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Abstract
Many NLP models gain performance by having access to a knowledge base. A lot of research

has been devoted to devising and improving the way the knowledge base is accessed and incor-
porated into the model, resulting in a number of mechanisms and pipelines. Despite the diversity
of proposed mechanisms, there are patterns in the designs of such systems. In this paper, we sys-
tematically describe the typology of artefacts (items retrieved from a knowledge base), retrieval
mechanisms and the way these artefacts are fused into the model. This further allows us to uncover
combinations of design decisions that had not yet been tried. Most of the focus is given to language
models, though we also show how question answering, fact-checking and knowledgable dialogue
models fit into this system as well. Having an abstract model which can describe the architecture
of specific models also helps with transferring these architectures between multiple NLP tasks.

1. Introduction

For multiple NLP tasks and primarily language modelling, the BERT [Devlin et al., 2019], GPT-2
[Radford et al., 2019], GPT-3 [Brown et al., 2020] and T5 [Raffel et al., 2020] models have seen
great success. Their performance is, however, limited on rare or unseen entities [Logan et al., 2019,
Schick and Schütze, 2020] and knowledge-intensive NLP tasks [Chen, 2020]. As a consequence,
they perform poorly on the task of fact-aware language modelling, where the words to be predicted
are named entities [Logan et al., 2019].

Traditionally question answering systems relied heavily on knowledge base access. This has
been expanded by other NLP tasks for which models have been proposed (Appendix A) that make
use of knowledge bases. Not only do they perform better on e.g. fact-aware language modelling,
but they can also provide a degree of explainability (which fact was retrieved) and allow for the
model and knowledge base components to be trained separately. The latter is a strong prerequisite
for efficient knowledge base manipulation and control, such as removing misinformation or biases
[Bhardwaj et al., 2020, Metz, 2019] or adding new information. This is problematic for models like
BERT or T5 because their knowledge is tightly coupled with their generative ability, which is stored
implicitly in the parameters. Such models make use of parametric knowledge representations as
opposed to non-parametric ones, which are typically used in retrieval-based approaches (separation
of the memory and generation components). Separating memory from the generative component
allows for more flexible architectures, though at the cost of increased complexity.

While using knowledge bases for language modelling is not immediately intuitive, it is very
prevalent in the area of open-domain question answering. Commonly in this case the retrieved
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knowledge (passed to a generative model) is useful for producing an answer to a question in natural
language as the model is trained to condition its generation on the retrieved artefact. Having access
to a knowledge base is mandatory for the task of extractive question answering where the output
is a span from the available data. Pre-trained language models have also been shown to be able to
perform question-answering in the form of being primed by the question [Liu et al., 2019]. This
demonstrates the amount of knowledge that is stored in their parameters, though these models are
usually outperformed by models with explicit knowledge base access [Petroni et al., 2020]. Models
in the task of slot-filling and fact-checking also benefit from explicit memory access largely because
of the same reasons.

Recently there has been an effort in the community to phrase any NLP task in a unified fash-
ion as a sequence to sequence task (seq-2-seq). Examples of this are phrasing multiple tasks as
question answering [McCann et al., 2018], the T5 model [Raffel et al., 2020], the focus on prompt
priming [Le Scao and Rush, 2021, Lin et al., 2021] and GPT3 and its few-shot learning approach
for multiple tasks [Brown et al., 2020]. There is also a separate line of research that aims to inject
commonsense or factual knowledge into language models by training them on data derived from
knowledge graphs. An example of this is injecting numerical reasoning skills [Geva et al., 2020] or
commonsense knowledge [Bosselut et al., 2019]. This is orthogonal to retrieval-based approaches
(such as dialogue generation with commonsense knowledge base access by Young et al. [2018]) on
which we focus in this paper.

Contribution. The goal of this paper is to provide a formalism for an abstract model which un-
derlies many specific models for knowledge-intensive tasks with knowledge base access. Similarly
to KILT [Petroni et al., 2020], we hope that this provides a foundation for future research into task-
agnostic memory and model architectures. Lastly, this systematic approach to model description
allows us to uncover (1) combinations of mechanisms tried only on one task, which could, however,
also work on other NLP tasks and (2) combinations of mechanisms that had not yet been explored
for any task.

Outline. In Section 3 we introduce the abstract model underlying other systems together with the
different components and the way they can be instantiated. The limitations of this schema and also
future work with methods not yet explored are discussed in Section 4. We conclude in Section 5.

An important part is also Appendix A in which different models and approaches for language
modelling, question answering, fact-checking and knowledgable dialogue are examined to show
how disparate models fit into this schema.

2. Related Work

A comprehensive overview of earlier work on neural model-based information retrieval systems
together with a general introduction has been done by Mitra and Craswell [2017]. More recently
models such as BERT have been utilized successfully for the task of retrieval itself [Nogueira et al.,
2019b, Soleimani et al., 2020].

The aim of KILT [Petroni et al., 2020] is to provide a common knowledge base for a number
of different NLP tasks (ranging from question answering to fact verification) and to stimulate re-
search in task-agnostic memory architectures. Reformulating various NLP tasks to all use the same
knowledge base format provides a stepping stone for the formalisms of artefact retrieval.
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Figure 1: General scheme of NLP models utilizing artefacts by retrieving them from a knowledge
base and fusing them into the model in order to produce a better output. Dashed links are
utilized only in knowledge base creation and usually not all at once.

Defining a task-agnostic abstract model is closely related to multi-task learning. The goal of
this approach is to improve the performance by training the model on multiple tasks rather than on
individual ones [Maillard et al., 2021]. The hope is that representations and generalizations learned
for one task will help on another one and vice versa. A strong requirement for this is that the
instantiations for different tasks (in the multi-task setup) share significant portions of the model.

