ√
αt

. ▷ Predict the one-step denoised result

c1 ← η

√(
1− αt

αs

)
1−αs

1−αt
▷ Get coefficients c1, c2 in DDIM

c2 ←
√
1− αs − c21.

if noiseless then
g ←

(
(h†(y)− h†(h(x̂t)))

⊤ ∂x̂t

∂x

)⊤
else

g ←
(
(y −Hx̂t)

⊤
(
HH⊤ +

σ2
y

r2t
I
)−1

H ∂x̂t

∂xt

)⊤

end if
ϵ ∼ N (0, I) ▷ Sample i.i.d. Gaussian
x← √αsx̂t + c1ϵ+ c2ϵθ +

√
αtg ▷ ΠGDM update, first three terms are simply DDIM.

▷ Additional
√
αt in front of g comes from VP-SDE

end for

A.2 STATEMENTS ABOUT RECONSTRUCTION GUIDANCE

We note that in reconstruction guidance (Ho et al., 2022), the following approximation is made:

p
(RG)
t (y|xt) ≈ N (Hx̂t, σ

2
t I), (13)
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where we omit the αt term in (Ho et al., 2022) as we use the Variance Exploding (VE) parametriza-
tion throughout the paper6. While Ho et al. (2022) only listed super-resolution and inpainting as two
examples, the general idea can be extended to any linear H .

Transpose, not pseudoinverse. This approximation would lead to the following score function:

∇xt
log p

(RG)
t (y|xt) ≈

1

σ2
t

(
(H⊤y −H⊤Hx̂t)

⊤ ∂x̂t

∂xt

)⊤

; (14)

which essentially replaces the pseudoinverse term H† in Eq. 8 with the transpose term H⊤ (ignoring
the differences in the variance approximation).

Taking the singular value decomposition over H = UΣV , we have that:

H⊤H = (UΣV )⊤(UΣV ) = V ⊤Σ2V (15)

H†H = (UΣ−1V )⊤(UΣV ) = V ⊤I(Σ2)V . (16)

where I(Σ2) is the diagonal matrix which take 1 if the corresponding entry in Σ2 is non-zero, and 0
otherwise. Multiplying the former with a vector x (as in reconstruction guidance) will scale the sin-
gular vectors by Σ2 where as multiplying the latter (as in pseudoinverse guidance) keeps the scale
for all singular vectors that correspond to nonzero singular values. When the measurement ma-
trix has very different singular values (see Fig. 5), reconstruction guidance may improperly rescale
the singular vectors, leading to reduced performance compared with pseudoinverse guidance (as in
Table 5).
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Figure 5: Singular values of the bicubic downsampling and uniform blurring measurement matrix.

Consistent approximation of pt(x0|xt). In reconstruction guidance, the isotropic Gaussian
approximation over the distribution pt(y|xt) means that the approximation of the distribution
pt(x0|xt) will depend on the measurement model. For example, suppose we have two diagonal
measurement matrices D1 and D2 with all positive values along the diagonal, and D1 ̸= D2. If
we use D1 as the measurement, then x0 = D−1

1 y and p
(RG)
t (x0|xt) ≈ N (x̂t, σ

2
tD

−2
1 ), but if

we use D2 as the measurement, then x0 = D−1
2 y and p

(RG)
t (x0|xt) ≈ N (x̂t, σ

2
tD

−2
2 ), which is

different from the earlier approximation. However, conditioned on xt, the distribution of x0 can
be inferred from the diffusion model alone, so it should not depend on the measurement model.
Therefore, reconstruction guidance does not make a consistent approximation of the distribution
pt(x0|xt); pseudoinverse guidance, on the other hand, approximates pt(x0|xt) directly from the
diffusion model and then approximates pt(y|xt) by marginalization of Gaussians.

