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Abstract

Inspired by the success of contrastive learn-001
ing in natural language processing, we in-002
corporate contrastive learning into the condi-003
tional masked language model which is exten-004
sively used in non-autoregressive neural ma-005
chine translation (NAT) that we term Con-006
trastive Conditional Masked Language Model007
(CCMLM). CCMLM optimizes the similar-008
ity of several different representations of the009
same token in the same sentence, resulting in a010
richer and more robust representation. We pro-011
pose two methods to obtain various represen-012
tations: Contrastive Common Mask and Con-013
trastive Dropout. Positive pairs are various dif-014
ferent representations of the same token, while015
negative pairs are representations of different016
tokens. In the feature space, the model with017
contrastive loss pulls positive pairs together018
and pushes negative pairs away. We conduct019
extensive experiments on four translation di-020
rections with different data sizes. The results021
demonstrate that CCMLM showed a consis-022
tent and significant improvement with margins023
ranging from 0.80-1.04 BLEU and is state-of-024
the-art on WMT’16 Ro-En (34.18 BLEU).025

1 Introduction026

Neural machine translation has developed rapidly027

with the development of deep learning. The028

traditional neural machine translation mod-029

els (Sutskever et al., 2014; Bahdanau et al., 2015;030

Wu et al., 2016; Vaswani et al., 2017) are autore-031

gressive (AT), which means that they predict target032

tokens one by one based on source tokens and pre-033

viously predicted tokens. This dependence leads034

to the limitation of translation speed, and the time035

required for translation is directly proportional to036

the sentence length.037

Recently, non-autoregressive machine transla-038

tion (NAT) becomes a research hotspot. The non-039

autoregressive generation mode eliminates token040

dependency in the target sentence and generates all041

Figure 1: Methods to construct positive pairs and neg-
ative pairs. (a) Contrastive Common Mask. (b) Con-
trastive Dropout.

tokens in parallel, considerably improving trans- 042

lation speed. However, the increase in speed is 043

accompanied with a decrease in translation qual- 044

ity. Many iterative models have been developed 045

to make a trade-off between translation speed and 046

quality. The iterative model improves translation 047

quality by continually and iteratively optimizing 048

the generated target sentence. The iterative model 049

is usually to predict the masked token in the target 050

sentence, such as BERT (Devlin et al., 2019). 051

The masked tokens are usually chosen at random. 052

A sentence can be masked in a variety of ways. In 053

different masked sequences of the same sentence, 054

the representation of the same masked token should 055

be similar because they are from the same token 056

and have the same semantics in a similar context 057

(the same source sentence and the different masked 058

results of the same target sentence). We think about 059

how to make these different representations of the 060

same token more similar. Inspired by the success- 061

ful use of contrastive learning in NLP pre-trained 062

models (e.g., Gao et al., 2021), We explore combin- 063
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ing contrastive learning and the conditional masked064

