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ABSTRACT

We present PBFormer, an efficient yet powerful scene text detector that unifies
the transformer with a novel text shape representation Polynomial Band (PB).
The representation has four polynomial curves to fit a text’s top, bottom, left, and
right sides, which can capture a text with a complex shape by varying polynomial
coefficients. PB has appealing features compared with conventional representa-
tions: 1) It can model different curvatures with a fixed number of parameters,
while polygon-points-based methods need to utilize a different number of points.
2) It can distinguish adjacent or overlapping texts as they have apparent different
curve coefficients, while segmentation-based methods suffer from adhesive spatial
positions. PBFormer combines the PB with the transformer, which can directly
generate smooth text contours sampled from predicted curves without interpola-
tion. A parameter-free cross-scale pixel attention (CPA) module is employed to
highlight the feature map of a suitable scale while suppressing the other feature
maps. The simple operation can help detect small-scale texts and is compatible
with the one-stage DETR framework, where no postprocessing exists for NMS.
Furthermore, PBFormer is trained with a shape-contained loss, which not only en-
forces the piecewise alignment between the ground truth and the predicted curves
but also makes curves’ position and shapes consistent with each other. Without
bells and whistles about text pre-training, our method is superior to the previous
state-of-the-art text detectors on the arbitrary-shaped CTW1500 and Total-Text
datasets. Codes will be public.

1 INTRODUCTION

Scene text detection is an active research topic in computer vision and enables many downstream
applications such as image/video understanding, visual search, and autonomous driving (Radford
et al., 2021; Long et al., 2021; Reddy et al., 2020). However, the task is also challenging. One non-
negligible reason is that the text instance can have a complex shape due to the non-uniformity of
the text font, skewing from the photograph, and specific art design. Capturing complex text shapes
needs to develop effective text representation. State-of-the-art methods roughly tackle this problem
with two types of representations. One is the point-based representation, which predicts the points
on the image space to control the shape of the points, including the Bezier control points (Liu et al.,
2020) and polygon points (Zhang et al., 2021). The other produces segmentation maps. The map can
describe the text of various shapes and can benefit from the prediction results at the pixel level (Liao
et al., 2020; Zhu et al., 2021b).

Despite the good performance, both types of representation have limitations: 1) Points-based meth-
ods suffer from a fixed number of control points (Tang et al., 2022; Zhang et al., 2022b). Too few
points cannot handle the highly-curved texts, while simply adding points will increase redundancy
for most perspective texts. 2) Segmentation-based methods frequently fail in dividing adjacent texts
due to ambiguous spatial positions. The produced segmentation map still needs post-processing and
often requires extensive training data (Zhu et al., 2021b).

To address these limitations, we propose a novel representation, named Polynomial Band (PB). It
has clear advantages compared with previous text representations. In particular, PB consists of four
polynomial curves, each of which fits along a text’s top, bottom, left, and right sides. First, the
coefficients of PB are discriminative in the parameter space even if the two texts are very close in
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Figure 1: Advantages of PB. Comparing (a) and (b), PB divides adjacent texts more clearly than
Bezier control points. (c) shows the number of output point increase gradually to represent shapes
from straight to highly curved. (d) shows varying curve coefficients can handle dynamic shapes with
two boundary variables.

the image space, as shown in Fig. 1. Second, PB is represented by the functions defined in the
image space. We can directly compare the ground truth contour points with the sampled points from
polynomial curves by re-sampling techniques. It differs from Bezier-curve-based methods that need
to generate the intermediate representation, i.e., “control points” for supervision. The loss defined by
the control points cannot truly reflect how humans percept the shape. A small difference in control
points will lead to a large shape difference.

Witnessing the great success in NLP (Vaswani et al., 2017), there has been a recent surge of interest
in introducing transformers to vision tasks, including scene text detection. The current transformer-
based text detectors are with two stages, such as FewBetter (Tang et al., 2022) and TESTR (Zhang
et al., 2022b). We apply the proposed PB to the one-stage deformable DETR to improve the effi-
ciency. In particular, we design parameter-free cross-scale pixel attention (CPA) module between
the CNN feature and the transformer encoder-decoder layers. The CPA module first aligns the fea-
ture maps of different scales by enlarging all the feature maps to the same scale. Then it performs
the cross-scale attention that highlights the feature value from a suitable scale while suppressing
the other feature maps. With the scale-selective mechanism, our method becomes more compatible
with the transformer decoders that do not have NMS for postprocessing. It implicitly suppresses
the text proposals with incorrect scales, alleviating the learning burden of the transformer encoder-
decoder layers. The features from CPA are effective to represent the shape of the text, two layers of
transformer encoder-decoders are sufficient to detect the reasonable size of PB without NMS.

The transformer decodes each polynomial curve’s K coefficients and 2 boundary variables that
determine the curve’s definition domain. We uniformly sample the points on the predicted curves
within the definition domain and compare them with the corresponding points on the ground truth
polygon. Such a design supervises the curve piece by piece and can learn the curve shape and range
consistently. In summary, the contribution of PBFormer is:

• A novel text representation called the Polynomial Band (PB) is proposed. PB can utilize
a fixed number of parameters to capture the text instance with various curvatures. It also
excels at distinguishing the spatially close text instances.

• A cross-scale pixel attention module is proposed. The module performs pixel-wise atten-
tion across the feature maps with different sizes. It implicitly highlights the text regions
and enables the transformer to direct take all pixel-wise features as input.

• We design a shape-constrained loss function. The loss enforces the piece-wise supervision
over the predicted curve and consistently optimizes the curve coefficients and definition
domains.