A.3 ABOUT THE VARIANCE OF THE APPROXIMATION

Our approximation for pt(x0|xt) depends on the variance term rt, which should depend on the
variance of the data distribution. For example, if the data distribution p0(x0) = N (0, I) is the
standard normal distribution, then from Bayes’ rule we have the following closed-form solution for

6Nevertheless, VE is equivalent to the variance preserving (VP) parametrization up to a time-dependent
scaling factor (Song et al., 2021a), so any sampling algorithm for VE can be adapted to VP.
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Figure 6: Left: σt as a function of t. Right: the ratio between our guidance weights and the Video
Diffusion Models (VDM) weight wr = 1 (Ho et al., 2022) under different η values. We take 100
uniformly spaced timesteps (out of a possible of 1000 timesteps).
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Figure 7: Two examples that compare our adaptive weight schedule with the different weights wr

in Video Diffusion Models (VDM, (Ho et al., 2022)) on 4× super-resolution (Bicubic). For fair
comparison, ΠG is used for all cases.

the posterior:

pt(x0|xt) ∝ p0(x0)pt(xt|x0) = N
(

xt

σ2
t + 1

,
σ2
t

σ2
t + 1

I

)
, (17)

so in this case, we have r0 = 0 and rT ≈ 1. In Ho et al. (2022), rt is set as σt; this is reasonable in
when t → 0 (noise level is small), but unrealistic when t → T (noise level is much higher than the
data variance). Nevertheless, in the noiseless case, we do not have to make the value of rt explicit,
as we can simply rescale the gradient terms using the guidance weights.

In the noisy case, the choice of rt matters more as it interacts with σy in Eq. 7. We simply use

rt =

√
σ2
t

σ2
t + 1

from Eq. 17, which provides good empirical results for our noisy inpainting experiments.

To see why this is the case, let us take denoising as an example where H = I . When σt ≪ σy

is small, then rt ≈ σt, and r2t (r
2
t + σ2

y)
−1 ≈ σ2

t σ
−2
y becomes small, meaning that the noisy mea-

surement provides little impact to the guidance term. Whereas when σt is large, then rt ≈ 1, and
r2t (r

2
t + σ2

y)
−1 ≈ 1, meaning that the guidance term will be impacted by the noisy measurements.

The sampling procedure would first guide the unconditional samples towards the noisy measure-
ments, and then perform denoising without overfitting them.

A.4 ABOUT ADAPTIVE GUIDANCE WEIGHTS

The sampling updates for the original DDIM paper is derived from the VP-SDE, so we rewrite the
updates in the form of VE-SDE used in this paper:

f(xt; s, t, η) = x̂t + ηct→sϵ+ σ−1
t

√
σ2
s − η2c2t→s(xt − x̂t), (18)

= xt + σ2
t∇xt

log pt(xt) + ηct→sϵ− σt

√
σ2
s − η2c2t→s∇xt

log pt(xt) (19)
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Low res (64x64) Our weights VDM weights (wr=1) VDM weights (wr=2) VDM weights (wr=5) Reference

Low res (64x64) Our weights VDM weights (wr=1) VDM weights (wr=2) VDM weights (wr=5) Reference

Figure 8: Two examples that compare our adaptive weight schedule with the different weights wr in
Video Diffusion Models (VDM, (Ho et al., 2022)) on JPEG (QF=10) restoration.

where ϵ ∼ N (0, I) and

ct→s =

√
(σ2

t − σ2
s)σ

2
s

σ2
t

, (20)

corresponds to the c1 coefficient in the original DDIM sampler (using σt (VE) instead of αt (VP)
formuation). Note that x̂t = xt + σ2

t∇xt
log pt(xt) is the denoised result.