An edge-case of this is using a pre-trained BERT model and then fine-tuning it for the new task
and/or possibly adding extra layers to match the input and output shapes. Even for BERT, however,
it was shown several times [Petroni et al., 2020, Liu et al., 2019, Sun et al., 2019a, Kim et al., 2019]
that training on multiple tasks improves the performance [Aghajanyan et al., 2021]. This would not
be possible without a common model shared among the tasks. Further related work is discussed in
the respective sections when presenting individual NLP models and how they fit into this schema.

3. Artefact Retrieval

Systems utilizing knowledge bases usually contain up to four main components (excluding the
knowledge base itself): encoder, retriever, aggregator and model. In other works, some of these
parts are joined together, most commonly the encoder, the retriever and the aggregator. We separate
them for clarity.

A query or an input is specific to the given task. For language modelling, it is the previous
context, for question answering the question, for slot-filling usually the entity and the relation, and
for fact-checking the fact to be verified. In the context of this work, a knowledge base is a collection
of items, usually (but not necessarily) with a pre-built index that maps keys to values. Prototypically,
it is a collection of documents, though it can also be a collection of gold training data input-output
pairs or a knowledge graph. Candidates are values retrieved from the knowledge base, which may
be later post-processed (e.g. reranking or averaging) by the aggregator to form an artefact. key is
an object through which the retriever finds suitable artefacts. Commonly the key is a dense vector
representation of the input, though it is not necessarily a vector and may be dependent also on
an intermediate model computation. An artefact is an object which is (1) dependent on elements
retrieved from the knowledge base (e.g. the concatenation of k retrieved documents) and (2) can be
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used to improve the performance during training and inference. In the simplest example, it is the
retrieved value itself, though it can also be multiple retrieved values or their combination.

On a simplified level, models with artefact retrieval usually work the following way, given a
query/input q and knowledge base B:

[Key] k = Encoder(q)

[Candidates] C = Retriever(B, k)
[Artefact] ξ = Aggregator(C)

[Output] ŷ = Model(q, ξ)

A diagram of this pipeline can be seen in Figure 1 (ignore dashed connectors). Pipelines without
knowledge base access would only make use of the bottom line (Query/Input→Model→ Output).
The aggregator is shown to only depend on the retriever output but in some scenarios may also take
the key or the query itself as an input.

3.1 Artefact Typology

Most systems used in the literature differ in the encoder, retriever, and model design. We bring
attention to four properties that characterize the differences between such systems.

• Fusion (early, late, other)

• Specificity (sample, task, class)

• KB source (train, external, dynamic)

• Key & value type (dense, sparse, other)

3.2 Fusion

Formally the model estimates p(y|x, ξ) where y is the ground-truth output, x is the query/input
and ξ is a retrieved artefact. Fusion Sun et al. [2018] concerns with which point is the artefact
made available to the model. It can be presented to the model at the same time as the query/input,
e.g. by concatenating x and ξ (early fusion), just before the output is created by the model (late
fusion), or somewhere in between. Formally, the model computation is a composition of functions
f1, . . . , fn. In the simplest example of feed-forward networks, these correspond to single layers and
activation functions and on a higher level, they correspond to whole encoder/decoder blocks. The
distinction as to what counts as early and late is not clear and for presentation purposes, we consider
early fusion at the level of f1 and late fusion at the last stage, fn. These functions themselves may,
however, still be composed of multiple others. In early fusion, the artefact is the input together with
the query to the first function f1, while in late fusion the query is the single input to f1 and artefact
is considered only for fn.

No fusion: fn ◦ . . . ◦ f2 ◦ f1(q)
Early fusion: fn ◦ . . . ◦ f2 ◦ f1(q, ξ)
Late fusion: fn(fn−1 ◦ . . . ◦ f1(q), ξ)
Intermediate fusion: fn ◦ . . . ◦ fk(fk−1 ◦ . . . ◦ f1(q), ξ)

4



ARTEFACT RETRIEVAL: OVERVIEW OF NLP MODELS WITH KNOWLEDGE BASE ACCESS

Intuitively it makes more sense to prefer early fusion, to maximize the model’s access to extra
information [Izacard and Grave, 2020, Karpukhin et al., 2020]. However, this can also be a disad-
vantage, as the signal from the artefact can get lost during the long computation. In the case of an
artefact which is the gold output of a similar query from the training data, later fusion makes more
sense. This also allows for a degree of explainability. By examining the forward pass of the last
function we could determine what the contribution of the artefact was to the produced output.

The decision of how late the fusion should be depends heavily on the artefact type. The applica-
tion of every function in the chain of computation projects the input to some latent space. The final
function fn is special because it projects the output of previous functions to the space of possible
outputs for the whole model. In this space, there is the prediction ŷ and also the true output y. The
task performance metric is defined in this space. During inference, adding an artefact should ideally
move the prediction in the output space closer to the correct output. Assuming c is the intermediate
computation and there are two (overloaded) functions that produce a prediction: ŷx = fn(c) and
ŷξ = fn(c, ξ). In circumstances in which adding the artefact helps, L(ŷξ, y) < L(ŷx, y), where L
is a loss function such as cross-entropy. This is illustrated in the first row of Figure 2 for n = 2.