Experiments on multi-oriented and curved text detection datasets CTW1500 (Liu et al., 2019) and
Total-Text (Chng & Chan, 2017) demonstrate the effectiveness of our approach. Without any pre-
training on large-scale text datasets, our method can achieve better results in terms of F-measure.
Due to the lightweight network architecture, our method runs real-time and 4.4 × faster than other
open-sourced transformer text detectors.
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2 RELATED WORK

Text representation. Conventional text representation can be roughly divided into point-based
and segmentation-based methods. With the need to capture more complex text shapes, the point-
based methods gradually involve more points for text representation, including 2 points bound-
ing box (Li et al., 2017), 4 points quadrilateral (Li et al., 2019; Sun et al., 2018), 16 points poly-
gon (Zhang et al., 2020) or 30 points polygon (Zhang et al., 2020) changed by texts’ length. ABC-
Net (Liu et al., 2020) calculates Bezier control points (8 points), which is sufficient for most quadri-
lateral or slightly-curved texts but still suffers from highly-curved. One deficiency of point-based
methods is that they usually predict a fixed number of points, which is hard to balance the per-
formance between simple perspective texts and text instances with complex shapes (Zhang et al.,
2022b). ESIR (Zhan & Lu, 2019) adopts a single polynomial that fits the text center line to rectify
the image for recognition. However, they can only model horizontal texts and still need points to
represent text contours. In contrast, the polynomial curves in polynomial band can handle various
orientations and shapes, from a straight line to a round curve with fewer and a fixed number of
parameters.

Segmentation-based representation can naturally handle complex-shaped texts due to pixel-wise de-
scription (Wang et al., 2019a; Liao et al., 2021; Wang et al., 2019b; Tian et al., 2019; Zhu et al.,
2021b; Liao et al., 2020; 2022). However, they frequently fail to divide adjacent texts due to am-
biguous spatial positions. Although CentripetalText (Sheng et al., 2021) tackles this problem by
detecting a shrunk text mask and reconstructing the contour by shift map, it suffers from high com-
putation complexity. The proposed polynomial band overcomes this problem by considering the
global curve shape. Curve coefficients in parameter space can be easily separated even though two
texts are close, making more clear bounds in the text crowding scenario.

Text detection transformer. There is a trend to equip the transformer (Vaswani et al., 2017) with
scene text detection. Current methods (Tang et al., 2022; Zhang et al., 2022b) directly combine
DETR variants (Carion et al., 2020; Zhu et al., 2021a) with point representation such as 16-point
polygons or Bezier control points, and adopt the two-stage architecture for the ease of optimization.
For example, FewBetter (Tang et al., 2022) first extracts segmentation maps by CNN-FPN (Lin et al.,
2017) to show representative text regions, then samples feature points in each region and feed them
into a transformer to further decode control points. TESTR (Zhang et al., 2022b) follows (Wang
et al., 2020b;c) to detect the bounding boxes, then utilize a transformer to find the control points in
each bounding box. They sacrifice efficiency due to the two-stage pipelines and destroy the sim-
plicity of the detection transformer scheme. Our PBFormer inherits the single-stage simplicity and
inserts a parameter-free cross-scale pixel attention module between the CNN feature and transformer
encoder-decoder layers. With the attention module, per-pixel features are fed into the subsequent
transformer without generating any proposals, making the whole architecture more efficient.

3 METHODOLOGY

The overall framework of PBFormer is illustrated in Fig. 2. Given an image with texts, PBFormer
first employs a ResNet50 to produce the multi-scale feature maps, then feed the feature maps to a
cross-scale pixel attention module to highlight the texts’ context information. The enhanced feature
maps are concatenated and fed to a lightweight transformer, predicting the PBs’ parameters. PB
utilizes four polynomial curves to represent the shape of the text instance. It is simple but effective
to capture different forms of texts. In the training phase, we sample the dense points from the
curves for PB parameters estimation according to both predicted curve coefficients and the domain
variables. A shape-constrained loss is designed to supervise the curves piece by piece.

3.1 NETWORK ARCHITECTURE.

The network contains three modules: a ResNet-based CNN encoder, a cross-scale pixel attention
module, and a lightweight deformable transformer. We now introduce more details about the atten-
tion module and the decoders in the transformer.

Cross-scale pixel attention. The motivation of cross-scale pixel attention is to highlight text fea-
tures at the best scale and suppress the others. Such a selective mechanism is compatible with
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Figure 2: Architecture of PBFormer. The ⊗ and + are element-wisely multiplication and addi-
tion, respectively. In the lightweight Deformable-Transformer, the object queries (white box) and
Positional Embeddings (PE) are all learned parameters.

DETR-like detectors that do not have non-maximum suppression. It performs scale attention by
comparing the values of the existing features among different scales with SoftMax. More details
are illustrated in Fig. 2, the feature maps of a square image from the ResNet backbone are with
the size R1, R2, R3, R4. We enlarge them to square feature maps with sizes D1, D2, D3, D4. Fol-
lowing Deformable-DETR, the four feature maps are transformed to have the same channels by
1 × 1 convolutions. Then we re-scaled them to have the same size D and assemble them to obtain
F ∈ RD×D×C×4. After that, we use a SoftMax layer to compute the attention map for each pixel
and each channel: Aijk = softmax([Fijk1,Fijk2,Fijk3,Fijk4]), i ∈ [1, D], j ∈ [1, D], k ∈
[1, C]. The attention map A and the feature map F have the same shape, i.e., A,F ∈ RD×D×C×4.
They multiply together to obtain the enhanced feature map F′. We disassemble F′ to four feature
maps. All of them are with the size D and the channel dimension C. We re-scale their size to be
D1, D2, D3 and D4. It is noteworthy that the whole cross-pixel attention module is parameter-free,
which brings no training burdens during gradient back-propagation.