language model, treating different representations065

of the same masked token as positive pairs and rep-066

resentations of different tokens as negative pairs.067

We pull in positive pairs and push out negative pairs068

using contrastive learning.069

As illustrated in Figure 1, we propose two strate-070

gies for constructing positive pairs in this paper.071

Contrastive Common Mask is a method that uti-072

lizes representations of the same token in differ-073

ent masked sequences of the same sentence. As074

shown in Figure 1(a), "fell" is masked both in075

"he [mask] asleep almost [mask]" and "he [mask]076

asleep [mask] instantly", which are different ran-077

domly masked results of "he fell asleep almost in-078

stantly". The other is inspired by Gao et al. (2021),079

where we feed the same input to the decoder twice080

and get two different representations due to the081

dropout setting, which we call Contrastive Dropout.082

The two representations of the same token should083

be similar, as shown in Figure 1(b).084

We use the constructed positive and negative085

pairs to calculate the contrastive loss and jointly086

optimize it with the cross-entropy loss. We verify087

the effectiveness of our model in four translation088

directions of two standard datasets with varying089

data sizes. Experiments show that our model beats090

CMLM with 0.80-1.04 BLEU margins at the same091

translation speed. It also outperforms other CMLM-092

based models and beats the state-of-the-art NAT093

model on WMT’16 Ro-En (34.18 BLEU). We will094

make our code publicly available.095

The main contributions of this work can be con-096

cluded as follows:097

• To the best of our knowledge, our work is the098

first effort to combine token-level contrastive099

learning and the conditional masked language100

model.101

• We propose two methods to construct positive102

pairs for the contrastive conditional masked103

language model: Contrastive Common Mask104

and Contrastive Dropout.105

• Our model CCMLM achieves a consistent and106

significant improvement with margins rang-107

ing from 0.80-1.04 BLEU in four translation108

directions and is state-of-the-art on WMT’16109

Ro-En (34.18 BLEU).110

2 Preliminaries 111

Non-Autoregressive Machine Translation 112

The machine translation task is defined as gen- 113

erating a target sentence Y =
{
y1, . . . , yTy

}
114

under the condition of a given source sentence 115

X = {x1, . . . , xTx}. Most models factorize the 116

conditional probability Pθ(Y |X) by: 117

Pθ(Y |X) =

Ty∏
t=1

P (yt | Y<t,X; θ) , 118

where Y<t denotes the target tokens generated be- 119

fore timstep t, Ty denotes the target sentence length 120

and θ denotes the model parameters. This autore- 121

gressive mode makes the decoding process time- 122

consuming, because the target tokens are generated 123

step by step. 124

Non-autoregressive models break the conditional 125

dependency between target tokens and generate all 126

target tokens in parallel. The conditional probabil- 127

ity Pθ(Y |X) is factorized as: 128

Pθ(Y |X) =

Ty∏
t=1

P (yt |X; θ) . 129

Although the assumption of conditional indepen- 130

dence improves the translation speed, it also im- 131

pairs the model performance. 132

The Conditional Masked Language Model 133

Ghazvininejad et al. (2019) introduced the con- 134

ditional masked language model (CMLM), which 135

takes the masked language model as training ob- 136

jective (Devlin et al., 2019) and generate the target 137

sentence through iterative refinement. The objec- 138

tive function allows the model to learn to predict 139

any arbitrary subset of the target sentence in paral- 140

lel: 141

Pθ(Yms |X,Yobs) =

TYms∏
t=1

P (yt |X,Yobs; θ) , 142

where Yms is a set of target tokens randomly re- 143

placed by the special token [mask], and Yobs is 144

the set of reserved target tokens. 145

Contrastive Learning Contrastive learning al- 146

gorithms compare positive and negative pairs to 147

learn representations, and they have achieved re- 148

markable success in computer vision, natural lan- 149

guage processing, recommendation systems, and 150

2



Figure 2: The overall framework of our fully CCMLM model. [M] is the special token [mask]. Left figure:
the model structure. Right figure: the combination of Contrastive Common Mask and Contrastive Dropout. For
different masked results of the same sentence, it is Contrastive Common Mask when combined horizontally, and
Contrastive Dropout when combined vertically.

other fields. It pulls positive pairs together and151

pushes negative pairs apart in the feature space.152

For positive and negative pairs, different algorithms153

and applications use different selection strategies.154

We assume that there is a mini-batch of 2N ex-155

amples. For example i, there is a positive pair156

(i, j(i)), and the other 2(N − 1) examples are157

treated as negative examples of i. The training158

objective for example i is:159

`i = − log
exp

(
sim

(
zi, zj(i)

