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Abstract

Pre-trained large language models (LMs) strug-001
gle to perform logical reasoning reliably de-002
spite advances in scale and compositional-003
ity. In this work, we tackle this challenge004
through the lens of symbolic programming. We005
propose DSR-LM, a Differentiable Symbolic006
Reasoning framework where pre-trained LMs007
govern the perception of factual knowledge,008
and a symbolic module performs deductive009
reasoning. In contrast to works that rely on010
hand-crafted logic rules, our differentiable sym-011
bolic reasoning framework efficiently learns012
weighted rules to further improve LMs. DSR-013
LM is scalable, interpretable, and allows easy014
integration of prior knowledge, thereby sup-015
porting extensive symbolic programming to ro-016
bustly derive a logical conclusion. Our exper-017
iments show that DSR-LM leads to improved018
logical reasoning of pre-trained LMs, an over019
10% accuracy gain, and outperforms a spec-020
trum of competitive baselines under systematic021
distribution shifts on sequence lengths.022

1 Introduction023

Complex applications in natural language process-024

ing involve dealing with two separate challenges.025

On one hand, there is the richness, nuances, and026

extensive vocabulary of natural language. On the027

other hand, one needs logical connectives, long rea-028

soning chains, and domain-specific knowledge to029

draw logical conclusions. The systems handling030

these two challenges are complementary to each031

other and are likened to psychologist Daniel Kah-032

neman’s human “system 1” and “system 2” (Kah-033

neman, 2011): while the former makes fast and in-034

tuitive decisions, akin to neural networks, the latter035

thinks more rigorously and methodically. Consid-036

ering language models (LMs) as “system 1” and037

symbolic reasoners as “system 2”, we summarize038

their respective advantages in Table 1.039

Although pre-trained LMs have demonstrated040

remarkable predictive performance, making them041

Language Model Symbolic Reasoner

• Rapid reasoning
• Sub-symbolic knowledge
• Handling noise, ambigui-

ties, and naturalness
• Can learn in-context
• Process open domain text

• Multi-hop reasoning
• Compositionality
• Interpretability
• Data efficiency
• Can incorporate domain-

specific knowledge

Table 1: Respective advantages of language models
and symbolic reasoners.

an effective “system 1”, they fall short when asked 042

to perform consistent logical reasoning (Kassner 043

et al., 2020; Helwe et al., 2021; Creswell et al., 044

2022), which usually requires “system 2”. In part, 045

this is because LMs largely lack capabilities of 046

systematic generalization (Elazar et al., 2021; Hase 047

et al., 2021; Valmeekam et al., 2022). 048

In this work, we seek to incorporate deductive 049

logical reasoning into LMs. Our approach has the 050

same key objectives as neuro-symbolic program- 051

ming (Chaudhuri et al., 2021): compositionality, 052

consistency, interpretability, and easy integration 053

of prior knowledge. We present DSR-LM, which 054

tightly integrates a differentiable symbolic reason- 055

ing module with pre-trained LMs in an end-to-end 056

fashion. With DSR-LM, the underlying LMs gov- 057

ern the perception of natural language and are fine- 058

tuned to extract relational triplets with only weak 059

supervision. To overcome a common limitation 060

of symbolic reasoning systems, the reliance on 061

human-crafted logic rules (Huang et al., 2021; Nye 062

et al., 2021), we adapt DSR-LM to induce rules 063

automatically. 064

We conduct extensive experiments showing that 065

DSR-LM can consistently improve the logical rea- 066

soning capability of pre-trained LMs. Even if DSR- 067

LM uses a RoBERTa backbone with much less pa- 068

rameters and does not explicitly take triplets as su- 069

pervision, it can still outperform various baselines 070

by more than 10% overall accuracy. Moreover, we 071

show that DSR-LM can induce logic rules that are 072
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amenable to human understanding to explain deci-073