In Ho et al. (2022), the guidance is applied to x̂t for some constant wr, such that7:

x̂
(RG)
t = xt + σ2

t∇xt
log pt(xt)−

wr

2
∇xt
∥y −Hx̂t∥22, (21)

Using the DDIM sampler, the update for the next sample replaces x̂t in Eq. 18 with x̂
(RG)
t , which

further multiples a factor to the guidance term. In our case, we directly add the guidance term to
Eq. 19, which is more similar to the approach in Chung et al. (2022b). This would be equivalent
to the weights in Ho et al. (2022) if wt is different for different t, i.e., applying time-dependent
guidance weights during sampling (hence being “adaptive”). While it is possible to tune wr to
achieve decent results, we found that different tasks may require different wt. For example, wr = 5
works well for super-resolution, but suffers from numerical overflow issues in JPEG restoration (see
Fig. 8).

A.5 ABOUT THE LOW DYNAMIC RANGE MEASUREMENT FUNCTION

Let h(x) be a function that reduces the dynamic range of an image. Typically, this consists of a
dynamic range clipping stage h1, a non-linear mapping stage h2, and a quantization stage h3 (Liu
et al., 2020). The non-linear mapping is also known as the camera response function, and it is fair
to assume it is invertible (its inverse denoted as h†

2).

The dynamic range clipping function typically consists of the form h1(x) = clip(x, a, b) where a

and b are lower and upper clipping ranges; we can define h†
1 as follows:

h†
1(y) =


y if y ∈ [a, b]

a if y < a

b otherwise
. (22)

Therefore, we can define h†(x) = h†
3(h

†
2(h

†
1(x))) for pseudoinverse guidance. For ease of illustra-

tion, we assume h2 to be the identity function in our qualitative results, and focus on the clipping
and quantization functions; in these cases, we clip images of range [−1, 1] to [−0.6, 0.6], and then
quantize 8 bit representations into 4 bits.

7Again, the αt term is missing because we use VE instead of VP.
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A.6 JUSTIFYING OUR APPROXIMATION

As discussed in Sec. 3.1, it is computationally infeasible to sample from more exact representations
of p(x0|xt) (i.e., the diffusion model), so we need to approximate it. A straightforward way is to
approximate via variational inference: instead of the multi-step diffusion process, we use a simple
Gaussian to approximate it. Let us denote the Gaussian as q(x0|xt); we can minimize the KL
divergence between q(x0|xt) and p(x0|xt), which gives us the following objective function:

min
q

Ep(x0)p(xt|x0)[KL(p(x0|xt)||q(x0|xt))] = min
q

Ep(x0,xt)[log p(x0,xt)− log q(x0|xt)],

If we define q(x0|xt) as Gaussian with a fixed standard deviation and mean as a function µ of xt,
then the objective is equivalent to:

min
µ

Ep(x0,xt)[∥µ(xt)− x0∥22]. (23)

which is exactly the denoising score matching / denoising autoencoder objective (Vincent, 2011).
Therefore, we can use the single step denoiser result as the mean of q(x0|xt).

Nevertheless, one might be interested in how “tight” is our approximation. While it is intractable to
compare with ground truth p(y|xt) or even p(x0|xt), it is not hard to compare the score functions
of p(x0|xt) and our approximation q(x0|xt)

8. In fact, denoting the denoiser as D, we have that:

∇xt
log p(x0|xt) = ∇xt

log p(xt|x0)−∇xt
log p(xt) (24)

= (x0 − xt)/σ
2
t − (D(xt)− xt)/σ

2
t = (x0 −D(xt))/σ

2
t , (25)

and (overloading “gradient” notation for derivatives)

∇xt
log q(x0|xt) ∝ [∇xt

D(xt)](x0 −D(xt)). (26)

Therefore, the ground truth score is proportional to (x0 −D(xt)) whereas our score is proportional
to [∇xt

D(xt)](x0 − D(xt)). The two terms are different by a left matrix multiply of the gradient
∇xt

D(xt). In the literature of plug-and-play methods, a reasonable assumption for the denoiser is
that it can be represented as a pseudolinear filter over the input (see Romano et al. (2016) for detailed
explanations), so the gradient behaves roughly like a matrix. This suggests that our approximation
is reasonably close, at least when the above score functions are concerned.