Lightweight deformable transformer. The four feature maps from the cross-scale pixel attention
module are flattened to be vectors. We concatenate them to a long vector, then feed the vector to
the deformable transformer. To predict the parameters of PB, we reduce the layers of the standard
transformer encoder and decoder from 6 to 2, which is sufficient to yield competitive results. In a
deformable transformer, the reference points attend a small set of key sampling points nearby for
each query, which are important to the deformable attention module. We adopt a coarse-to-fine
strategy to generate the reference points for the two decoder layers. In the first decoder, we adopt
rough 2-d reference points derived from the positional embedding via a linear projection. In the
second decoder, we combine the same 2-d reference points with a 2-d vectors transformed from the
output of the first decoder. In particular, the 2-d vectors encode the relative offsets according to the
first decoder’s learned non-local dependencies, which help to generate more reasonable reference
points for the second decoder layer. After that, a 3-layer MLP generates the PB predictions over the
entire image.

3.2 POLYNOMIAL BAND

We utilize four polynomial curves to represent the text instance’s top, bottom, left, and right sides.
The top and bottom boundaries are represented by y = f t (x) and y = f b (x):

y = f t (x) = at2x
2 + at1x+ at0, x ∈

[
et0, e

t
1

]
,

y = f b (x) = ab2x
2 + ab1x+ ab0, x ∈

[
eb0, e

b
1

]
,

(1)
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where (x, y) is the coordinate of a point on the boundary. at2, a
t
1, a

t
0, a

b
2, a

b
1, a

b
0 are polynomial

coefficients. [et0, e
t
1] and [eb0, e

b
1] are range of x variable.

One critical problem is that the polynomial curve is a single-value function which means one point
in the definition domain has a unique value in the value domain. The functions of the curves along
the horizontal direction cannot be used to represent the curves along the vertical direction. For
example, as Fig. 2 shows, the text ’DISTILLERT’s left (or right) side would not be represented by
any y = f (x). We utilize x = f l (y) and x = fr (y) to represent the left and right polynomial
curves of the text instance:

x = f l (y) = al2y
2 + al1y + al0, y ∈

[
el0, e

l
1

]
,

x = fr (y) = ar2y
2 + ar1y + ar0, y ∈ [er0, e

r
1] ,

(2)

where [el0, e
l
1] and [er0, e

r
1] define the range of y variable.

Output definition. We use four polynomial curves y = f t (x) , y = f b (x) , x = f l (y) , x = fr (y)
that denote a band to wrap a text instance. Thus, the output is a 20-tuple θ that consists of all
polynomial coefficients and boundary variables in the form of:

θ =
(
at2, a

t
1, a

t
0, e

t
0, e

t
1, a

b
2, a

b
1, a

b
0, e

b
0, e

b
1, a

l
2, a

l
1, a

l
0, e

l
0, e

l
1, a

r
2, a

r
1, a

r
0, e

r
0, e

r
1

)
, (3)

where at2, a
b
2, a

l
2, a

r
2 ̸= 0, et0, ... ∈ [0, 1], and all of them are real numbers.

3.3 LOSS FUNCTION

We leave the part about how to generate four ground truth point sets for the top, bottom, left and right
sides from an original annotated polygon annotation in the Sec. 6.4. In this section, we introduce
the shape-constrained loss to supervise the whole network. The network outputs N different PB
parameters for each image, while their correspondences to ground truth contours are unknown. In
this section, we first introduce how to compute the similarity between the predicted PB and ground
truth contour by shape-constrained loss, then provide the loss function for the whole image based
on optimized correspondences solved by bipartite matching.

The shape constraints for each curve. We first revisit the curve fitting loss without constraints
used in the lane detection (Liu et al., 2021; 2022). The ground truth fitting points of a top or bottom
curve are given by:

P̂ = {(x̂i, ŷi)}Ki=0, x̂i = x̂0 +
x̂K − x̂0

K
i, (4)

where the points are ordered from one end to the other, and the adjacent points for the top and bottom
curves have the equal distance. The conventional fitting loss is:

Lw/o(P̂) =

K∑
i=0

∥ŷi − f(x̂i)∥1 + ∥e0 − x̂0∥1 + ∥e1 − x̂K∥1. (5)

The fitting loss for the left and right curves can be obtained by exchanging the x and y variables.
However, such a fitting loss is unsuitable for detecting texts with diverse shapes and different posi-
tions. It has two limitations: (1) the predicted curve segment is not aligned with the ground truth
fitting points piece-by-piece; (2) the shape and range of the curve are independently optimized. As
demonstrated in Fig. 3, the conventional loss is not sensitive to the length of the curves, therefore
the text detector tends to detect curves with inaccurate lengths.

We consider to impose the shape constraints. The points on the predicted curve are sampled accord-
ing to both curve shape and range:

P = {(xi, f(xi))}Ki=0, xi = e0 +
e1 − e0

K
i. (6)

Then we compare the predicted points P and ground truth points P̂:

L(P, P̂) =

K∑
i=0

∥xi − x̂i∥1 + ∥f(xi)− ŷi∥1. (7)

Leveraging Eq. 7 in text detection encourages PB to reconstruct the correct length of the contours.
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Figure 3: Diagram of shape constraints. All curve segments have the same curve coefficients. (a)
and (c) have same ranges, so do (b) and (d). Without shape constraints, (a) and (b) show how to
compare predicted curve segment with ground truth contour points. (c) and (d) illustrate the way
with shape constraints.

The bipartite matching for the whole image. Let the network output of one image be H =
{hj = (cj , θj)}Nj=1, where cj is the confidence score indicating the possibility of a PB covering
a text and N is set to be larger than the maximum number of texts in an image. After sampling
the points on the four curves according to Eq. 6, H can be further represented by: H = {hj =
(cj ,Pt

j ,Pb
j ,P l

j ,Pr
j )}Nj=1.