Assume that we can create an inverse of the last projection and see where the correct output lies
in the intermediate representation. There may be multiple such ct : fn(ct) = y or none, if too much
information was lost by the first projection f1. Further, assume that there is always at least one
such ct. We may then define an intermediate loss Li for each model computation by measuring the
distance of the partial computations to the back-projection. Similarly to late fusion, we consider two
overloaded functions that produce the intermediate representation cx = f1(q) and cξ = f1(q, ξ).
Adding the artefact then ideally moves the intermediate representation closer to the back-projection
and reduces the intermediate loss: Li(cξ, ct) < Li(cx, ct).1

This is illustrated in the second row of Figure 2, which depicts a model with only two computa-
tional steps: f2◦f1. Early fusion (second row) adds the artefact to f1, while late fusion adds it in the
next step. For simplicity in the figure, we consider the standard L2 distance loss between the points.
In both cases, adding the artefact reduced the target loss. For early function, the intermediate loss
was also reduced and the target loss was lower. This does not always happen and complex compu-
tations may still at some point project the intermediate computation to the same point regardless of
whether an artefact was added earlier or not. It may also be the case that training with artefacts takes
a longer time and the intermediate loss is higher but that the presence of the artefacts will make the
model converge to a better optimum (lower generalization error).

Even though the invertibility of projections in this paper is only used as an illustration for the
artefact fusion and an intermediate loss does not have to be defined in practice, invertible neural
networks are an ongoing topic of research [Ardizzone et al., 2018, Behrmann et al., 2021]. The
combination of artefact retrieval and invertible neural networks has not yet been explored to our
knowledge.

Fusion Mechanisms. There are common patterns with respect to artefact fusion. Priming, as used
by many question-answering systems [Guu et al., 2020, Lewis et al., 2020, Karpukhin et al., 2020],
is an example of an early fusion technique. In the simplest scenario, the retrieved paragraphs are
prepended to the actual question and put together to the model as one input.

1. In case of multiple elements that map to y, we can define a loss that considers the minimum distance to any of them:
Li′ = minLi(c, ct). If there is no such element in the projection space, then we may consider the elements that
project close to the target Ct = argminL(f2(c), y).
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Figure 2: Example of how late (top) and early (bottom) fusions affect the projections into interme-
diate spaces. The lengths of dashed lines correspond to the loss (longer is greater loss).
Adding an artefact ξ to the computation decreases the loss in both early and late fusions.

An extension to this is key-aware priming, in which the keys of the retrieved values are also
put to the model in an early fusion. The motivation for this in the context of question answering
is that the keys may be encoded questions and the retrieved value is simply the answer. Then at
inference time, the system can receive a specific question of which the negation is stored in the
knowledge base. Knowing the answer to the negation of a question may be beneficial in answering
the original question, though knowing the question to which the answer corresponds is vital. Key-
aware priming can be also conceptualized as simply storing the key-value pairs as: (key, key+value)
and then retrieving the second item of the tuple by the retriever which would also retrieve the key.

For multi-class predictors2 like language models it is possible to consider the training data as
a knowledge base and when retrieving, suggest k nearest neighbours. This can be followed up by
averaging the probabilities of the output classes based on the neighbour distance (performed by the
aggregator). For this late fusion approach, output gating, the last function fn can either be a simple
convex combination ŷ = λ · c + (1 − λ) · ξ or a slightly more complex gating mechanism, which
computes λ dynamically based on the current input [Khandelwal et al., 2019, Yogatama et al., 2021].
Both are discussed in detail in Appendix A.1.

Filtration/masking can be seen as very late fusion. For slot-filling or fact-aware language mod-
elling, the retriever may provide relevant documents out of which a term incidence vector3 is con-
structed. The output of the model is then masked and normalized to prevent outputs unrelated to the
query (ŷ = c� ξ

|c� ξ|). An example of this is to constrain beam-search decoding to valid names only as
done in the recently proposed GENRE model for entity retrieval tasks [De Cao et al., 2020].

2. Single-token predictors can be treated as multi-class predictors with the classes being the vocabulary.
3. A vector v of the length of the vocabulary filled with ones and zeroes. Then vi = 1 if the i-th term occurred in the

retrieved documents, otherwise zero.
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3.3 Specificity

The property of specificity is not directly bound to the pipeline of models using artefact retrieval.
In a wider sense of an artefact being something that improves inference-time performance, the
retriever can produce artefacts that help the model, though which are not necessarily dependent on
a knowledge base. In this specific case, the retriever can simply ignore the conditioning on the
knowledge base and can be directly fused together with the encoder. In the usual scenario, the
encoder makes decisions based on the current query. It may, however, ignore significant parts of the
query or be conditioned on a specific task and not take the query into consideration at all.

For the task of open-domain question-answering, retrieving documents based on their embed-
ding’s inner product similarity to the query embedding [Karpukhin et al., 2020] is an example of the
sample-specific property. Presumably significant portions of the query are considered when produc-
ing the key for the retriever and different queries produce different artefacts (sets of documents).

Pre-trained language models, such as BERT or GPT-3, are either fine-tuned on a new task or
are primed on prompts either crafted by humans [Haley, 2020, Misra et al., 2020, Petroni et al.,
2019] or found automatically [Shin et al., 2020, Jiang et al., 2020]. These prompts (also called
stimuli, constraints, or demonstrations) are then dependent only on the specific task at hand and
nothing else. As an example, Radford et al. [2019] affix the prompt TL;DR after a passage to
induce summarization behaviour. Crafting task-specific artefact, specifically prompts, is known as
prompt programming or prompt engineering [Reynolds and McDonell, 2021] and allows the models
to perform a wide variety of NLP tasks.

The prompts may be in a structured form with only some parts of it being considered by the
encoder. In the case of fact retrieval [Shin et al., 2020], the input is in the form of (subject, relation).
It is then possible to have different prompts based only on the relation (class). Different conditioning
which results in distinct encoder specificities are summarized in the following equations:

Query/input q = {q1, q2, . . . qn}
Sample-specific: Encoder(q, task)

Task-specific: Encoder(task)

Class-specific: Encoder(q′ ⊂ q, task)

3.4 Knowledge Base Source

The way the knowledge base is created is tightly coupled with its fusion purpose. There are, how-
ever, three common underlying patterns that describe the possible creation schemes. In the general
architecture overview of pipelines with artefact retrieval in Figure 1, they are depicted with dashed
lines. The most common example is in the task of open-domain question-answering, where the
knowledge base, a collection of documents, is a vital component to produce the answer. A col-
lection of documents or knowledge graph structures are examples of knowledge bases populated
externally.