)
/τ
)∑2N

k=1 1[k 6=i] exp (sim (zi, zk) /τ)
,160

where z denotes the example feature, τ is a temper-161

ature hyperparameter and sim is the similarity func-162

tion (e.g. the cosine similarity: sim(zi, zj(i)) =163

zi
>zj(i)/‖zi‖‖zj(i)‖).164

3 Methodology165

In this chapter, we incorporate contrastive learning166

into NAT. We begin by introducing the structure167

of our model CCMLM, followed by two positive168

pair construction methods for contrastive learning,169

and lastly, the training objective combined with170

the contrastive loss. Figure 2 shows the overall171

framework.172

3.1 Model173

We use the standard CMLM as our base model. The174

encoder is a standard transformer encoder, and the175

decoder is a transformer decoder without the causal176

mask. As the token representation, we utilize the177

output of the last layer of the decoder, which is 178

denoted as h. A projection head fproj maps the 179

representation h into a vector representation z that 180

is more suitable for the contrastive loss. Such a 181

projection head has been shown to be important in 182

improving the representation quality of the layer 183

before it (Chen et al., 2020). This projection head 184

is implemented as a multi-layer perceptron with a 185

single hidden layer. We formulate the process of 186

obtaining z as follows: 187

h = fCMLM (Yobs,X; θ) ,

z = fproj (h) .
188

3.2 Contrastive Learning 189

Positive pairs are different representations of the 190

same token in the same sentence, while negative 191

pairs are representations of other tokens in the same 192

mini-batch. For the acquisition of different repre- 193

sentations of the same token, we adopt two meth- 194

ods. One is to randomly mask the same sentence 195

twice in a row, and the tokens that are masked twice 196

constitute a positive pair, which we call Contrastive 197

Common Mask. The other is inspired by Gao et al. 198

(2021) and simply feeds the same input to the de- 199

coder twice. We can obtain two different repre- 200

sentations of the same token as positive pairs by 201

applying the standard dropout twice, which we call 202

Contrastive Dropout. 203

Contrastive Common Mask During training, 204

the model randomly masks some of the tokens from 205

the target sentence. We perform this process on 206

the same target sentence twice and get two sets of 207
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results, {Yobs1 ,Yms1} and {Yobs2 ,Yms2}. And208

we get z(m1) and z(m2) as follows using different209

decoder inputs:210

h(m1) = fCMLM (Yobs1 ,X; θ) ,

z(m1) = fpro

(
h(m1)

)
,

211

h(m2) = fCMLM (Yobs2 ,X; θ) ,

z(m2) = fpro

(
h(m2)

)
.

212

Contrastive Dropout There are dropout mod-213

ules in the fully-connected layers and multi-head214

attention layers. Due to their randomness, we will215

get different features if we feed the same input216

sentence into the model multiple times. Similarly,217

with the same decoder input and different dropout218

parameters, we get z(d1) and z(d2) as follows :219

h(d1) = fCMLM (Yobs,X; θ, θdrop1) ,

z(d1) = fpro

(
h(d1)

)
,

220

h(d2) = fCMLM (Yobs,X; θ, θdrop2) ,

z(d2) = fpro

(
h(d2)

)
.

221

where θdrop2 and θdrop2 denote different dropout222

masks.223

If we combine these two construction methods,224

we get four sets of features, z(m1,d1), z(m1,d2),225

z(m2,d1) and z(m2,d2).226

Contrastive Loss Now that we have different227

representations of the same token in the same sen-228

tence, we use it to calculate the loss of contrastive229

learning. Let Y1 and Y2 represent two types of ran-230

domly masked tokens for the same sentence, which231

may or may not be the same, z1 and z1 denote232

the corresponding features. Let N = |Y1 ∩ Y2|233

denote the number of common masked tokens. We234

select the representations of common masked to-235

kens from z1 and z2 to form Z, where |Z| = 2N .236

Let i, k ∈ I ≡ {1 . . . 2N} be the index of one237

representation of an arbitrary token, j(i) ∈ I be238

index of the other representation for the same token.239

Then the contrastive loss is given by:240

Lcon =
∑
i∈I
Li

= −
∑
i∈I

log
exp

(
sim

(
zi, zj(i)

)
/τ
)∑

k 6=i exp (sim (zi, zk) /τ)
.