sions given only higher-order predicates. As gen-074

eralization over long-range dependencies is a sig-075

nificant weakness of transformer-based language076

models (Lake and Baroni, 2018; Tay et al., 2020),077

we highlight that in systematic, long-context scenar-078

ios, where most pre-trained or neural approaches079

fail to generalize compositionally, DSR-LM can080

still achieve considerable performance gains.081

2 Related Work082

Logical reasoning with LMs. Pre-trained LMs083

have been shown to struggle with logical reason-084

ing over factual knowledge (Kassner et al., 2020;085

Helwe et al., 2021; Talmor et al., 2020a). There is086

encouraging recent progress in using transformers087

for reasoning tasks (Zhou et al., 2020; Clark et al.,088

2021; Wei et al., 2022; Chowdhery et al., 2022;089

Zelikman et al., 2022) but these approaches usu-090

ally require a significant amount of computation091

for re-training or human annotations on reasoning092

provenance (Zhou et al., 2020; Wei et al., 2022).093

Moreover, their entangled nature with natural lan-094

guage makes it fundamentally hard to achieve ro-095

bust inference over factual knowledge (Greff et al.,096

2020; Saparov and He, 2022; Zhang et al., 2022).097

There are other obvious remedies for LMs’ poor098

reasoning capability. Ensuring that the training099

corpus contains a sufficient amount of exemplary100

episodes of sound reasoning reduces the depen-101

dency on normative biases and annotation arti-102

facts (Talmor et al., 2020b; Betz et al., 2020; Hase103

et al., 2021). Heuristics like data augmentation are104

also shown to be effective (Talmor et al., 2020b).105

But the above works require significant efforts for106

crowdsourcing and auditing training data. Our107

method handily encodes a few prototypes/tem-108

plates of logic rules and is thus more efficient in109

terms of human effort. Moreover, our goal is funda-110

mentally different from theirs in investigating the111

tight integration of neural and symbolic models in112

an end-to-end manner.113

Neuro-symbolic reasoning. Neuro-symbolic114

approaches are proposed to integrate the percep-115

tion of deep neural components and the reasoning116

of symbolic components. Representative works can117

be briefly categorized into regularization (Xu et al.,118

2018), program synthesis (Mao et al., 2018), and119

proof-guided probabilistic programming (Rock-120

täschel and Riedel, 2017; Manhaeve et al., 2018;121

Zhang et al., 2019; Huang et al., 2021). To improve122

compositionality of LMs over natural language,123

previous works propose to parameterize grammati- 124

cal rules (Kim, 2021; Shaw et al., 2021) but show 125

that those hybrid models are inefficient and usu- 126

ally underperform neural counterparts. In contrast 127

to the above works, we focus on improving LMs’ 128

reasoning over logical propositions with tight inte- 129

gration of their pre-trained knowledge. 130

3 Methodology 131

3.1 Problem Formulation 132

Each question answering (QA) example in the 133

dataset is a triplet containing input text x, query 134

q, and the answer y. Figure 1 shows an instance 135

which we will use as our running example. The 136

input text x is a natural language passage within 137

which there will be a set of entities, possibly refer- 138

enced by 3rd person pronouns. The sentences hint 139

at the relationships between entities. For example, 140

“Dorothy went to her brother Rich’s birthday party” 141

implies that Rich is Dorothy’s brother and Dorothy 142

is Rich’s sister. The query q is a tuple of two en- 143

tities, representing the people whom we want to 144

infer the relation between. The expected relation 145

is stored in the answer y, which will be one of a 146

confined set of possible relations R, allowing us 147

to treat the whole problem as an ∣R∣-way classifi- 148

cation problem. We focus only on the problems 149

where the desired relation is not explicitly stated 150

in the context, but need to be deduced through a 151

sequence of reasoning. 152

3.2 Methodology Overview 153

DSR-LM’s design concerns tightly integrating a 154

perceptive model for relation extraction with a 155

symbolic engine for logical reasoning. While we 156

apply LMs for low level perception and relation 157

extraction, we employ a symbolic reasoning mod- 158

ule to consistently and logically reason about the 159

extracted relations. With a recent surge in neuro- 160

symbolic methods, reasoning engines like (Man- 161

haeve et al., 2018; Huang et al., 2021) are made 162

differentiable, allowing us to differentiate through 163

the logical reasoning process. However, they typi- 164

cally require hand-crafted logic rules for effective 165

reasoning. To avoid this manual effort, we employ 166

a rule learning paradigm that automatically induces 167

logic rules according to a pre-defined schema (Ta- 168

ble 2). The process also learns the confidence or 169

probability of logic rules to model uncertainty. We 170

thereby obtain an end-to-end differentiable train- 171

ing framework to both fine-tune LMs for relation 172
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Loss 

Predicted Query Output

0.01::kin(sister, A, D) 
0.02::kin(father, A, D) 
... 
0.84::kin(niece, A, D) 

Question

How is Dorothy 
related to Anne? 

kin(r3, x, z) :- tr(r1, r2, r3), 
    kin(r1, x, y), kin(r2, y, z). 
kin(r, y, x) :- sym(r), kin(r, x, y). 
... 

0.99::tr(son, son, grandson)
0.01::tr(father, sister, son)
...
0.98::tr(brother, son, nephew)

Input Text
Probabilistic Input Facts

0.92::kin(daughter, K, R) 
0.05::kin(sister, K, R) 
... 
0.89::kin(sister, K, A)

Language 
Model 

Differentiable Symbolic Reasoner  

Rich's daughter Kelly made
dinner for her sister Kim.
Dorothy went to her brother
Rich's birthday party. Anne
went shopping with her 
sister Kim. Julia decided to
call her uncle Benjamin on 
his birthday. Frank took his
son Charles and daughter 
Rachel out for pizza.

Ground Truth Query Output

kin(niece, A, D) 

End-to-end differentiation with rule learning

Query

kin(r, A, D)? 

Figure 1: Overview of DSR-LM with a motivating example where “Anne is the niece of Dorothy” should be
logically inferred from the context. We abbreviate the names with their first initials in the relational symbols.