A specific contrast to this is having access to the training data during inference. Here, the
knowledge base is created as:

B = {( Encoderquery(q), y)|(q, y) ∈ Dtrain}

At inference time, the model can then refer back to examples it has already seen with the re-
triever providing e.g. a weighted combination of nearest neighbours [Khandelwal et al., 2019] or
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any other aggregation of found samples. This memorization based approach is usually used with
late fusion because, at the end of the computation, the model has access to its proposed output and
also to the gold outputs of similar queries. These can be then combined together using e.g. gating.

Finally, the knowledge base can also be created dynamically during inference, such as by keep-
ing a track of already predicted words in language modelling. This knowledge base creation is
depicted by the dashed line from Output to Knowledge Base in Figure 1. This usage of knowledge
base lies, however, slightly out of the traditional meaning and understanding of the term.

3.5 Key & Value Type

Commonly the knowledge base is either (1) a collection of candidates (e.g. documents, paragraphs
or gold outputs from the training dataset), in which case they are retrieved by similarity to the query
or (2) a more structured source of information, such as a knowledge graph.

Vector Space Model. Traditionally, question-answering and other NLP systems would use a vec-
tor space model for the values (documents) and queries. Such representations usually describe the
algorithm for computing the vector representations for both the document and the query. These in-
clude standard statistical methods such as TF-IDF [Salton and McGill, 1986] or BM25 [Robertson
et al., 1995]. Their disadvantage is that the resulting vectors have the dimension the same as the
number of words in the vocabulary. A contrast to this is dense vector representation. LSA [Dumais,
2004] is one of the oldest of such methods, but it also includes learned embedding methods based
on word2vec [Mikolov et al., 2013], doc2vec [Le and Mikolov, 2014], docT5query [Nogueira et al.,
2019a], CLSM [Shen et al., 2014] or BERT [Devlin et al., 2019]. The latter allows for the use of the
gradient signal of the latent variable (documents) to fine-tune the index, as done asynchronously by
Guu et al. [2020].

Splitting the retrieval mechanism into an Encoder and Retriever is not strictly necessary
and only follows a common pattern found in many systems. This is usually done for training and
speed purposes because e.g. recomputing embeddings for all documents bears too high of a cost for
just single retrieval. In the vector space model, an index (keys for the documents) would be built
usually in the pre-processing phase and the knowledge base would constitute a mapping from this
index to the documents. Then a vector similarity, usually the cosine similarity, is used which results
in the following pipeline:

B = {(Encoderdoc(d), d)|d ∈ C}
k = Encoderquery(q)

ξ = Retriever(B, k) = arg max
(v,d)∈B

sim(k, v)

Usually, instead of retrieving just the argmax, the top-k scoring documents are returned. When
using cosine similarity with normalized vectors, we may substitute the similarity by the inner prod-
uct k � v, which can be approximated efficiently by Maximum Inner Product Search (Approximate
Nearest Neighbour Search) algorithms in sublinear query time [Johnson et al., 2019, Guo et al.,
2020, Yang et al., 2021]. Instead of documents, which are replaced by paragraphs or spans of texts,
depending on the specific work. It is also possible to store query representation from the training
data, as described in Section 3.4. The setup is then similar as for document retrieval, with the ex-
ception that instead of documents, the retrieved values are gold outputs from the training dataset.
The inner product search remains the same.
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Knowledge Graphs. A vastly different approach has to be chosen when the knowledge base is
more structured, such as a knowledge graph. In this case, the knowledge base is usually a directed
labelled graph: a set of triples (parent, relation, entity). The parent and the entity are elements of a
fixed set of entities and the relation is an element of a fixed set of possible relations (usually orders
of magnitudes smaller than the set of entities).

Question-answering over knowledge graphs is a specific, vastly explored [Bao et al., 2016,
Lukovnikov et al., 2017] subfield of non-extractive open-domain question answering. Popular
knowledge graphs, based on Wikipedia, include DBpedia [Auer et al., 2007], Wikidata [Vrandečić
and Krötzsch, 2014] and YAGO [Rebele et al., 2016]. A comparison of them has been composed
by Ringler and Paulheim [2017]. Specific datasets for testing question answering over knowledge
graphs are WebQuestions [Berant et al., 2013] and SimpleQuestions [Bordes et al., 2015]. Knowl-
edge graphs are, however, also used for fact-aware language modelling [Logan et al., 2019] or
fact-checking [Ciampaglia et al., 2015, Tchechmedjiev et al., 2019]. Simple slot-filling without any
reasoning (either multi-source facts or resolving aliases) would be a trivial task. It is then used in the
opposite direction, for automatically creating knowledge graphs [Yu et al., 2014]. These knowledge
bases found their use even in more distant tasks, such as Word Sense Disambiguation [Bevilacqua
and Navigli, 2020]. Knowledge graph retrieval is then reduced to finding variables given constraints
(a subgraph with free variables that needs to be matched over the knowledge base).

The query construction (which entity and relation should be selected) is handled by the Encoder
and is commonly limited to a single restriction (single triplet). The Retriever is built on top of
a database, which stores the knowledge graph. This is vastly faster than MIPS and computing the
index in vector space models, but at the cost of a more complicated encoder and constraints to the
type of knowledge stored.

4. Discussion

Descriptions of specific systems and approaches for language modelling, knowledge graph lan-
guage modelling, question answering, fact-checking and knowledgable dialogue in the paradigm of
artefact retrieval can be found in Appendix A. Summary characteristics of the different models are
shown in Table 1.