For bipartite matching, we pad the ground truth set Ĥ with non-text instances to have a size
N . The element having text instance is represented by ĥj = (ĉj , P̂t

j , P̂b
j , P̂ l

j , P̂r
j ). In particular,

P̂t
j , P̂b

j , P̂ l
j , P̂r

j are sampled points according to Eq. 4, while they are not need to be instantiated in
the matching cost for non-text instances thus are set to be ∅. ĉj is set to be 1 for the text and 0 for
the non-text class. We formulate a bipartite matching problem to find an optimal injective function
g : Ĥ → H, i.e., g(i) is the index of the PB assigned to fitting the i-th ground truth text:

g∗ = argmin
g

N∑
j=1

Lfit
(
ĥj , hg(j)

)
+ Cfocal

(
ĉj , cg(j)

)
, (8)

where Lfit is the fitting loss and Cfocal is the focal cost. The fitting loss compares the predicted
contour and ground truth contour by using the loss defined in Eq. 7:

Lfit
(
ĥj , hg(j)

)
= 1ĉj>0

(
L(P̂t

j ,Pt
g(j))+L(P̂b

j ,Pb
g(j))+L(P̂ l

j ,P l
g(j))+L(P̂r

j ,Pr
g(j))

)
. (9)

Then, the focal cost is defined as the difference between the positive and negative costs:

Cfocal
(
ĉj , cg(j)

)
= λ1ĉj>0

[
−α

(
1− cg(j)

)γ
log cg(j) + (1− α) cγg(j) log

(
1− cg(j)

)]
, (10)

where α and γ are the hyper-parameter for the focal loss. α is used to address the class imbalance,
and γ adjusts the rate at which easy examples are down-weighted. λ adjusts the weight of the focal
cost. The bipartite problem (Eq. 8) can be efficiently solved by the Hungarian algorithm.

Overall Loss. With the optimized g∗, the overall loss function is given by:

Loverall =

N∑
j=1

Lfit
(
ĥj , hg∗(j)

)
+ Lfocal

(
ĉj , cg∗(j)

)
, (11)

where the Lfocal
(
ĉj , cg∗(j)

)
is the focal loss:

Lfocal
(
ĉj , cg∗(j)

)
= λ

[
1ĉj>0 − α

(
1− cg∗(j)

)γ
log cg∗(j) − 1ĉj=0 (1− α) cγg∗(j) log

(
1− cg∗(j)

)]
.

(12)
α, λ and γ are the same with the ones in Eq. 10.

4 EXPERIMENTS

Datasets. CTW1500 (Liu et al., 2019) is a multi-oriented and curved scene text detection bench-
mark containing 1,000 training and 500 testing images. Annotations are based on the text-line level
with fixed fourteen points. The majority of text instances are curved. Total-Text (Chng & Chan,
2017) is an another multi-oriented and curved scene text benchmark, while it consists of various text
shapes such as multidirectional quadrilateral. It has 1255 training images and 300 testing images.
Each instance is annotated by ten point text-line.
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Table 1: Detection results on CTW1500 and Total-Text without pre-training on any text datasets.
”Rep.” denotes the method’s output representation. ”F.”, ”Prec.”, ”Rec.” represent F-measure, Pre-
cision, and Recall. All the results are from their official codes and models. TESTR* means training
without recognition branch.

CTW1500 Total-Text
Method Rep. F. Prec. Rec. FPS F. Prec. Rec. FPS
PSENet Seg 78.0 80.6 75.6 3.9 78.3 81.8 75.1 3.9
PAN Seg 81.0 84.6 77.7 39.8 83.5 88.0 79.4 39.6
FCENet Seg 85.1 88.1 82.3 2.7 85.8 89.3 82.5 2.9
ContourNet Pts 83.9 83.7 84.1 3.8 85.4 86.9 83.9 3.8
TextBPN Pts 84.0 87.7 80.6 12.1 86.9 90.8 83.3 10.6
TESTR* Pts 85.1 88.4 82.1 7.3 85.3 89.7 81.2 6.9
TESTR Pts 85.3 87.9 82.8 5.6 85.6 90.7 81.1 5.3
TESTR* Bez 84.7 87.9 81.8 7.3 86.3 90.3 82.6 6.9
TESTR Bez 85.1 88.0 82.4 5.6 86.6 91.3 82.4 5.3
PBFormer PB 87.0 89.6 84.5 24.7 87.1 92.1 82.6 24.6

Table 2: Detection results on CTW1500 and Total-Text with pre-training on text datasets. MLT, ST,
ArT, and CST are abbreviations for MLT2017, SynthText, ArT 2019 and CurvedSynthText datasets.
C+M+T means using a combination of CST, MLT, and Total-Text for pre-training.

CTW1500 Total-Text
Method Rep. Ext. F. Prec. Rec. FPS F. Prec. Rec. FPS
1 PSENet Seg MLT 82.2 84.8 79.7 3.9 80.9 84.0 78.0 3.9
PAN Seg ST 83.7 86.4 81.2 39.8 85.0 89.3 81.0 39.6
DB Seg ST 83.4 86.9 80.2 22 84.7 87.1 82.5 32
DB++ Seg ST 85.3 87.9 82.8 26 86.0 88.9 83.2 28
TextRay Pts ArT 81.6 82.8 80.4 3.2 80.6 83.5 77.9 3.5
DRRG Pts MLT 84.5 85.9 83.0 - 85.7 86.5 84.9 -
TextBPN Pts MLT 85.0 86.5 83.6 12.2 87.9 90.7 85.2 10.7
TESTR* Pts C+M+T 86.6 90.8 82.8 7.3 86.2 92.4 80.7 6.9
TESTR Pts C+M+T 87.1 92.0 82.6 5.6 86.9 93.4 81.4 5.3
ABCNet Bez CST 81.4 84.4 78.5 6.8 84.5 87.9 81.3 6.9
FewBetter Bez CST 85.2 88.1 82.4 - 88.1 90.7 85.7 -
TESTR* Bez C+M+T 85.9 90.6 81.6 7.3 87.4 92.4 82.8 6.9
TESTR Bez C+M+T 86.3 89.7 83.1 5.6 88.0 92.8 83.7 5.5
PBFormer PB CST 88.0 90.6 85.4 24.7 88.1 93.2 83.5 24.6

Evaluation Metrics. We follow the standard metrics F-measures, recall, and precision to eval-
uate the performance. A prediction is considered as a true positive only when its IoU from the
corresponding ground truth contour is larger than 0.5.