B EXPERIMENTAL DETAILS

B.1 ADDITIONAL EXPERIMENTAL SETUPS FOR QUANTITATIVE RESULTS

4× super-resolution Following CCDF (Chung et al., 2021) and SDEdit (Meng et al., 2021), we
initialize our sampler with a smaller noise level than the maximum one by adding Gaussian noise
to the linearly upsampled image (of size 256 × 256), which is chosen to be the one at the 500-th
discrete timestep (where the model is trained with a total of 1000 discrete timesteps). Here, we
choose 100 iterations and η = 1.0 for ΠGDM. FID is evaluated over the restoration results on the
entire ImageNet validation set, and compared against the statistics of the ImageNet training set.

The baselines are run as follows. For DDRM (Kawar et al. (2022a)), we used the default hyper-
parameter settings. For SR3 (Saharia et al. (2021)), we reported the official results from the paper.
For ADM-U (Dhariwal & Nichol (2021)), we used their publicly available 64 → 256 ImageNet
checkpoint and run 100 iterations for each image with the default command.

Inpainting For ΠGDM, we use a class-conditional model, initialize our sampler from pure Gaus-
sian noise at the maximum noise level σT , apply 100 iterations to each image, and set η = 1.0.
Following Saharia et al. (2022a), we evaluate FID over a 10k subset of the ImageNet validation set,
and compare against the statistics of the ImageNet validation set.

8We note that tractable score functions does not imply tractable likelihood, as the latter requires the partition
function, which itself requires a marginalization step.
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Table 6: 4× super-resolution results (Pool) from ΠGDM using the class-unconditional model.

FID ↓ CA ↑

η
Steps 20 50 100 20 50 100

0.0 6.5 4.4 4.3 70.0 70.3 69.2
0.5 7.2 4.5 3.9 70.0 71.4 70.6
1.0 10.9 6.1 3.8 68.2 71.3 72.3

Table 7: 4× super-resolution results (Bicubic) from ΠGDM using the class-conditional model.

FID ↓ CA ↑

η
Steps 20 50 100 20 50 100

0.0 7.5 4.1 3.9 73.0 74.0 72.6
0.5 8.0 4.2 3.4 72.7 74.6 73.7
1.0 10.8 5.5 3.2 70.8 74.2 75.1

JPEG Restoration For each quality factor, we use the quantization matrix in Ehrlich et al. (2020)
to compress the original 256×256 image, with 2×2 chroma subsampling. The quantization matrix
is embedded in every JPEG file, so having this available to the algorithm is a natural and realistic
setting. For ΠGDM, we use a class-unconditional model, initialize our sampler from pure Gaussian
noise at the maximum timestep, apply 100 iterations to each image, and set η = 1.0. The FID is
evaluated as in the inpainting case, following Saharia et al. (2022a).

B.2 ADDITIONAL ABLATION STUDIES AND DETAILS

Uniform deblurring We use the uniform 9 × 9 deblurring kernel used in Kawar et al. (2022a).
The problem itself is relatively simple as it has few non-zero singular values, and simply taking the
pseudoinverse over the observations already gives good results. For all methods, we use a class-
unconditional model, initialize our sampler from the 100-th discrete timestep using the CCDF /
SDEdit approach. We use a total of 20 iterations for each image and η = 0.5 for the 1000 images
used in the evaluation set of DGP / DDRM (Pan et al., 2021; Kawar et al., 2022a). We compare
PSNR metrics with images scaled to [0, 1], and Kernel Inception Distance (KID, (Bińkowski et al.,
2018)) metrics against the 1000 reference images, following the practice in Kawar et al. (2022a).

4× super-resolution The experiment setup is identical to the quantitative evaluation case, except
that we evaluate the metrics over the 10k subset from Saharia et al. (2022a). We use a total of 100
iterations for each images and η = 1.0 for the 10000 images.