4.1 Limitations

Even though the abstract model presented in this paper is versatile in the description of various
models, it may be lacking in subtle ways to describe more complex systems. This complexity may
be included in one of the components in order to make it fit, though this obscures clear understanding
and comparison across models. An example of this is the implicit aggregation in the form of re-
ranking as the final step of the DPR question answering system [Karpukhin et al., 2020]. We include
it in the core model component, though a better understanding of this model would be achieved by
adding an additional aggregator element to the abstract model. This would, however, conflict with
most other systems which would not make use of this and for full description, this part of the
pipeline would have to be set to simply identity or NOP. This has happened with other models, as
documented in Table 1.
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Model Fusion KB Source Keys Values Aggregation

k-NN LM
[Khandelwal et al., 2019]

Very late
Static convex
combination

Train-time Prefix embd.,
L2

Target
word

Softmax

Continuous Cache LM
[Grave et al., 2016]

Very late
Static convex
combination

Dynamic Prefix embd.,
inner product

Target
word

Softmax

Dynamic Gating LM
[Yogatama et al., 2021]

Late
Dyn. convex
combination

Train-time Prefix encoding,
inner product

Target
word

Softmax
sum

Knowledge Graph LM
[Logan et al., 2019]

Intermediate
Constraints

External Entity+relation
Discrete struct.

Matching
entity

None

Dense Passage Retrieval
[Karpukhin et al., 2020]

Early
Input

External Passage embd.,
inner product

Passages None

Nearest Neighbour QA
[Lewis et al., 2021]

No model Train-time Passage embd.,
inner product

Answers None

CBR-KBQA
[Das et al., 2021]

Query
creation

Train-time
External

Query embd.,
inner product

Logical
forms

New query

PullNet
[Sun et al., 2019b]

Subgraph
creation

Multiple
External

Entities Docs and
Facts

Iterative
join

Universal Schema QA
[Das et al., 2017]

Intermediate
Retrieval

Multiple
External

Query embd.
Attention

Facts Iterative
projection

FAKTA
[Nadeem et al., 2019]

Early
Input

External
Online

Condensed
query

Docs Re-ranking,
Filtering

Wizards of Wikipedia
[Dinan et al., 2018]

Intermediate
Addition

External Context+topic,
inverted index

Passages Attention
(topic)

Table 1: Categorization of described NLP systems in terms of the artefact retrieval typology. Fusion
describe both where it occurs and what mechanism it employs, Keys describes not only the
key type but also the retrieval mechanism (e.g. metric).

4.2 Future work

An immediate observation from Table 1 is that models for knowledge-intensive tasks, e.g. question
answering, do not tend to utilize late fusion nor training-time knowledge base sources yet. In the
opposite directions, experiments could be made with early fusion for language models. They could
also make greater use of knowledge bases with external sources.

Invertible neural networks should be studied in the context of artefact retrieval to determine the
exact properties of different fusion mechanisms (e.g. quantifying the discussion in Section 3.2).
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Finally, the area of using multiple separate artefact retrieval pipelines is currently unexplored.
This would mean utilizing either (1) multiple knowledge bases with retrieval systems based on the
same principle, e.g. dense vector representations or (2) a vastly different knowledge bases with
separate retrieval systems, e.g. one with dense vector representation and the other with a knowledge
graph.

5. Summary

In this paper, we presented an abstract model which can describe various systems for NLP tasks
utilizing knowledge bases. The pipeline consists of multiple components: encoder, retriever, ag-
gregator and the core model, typically a generative model, itself. The abstract model description
leads to several key characteristics: fusion, specificity, knowledge base source and key & value type
which share important properties across approaches to model design.

In the Appendix, we showed how several increasingly complex language modelling models
proposed in recent years can be described in this paradigm. This is followed by model descriptions
in the context of question answering, fact-checking and knowledgeable dialogue.
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Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. Dbpedia: A nucleus for a web of open data. In The semantic web, pages 722–735. Springer,
2007.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
arXiv preprint arXiv:1809.10853, 2018.

Lalit R Bahl, Frederick Jelinek, and Robert L Mercer. A maximum likelihood approach to contin-
uous speech recognition. IEEE transactions on pattern analysis and machine intelligence, (2):
179–190, 1983.

11



ZOUHAR, MOSBACH, BISWAS, KLAKOW

Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. Constraint-based question answer-
ing with knowledge graph. In Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, pages 2503–2514, 2016.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Un-
derstanding and mitigating exploding inverses in invertible neural networks. In International
Conference on Artificial Intelligence and Statistics, pages 1792–1800. PMLR, 2021.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1533–1544, 2013.

Michele Bevilacqua and Roberto Navigli. Breaking through the 80% glass ceiling: Raising the
state of the art in word sense disambiguation by incorporating knowledge graph information. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
2854–2864, 2020.

Rishabh Bhardwaj, Navonil Majumder, and Soujanya Poria. Investigating gender bias in bert, 2020.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin
Choi. Comet: Commonsense transformers for automatic knowledge graph construction. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
4762–4779, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Charles L Chen. Neural Network Models for Tasks in Open-Domain and Closed-Domain Question
Answering. Ohio University, 2020.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1870–1879, 2017.

Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M Rocha, Johan Bollen, Filippo Menczer, and
Alessandro Flammini. Computational fact checking from knowledge networks. PloS one, 10(6):
e0128193, 2015.

12



ARTEFACT RETRIEVAL: OVERVIEW OF NLP MODELS WITH KNOWLEDGE BASE ACCESS

Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew McCallum. Question answering on
knowledge bases and text using universal schema and memory networks. arXiv preprint
arXiv:1704.08384, 2017.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language
queries over knowledge bases. arXiv preprint arXiv:2104.08762, 2021.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity retrieval.
arXiv preprint arXiv:2010.00904, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of
wikipedia: Knowledge-powered conversational agents. arXiv preprint arXiv:1811.01241, 2018.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra, Alexander Miller,
Arthur Szlam, and Jason Weston. Evaluating prerequisite qualities for learning end-to-end di-
alog systems. arXiv preprint arXiv:1511.06931, 2015.