241

As shown above, for both Yms1 and Yms2 , we 242

get two representations for contrastive learning, 243

z(m1,d1), z(m1,d2) and z(m2,d1), z(m2,d2), re- 244

spectively. Different representation combinations 245

are used to calculate the different losses of con- 246

trastive learning. For the Contrastive Common 247

Mask, we get two losses: 248

L1m = Lcon(z(m1,d1), z(m2,d1)),

L2m = Lcon(z(m1,d2), z(m2,d2)).
(1) 249

For the Contrastive Dropout, we can also get two 250

losses: 251

L1d = Lcon(z(m1,d1), z(m1,d2)),

L2d = Lcon(z(m2,d1), z(m2,d2)).
(2) 252

3.3 Training Losses 253

Masked Language Model CMLM-based mod- 254

els are optimized by cross-entropy loss over 255

every masked token in target sentence. We 256

calculate losses for both {Yobs1 ,Yms1} and 257

{Yobs2 ,Yms2} by: 258

L1ce = −
Tymask1∑
t=1

logP (yt |X,Yobs1 ; θ) ,

L2ce = −
Tymask2∑
t=1

logP (yt |X,Yobs2 ; θ) .

(3) 259

Length Predict The length of the target sentence 260

must be known in advance for CMLM-based mod- 261

els to predict the entire sentence in parallel. Also, 262

we follow Ghazvininejad et al. (2019) and add 263

a special token [LENGTH] to the encoder. The 264

model uses the decoder output of [LENGTH] to 265

predict the length of the target sentence. The length 266

loss is: 267

Llen = −
Lmax∑
i

P (i = Ty) logP (Ty | X), (4) 268

where Lmax represents the maximum length of the 269

target sentence. 270

Training Objective During the training of
CCMLM, the model can be optimized by jointly
minimizing the contrastive loss and translation loss.
As the training objective, we add up the above-
mentioned losses, two cross-entropy losses for
translation as (3), four contrastive losses for opti-
mizing feature space as (1) and (2), and one length
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loss for predicting target length as (4):

L =
1

2

(
L1ce + L2ce

)
+ Llen

+
α

4

(
L1m + L2m + L1d + L2d

).
where α is a hyper-parameter to control the inten-271

sity of contrastive losses.272

4 Experiments273

4.1 Experimental Settings274

Dataset We evaluate our models on four di-275

rections from two standard datasets with differ-276

ent training data sizes widely used in previous277

NAT studies: WMT’16 En-Ro (610K sentence278

pairs), WMT’14 En-De (4.5M sentence pairs). All279

datasets are tokenized into subword units by joint280

BPE (Sennrich et al., 2016). We use the same281

preprocessed data as Kasai et al. (2020) for a fair282

comparions with other models (WMT’16 En-Ro:283

Lee et al. (2018); WMT’14 En-De: Vaswani et al.284

(2017)). We evaluate performance with BLEU (Pa-285

pineni et al., 2002) for all language pairs.286

Sequence-Level Knowledge Distillation We287

use sequence-level knowledge distillation (Kim288

and Rush, 2016) as previous works on non-289

autoregressive translation (e.g., Gu et al., 2018;290

Ghazvininejad et al., 2019). Since the performance291

of the AT teacher will affect the final performance292

of the NAT student model (Wang et al., 2019), we293

used the distillation data provided by Kasai et al.294

(2020). They are produced by standard left-to-right295

transformer models (transformer large for En-De,296

transformer base for En-Ro) for a fair comparison.297

Hyperparameters We follow the hyperparame-298

ters for a transformer base (Vaswani et al., 2017;299

Ghazvininejad et al., 2019; Kasai et al., 2020). The300

projection head is implemented as a multi-layer301

perceptron with a single hidden layer of size 256302

and output vector of size 64. Please see Appendix303

A for details of other hyperparameters. Our code is304

based on CMLM1 and DisCo2.305

Baselines We adopt Transformer (AT) and ex-306

isting NAT models for comparison. Table 1 for307

more details. NAT models can be divided into fully308

NAT models and iterative NAT models. See Itera-309

tive NAT models with enough number of iterations310

1https://github.com/facebookresearch/Mask-Predict
2https://github.com/facebookresearch/DisCo