Implementation Details. The input image size is set to be 800×800 for training and testing. Loss
coefficient α, γ and λ are set as 0.25, 2 and 2. The fixed number of output N is 300. In the cross-
scale pixel attention module, R1, R2, R3, R4 are 100, 50, 25, 13, D1, D2, D3, D4 are set as 128, 64,
32, 16, and we set D = D2. For training from scratch, the learning rate is set to be 1 × 10−4 and
decayed ten times at 7200 epochs, and the total number of training iterations is set as 9000 epochs.
The training process takes about 2 days on 4 Tesla V100 GPUs with the image batch size of 14.
For training with pre-training, we pre-train the model for 50 epochs, then fine-tune the model on
CTW1500 and Total-Text by the same setting as training without pre-training states.

4.1 COMPARISON WITH THE STATE-OF-THE-ART METHODS

To demonstrate the effectiveness of our method, we take (1) point-based methods ABCNet (Liu
et al., 2020), TextRay (Wang et al., 2020a), DRRG (Zhang et al., 2020), ContourNet (Wang et al.,
2020c) and TextBPN (Zhang et al., 2021); (2) segmentation-based methods PSENet (Wang et al.,
2019a), PAN (Wang et al., 2019b), DB (Liao et al., 2020), FCENet (Zhu et al., 2021b), and
DB++ (Liao et al., 2022); and (3) recent transformer-based methods FewBetter (Tang et al., 2022)
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Figure 4: Qualitative comparisons with previous SOTA on Total-Text and CTW1500. Com-
pared to DB++ and FCENet, our PBFormer predicts more compact and precise contours for crowded
texts (the first two are DB++’s Total-Text detections, and the last four are FCENet’s CTW1500 de-
tections, because they did not release the model of another dataset). Compared to TESTR, PBFormer
reduces false negatives and performs better for long and curved texts.

Figure 5: Effect visualization of shape-constrained loss. For each image pair, the left image shows
the results with the fitting loss Eq. 7, and the right image is with the shape-constrained loss Eq. 11.
With the shape-constrained loss, PBFormer outputs more complete contours.
A� A A! A" A� A A! A"

Figure 6: Visualization of CPA’s attention maps.The left four images show CPA produces attention
for the small texts at a swallow layer and the large texts at a deep layer. The right four image show
attention is concentrated on one layer due to texts having similar sizes.

and TESTR (Zhang et al., 2022b). TESTR* means we use their official training codes, settings,
and models but only set the recognition loss to zeros. For PBFormer, we will not use text character
annotation for text detection training.

Models trained from scratch. As shown in Tab. 1, PBFormer establishes a new state-of-the-art of
87.0% on CTW1500, which is 1.7% better than previous best TESTR while achieving 4.4 × FPS.
Moreover, PBFormer yields the best F-measure 87.1% on Total-Text, which is 0.2% better than
previous best TextBPN while being 2.3 × FPS. Compared to TESTR, PBFormer also improves it by
0.8% while keeping a 4.5 × FPS.

Models with pre-training. Since previous methods have different choices of pre-training datasets,
we choose to use the CurvedSynthText as FewBetter did. As shown in Tab. 2, PBFormer can achieve
better results from the model pre-training. On the CTW1500 dataset, our method achieves the best
results. It outperforms previous best TESTR by 0.9% in terms of F-measure and is 4.4 × faster than
TESTR. On the Total-Text dataset, PBFormer also has the best performance. Compared to TESTR,
PBFormer performs a 4.5 × FPS while being a slight 0.1% higher F-measure. Without training
TESTR’s recognition branch, PBFormer’s improvements are more obvious by +1.4% and +0.7%.

8
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In addition, PBFormer yields 2.7% and 2.1% F-measure better than the previous best segmentation-
based DB++ on CTW1500 and Total-Text, while keeping a very close FPS performance.

Qualitative comparisons. Considering crowded texts in Fig. 4(a),(e), and (f), PBFormer performs
fewer false-negatives than TESTR and more accurate contours than DB++ and FCENet. When texts
have very long shapes or have characters’ large scale-changes, PBFormer detected more completed
contours than DB++, FCENet, and TESTR, as Fig. 4(d) and (c) have shown.

Table 3: Comparison on Total-Text of the same
network with different text representations.

CPA Ref. Rep. F. Prec. Rec.
- - PB 85.8 90.2 81.9
- - Pts 82.8 88.4 77.8
- - Bez 83.9 89.8 78.7
- ✓ PB 86.0 90.5 81.9
- ✓ Pts 83.2 87.6 79.1
- ✓ Bez 84.2 89.7 79.4
✓ ✓ PB 87.1 92.1 82.6
✓ ✓ Pts 84.6 90.5 79.5
✓ ✓ Bez 85.3 90.9 80.4

Table 4: CPA’s influences and comparisons with
FPN and ASF. Ext. means trainable parameters.

Module Ext. F. Prec. Rec.
- - 86.0 90.5 81.9
Enlarge - 85.2 88.9 81.8
Attn. - 86.1 90.6 82.1
CPA - 87.1 92.1 82.6
ASF ✓ 85.3 90.9 80.4
FPN ✓ 85.0 89.5 81.0

4.2 ABLATION STUDY

Investigation of proposed components. In this section, we investigate the effects of different
text representations under the same network and validate the effects of CPA and refined reference
points.Tab. 3 shows the following conclusions: (1) PB outperforms polygon points and Bezier con-
trol points in every network configuration. In Fig. 12, we also show that PB can distinguish indi-
vidual texts facing adjacent and overlapping texts better than other representations; (2) the improve-
ments of CPA and refined reference points are consistent for different text representations.