Ablation study over η and number of iterations We report additional results over the hyper-
parameters in the DDIM sampler, which are η (the amount of noise injected at each step) and the
number of iterations (steps) per image on super-resolution tasks. We consider the Pool and Bicubic
4× super-resolution task over the entire ImageNet validation set. From the results in Tabs. 6 and 7,
we can draw similar conclusions as the ones from the DDIM paper (Song et al., 2021a): more iter-
ations generally lead to improved performance, whereas the effect of η varies. When the number of
iterations is small, smaller η is better (as it injects less noise in the process); when the opposite is
true, larger η is better (due to the sampling process being more robust to errors in the score function).

B.3 ADDITIONAL FIGURES

We list additional qualitative results in Figs. 9 to 15. All the results with ΠGDM and reconstruction
guidance are generated with 100 steps and η = 1.0. We use wr = 1 for reconstruction guidance.
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Pool Reconstruction guidance ADM-U GDM Reference

Figure 9: Comparing methods for the Pool 4× super-resolution problem, including reconstruction
guidance (Ho et al., 2022), ADM-U (Dhariwal & Nichol, 2021), and ΠGDM. Best viewed zoomed
in.
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Bicubic Reconstruction guidance ADM-U GDM Reference

Figure 10: Comparing methods for the Bicubic 4× super-resolution problem, including reconstruc-
tion guidance (Ho et al., 2022), ADM-U (Dhariwal & Nichol, 2021), and ΠGDM. Best viewed
zoomed in.
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Masked GDM (Seed=1) GDM (Seed=2) GDM (Seed=3) GDM (Seed=4) GDM (Seed=5)

Figure 11: Inpainting results using ΠGDM for the Freeform problem with multiple random samples.
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JPEG (QF = 5) Palette GDM Reference

Figure 12: Results for the JPEG restoration problem, including Palette (Saharia et al., 2022a) and
ΠGDM. Palette results are obtained from the official website.
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Reference Mask + 0.1 Gaussian

Restored

JPEG (QF=10) + Mask

Restored

Low-res + JPEG (QF=20)

Restored

LDR + Quantization

Restored

Reference Mask + 0.1 Gaussian

Restored

JPEG (QF=10) + Mask

Restored

Low-res + JPEG (QF=20)

Restored

LDR + Quantization

Restored

Reference Mask + 0.1 Gaussian

Restored

JPEG (QF=10) + Mask

Restored

Low-res + JPEG (QF=20)

Restored

LDR + Quantization

Restored

Reference Mask + 0.1 Gaussian

Restored

JPEG (QF=10) + Mask

Restored

Low-res + JPEG (QF=20)

Restored

LDR + Quantization

Restored

Figure 13: Restoration results with ΠGDM over various composed measurements. The same ran-
dom seed is used for different problems.
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Masked GDM (Seed=1) GDM (Seed=2) GDM (Seed=3) GDM (Seed=4) GDM (Seed=5)

Figure 14: Inpainting results with ΠGDM for the Center problem on the LSUN Bedroom dataset (Yu
et al., 2015).
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Reference Low-res (4x) GDM (4x) Low-res (8x) GDM (8x)

Figure 15: Super-resolution results with ΠGDM for the Pool case on the LSUN Bedroom dataset (Yu
et al., 2015).
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Table 8: NFEs of various algorithms. We list common baselines, such as Palette (Saharia et al.,
2022a), ADM-U (Dhariwal & Nichol, 2021), SR3 (Saharia et al., 2021), DGP (Pan et al., 2021),
SNIPS (Kawar et al., 2021), RED (Romano et al., 2016), DDRM (Kawar et al., 2022a), and
DPS (Chung et al., 2022a).

ΠGDM (Ours) Palette Regression ADM-U SR3 DPS DGP SNIPS RED DDRM

NFEs 20 to 100 1000 1 100 1000 1000 1500 1000 500 20

Table 9: 4× super-resolution (Pool) and deblurring results on ImageNet 1K (256× 256).