generally outperform fully NAT models. Noisy 311

parallel decoding (NPD) is an important technique 312

for fully NAT to improve the performance of the 313

model, which requires an additional AT model for 314

re-ranking. The models trained with CTC loss are 315

usually better than the models trained with cross- 316

entropy loss because of its inherent de-duplication 317

mechanism. The current state-of-the-art model 318

is the Imputer, which combines the CTC and the 319

masked language model. 320

4.2 Overall Results 321

Table 1 shows the main results on WMT’14 En-De 322

and WMT’16 En-Ro test sets. Compared to exist- 323

ing NAT models, except for Imputer, our model sig- 324

nificantly and consistently improves the quality of 325

translation across four translation directions. Fur- 326

thermore, our model outperforms the Imputer on 327

the WMT’16 Ro-En and is state-of-the-art (34.18 328

BLEU). 329

Our model outperforms standard CMLM with 330

margins from 0.80 to 1.04 BLEU points, demon- 331

strating the usefulness of our methods. It is also 332

significantly superior to other CMLM-based mod- 333

els, such as SMART, CMLM+LFR, CMLM+PMG, 334

and MvCR. It is worth noting that the contrastive 335

module is only used in the training process and is 336

discarded during inference. Therefore the transla- 337

tion latency is not increased. 338

4.3 Analysis 339

Comparison of Different Iterations Iterative 340

NAT can effectively improve model performance 341

by increasing the number of iterations. Naturally, 342

the larger the number of iterations is, the slower 343

the translation speed is. Therefore we need strike a 344

balance between translation speed and model per- 345

formance. One, four, and ten iterations are widely 346

employed for CMLM-based models. We compare 347

the model performance of CMLM and CCMLM in 348

the four translation directions in the Table 2. As we 349

can see, CCMLM constantly beats CMLM in every 350

iteration step and task, and the fewer the iterations, 351

the more significant the improvement. Further- 352

more, the CCMLM performance with four itera- 353

tions outperforms the CMLM performance with ten 354

iterations, which the other previous CMLM-based 355

models do not achieve. 356

Repeated Translation In NAT, a major issue is 357

repeated translation, which means that illogical 358

consecutive repeated tokens frequently exist in 359
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Mdels Iter. En-De De-En En-Ro Ro-En

AT Transformer T 27.38 31.78 34.16 34.46

w/ NPD NAT-FT (m=100) (Gu et al., 2018) 19.17 23.20 29.79 31.44
imit-NAT (m=7)(Wei et al., 2019) 24.15 27.28 31.45 31.81

Fully NAT-HINT (m=9) (Li et al., 2019) 25.20 29.52 - -
NAT Flowseq (m=30) (Ma et al., 2019) 25.31 30.68 32.20 32.84

NAT-DCRF (m=9) (Sun et al., 2019) 26.07 29.68 - -
GLAT (m=7) (Qian et al., 2021) 26.55 31.02 32.87 33.51

AXE (Ghazvininejad et al., 2020a) 23.53 27.90 30.75 31.54
OAXE (Du et al., 2021) 26.10 30.20 32.40 33.30

w/ CTC NAT-CTC (Saharia et al., 2020) 25.70 28.10 32.20 31.60
Imputer (Saharia et al., 2020) 25.80 28.40 32.30 31.70