To further investigate the effect of the CPA module, Tab. 4 shows the performance of the models
with different CPA configurations and the models replacing CPA with other fusion modules. The
study of the CPA configuration has the following conclusions: (1) just enlarging features performs
0.8% worse; (2) only using attention has a minor 0.1% improvement; (3) combining both boosts
the performance by 1.1% significantly. The effectiveness of the CPA module is that the attentional
fusion adaptively highlights texts’ features at a suitable scale and suppresses the features of other
scales. Fig. 6 demonstrates the four attention maps across scales from shallow to deep layers of the
backbone. Moreover, CPA performs 1.8% and 2.1% better than FPN and ASF (Liao et al., 2022).
We attribute it to (1) FPN (Lin et al., 2017) will NOT improve the object detection performance
because the cross-level feature exchange is already adopted by the multi-scale deformable attention
module (Zhu et al., 2021a). FPN degrades text detection performance because introduced additional
parameters are not learned well because the text dataset we used is much smaller than the common
object dataset. (2) CPA’s selective mechanism is more compatible with DETR-like detectors than
ASF. The latter works better with DB++, which tends to preserve both the global structures and local
details for accurate segmentation masks. A detailed comparison can be found at Sec. 6.2.
Effect of shape-constrained loss. Using the shape-constrained loss, the performance on Total-
Text increases from 83.5% to 87.1%. As Fig. 5 shows, the model trained with shape-constrained
loss can produce more complete contours (the right image in the pair) than the models without the
loss (the left image in the pair).

5 CONCLUSION

We have presented PBFormer, an efficient and accurate text detection method. It is superior to han-
dle crowded texts or texts with diverse shapes. PBFormer equips a new text representation, Polyno-
mial Band, to a transformer-based network consisting of a cross-scale pixel attention module and a
lightweight deformable transformer. We supervise the network with a shape-constrained loss term,
encouraging the network to output the correct contour length. PBFormer shows strong robustness
when training without pre-training on the additional datasets, which is much more resource-friendly
than other transformer-based methods.
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6 APPENDIX

♦ Sec. 6.1 states the differences between polynomial curve and Bezier curve.

♦ Sec. 6.2 states the differences between CPA and ASF (Liao et al., 2022).

♦ Sec. 6.3 states the architecture differences compared with TESTR (Zhang et al., 2022b) and Few-
Better (Tang et al., 2022).

♦ Sec. 6.4 shows how we generate ground truth point sets for top, bottom, left and right sides from
original annotated polygon points.

♦ Sec. 6.5 conducts experiments on DAST1500 (Tang et al., 2019), MLT2019 (Nayef et al., 2019),
and ArT2019 (Chng et al., 2019) and show some qualitative results on them.

♦ Sec. 6.6 visualizes comparisons of different text representations with the same network.

♦ Sec. 6.7 investigate learning configurations of polynomial bands.

♦ Sec. 6.8 shows efficiency’s comparisons of different text representations.

♦ Sec. 6.9 shows more visualizations on attention maps.

♦ Sec. 6.10 shows some failure cases.

♦ Sec. 6.11 shows more qualitative results on CTW1500 and Total-Text.

6.1 DIFFERENCE BETWEEN POLYNOMIAL CURVE AND BEZIER CURVE

The polynomial curve is another form of the fitting function, but a better form.

Let us consider the parameters optimized in our loss functions. For the polynomial curve, the opti-
mized parameters are for the function defined in the image space. For the Bezier curve, the optimized
parameters, i.e., the control points, are for the function defined with a specific variable ”t”.

Important: The form of the curves will finally determine how we optimize their parameters. (1) For
the polynomial curve, we can measure the difference between the annotated points and the predicted
polynomial function by comparing evenly sampled indicated polynomial curve and ground truth
text-line. Such a metric can better reflect how humans percept the shape difference. (2) For the
Bezier curve, we need first to fit the ground truth to obtain the control points by least square method,
then supervise the predicted Bezier curve by comparing the difference between the control points.
Notably, the mismatch in Bezier’s control point cannot reflect the difference in the curve shape. A
slight difference in the control points may bring a large shape change.

Can be Bezier curve learned like a polynomial curve in the image space? The answer is NO.
The Bezier curve is defined as:

c (t) =

n∑
j=0

bjBj,n (t) , 0 ≤ t ≤ 1 (13)

where {bj |bj = (xj , yj)}nj=0 are Bezier control points, and Bj,n (t) =

(
n
j

)
tj (1− t)

n−j are

Bernstein basis polynomials. Please note that the Bezier curve c (t) is polynomials of t rather than
x, with the value for t being fixed between 0 and 1. If c (t) samples K + 1 points by taking
0, 1

K , 2
K , . . . , 1, the sampled points in the image space are not evenly arranged. Therefore, c (t)

cannot calculate loss with text-line in the image space.

For a clear understand, we give a simple Python code and visualization to show the above issue.

1 #!/usr/bin/python3
2 #!--*-- coding: utf-8 --*--
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from scipy.interpolate import interp1d
6 # Define Bezier control points
7 P0, P1, P2 = np.array([[0, 0], [2, 4], [5, 3]])
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Bezier Control Point of the Curve Segment

Evenly Sampled by c(t) in t Space Evenly Sampled in x coordinate (image space)   

Curve Segment in Image Space

Figure 7: The visualization of the mismatch about two point sequence. Given a curve segment
and its corresponding Bezier curve (represented by Bezier control points, red pentagram), points
evenly sampled in image space are not matched with points evenly sampled in t space of Bezier
curve c (t) in Eq. 13.