Susan T Dumais. Latent semantic analysis. Annual review of information science and technology,
38(1):188–230, 2004.

Mor Geva, Ankit Gupta, and Jonathan Berant. Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pages 946–958, 2020.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache. arXiv preprint arXiv:1612.04426, 2016.
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Appendix A. System Description

This section provides a brief survey of different NLP systems and how their retrieval and fusion
mechanisms work in the paradigm of artefact retrieval. Summaries with respect to this typology are
shown in Table 1.

A.1 Language Modelling

The common goal of language modelling is to predict the next word (distribution) given the context
of the previous tokens [Bahl et al., 1983]. The performance is measured by perplexity: the inverse
of the geometric average of the whole sequence probability (lower is better). The input to the model
is the text prefix and the output of the following word. The prefix is usually the object that is passed
to the encoder.

k-Nearest Neighbours. The language model proposed by Khandelwal et al. [2019] utilizes mem-
orization of the training data to decrease the perplexity. In this approach, the authors first compute
representations of all sentence prefixes (keys) and store them together with the following word (val-
ues). They then use this for the next word prediction by softmaxing negative L2 distances4 of 1024
neighbours. The representations (1024 dimensions) are the output of the last self-attention layer of
the trained Transformer-based language model [Vaswani et al., 2017, Baevski and Auli, 2018]. The
importance of the retrieved artefact in the output is determined by the manually set hyperparameter
λ ∈ [0, 1], resulting in linear (convex) interpolation.

The symbolic working of the model is shown in the following set of equations which is adapted
from the original paper (the aggregator is the softmax function; LMrep.(X<i) is the vector repre-
sentation of the prefix X<i by the trained language model).

Encoder: k = LMrep.(X<i)

Knowledge base: B = {(Encoder(X<i), Xi)|X ∈ Dtrain, i < |X|}

Retriever: S = {(r, v)|(r, v) ∈ NL2

1024(k)}

Aggregator: pξ(X̂i) ∝
∑

(r,v)∈S

exp(−||r − k||2 · v)

Model: pm = λ · pξ + (1− λ) · LM(X<i)

The authors also showed that using the training data as a knowledge base outperforms using
them for training. This approach was built on the work of Grave et al. [2017] which, however, does
not use the state-of-the-art Transformer-based language model but an RNN-based one. Furthermore,
they use the inner product (IP) for similarity instead of the L2 distance.

Continuous Cache. The previous approach is a continuation of using local vocabulary cache
for language modelling, as proposed by Grave et al. [2016]. The effect of specific history size is
examined as well. The usage of cache can be interpreted as using a small local dynamic knowledge
base that is being updated after every prediction. This is motivated by the fact that especially rare
words tend to occur more probably than by overall uniform distribution, given that they appeared

4. The negative L2 distance is used instead of the common inner product as the similarity measure. This was shown
empirically by the authors to work better.
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in recent history. The LSTM [Hochreiter and Schmidhuber, 1997] hidden state size is again 1024-
dimensional, although this time, it is not used for retrieval but only by the aggregator. For the fusion,
the authors propose two methods: (1) linear interpolation, as seen in the previous language model
and (2) joint softmax over the artefact and the language model output distribution.

The simplest of the two proposed models (linear combination) is symbolically described in the
following equations (the aggregator is the softmax function; θ is a hyperparameter of the cache
distribution).

Encoder: k = LSTMhid.(X<i)

Retriever: S =
⋃
n<N

Bi−n

Aggregator: pξ(X̂i) ∝
∑

(r,v)∈S

1v=X̂i
exp(θ · kT r)

Model: pm = λ · pξ + (1− λ) · LSTM(X<i)

Knowledge base update: Bi+1 = {(k, argmax v̂)}

Dynamic Gating. The previously described language models use very late fusion, which is con-
trolled by hyperparameter λ. Yogatama et al. [2021] propose an approach in which the model itself
determines this parameter (now a vector) dynamically based on the current sample. The knowl-
edge base (called long-term memory) is constructed in the same way from the training data as in
k-Nearest Neighbours LM. They also introduce short-term memory in the model, which is able to
attend to extended local context. Another difference is using two different models for the encoder
(vanilla transformer) and the language model itself. The keys are 512-dimensional vectors and the
retriever uses inner product for nearest neighbour lookup.

The following set of equations, adapted from the original paper, describes the behaviour of the
model with respect to the long-term (episodic) memory:

Encoder: k = Transformerrep.(X<i)

Knowledge base: B = {(Encoder(X<i), Xi)|X∈Dtrain, i < |X|}
Retriever: S = N IP

4 (k)

Aggregator: pξ(v
′) =

∑
(r,v)∈S

softmax(v, k) · v′

Model: g = σ(wTg k)

z = (1− g)� pξ + g � LM(X<i)

pm = softmax(z,W )

Since the artefact is processed slightly more by the model compared to the other systems which
we describe, e.g. Grave et al. [2016], Khandelwal et al. [2019], we classify it as late fusion as
opposed to very late fusion. This dynamic gating was also applied to the cache knowledge base
structure by Merity et al. [2016].

Knowledge Graph LM. All of the previous models utilized train-time knowledge base creation
with keys representing the contexts and values of the next word predictions. Logan et al. [2019] uti-
lize knowledge graphs to specifically increase language modelling performance on named entities.
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We only describe the simplified retrieval component and omit the details, such as entity rendering
and aliases.