GLAT (Qian et al., 2021) 26.39 29.54 32.79 33.84
Tricks (Gu and Kong, 2021) 27.49 31.10 33.79 33.87

w/ CTC Imputer (Saharia et al., 2020) 8 28.20 31.80 34.40 34.10

CMLM (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31
Iterative SMART (Ghazvininejad et al., 2020b) 10 27.65 31.27 - -

NAT ENGINE (Tu et al., 2020) 10 - - - 34.04
DisCo (Kasai et al., 2020) Adv. 27.34 31.31 33.22 33.25
MvCR (Xie et al., 2021) 10 27.39 31.18 33.38 33.56

CMLM+PMG (Ding et al., 2021a) 10 27.60 - - 33.80
CMLM+LFR (Ding et al., 2021b) 10 27.80 - - 33.90

Ours CCMLM 10 27.93 31.57 33.88 34.18

Table 1: Performance (BLEU) comparison between our proposed model CCMLM and existing models. Iter.
denotes the number of iterations, Adv. means adaptive and m is the number of re-ranking candidates.

Model En-De De-En En-Ro Ro-En

1 18.05 21.83 27.32 28.20
CMLM 4 25.94 29.90 32.53 33.23

10 27.03 30.53 33.08 33.31

1 20.19 25.02 30.90 31.77
CCMLM 4 27.28 31.18 33.45 33.83

10 27.93 31.57 33.88 34.18

Table 2: Performance (BLEU) comparison between
CCMLM and CMLM with different iterations.

translated sentences. This is especially noticeable360

in long sentences. We calculate the average num-361

ber of consecutive repeated tokens per sentence362

on the WMT’16 En-Ro test set. Table 3 shows363

the results. According on whether the sentence364

length is fewer than 25, all samples are divided into365

Short and Long groups. It can be seen that after366

the addition of the contrastive module, the num-367

ber of consecutive repeated tokens is significantly368

Model 1 4 10

Short 0.84 0.09 0.04
CMLM Long 8.10 0.79 0.27

All 4.60 0.45 0.16

Short 0.39 0.06 0.02
CCMLM Long 4.01 0.41 0.18

All 2.29 0.25 0.10

Table 3: The average number of consecutive repeated
tokens per sentence with different iterations on the
WMT’16 En-Ro test set.

reduced. 369

Different Source Length We divide the samples 370

into different length buckets based on the source 371

sentence length to assess the model ability to trans- 372

late sentences of various lengths. Figure 3 shows 373

the results on the test set of WMT’16 En-Ro with 374

one iteration. As the length of the source sen- 375

tence increases, the performance of CMLM drops 376
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Models Iter. En-De De-En En-Ro Ro-En

CMLM 10 27.03 30.53 33.08 33.31

1 19.71 24.29 30.16 31.69
+ Common Mask 4 27.05 30.86 33.31 34.05

10 27.76(+0.73) 31.52(+0.99) 33.63(+0.55) 34.32(+1.01)

1 18.68 24.00 29.93 30.81
+ Dropout 4 26.61 30.61 33.14 33.33

10 27.18(+0.15) 31.14(+0.61) 33.41(+0.33) 33.59(+0.28)

CCMLM 10 27.93(+0.90) 31.57(+1.04) 33.88(+0.80) 34.18(+0.87)

Table 4: Ablation experiments on two methods of constructing positive pairs.

Figure 3: The BLEU points on the test set of WMT’16
En-Ro over sentences in different length buckets.

quickly, whereas the performance of our model377

CCMLM decrease is is noticeably slower. The378

longer the source sentences are, the more consid-379

erable the margin between CCMLM and CMLM380

is.381

Complementary to Related Work In the course382

of our work, we discovered MvCR (Xie et al.,383

2021), which is relevant to our work. MvCR intro-384

duces Shared Mask Consistency and Model Consis-385

tency through bidirectional Kullback-Leibler (KL)386

divergence. Shared Mask Consistency is similar to387

the idea of Contrastive Common Mask proposed388

by us. The difference is that we use the last layer389

of Decoder and the method of contrastive learning,390

while they use the predicted distributions and the391

method of consistency regularization. And we do392

not use the features of an online model and an av-393

erage model for contrastive learning, while they do394

not use the consistency between different dropout395

parameters.396

Contrastive Layer En-Ro

6 33.88
5 33.64
4 33.51

6+5 w/shared-head 33.59
6+5 w/different-heads 33.34

word embed 33.65

Table 5: Performances on WMT’16 En-Ro with differ-
ent contrastive layers.