Method 4× super-resolution (Pool) Deblurring
SSIM↑ KID↓ NFEs↓ PSNR↑ KID↓ NFEs↓

Regression 0.71 44.90 0 19.26 38.00 0
DGP 0.56 21.22 1500 22.70 27.60 1500
RED 0.73 53.55 100 26.16 21.21 500
SNIPS 0.22 35.17 1000 34.32 0.49 1000
DDRM 0.72 7.22 20 35.64 0.71 20

ΠGDM (Ours) 0.73 1.24 100 39.36 0.00 20

B.4 RUNTIME OF DIFFERENT ALGORITHMS

Since the algorithm requires iterations with the diffusion model, the actual runtime of the algorithm
would depend heavily on the number of Neural Function Evaluations (NFEs). Kawar et al.Kawar
et al. (2022a) found that the runtime for diffusion models would dominate the total runtime, as other
computations (such as matrix operations on images) are negligible. Therefore, we use NFE as the
unit for estimating the runtime of different algorithms. In Tab. 8, we report the NFEs used by each
algorithm.

We further note that ΠGDM and DPS take additional backpropagation steps through the neural
network, so each NFE is roughly 3× as expensive as others. Thus, ΠGDM is only beaten in terms of
actual wall-clock time by regression and DDRM, and we have shown that it has superior restoration
results than both in Tabs. 2 to 4.

B.5 COMPARISON WITH VARIOUS BASELINES

In Tab. 9, we compare ΠGDM against various baselines, including ones that are based on Plug-
and-play (PnP) methods (Venkatakrishnan et al., 2013b), such as Deep Generative Prior (Pan et al.
(2021)), Regularizing by Denoising (RED, Romano et al. (2016)), Solving Noisy Inverse Prob-
lems Stochastically (SNIPS, Kawar et al. (2021)), and Denoising Diffusion Restoration Models
(DDRM, Kawar et al. (2022a)). Similar to the setting for deblurring in Tab. 5, the comparison is
done on the 1000 validation examples listed in the DGP paper (Pan et al., 2021), and the KID are
computed with the 1000 ground truth images as the reference set.

We find that ΠGDM achieves the best performance when compared with other PnP baselines; this is
reasonable given that DDRM (Kawar et al., 2022a) is shown to outperform the remaining competi-
tors, and ΠGDM outperforms DDRM from the results in 2.

B.6 COMPARISON WITH DIFFUSION POSTERIOR SAMPLING

Diffusion Posterior Sampling (DPS, (Chung et al., 2022a)) is a concurrent method that similarly
uses a gradient-based guidance method. They approximate p(y|xt) with p(y|x0)|x0=x̂t

, which is
similar to reconstruction guidance.

Findings. We investigate the performance of DPS over several tasks and over different learning
rates and diffusion step hyperparameters. Similar to what Chung et al. has found (Chung et al.,
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Table 10: 4× super-resolution (Pool) comparisons with DPS, under different steps.

Steps 20 50 100 200 500 1000

LPIPS DPS 0.559 0.511 0.414 0.335 0.215 0.162
ΠGDM 0.164 0.140 0.140 - - -

SSIM DPS 0.504 0.580 0.634 0.696 0.756 0.778
ΠGDM 0.779 0.772 0.777 - - -

Table 11: 4× super-resolution (Bicubic) comparisons with DPS, under different steps.

Steps 20 50 100 200 500 1000

LPIPS DPS 0.558 0.510 0.410 0.329 0.221 0.171
ΠGDM 0.163 0.166 0.122 - - -

SSIM DPS 0.504 0.581 0.637 0.697 0.757 0.779
ΠGDM 0.789 0.730 0.773 - - -

2022a), we find that while DPS has strong performance with 1000 diffusion steps, its performance
becomes much worse with less diffusion steps. Moreover, even with the full 1000 steps, one would
still need to tune for the learning rate hyperparameter to get good performance. In contrast, our
method is 10× faster than DPS in the slowest case, and achieves decent performance even with
fewer diffusion steps (such as 20 and 50 steps). In these settings, DPS does not produce reasonable
results at all.