extraction and learn interpretable logic rules.173

Based on this high-level design, we formalize174

our method as follows. We adopt pretrained LMs175

to build relation extractors, denoted Mθ, which176

takes in the natural language input x and returns a177

set of probabilistic relational symbols r. Moreover,178

we have a differentiable symbolic reasoning pro-179

gram, Pϕ, where ϕ represents the weights of the180

learnt logic rules. It takes as input the probabilistic181

relational symbols and the query q and returns a182

distribution over R as the output ŷ. Overall, we183

have the model written as184

ŷ = Pϕ(Mθ(x), q), (1)185

and we aim to minimize the objective J over train-186

ing set D with binary cross-entropy loss L:187

J(θ, ϕ) =
1

∣D∣
∑

(x,q,y)∈D

L(Pϕ(Mθ(x), q), y).188

3.3 Relation Extraction189

Since pre-trained LMs have strong pattern recog-190

nition capabilities for tasks like Named-Entity-191

Recognition (NER) and Relation Extraction (RE)192

(Tenney et al., 2019; Soares et al., 2019), we adopt193

them as our neural components in DSR-LM. To194

ensure that LMs take in strings of similar length,195

we divide the whole context into multiple windows.196

The goal is to extract distribution of relations be-197

tween every pair of entities in each windowed con-198

text. Concretely, our relation extractorMθ com-199

prises three components: 1) a Named-Entity Recog-200

nizer (NER) to obtain the entities in the input text,201

2) a pre-trained language model, to be fine-tuned,202

that converts windowed text into embeddings, and203

3) a classifier that takes in the embedding of en-204

tities and predicts the relationship between them.205

The set of parameters θ contains the parameters of 206

both the LM and the classifier. 207

We assume the relations to be classified come 208

from a finite set of relations R. For example in 209

CLUTRR (Sinha et al., 2019), we have 20 kinship 210

relations including mother, son, uncle, father-in- 211

law, etc. In practice, we perform (∣R∣ + 1)-way 212

classification over each pair of entities, where the 213

extra class stands for “n/a”. The entity pairs are 214

directional. That is, the relation of Diane to Brad 215

is not the same as the relation of Brad to Diane. 216

Consequently, given a windowed context contain- 217

ing n distinct entities, we predict n(n − 1) dis- 218

tributions of relations. The windowed contexts 219

are split based on simple heuristics of “contigu- 220

ous one to three sentences that contain at least 221

two entities”, to account for coreference resolu- 222

tion. The windowed contexts can be overlapping 223

and we allow the reasoning module to deal with 224

noisy and redundant data. Overall, assuming that 225

there are m windows in the context x, we apply 226

Mθ to extract mn(n − 1)(∣R∣ + 1) probabilistic 227

relational symbols. Each symbol is denoted as an 228

atom of the form p(s, o), where p ∈ R ∪ {n/a} 229

is the relational predicate, and s, o are the two 230

entities connected by the predicate. We denote 231

the probability of such symbol extracted by the 232

LM and relational classifier as Pr(p(s, o) ∣ θ). All 233

these probabilities combined form the output vector 234

r =Mθ(x) ∈ Rmn(n−1)(∣R∣+1). 235

3.4 Differentiable Symbolic Inference 236

The symbolic inference module Pϕ is responsible 237

for processing the extracted relations to deduce 238

an expected output relation in R. There are two 239

main objectives for this module. First, it needs to 240

logically reason about the output relation based on 241

the extracted relational symbols r, the query q, and 242
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the rule weights ϕ. Note that Pϕ outputs a vector243

ŷ ∈ R∣R∣, where each element ŷp = Pr(p ∣ θ, ϕ)244

represents the uncertainty that the predicate p ∈R245

is the answer to the query. Second, the reasoning246

module needs to compute the gradients of ŷ with247

respect to θ and ϕ, namely ∂ŷ
∂θ and ∂ŷ

∂ϕ , in order for248

the fine-tuning and rule learning to happen.249

Logical deduction. Logic rules can be applied250

to known facts to deduce new ones. For example,251

below is a horn clause, which reads “if b is a’s252

brother and c is b’s daughter, then c is a’s niece”:253

niece(a, c) ← brother(a, b) ∧ daughter(b, c).254

With this rule, we can obtain the following proof255

tree, within which the facts above the line can de-256

rive the fact below:257

brother(D,R) daughter(R,K)

niece(D,K)
(2)258

Note that the structure of the above rule can259

be captured by a higher-order logical pred-260

icate called “transitive” (abbreviated as tr ).261

This allows us to express many other similarly262

structured rules with ease. For instance, we263

can have tr(brother, daughter, niece) and264

tr(father, mother, grandmother) . With this265

set of rules, we may derive more facts based on266

known kinship relations. In fact, transitivity is the267

only kind of rule we need for kinship reasoning. In268

general, there are many other useful higher-order269

predicates to reason over knowledge bases, which270

we list out in Table 2.271

Predicate Example
symmetric symmetric(spouse)
transpose transpose(husband,wife)
implies implies(mother, parent)
negation negation(child, not_child)

Table 2: Higher-order predicate examples.

Probability propagation. We seek to have the272

deduced facts to also be associated with probabili-273

ties computed using probabilities predicted by the274

underlying relation extractorMθ. This is achieved275

by allowing the propagation of probabilities. For276

example, the proof tree in Eq. (2) becomes:277

0.9 ∶∶ brother(D,R) 0.8 ∶∶ daughter(R,K)

0.72 ∶∶ niece(D,K)
278

In practice, there could be multiple steps in the 279

proof tree (multi-hop) and one fact can be derived 280

by multiple proof trees. We employ the inference 281

algorithms based on approximated weighted model 282

counting (WMC) presented in (Manhaeve et al., 283

2018) to account for probabilistic inference under 284

complex scenarios. Since the WMC procedure is 285

augmented for differentiation, we can obtain the 286

gradient ∂ŷ
∂r . From here, we can obtain ∂ŷ

∂θ =
∂ŷ
∂r

∂r
∂θ , 287

where the second part can be automatically derived 288

from differentiatingMθ. 289

Rule learning. Hand-crafted rules could be ex- 290

pensive or even impossible to obtain. To allevi- 291

ate this issue, DSR-LM can automatically learn 292

weighted rules from data. This is done by tagging 293

each possible rule with a learnable weight, repre- 294

senting its confidence score. Given a higher-order 295

predicate with k arguments, there will be ∣R∣k pos- 296

sible rules for that predicate. For example, the 297

transitivity used in CLUTRR has 3 arguments, im- 298

plying that there are ∣R∣3 = 203 transitive rules and 299

consequently 203 rule weights. Consequently, the 300

rule weights of all higher-order predicates com- 301

bined form the set of parameters ϕ. 302

The proof tree below shows a derivation based 303

on an incorrect transitive rule with low probability: 304

0.01 ∶∶ tr(brother, daughter, grandson)
0.9 ∶∶ brother(D,R) 0.8 ∶∶ daughter(R,K)

0.0072 ∶∶ grandson(D,K)
305

Though a dubious fact is derived, as the incorrect 306

rule is tagged by low probability, the output fact is 307

also shown unlikely to be true. At the end of train- 308

ing, rule weights are learnt from data and correct 309

rules will emerge with high confidences. 310

The gradient with respect to ϕ is also derived 311

with the WMC procedure, giving us ∂ŷ
∂ϕ . Note that 312

there are exponentially many rules with weights 313

to be learnt. In practice, we adopt a sampling ap- 314

proach to reduce the number of weighted rules for 315

reasoning. Also note that we apply two separate 316

optimizers with different hyper-parameters to up- 317

date the rule weights ϕ and the underlying model 318

parameter θ, in order to account for different neural 319

architectures. 320

4 Experiments 321

We evaluate DSR-LM on both CLUTRR and 322

DBpedia-INF. We show that DSR-LM has accurate 323

and generalizable long-range reasoning capability. 324
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// Relation declaration
type kinship(rela: usize, subject: String, object: String)
type query(subject: String, object: String)
type transitive(r1: usize, r2: usize, r3: usize)
// Rules to derive the final answer
rel kinship(r3,a,c) = kinship(r1,a,b), kinship(r2,b,c), transitive(r1,r2,r3), a != c
rel answer(r) = query(s, o), derive(r, s, o)

Figure 2: The Scallop program used in the CLUTRR reasoning task.