4.4 Ablation Study 397

Common Mask vs. Dropout As shown in Ta- 398

ble 4, we test the individual contributions of the 399

two contrastive methods in the four translation di- 400

rections. It can be seen that when Contrastive Com- 401

mon Mask and Contrastive Dropout are used alone, 402

the performance of the model has also been im- 403

proved to varying degrees compared with the base- 404

line CMLM. In the WMT’16 Ro-En task, CMLM 405

with Contrastive Common Mask is state-of-the-art 406

(34.32 BLEU). Furthermore, the improvement of 407

Contrastive Common Mask is more significant than 408

that of Contrastive Dropout. On the one hand, 409

we think that the decoder input context of Con- 410

trastive Common Mask is different, allowing the 411

model to explicitly capture the similarity of gen- 412

erated features in different contexts and making 413

features richer and more robust, whereas dropout is 414

only implicitly optimized by the parameters of the 415

model which is a little weaker. On the other hand, 416

Contrastive Common Mask also needs to feed the 417

sample to the model twice, which means that part 418

of Contrastive Dropout is included in Contrastive 419

Common Mask. When we combine the two meth- 420

ods, except in the WMT’16 Ro-En task, the model 421
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α 0.3 0.5 1.0 2.0

En-Ro 33.41 33.54 33.88 33.81

Table 6: Performances on WMT16’En-Ro with differ-
ent contrastive loss weights α.

performance has been improved again.422

Contrastive Layer For contrastive learning, we423

can obtain various representations from different424

layers of the Decoder. The impact of different layer425

representations is discussed here. First, we choose426

the output of the Decoder’s fourth, fifth, and sixth427

layers independently. Second, we combine the428

contrastive losses of the fifth and the sixth layers429

together. The projection heads for these two layers430

can be same or different. Finally, we also compare431

the word embedding output of the Decoder. Table 5432

shows the result. Using representations of the sixth433

layer alone has the best performance, followed by434

word embedding. The shallower the representation435

used, the worse the performance is. Combining the436

contrastive losses for different layers do not helpful,437

whether using the same head or different heads.438

Effect of α α controls the intensity of contrastive439

losses. To further understand the role of contrastive440

losses, we try out different values in Table 6 and441

observe that all the variants outperform the base-442

line CMLM. The best choice of contrastive losses443

weight is α = 1.0.444

Dropout Probability Since we use dropout ex-445

plicitly and implicitly in Contrastive Dropout and446

Contrastive Common Mask, respectively, we con-447

duct ablation experiments on WMT’16 En-Ro with448

different dropout rates in {0.1, 0,2, 0.3, 0.4, 0.5}.449

As Table 7 shows, dropout rates that are too high450

or too low hurt the performance of the model. The451

best choice of dropout rate is 0.3.452

5 Related Work453

In order to speed up the translation process, Gu454

et al. (2018) introduced non-autoregressive trans-455

lation. We divide NAT models into three types456

according to the training loss. The first is the con-457

ditional independent language model, which in-458

clude: enhancing the decoder input (Guo et al.,459

2019; Bao et al., 2019; Ran et al., 2019), enhancing460

the decoder output (Wang et al., 2019; Sun et al.,461

2019), learning or transforming from autoregres-462

sive model (Li et al., 2019; Guo et al., 2020a; Sun463

Dropout 0.1 0.2 0.3 0.4 0.5

En-Ro 33.19 33.69 33.88 33.79 33.41

Table 7: Performances on WMT16’En-Ro with differ-
ent dropout rates.