At every position (for every query), the model makes a decision as to what type the following
token will be: (1) non-entity, (2) unrelated entity or (3) related entity. In the first case, the token
is predicted by the standard language model. The other two, however, utilize the knowledge graph
access.

Formally there are two knowledge bases used: a static knowledge graph KG and a local graph
KG<i containing already encountered entities and their relations in the prefix. The model uses an
LSTM unit, the hidden state of which is split into three components [hx;hp;hr] used for: (1) the
token type decision, (2) parent entity prediction and (3) relation prediction. When the model makes
a decision to predict an unrelated entity, it is sampled by a simple projection to the entity embedding
space:

softmax(ve · (hp + hr))

The predicted entity e is then added together with its immediate neighbours to the local graph:

KG<i+1 = KG<i ∪ {(e, r, x)|(e, r, x) ∈ KG}

In case of a related entity, the model first predicts the parent, then the relation and finally the
entity itself. When there are multiple entities in the local graph matching the restriction of the
parent and the relation, it is sampled at random. The following set of equations describes the model
behaviour in case of a new entity.

Encoder: pp(ep) = softmax(vp · hp)
pr(r) = softmax(vr · hp)

constrained by ∃e : (ep, r, e) ∈ KG<i
Retriever: pe ∼

sample
{(ep, r, e)|(ep, r, e) ∈ KG<i}

Model: pm = renderer(pe)

Update knowledge base: KG<i+1 = KG<i ∪ {(e, r, x)|(e, r, x) ∈ KG}

The main motivation for this approach is factual correctness in language modelling. Further-
more, it grants a higher degree of explainability and also allows for tighter manipulation and control
of the data the model is working with (changing an entity in a relation has a direct impact on the
produced output).

A.2 Question Answering

There has been a lot of progress in question answering systems. However, the task of long-form
question answering was recently shown to be problematic even with state-of-the-art Transformer-
based systems [Krishna et al., 2021]. Furthermore, it has been suggested that dense representations
are inadequate when scaled up to large index sizes [Reimers and Gurevych, 2020]. Despite that, the
current trend is based on this retrieval mechanism [Lee et al., 2019, Guu et al., 2020, Lewis et al.,
2020].
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Dense Passage Retrieval. We focus on DPR [Karpukhin et al., 2020] which describes a prototyp-
ical question-answering system built with knowledge base access and dense document embeddings.

DPR uses two BERT models to compute the document and question embeddings at the [CLS]
token (768-dimensional). They are then fine-tuned so that the inner product (orL2 distance or cosine
similarity) of these two vectors is a good measure for document relevancy. The retrieved passages
are reranked by a combination of the original similarity and the BM25 model [Robertson et al.,
1995]. For every retrieved passage, the probability of a span (up to fixed maximum length) being
selected is computed as the product of two tokens (representation from another BERT model) being
the start and end ones, respectively. Reranking of the answers is done implicitly by choosing the
span with the highest probability across all spans. The maximum similarity search is approximated
to make it computationally feasible using FAISS [Johnson et al., 2019].

Encoder: k = BERTquery(q)

Knowledge base: B = {BERTdoc(d)|d ∈ KB}

Retriever: C = arg
n

max
d∈B

sim(q, d)

C ′ = Reranker(C)

score given by: BM25(q, d) + λ · sim(q, d)

Model: Pstart,i(s) = softmax(C ′iwstart)s

Pend,i(t) = softmax(C ′iwend)t

Pselection(i) = softmax(C ′wselection)i

For every passage, Pselection(i) is the score that this passage contains the answer and for every
span Pstart,i(s) ·Pend,i(t) is the score of a single span (s to t) in a passage. In this specific model, the
aggregator simply passes on all the retrieved passages, though some models simply concatenate all
passages and pass it to the model as single string input [Izacard and Grave, 2020].

Nearest Neighbour QA The reliance on training data is taken to its extremes by one of the models
in Lewis et al. [2021] in their study of overlap (in terms of paraphrases) between test and train
datasets for question answering. In their approach, they simply use nearest neighbours to retrieve the
closest paraphrase to the query (using vector space model) to answer the question. The encoding is
done either by the pretrained DPR retriever [Karpukhin et al., 2020] or by TF-IDF. As a consequence
model can easily answer a question granted that the paraphrase is present in the training set.

Encoder: k = DPRquery(q)

Knowledge base: B = {(DPRquery(d)|d ∈ KB}
Retriever: o = ξ = argmax

d∈B
〈q, d〉

Although this nearest neighbour model is a very specific corner-case of the artefact retrieval
architecture, it can still be accommodated.

CBR-KBQA Models utilizing case-based reasoning methods [Aamodt and Plaza, 1994] first re-
trieve similar cases which are then used in synthesising the current answer. For question answering,
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such an architecture has been proposed by Das et al. [2021]. The retrieved similar queries also con-
tain their logical forms (e.g. SQL or a graph query), based on which a logical form for the current
query is constructed using a Transformer-based model BigBird [Zaheer et al.]. This logical form is
then executed against a symbolic knowledge base and further refined by another component. The
refinement step solves the issue of sparse knowledge bases and aligns each logical query edge This
is performed either by pre-trained KB embeddings [Bordes et al., 2013] and similarity search or by
using surface form similarity of edge names.

Encoder: k = ROBERTABASE(q)

Symbolic knowledge base: BS = {(ROBERTABASE(d), f)|(d, f) ∈ KBS}

Retriever: C = arg
n

max
d∈B
〈q, d〉

Aggregator: ξ = BIGBIRD(q[SEP]Cq1[SEP]C
f
1 [SEP] . . .[SEP]C

q
n[SEP]C

f
n)

ξ′ = ALIGN(ξ,KB)
Retriever: o = Execute(ξ′,KB)

Advantages of this approach include a higher degree of explainability, higher performance on
complex compositional questions and, because the model is non-parametric, extendability of the set
of schemas and the knowledge base. It also demonstrates how some architectures may use more the
first retrieval to craft a key for a second retrieval.