4.1 Datasets325

CLUTRR (Sinha et al., 2019) consists of kinship326

reasoning questions. Given a context that describes327

a family’s routine activity, the goal is to deduce328

the relationship between two family members that329

is not explicitly mentioned in the story. Although330

the dataset is synthetic, the sentences are crowd-331

sourced and hence there is a considerable amount332

of naturalness inside the dataset. The family kin-333

ship graph is synthetic and the names of the family334

members are randomized. For ablation study, we335

manually crafted 92 kinship transitivity rules as336

an external symbolic knowledge base. This yields337

the following symbolic information for each data-338

point: 1) the full kinship graph corresponding to339

the story, 2) the symbolic knowledge base (KB),340

and 3) a query representing the question. The341

CLUTRR dataset is divided into different difficul-342

ties measured by k, the number of facts used in343

the reasoning chain. For training, we only have344

10K data points with 5K k = 2 and another 5K345

k = 3, meaning that we can only receive supervi-346

sion on data with short reasoning chains. The test347

set, on the other hand, contains 1.1K examples with348

k ∈ {2, . . . ,10}.349

DBpedia-INF is a curated subset of the evalua-350

tion dataset used in RuleBert (Saeed et al., 2021).351

Similar to CLUTRR, it is generated synthetically352

to test the reasoning capability of LMs. Given a353

synthetic passage describing the relation between354

entities, and soft deductive logic rules, we aim to355

deduce the relationship between any two entities.356

The symbolic program of DBpedia-INF consists357

of 26 predicates, 161 soft rules mined from DB-358

pedia, and 16 rules defining the negation and sym-359

metricity between the predicates. The difficulty360

of the questions is represented in terms of reason-361

ing length from k ∈ {0, . . . ,5}.1 Larger k implies362

harder question. Compared to the exact dataset363

used in Rulebert, we clean it in order to ensure the364

question-answer pairs are logically consistent and365

1A length of 0 means that the hypothesis can be verified
using the facts alone without using any rules.

probabilistically correct. Here is an example from 366

the original dataset that is logically inconsistent: 367

x ∶ Alice is not Bob’s successor.
q ∶ Is Bob not Alice’s successor?
y ∶ False

368

The logical fallacy is that the original dataset is gen- 369

erated assuming at least one of “successor(Alice, 370

Bob)” and “successor(Bob, Alice)” is true. In re- 371

ality, it might be the case that Alice and Bob are 372

unrelated to each other and neither of these two 373

facts is true. Additionally, compared to CLUTRR, 374

the sentences are in simpler forms and thus will be 375

less noisy and less natural. 376

4.2 Experimental Setup 377

Implementation. We employ Scallop (Huang 378

et al., 2021) as the differentiable symbolic infer- 379

ence module. We show the program used for 380

CLUTRR reasoning task in Figure 2. It comprises 381

relation type declarations and rules applying transi- 382

tivity for kinship reasoning. The program used for 383

DBpedia-INF is written in a similar manner with 384

additional high-order predicates listed in Table 2. 385

For efficiency purpose, we collect top 3 proof trees 386

in Scallop for gradient computation. 387

Pre-trained LMs for fine-tuning. We used the 388

HuggingFace (Wolf et al., 2019) pre-trained w2v- 389

google-news-300, RoBERTa-base, and DeBERTa- 390

base as the pretrained language models. We fine- 391

tune RoBERTa-base and DeBERTa-base during 392

training with binary cross entropy loss. Our rela- 393

tion extraction module is implemented by adding 394

an MLP classifier after the LM, accepting a con- 395

catenation of the embedding of the two entities and 396

the aggregated embedding of the whole windowed 397

context. Note that we are unable to use GPT-3 as 398

the underlying LM since its API only allows text to 399

text fine-tuning but not the access to latent embed- 400

dings, breaking the end-to-end training pipeline. 401

Our model. Our main model, DSR-LM, uses 402

RoBERTa as the underlying LM. The relation clas- 403
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sifier is a 2-layer fully connected MLP. During404