8 plt.scatter(P0[0], P0[1], c=’red’, s=300, marker=’*’)
9 plt.scatter(P1[0], P1[1], c=’red’, s=300, marker=’*’)

10 plt.scatter(P2[0], P2[1], c=’red’, s=300, marker=’*’)
11 # Define Bezier curve
12 P = lambda t: (1 - t)**2 * P0 + 2 * t * (1 - t) * P1 + t**2 * P2
13 # Equally sample 11 points in t space
14 points = np.array([P(t) for t in np.linspace(0, 1, 11)])
15 x, y = points[:, 0], points[:, 1]
16 plt.plot(x, y, color=’black’, linestyle=’--’)
17 plt.scatter(x, y, c=’green’)
18 # Equally sample 11 points in x space
19 y_fx = interp1d(x, y, fill_value="extrapolate")
20 _x = np.linspace(0, 5, 11)
21 _y = y_fx(_x)
22 plt.scatter(_x, _y, c=’orange’)
23 plt.show()

Listing 1: Python code to show evenly sampled points in Bezier’s t space cannot be matched with
evenly sampled points in image space.

As Fig. 7 shows, Given a curve segment (dashed line), we can sample 11 points from x=0 to x=5
with equally distance ∆x=0.5. Then, given a Bezier curve which represents the curve segment, we
can also sample 11 points from t=0 to t=1 with equally distance ∆t=0.1. As we can see, sampled
points evenly in t space (green circles) are not matched with evenly sampled points in image space
(orange circles). Thus Bezier curve cannot be learned like a polynomial curve in the image space.

6.2 DIFFERENCES BETWEEN CPA AND ASF.

Although CPA and ASP Liao et al. (2022) utilize multi-scale feature maps, they are very different
in motivation and implementation.
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Motivation difference:

• ASF works with DB++, a segmentation-based method to predict the pixel-wise text region.
The motivation of ASF is to help DB++ obtain a more accurate segment mask, which
includes both global structures and local details.

• CPA works with PBFormer, a detection-based method to predict the parameters of object
shape. It is known that the detection results are sensitive to the scale, and the motivation of
CPA is to highlight the best scale and suppress the others. Our experiments demonstrate that
the selection mechanism of CPA is particularly crucial for DETR-like detectors (including
our method) in text detection, which don’t have non-maximum suppression(NMS) for post-
processing. If we replace CPA with ASF, as in Table 4, the performance will drop 1.8% in
terms of the F-score.

Implementation difference:

• ASF performs spatial attention. It first generates the mask weights for different feature
maps by a stack of Conv-ReLU and Conv-Sigmoid modules, then concatenates the mask-
weighted feature maps together.

• CPA performs scale attention. It aligns the feature maps of the different scales by enlarging
the small-scale feature maps. The attention map is not obtained by introducing a new
network module but by comparing the values of the existing feature maps among different
scales with SoftMax. All the feature maps are weighted with the attention map the resized
to the original size.

Explanation summary:

• To preserve both the global structure and local details of the segmentation mask, ASF
performs spatial attention for each feature map and concatenates the information of all the
feature maps.

• To produce the detection results with an accurate scale, CPA performs scale attention
among different feature maps and selectively highlights the feature maps of the best scale
and suppresses the feature maps of the other scale.

• We assume the selective mechanism of CPA is compatible with DETR-like detectors that
do not have non-maximum suppression. Two pieces of evidence: if we replace CPA with
ASF, the performance drop; We only utilize two-layer transformer encoders and decoders,
much less than the TESTR, indicating the effectiveness of the fused feature map.

6.3 RELATIONS TO TESTR AND FEWBETTER

PBFormer has multiple efficient and useful designs compared with TESTR (Zhang et al., 2022b)
and FewBetter (Tang et al., 2022).

Compared with TESTR:

• PBFormer is single-stage without relying on intermediate bounding box results. In contrast,
TESTR adopts the two-stage Deformable-DETR. It predicts the bounding box in each fea-
ture point of the transformer encoder’s output, then selects topK boxes based on confidence
to embed them into positional embeddings and reference points, as Fig. 8 (a)’s red block
shows.

• PBFormer adopts a coarse-to-fine strategy to generate reference points for deformable at-
tention modules. The first decoder’s output encodes 2-d residuals to move the reference
point into a better localization. In contrast, TESTR uses the same reference points for all
deformable attention modules. Fig. 8 (a) and (c)’s orange arrows illustrate the differences.

• PBFormer inserts a Cross-scale Pixel Attention module, which selectively highlight text
regions at suitable scales. The selective mechanism of CPA is compatible with DETR-like
detectors that do not have non-maximum suppression, enabling PBFormer to only utilize
two layers of transformer encoders and decoders. In comparison, TESTR uses six layers of
transformer encoders and decoders.
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Figure 8: Detailed Network Comparisons with TESTR and FewBetter. (a) NumEnc denotes
the sequence length of encoder’s output, which equals the total spatial quantity across multi-scale
feature maps. (c) The proposed CPA module has not any trainable parameters.

• PBFormer is only pre-trained on CurvedSynthText, while TESTR is pre-trained on a com-
bination of three datasets, i.e., CurvedSynthText, MLT2017, and Total-Text.

Compared with FewBetter:

• PBFormer does not need FPN in the backbone or generate segmentation maps. Differently,
FewBetter has an FPN network to generate convincing segmentation masks for feature
selections, as Fig. 8 (b)’s blue block shows.

• PBformer utilizes a deformable transformer while FewBetter uses the original transformer.
Besides, we also use two transformer encoder and decoder layers, while FewBetter uses
the six for encoder and decoder, respectively.

6.4 GROUND TRUTH OF TOP, BOTTOM, LEFT AND RIGHT GENERATION.

In this section, we introduce how to generate four ground truth point-sets for the top, bottom, left
and right sides.