PullNet The usage of multiple knowledge base sources is further developed by Sun et al. [2019b].
In the proposed model, a subgraph is iteratively constructed. The subgraph starts with containing
only the query and in every iteration step, dubbed pull, a node is expanded. The transition from text
to a knowledge graph structure is performed using an entity linker [Ji et al., 2014]. The output of
this process is a set of triples (subject, predicate, object). Given query q, a textual knowledge base
KB and a knowledge-graph KG, the high-level simplified working of PullNet can be summarized
as:

Retriever: C0 = ENTITIES(q)

Ci+1 = Ci ∪ {PULLDOCS(e, q,KB) ∪ PULLFACTS(e, q,KG)|v ∈ PULLNODES(Ci)}
Model o = CLASSIFYANSWER(CT )

The operation PULLDOCS retrieves the most relevant documents to query q using IDF, given the
constraints of the entity e (documents are linked to entities). The operation PULLFACTS retrieves
facts from the knowledge-graph given the constraint of the entity e being the subject or the object.
The ordering is based on the inner product between a hidden state LSTM representation of the
query q and an embedding of the fact relation.

In the context of the artefact retrieval architecture, this model’s working can be encapsulated in
a single retrieval component that performs multiple knowledge base accesses followed by the model
performing classification on top of the resulting subgraph.

Universal Schema A similar approach to joining the reasoning capacity of models over structured
knowledge bases and the amount of information on the web has been studied by Das et al. [2017].
Universal Schema [Riedel et al., 2013], upon which this model is based, is a way to embed knowl-
edge base data universally in a matrix form. The task for which this is used is called fill-in-the-blank
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question answering and each answer is a single entity. Given query input q and the memoryM the
computation is as follows:

Encoder: c0 = BILSTM(q)

Retriever/Attention: ct =Wt

(
ct−1 +Wp

∑
(k,v)∈M

(ct−1 · k) v
)

Model o = argmax
ei∈E

ct · ei

Due to the use of memory networks [Weston et al., 2014] and iterative attention, the distinction
between model computation and retrieval becomes blurred. The intermediate context ct, created by
attending over the memory can be considered an artefact.

A.3 Fact Checking

Despite the research in using the masked language modelling capabilities of pre-trained models
for fact checking [Lee et al., 2020], traditional methods rely on external knowledge base access to
verify claims. This has the advantage of higher explainability, which is essential in the context of
fact-checking. The pipelines then usually consist of evidence retrieval and verification which maps
well to our proposed abstract artefact retrieval model.

The release of FEVER: a large-scale dataset for fact extraction and verification [Thorne et al.,
2018] introduced a benchmark which was utilized by multiple works, such as by Nie et al. [2019]
or Nadeem et al. [2019]. We describe the components of the latter.

FAKTA The query encoder of FAKTA filters out words that are not verbs, nouns or adjectives.
And appends to it named entities from the claim. The retriever then fetches relevant documents to
this query and if none are found, relaxes the query by incrementally omitting the last tokens. The
model uses several sources of knowledge bases, some of them external such as Google, Bing and
Yahoo). This step is followed up by a re-ranker based on important words (determined by their
POS tags) from the document title and the claim. Relevant documents are further filtered by a CNN
based on the work of Xu et al. [2019]. Another CNN network determines the document stance
(agree, disagree or discuss). Given a claim q the pipeline is as follows:

Encoder: k = FilterN,V,ADJ(q)
_ Filternamed entity(q)

Retriever: C = SEARCHENGINE(k<i)

(such that i maximal and results non-empty)

C ′ = RERANKER(C)

C ′′ = {d|CNNrelevancy(d) = relevant)}
Model: o = {CNNstance(d)|d ∈ C ′′}

The output of the model is a set of relevant documents with labels regarding the claim. These
inferences can be averaged into a single number which describes how likely it is that the claim is
factually true.

A.4 Knowledgable Open Dialogue

Finally, we focus on open dialogue with utterance generation dependent on a knowledge base. This
improves the insufficiencies of parametric model memory in open-ended dialogue centred around
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facts. It also increases the explainability of each utterance as it can be traced (with various scores)
to the source in the knowledge base. We will focus on the task and model description by Dinan
et al. [2018] though there have also been previous works by Dodge et al. [2015] or in the context of
a commonsense knowledge base by Young et al. [2018], Wu et al. [2020].

Wizards of Wikipedia In the pipeline proposed by Dinan et al. [2018], the pool of retrieved
documents provided by the method of Chen et al. [2017] in the form of a term matrix and a simple
inverted index lookup. This pool is fixed so that the results are comparable to their experiments with
human annotators. This part could however also be automated and replaced by a more advanced
model which could be finetuned. The artefact in this pipeline is the weighted average of retrieved
documents based on the dot product between the encoded representation and the encoded topic.

Given the conversation history (q1, q2, . . . , qn) and topic t the first model proposed by Dinan
et al. [2018] can be described as:

Encoder: k =
⋃

x∈{qn−1,qn,t}

TERMVECTOR(x)

Retriever: C = INVERTEDINDEXLOOKUP7(k,KB)
C ′ = {TRANSFORMERENC(Title(d) _ Paragraphs(d)1)|d ∈ C}

Aggregator ξ =
∑
d′∈C′

d× (d · TRANSFORMERENC(t))

Model: o = TRANSFORMERDEC(TRANSFORMERENC(q) + a)

The next utterance knowledge source is then dependent on the last two utterances and the topic.
The artefact is then added to the context embedding and similarly to the description in Figure 2,
it simply moves the current vector in the embedding space, hopefully, in the right direction. This
can be considered intermediate fusion since the artefact has yet to be processed by a Transformer
model.
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