training, we initialize ϕ with random weights less405

than 0.1. To accelerate the learning process, we use406

multinomial sampling to retrieve 150 rules for sym-407

bolic reasoning. During testing, we will instead408

pick the top 150 rules. We use two Adam optimizer409

to update θ and ϕ, with learning rate 10−5 and 10−2410

respectively.411

For ablation studies, we present a few other mod-412

els. First, we ablate on back-bone LMs. Specifi-413

cally, we have DSR-LM-DeBERTa which uses De-414

BERTa as the back-bone LM. DSR-w2v-BiLSTM,415

on the other hand, uses as back-bone the word2vec416

(Mikolov et al., 2013) model for word embedding417

and BiLSTM (Huang et al., 2015) for sequential418

encoding. Then, for DSR-LM-with-Rule we treat419

the logic rules to be given, meaning that we provide420

92 transitive rules for CLUTRR and around 180421

rules for DBpedia-INF. In this case, we set ground422

truth rules to have 1.0 weight and therefore ϕ is423

not learnt. Lastly, we have DSR-without-LM that424

takes ground truth structured entity relation graph425

as input. This way, we do not need the underlying426

relation extractor and only ϕ needs to be learnt.427

Baselines. We compare DSR-LM with a spec-428

trum of baselines from purely neural to logically429

structured. The baselines include pretrained large430

language models (BERT (Kenton and Toutanova,431

2019) and RoBERTa (Liu et al., 2019)), non-LM432

counterparts (BiLSTM (Hochreiter and Schmid-433

huber, 1997; Cho et al., 2014) and BERT-LSTM),434

structured models (GAT (Veličković et al., 2018),435

RN (Santoro et al., 2017), and MAC (Hudson and436

Manning, 2018)), and other neuro-symbolic mod-437

els (CTP (Minervini et al., 2020), RuleBert (Saeed438

et al., 2021)). The structured models include those439

models with relational inductive biases, while the440

neuro-symbolic model uses logical constraints for441

regularization.442

Baseline setup. We highlight a few baselines we443

include for completeness but are treated as unfair444

comparison to us: GAT, CTP, and GPT-3 variants.445

All baselines other than GAT and CTP take as input446

natural language stories and the question to produce447

the corresponding answer. GAT and CTP, on the448

contrary, takes entity relation graph rather than449

natural language during training and testing.450

The model sizes are different across baselines as451

well. Model size generally depends on two parts,452

the backbone pre-trained LM, and the classifica-453

tion network built upon the LM. GPT-3 contains 454

175B parameters, and RoBERTa uses 123M param- 455

eters. The classification model of our method has 456

2.97M parameters (assuming using embeddings 457

from RoBERTa). With extra 10K parameters for 458

rule weights, our DSR-LM framework has around 459

127M parameters. 460

For GPT-3 variants, we conduct experiments on 461

CLUTRR with GPT-3 under the Zero-Shot (GPT-3 462

ZS), GPT-3 Fine-Tuned (GPT-3 FT), and Few(5)- 463

Shot (GPT-3 5S) (Brown et al., 2020), as well as 464

Zero-Shot-CoT (GPT-3 ZS-CoT) (Kojima et al., 465

2022a) settings. For fair comparison, we also in- 466

clude the ground truth kinship transitive knowledge 467

in GPT-3 zero shot (GPT-3 ZS w/ Rule), and 5 shot 468

(GPT-3 5S w/ Rule). We include the prompts we 469

used and additional details in Appendix A.
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Figure 3: DSR-LM’s performance on CLUTRR compared
with various baselines

470

4.3 Experimental Results 471

DSR-LM systematically outperforms a wide 472

range of baselines by a large margin. We eval- 473

uate DSR-LM and baselines on both CLUTRR and 474

DBpedia-INF, as reported in Figure 3 and Table 4. 475

In the CLUTRR experiment, DSR-LM achieves 476

the best performance among all the models (Fig- 477

ure 3). Next, we examine how models trained on 478

stories generated from clauses of length k ≤ 3 and 479

evaluated on stories generated from larger clauses 480

of length k ≥ 4. A fine-grained generalizabil- 481

ity study reveals that although all models’ perfor- 482

mances decline as the reasoning length of the test 483

sequence increases, pure neural-based models de- 484

crease the fastest (Figure 4(a) and 4(b)). It man- 485

ifests the systematic issue that language models 486

alone are still not robust for length generalization 487

(Lake and Baroni, 2018). On the other hand, the 488

performance of DSR-LM decreases much slower 489
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Confidence Learnt Rules
1.154 mother(a,c)← sister(a,b) ∧ mother(b,c)
1.152 daughter(a,c)← daughter(a,b) ∧ sister(b,c)
1.125 sister(a,c)← daughter(a,b) ∧ aunt(b,c)
1.125 father(a,c)← brother(a,b) ∧ father(b,c)
1.123 granddaughter(a,c)← grandson(a,b) ∧ sister(b,c)
1.120 brother(a,c)← sister(a,b) ∧ brother(b,c)
1.117 brother(a,c)← son(a,b) ∧ uncle(b,c)
1.105 brother(a,c)← daughter(a,b) ∧ uncle(b,c)
1.104 daughter(a,c)← wife(a,b) ∧ daughter(b,c)
1.102 mother(a,c)← brother(a,b) ∧ mother(b,c)
. . . . . .

Table 3: The learnt top-10 confident logic rules over CLUTRR.

Test Length DSR-LM RuleBert
Overall 95.87 72.59

0 100.0 98.40
1 100.0 54.80
2 98.4 75.20
3 89.2 64.00
4 88.1 69.89
5 100.0 72.29

Table 4: DBpedia-INF generalization evalu-
ation under different test reasoning length.
Models are trained on 10K reasoning length
k = 0 sequences, and tested on sequences of
reasoning length k = [0,5].

2 3 4 5 6 7 8 9 10
Test Reasoning Length

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

DSR-LM (Ours)
BERT
BERT - LSTM
MAC
RN

BiLSTM Mean
BiLSTM Attn
RoBERTa
DSR-w2v-BiLSTM

(a) Common baselines

2 3 4 5 6 7 8 9 10
Test Reasoning Length

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DSR-LM (Ours)
GPT-3 5-shot
GPT-3 5-shot w/ transitivity
GPT-3 Zero-shot
GPT-3 Zero-shot w/ transitivity
GPT-3 Zero-shot-CoT
GPT-3 fine-tune

(b) GPT-3 variants

Figure 4: Systematic generalization performance comparison on CLUTRR dataset. Models except GPT-3-ZS*,
GPT-3-FS are trained (or fine-tuned) on k ∈ {2,3}. All models are tested on k ∈ {2, . . . ,10}.