Image restoration quality. In our experiments, we evaluate performance of the models averaged
over 5 validation images on ImageNet. For DPS, we consider different numbers of diffusion steps
(from 20 to 1000), with the default learning rate being the one chosen in the DPS paper for 1000
steps. For ΠGDM, we use the same settings as discussed in the paper; we report for diffusion steps
up to 100 steps, except for deblurring (where the task is simple enough to get good results in 20
steps).

We report LPIPS and SSIM metrics for Pool, Bicubic, and 9 × 9 uniform deblurring in Tabs. 10
to 12. From the tables, it is obvious that DPS performance drops rapidly once number of diffusion
steps decreases under 1000, whereas ΠGDM performance remain competitive. We illustrate this
trend visually in Fig. 16 for 4× super-resolution (Pool). In Tab. 13, we report the results for DPS
under different learning rate hyperparameters; we found that the optimal hyperparameter can be
problem-dependent: the optimal one for super-resolution is around 1 and 2, whereas using that for
deblurring will produce NaNs; the optimal one for deblurring is 0.2, where super-resolution results
tend to become less optimal.

Loss curves. We can treat the guidance terms in both DPS and ΠGDM as a gradient step that
optimizes the least squares loss function ∥y −Hx0∥22, so it is natural to visualize the loss at each
diffusion noise level. In Fig. 17, we visualize the loss curve of DPS and ΠGDM on a 4× super-
resolution (Pool) example as a function of the diffusion timestep level (so 1000 is highest noise

Table 12: 9× 9 uniform deblurring comparisons with DPS, under different steps.

Steps 20 50 100 200 500 1000

LPIPS DPS 0.539 0.472 0.412 0.340 0.260 0.245
ΠGDM 0.004 - - - - -

SSIM DPS 0.516 0.575 0.604 0.662 0.698 0.719
ΠGDM 0.974 - - - - -
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Table 13: Performance of DPS under different learning rates and 1000 diffusion steps.

Task Super-resolution (Pool) Deblurring
Learning rate 0.5 1.0 2.0 0.2 0.4 0.6

LPIPS 0.208 0.171 0.182 0.238 0.245 0.322

SSIM 0.755 0.779 0.775 0.700 0.719 0.608

Reference

DPS (20 steps) DPS (50 steps) DPS (100 steps) DPS (200 steps) DPS (500 steps) DPS (1000 steps)

GDM (20 steps) GDM (50 steps) GDM (100 steps)

Reference

DPS (20 steps) DPS (50 steps) DPS (100 steps) DPS (200 steps) DPS (500 steps) DPS (1000 steps)

GDM (20 steps) GDM (50 steps) GDM (100 steps)

Figure 16: Super-resolution results with DPS (Chung et al., 2022a) and ΠGDM for the 4× super-
resolution (Pool) under different number of diffusion steps.

29



Under review as a conference paper at ICLR 2023

02004006008001000
Diffusion timestep

10
0

10
2

10
4

10
6

y Hx 2
2

DPS
GDM (100 steps)
GDM (50 steps)
GDM (20 steps)

Figure 17: Loss curves for ∥y −Hx0∥22 using DPS (Chung et al., 2022a) and ΠGDM for a 4×
super-resolution (Pool) example.

level and 0 is lowest noise level). As expected, both methods start with the same loss. However,
the loss function of DPS significantly increases around timesteps 1000 and 900, reaching 1000× of
the initial loss; this means that the DPS learning rate schedule is too large at this initial stage. In
contrast, ΠGDM has a smooth loss curve over the entire process; in fact, the loss curves are quite
consistent under 20, 50, or 100 steps. Moreover, the final loss for ΠGDM is also smaller than that
of DPS, further illustrating its superiority.
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