and Yang, 2020; Tu et al., 2020; Liu et al., 2020), 464

latent variable-based model (Lee et al., 2018, 465

2020; Shu et al., 2020). The second is the con- 466

ditional masked language model, inculde: strong 467

baseline model CMLM (Ghazvininejad et al., 468

2019), disentangled context transformer (Ding 469

et al., 2020), jointly masked sequence-to-sequence 470

model (Guo et al., 2020b), semi-autoregressive 471

training (Ghazvininejad et al., 2020b), increas- 472

ing the mask ratio gradually (Qian et al., 2021), 473

learning autoregressive model (Tu et al., 2020), 474

progressive multi-granularity training (Ding et al., 475

2021a), using the bidirection distillation data (Ding 476

et al., 2021b), improving the alignment of cross 477

entropy (Ghazvininejad et al., 2020a; Du et al., 478

2021). The last is the CTC model, which in- 479

cludes CTC (Libovický and Helcl, 2018) and Im- 480

puter (Saharia et al., 2020) which combines the 481

CTC and the masked language model. Other ex- 482

cellent approaches include: flow-based generative 483

model (Ma et al., 2019), adding a lite autoregres- 484

sive module (Kong et al., 2020), training with 485

monolingual data (Zhou and Keung, 2020), incor- 486

porating the pre-trained model (Guo et al., 2020c), 487

and tricks of the trade (Gu and Kong, 2021). 488

6 Conclusion 489

In this work, we propose CCMLM, which is the 490

first effort to combine token-level contrastive learn- 491

ing and the conditional masked language model. 492

CCMLM optimizes the similarity of different rep- 493

resentations of the same token in the same sen- 494

tence by contrastive learning. We propose Con- 495

trastive Common Mask and Contrastive Dropout 496

to construct positive pairs, using different random 497

masks and dropout masks, respectively. Our model 498

achieves consistent and significant improvement 499

in the four translation tasks and is state-of-the-art 500

on WMT’16 Ro-En. The lightweight contrastive 501

module is removed during inference, so it does not 502

affect the translation speed. 503

In the future, we will focus on combining the 504

idea with the CTC and the pre-trained masked lan- 505

guage model. 506
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A Hyperparameters814

We follow the hyperparameters for a transformer815

base (Vaswani et al., 2017; Ghazvininejad et al.,816

2019; Kasai et al., 2020): 6 layers for the encoder817

and the decoder, 8 attention heads, 512 model di-818

mensions, and 2048 hidden dimensions per layer.819

Set dropout rate to 0.3 for WMT’16 En-Ro and820

0.2 for WMT’16 En-Ro. We sample weights821

from N (0, 0.02), initialize biases to zero and set822

layer normalization parameters to β = 0, γ = 1,823

following the weight initialization scheme from824

BERT (Devlin et al., 2019). We set weight decay to825

0.01 and label smoothing to 0.1 for regularization.826

We train batches of approximately 2K · 8 (8 GPUs827

with 2K per GPU) tokens using Adam (Diederik828

and Jimmy, 2014) with β = (0.9, 0.999) and829

ε = 10−6. We set update frequency to 4 which830

means accumulate gradients from 4 batches before831

each update (Ott et al., 2018), and enable mixed pre-832

cision floating point arithmetic (Micikevicius et al.,833

2018). The learning rate warms up to 5 · 10−4 for834

the first 10K steps, and the decays with the inverse835

square-root schedule. We train models for 300K836

steps on 8 NVIDIA TESLA V100 32G GUPs, and837

average the 10 best checkpoints as the final model.838

Following the previous works (Ghazvininejad et al.,839

2019; Kasai et al., 2020), we apply length beam840

with the size of 5.841
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