as test reasoning length increases and outperforms490

all the baselines when k ≥ 4.491

In the DBpedia-INF experiment, DSR-LM out-492

performs RuleBert by 37% in terms of overall per-493

formance (Table 4), showing that DSR-LM has494

much more robust generalization. Recall that Rule-495

Bert aims to improve the logical reasoning of LMs496

by straightforward fine-tuning with soft rules and497

facts. Our results show that augmenting data alone498

for fine-tuning do not effectively improve system-499

aticity. Meanwhile, DSR-LM imbues reasoning500

inductive biases throughout training and learns use-501

ful rules to generalize to longer reasoning lengths.502

Learning interpretable logic rules. While DSR-503

LM learns explicit rules, due to their mutual de-504

pendency with the underlying relation classifier,505

the learnt symbols are mapped to a permutation of506

ground-truth symbols. For presentation, we show507

the top-10 rules learnt from DSR-w/o-LM model in508

Table 3. We compare the top-92 most likely learnt509

rules against the 92 hand-crafted rules, and 70 of510

them match. Through this qualitative analysis, it is511

clear that DSR-LM provides an interface to probe 512

and interpret the intermediate steps, enhancing the 513

interpretability. 514

GPT-3 variants are inferior in long-range rea- 515

soning. Interestingly, ZS scores 28.6% accuracy 516

on CLUTRR while ZS-CoT scores 25.6%, sug- 517

gesting that the chain-of-thought prompting might 518

not work in long-range reasoning (Figure 3). In 519

fact, there are many cases where GPT-3 favors 520

complication over simplicity: GPT-3 frequently an- 521

swers “stepdaughter”, “stepmother”, and “adopted 522

son”, while the real answers are simply “daugh- 523

ter”, “mother”, and “son”. Additionally, GPT-3 524

could derive the correct result for the wrong rea- 525

son, e.g. “Jeffrey is Gabrielle’s son, which would 526

make William her grandson, and Jeffrey’s brother.” 527

While we count the final answer to be correct 528

(William is Jeffrey’s brother), there is a clear in- 529

consistency in the reasoning chain: William cannot 530

be Gabrielle’s grandson and Jeffrey’s brother si- 531

multaneously, given that Jeffrey is Gabrielle’s son. 532

Lastly, we observe that, both GPT-3 FT and many 533
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other methods have an accuracy drop as k becomes534

larger (Figure 4(b)), ZS and ZS-CoT stay relatively535

consistent, suggesting that the size of context and536

the reasoning chain may have a low impact on GPT-537

3’s performance.538

4.4 Analyses and Ablation Studies539

Symbolic reasoner consistently improves LMs540

and word embeddings. Since DSR-LM has541

a model agnostic architecture, we study how542

the choice of different LMs impacts the reason-543

ing performance. As shown in Table 5, the544

two transformer-based models have on-par perfor-545

mance and outperform the word2vec one. However,546

note that the word2vec-based model still has bet-547

ter performance than all other baselines. Besides548

higher final accuracy, the pre-trained transformer-549

based language model also accelerates the train-550

ing process. Both DSR-LM-RoBERTa and DSR-551

LM-DeBERTa reach their best performance within552

10 epochs, while it takes DSR-w2v-BiLSTM 40553

epochs to peak.554

Model Accuracy (%)
DSR-LM (RoBERTa) 51.48 ± 0.57
DSR-LM-DeBERTa 51.42 ± 1.10
DSR-w2v-BiLSTM 40.39 ± 0.06

Table 5: Ablation study about neural backbones of
DSR-LM. We compare the CLUTRR performance of
DSR-LM using different LMs.

Incorporate domain knowledge. DSR-LM al-555

lows injecting domain specific knowledge. In DSR-556

LM-with-Rule, we manually crafted 92 rules for557

kinship reasoning to replace the learnt rules. As558

shown in Table 6, it obtained a 0.72% performance559

gain over DSR-LM. The fact that the improvement560

is marginal implies our learnt useful rules to obtain561

on-par performance with manually crafted rules.562

Model Accuracy (%)
DSR-LM 51.48 ± 0.57

DSR-LM-with-Rule 52.20 ± 4.07

Table 6: Ablation study on rule learning. We compare
our model’s performance on CLUTRR with or without
hand-crafted rules.

The impact of the relation extractor. To under-563

stand what causes the failure case of DSR-LM, we564

study the performance of our relation classification565

model separately. We isolate the trained relation566

extractor and found that it reaches 84.69% accu-567

racy on the single relation classification task. For568

comparison, we train a relation extractor using all 569

the intermediate labels in the training dataset, and it 570

reaches 85.32% accuracy. It shows that even using 571

only weak supervision (i.e., the final answers to 572

multi-hop questions), our approach can reach on- 573

par performance as supervised relation extraction. 574

Reasoning over structured KBs. To understand 575

the rule learning capability of our approach, we de- 576

sign our ablation model DSR-without-LM to take 577

as input ground-truth KBs instead of natural lan- 578

guage. As shown in Table 7, our model outper- 579

forms GAT and CTP which also operates on struc- 580

tured KBs. It demonstrates that our differentiable 581

rule learning paradigm learns rules to reason about 582

KBs consistently. 583

Model Accuracy (%)
GAT 39.05
CTP 95.57

DSR-without-LM 98.81

Table 7: DSR-without-LM compared against GAT and
CTP on reasoning with ground truth KBs. For this
comparison we train on k ∈ [2,3] and test on k ∈ [4,10].

Failure cases of DSR-LM. We showcase in Ap- 584

pendix Table 8 that even state-of-the-art large LMs 585

are prone to logical fallacies. On the other hand, 586

the failure case of our method usually occurs in the 587

stage of relation extraction. For example, for the 588

following sentence “Christopher and Guillermina 589

are having a father-daughter dance”, our RoBERTa 590

based relation extractor fails to recognize the father- 591

daughter relationship but rather thinks C and G 592

have a husband-wife relationship. We require most 593

of the relation extraction to be correct in order to 594

avoid cascading error. As the error rate on individ- 595

ual relation extraction accumulates, it leads to the 596

observed drop in accuracy as k becomes larger. 597

5 Concluding Remarks 598

We investigate how to improve LMs’ logical rea- 599

soning capability using differentiable symbolic rea- 600

soning. Through extensive experiments, we demon- 601

strate the effectiveness and utility of DSR-LM over 602

challenging scenarios where widely deployed large 603

LMs fail to reason reliably. We hope our work can 604

lay the groundwork for exploring neuro-symbolic 605

programming techniques to improve the robustness 606

of LMs. 607
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Ethics Statement608

In our experimental results, we find a notable609

ethical bias of LMs when prompting GPT-3 us-610

ing “Myrna is Christopher’s wife. Guillermina611

is Christopher’s daughter” will give the answer612

“So Guillermina is Myrna’s stepdaughter”. The re-613

sults imply the historical marriage conditions of614

Myrna and Christopher, which might be untruth-615

ful or even harmful for users. DSR-LM holds the616

potential to alleviate those biases by leveraging617

human-specified schema to learn logic rules for618

robust inference with fact verification, which we619

leave for future work.620
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A Implementation Details797

Hardware. We perform all the experiments on798

a server with two 20-core Intel Xeon CPUs, four799

GeForce RTX 2080 Ti GPUs, and 768 GB RAM.800

Reasoner details. The learning of rules and801

the fine-tuning of the underlying LM should hap-802

pen separately with different learning rates – fine-803

tuning LM is an intricate process that requires a804

very small learning rate, while rules should be805

learnt with larger learning rates since gradients are806

directly back-propagated onto the weights. This807

can be realized by employing two separate opti-808

mizers, one for fine-tuning and the other for rule809

learning.810

Rule learning training setup. For rule learning,811

we can randomly initialize the transitivity tensor812

but with a range such as [0,0.1], since otherwise an813

insensible transitive fact may be getting a random814

high weight while it effectively does nothing for815

reasoning.816

Since the CLUTRR dataset consists of 20 dif-817

ferent relations, and a transitivity relationship is818

defined over 3 relations, there are 8K possible tran-819

sitivity facts over these relations. We attach a ran-820

domized confidence score from [0,0.1] to each821

possible transitivity rule, and the confidence scores822

are updated through back-propagation. Specifically,823

the learning process encourages the rules that yield824

the correct query result and suppresses the rules825

that lead to wrong answers. To avoid the exponen-826

tial blow-up caused by injecting all the 8K rules827

in the reasoning engine, we sample 150 rules ac-828

cording to their weights during the training time829

and deterministically use of the top 150 learnt rules830

during the test time. For the QA-No-Rule setup,831

the confidence score of rules, the MLP classifier832

for relation extraction, and the underlying LM are833

learnt and updated simultaneously during training.834

To account for their difference, we employ two835

Adam optimizers ARL and ARE. ARE is used for836

optimizing models for relation extraction, and thus837

will take as parameters the MLP classifier and the838

underlying LM. It has a low learning rate 0.00001839

since it needs to fine-tune LMs. ARL, on the other840

hand, will take as a parameter the confidence score841

tensor for the transitive rules, and is set to have a842

higher learning rate of 0.01.843

GPT-3 Prompt Setups. For Zero-Shot, we844

use the prompt “So B is A’s:” for the query pair845

(A,B) to ask GPT-3 to complete the relationship846

between A and B. We pick the phrase in the first847

line or before the first period from the completion 848

text, and compare it directly with the ground truth 849

relation. For the Few(5)-Shot setting, we randomly 850

select 5 examples from the training dataset used for 851

other models (k ∈ [2,3]) to serve as examples. We 852

use the same prompt for Few-Shot and Fine-Tuned 853

as the Zero-Shot and the automated GPT-3 fine- 854

tuning setup for our training dataset, trained for 4 855

epochs. To add in the transitive KB, we simply in- 856

clude 92 hand-crafted rules in natural language as 857

a part of the prompt, and we performed Zero-shot 858

with KB, and Few(5)-shot with KB experiments. 859

For the Zero-Shot-CoT setting, we use the prompt 860

“Who is B to A? Let’s think step by step” to sug- 861

gest GPT-3 to auto-complete while working out a 862

reasoning chain. Under this setup, it is impossible 863

to compare the answer to the ground truth automat- 864

ically. Therefore, we manually check through the 865

whole test dataset of CLUTRR. 866

Licenses. The CLUTRR dataset is of CC-BY- 867

NC 4.0 (Attr Non-Commercial Inter.) license. The 868

DBpedia-INF is under MIT license. 869

B Additional Experimental Results 870

In Table 8, we showcase the failure cases of large 871

LMs for logical inference, where Zero-shot-CoT 872

denotes zero-shot chain-of-thoughts (Kojima et al., 873

2022b). 874
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k Prompt GPT-3 CoT Output Ground Truth
2 Jeffrey asked his brother William if he would come help him fix

his car next weekend. Gabrielle was delighted to see her grandson,
William, at her birthday party. Who is Jeffrey to Gabrielle? Let’s
do it step by step:

Jeffrey is Gabrielle’s grandson.
William is Jeffrey’s brother.

grandson

3 Elliott felt lonely when his wife Marian was gone to see her mother
Molly. Elliott and his daughter Karen took a day off school to go to
the zoo. Who is Karen to Molly? Let’s do it step by step:

Karen is Elliott’s daughter. Molly
is Elliott’s wife’s mother. There-
fore, Karen is Molly’s grand-
daughter.

granddaughter

4 Frank took his daughter Julia to the park. Beverly, Emilie´s sister
went with them. Kimberley was excited because today she was
going to the zoo with her uncle Frank. Jenny spent a great day
shopping with her daughter, Kimberley. Who is Beverly to Jenny?
Let’s do it step by step:

Beverly is Jenny’s sister-in-law. niece

5 Melissa and her father, Stephen, went to the marina. Stephen’s
daughter, Margaret, had purchased a boat, and they were eager to
see it. Annie and her aunt, Evelyn, went to the deli. They got a half
a pound of corned beef, and two pounds of salami. Melissa and
her sister Annie were arguing over a toy. While they were fighting,
Melissa’s sister Margaret grabbed the toy, and ran off to play with
it by herself. Who is Evelyn to Melissa? Let’s do it step by step:

Melissa’s father is Stephen.
Stephen has a daughter, Margaret.
Margaret is Annie’s aunt. There-
fore, Evelyn is Annie’s aunt, and
Melissa’s great-aunt.

aunt

6 James took his grandson Davis to the baseball game. Sharon and
her son Brian went out to lunch together yesterday. Brian and his
brother Oliver went to the park to play basketball. Davis played
scrabble with his mother Sharon and his brother Oliver. Davis
asked his brother Oliver if he would come help him fix his car next
weekend. Who is James to Oliver? Let’s do it step by step:

James is Davis’s grandfather, so
he is Oliver’s great-grandfather.

grandfather

7 George rushed to the hospital to find out that his wife and already
given birth to a boy and had named him David. Larry was playing
checkers with his brother Craig. Larry’s sister Jean was waiting to
play. Judy made mixed drinks for her son Craig. Judy’s daughter
Jean was jealous because she was n’t offered one. Jean planned a
trip to the zoo for her brother, Craig. They had a great time. George
was having trouble with his divorce because he only got to see his
daughter Jean a few times a week. Who is David to Craig? Let’s
do it step by step:

George’s wife gave birth to a boy
and named him David. David is
Craig’s nephew.

brother

8 Anthony went to the bakery with his uncle Roger to pick up some
bread for lunch. Anthony loved going to the store with his mom
Mary. She always bought him snacks Charles would n’t let his son
Floyd go to the park by himself. Floyd’s brother Anthony offered
to go with him. Faye was hoping to travel out of state to visit her
son Cecil. Ellie’s brother, Charles, was doing his best to find the
best flight. Mary and her son Anthony went out to lunch together
yesterday. Cecil took her sister, Christine, out to dinner for her
birthday. Who is Roger to Christine? Let’s do it step by step:

Cecil is Faye’s son, so Faye is
Christine’s mother-in-law. Chris-
tine is married to Faye’s son, so
Christine is Faye’s daughter-in-
law. Charles is Ellie’s brother,
so Charles is Christine’s brother-
in-law. Anthony is Charles’s son,
so Anthony is Christine’s nephew.
Roger is Anthony’s uncle, so
Roger is Christine’s brother-in-
law.

uncle

9 Gino bought gifts for his lovely sister, Jami. Michele and William
left that evening to go bowling. Ethel and her son, Gordon, went
to the park, and had a wonderful time. Manuel’s father, Kenneth,
thought his son was a monster. Meanwhile Michele thought her son
Manuel was a little angel. Gino, Kenneth’s other son, agreed with
his dad. William asked his brother Larry if he would come help
him fix his car next weekend. Joseph was so happy for his brother,
Larry, getting a promotion. Gordon and his uncle Joseph went to
the movies Sunday after church and got popcorn and candy while
they were there. Who is Jami to Ethel? Let’s do it step by step:

1. Jami is Gino’s sister. 2. Ethel
is Gino’s mother. 3. Therefore,
Jami is Ethel’s daughter-in-law.

niece

Table 8: Qualitative analysis of GPT-3 Zero-Shot-CoT on the CLUTRR dataset. The novelty comes from the
sentence marked in orange. Queries that are of interest are marked in blue. Correct answer in the output is marked
green and incorrect ones are marked red.
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Confidence Rule
1.154 mother(A,B) ← sister(A,C) ∧ mother(C,B)
1.152 daughter(A,B) ← daughter(A,C) ∧ sister(C,B)
1.125 sister(A,B)← daughter(A,C) ∧ aunt(C,B)
1.125 father(A,B)← brother(A,C) ∧ father(C,B)
1.123 granddaughter(A,B) ← grandson(A,C) ∧ sister(C,B)
1.120 brother(A,B) ← sister(A,C) ∧ brother(C,B)
1.117 brother(A,B) ← son(A,C) ∧ uncle(C,B)
1.105 brother(A,B) ← daughter(A,C) ∧ uncle(C,B)
1.104 daughter(A,B) ← wife(A,C) ∧ daughter(C,B)
1.102 mother(A,B)← brother(A,C) ∧ mother(C,B)
1.102 brother(A,B) ← father(A,C) ∧ son(C,B)
1.096 sister(A,B) ← mother(A,C) ∧ daughter(C,B)
1.071 sister(A,B)← father(A,C) ∧ daughter(C,B)
1.071 son(A,B)← son(A,C) ∧ brother(C,B)
1.070 uncle(A,B)← father(A,C) ∧ brother(C,B)
1.066 daughter(A,B) ← son(A,C) ∧ sister(C,B)
1.061 brother(A,B)← brother(A,C) ∧ brother(C,B)
1.056 grandson(A,B) ← husband(A,C) ∧ grandson(C,B)
1.055 sister(A,B)← son(A,C) ∧ aunt(C,B)
1.053 grandmother(A,B) ← sister(A,C) ∧ grandmother(C,B)
1.050 granddaughter(A,B) ← granddaughter(A,C) ∧ sister(C,B)
1.050 grandmother(A,B)← brother(A,C) ∧ grandmother(C,B)
1.047 grandson(A,B)← granddaughter(A,C) ∧ brother(C,B)
1.046 grandfather(A,B)← mother(A,C) ∧ father(C,B)
1.036 son(A,B)← daughter(A,C) ∧ brother(C,B)
1.035 sister(A,B)← brother(A,C) ∧ sister(C,B)
1.029 grandmother(A,B)← mother(A,C) ∧ mother(C,B)
1.027 grandfather(A,B) ← sister(A,C) ∧ grandfather(C,B)
1.019 brother(A,B)← mother(A,C) ∧ son(C,B)
1.017 granddaughter(A,B) ← wife(A,C) ∧ granddaughter(C,B)

Table 9: Showcase of the learnt logic rules with top@30 confidence of DSR-LM rule learning.
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