In common text datasets, a text instance is annotated by 2K discrete points. For example, K = 5 in
Total-Text and K = 7 in CTW1500. More importantly, these points are annotated along with human
reading hobbies. They are ordered in counterclockwise order, and the first point is always the top-
left of the first character. The former K points p1, ...pK and the latter K points pK+1, ...p2K are
located as Fig. 9 shows (green for the former K, blue for the latter K).

Therefore, the generating process of ground truths for the top, bottom, left, and right curve follows
subsequent five steps:

1. Divide 2K annotations into four Sets. S1 = {p1, . . . ,pK}, S2 = {pK+1, . . . ,p2K},
S3 = {pK ,pK+1}, and S4 = {p2K ,p1}.

2. Assuming S1 and S2 would be fitted by a mapping f : x → y, judge whether assumed
functions are both single-valued. If yes, go to step 3. If not, go to step 4.

3. S1 and S2 both use the form y = f (x); S3 and S4 both use the form x = f (y). If S1’s
middle point is higher than S2’s, S1 becomes the ground truth for the top curve, and S2
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Figure 9: Visualization of generating ground truth for the top, bottom, left, and right sides
from raw annotations. The black rounded green dots represent the first annotated point for text.

becomes the ground truth for the bottom curve, and vice versa. If S3’s middle point is more
left than S4’s, S3 becomes the ground truth for the left curve, and S4 becomes the ground
truth for the right curve, and vice versa. Go to step 5.

4. S1 and S2 both use the form x = f (y); S3 and S4 both use the form y = f (x). If S1’s
middle point is more left than S2’s, S1 becomes the ground truth for the left curve, and S2

becomes the ground truth for the right curve, and vice versa. If S3’s middle point is higher
than S4’s, S3 becomes the ground truth for the top curve, and S4 becomes the ground truth
for the bottom curve, and vice versa. Go to step 5.

5. Sample S1, S2, S3, and S4 evenly to generate dense supervision points (for PB’s loss
calculation, see Sec. 3.3).

Single-valued condition. A mapping f : x → y which is used to fit a set of order points satisfies
the single-valued condition if and only if:

x1 < x2 < ... < xn ∨ x1 > x2 > ... > xn, (14)
where x1, . . . , xn is the x-coordinate sequence of order points, and n denotes the number of points.

As Fig. 9 shows, we illustrate the processes for a horizontal reading direction text ”COMPANY”
and a vertical reading direction text ”DISTILLERY.”

Table 5: Comparisons on DAST1500’s testing set.
Method F. Prec. Rec.
TextBoxes 50.9 67.3 40.9
RRD 53.0 67.2 43.8
EAST 62.0 70.0 55.7
SegLink 65.3 66.0 64.7
CTD+TLOC 66.6 73.8 60.8
PixelLink 74.7 74.5 75.0
ICG 79.4 79.6 79.2
ReLaText 85.8 89.0 82.9
MAYOR 86.6 87.8 85.5
PBFormer(ours) 85.9 90.0 82.1
PBFormer(two-stage) 86.6 90.2 83.2

Table 6: Experiments on MLT2019 and Art2019.
Method Rep. F.MLT F.Art
DB++ Seg 64.7 71.1
FCENet Seg 66.3 74.0
TESTR Pts 68.7 75.2
TESTR Bez 66.7 73.6
PBFormer(ours) PB 69.3 76.2
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Figure 10: Qualitative results on DAST1500, ArT2019, and MLT2019.

6.5 EXPERIMENTS ON DAST1500, MLT2019, AND ART2019

We follow MAYOR (Qin et al., 2021) to conduct experiments on DAST1500 (Tang et al., 2019) and
compare with TextBoxes (Liao et al., 2018a), RRD (Liao et al., 2018b), EAST (Zhou et al., 2017),
SegLink (Shi et al., 2017), CTD+TLOC (Liu et al., 2019), PixelLink (Deng et al., 2018), ICG (Tang
et al., 2019), ReLaText (Ma et al., 2021), MAYOR (Qin et al., 2021).

Methods on leaderboards of ICDAR MLT 2019 (Nayef et al., 2019) and ICDAR ArT 2019 (Chng
et al., 2019) adopt ResNeSt-101 (Zhang et al., 2022a), ResNeXt-101 (Xie et al., 2017), or ResNext-
152 (Xie et al., 2017) as their backbones which are far heavy for a fair comparison. Therefore, we
conduct experiments across DB++ (Liao et al., 2022), FCENet (Zhu et al., 2021b), TESTR (Zhang
et al., 2022b), and PBFormer by splitting the training set of MLT2019 and Art2019 into training
and validation with 1:1. We generate ground truth of Bezier control points following ABCNet (Liu
et al., 2020). We fine-tune all models’ best checkpoints on the training split 1000 epoch.

Results are shown in Tab. 5 and Tab. 6. PBFormer achieves comparable results with previous state-
of-the-art on DAST1500. We attribute to (1) DAST1500 are full of dense texts. MAYOR is two-
stage and has spatial designs for those cases, such as region proposal network (RPN) and MLP Mask
Decoder (MLM). (2) PBformer is single-stage. Although it performs less well than MAYOR, it is
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more efficient because it does not have post-processing with NMS. If we take training strategy same
with two-stage Deformable-DETR, we can achieve better performance (86.7 vs. 86.6). Besides,
one-stage PBFormer still outperforms MAYOR on CTW1500 (87.0 vs. 85.3) and Total-Text (87.1
vs. 86.3).

Moreover, PBFormer outperforms DB++, FCENet, and TESTR on MLT 2019 and Art 2019. We
also show some visualizations on DAST1500, MLT2019, and ArT2019 in Fig. 10.

6.6 VISUALIZED COMPARISONS OF DIFFERENT TEXT REPRESENTATIONS WITH THE SAME
NETWORK.

In this section, we adopt the same network architecture, PBFormer, but change the output head using
Bezier control points, polygon points, and polynomial bands. In Fig. 12, we show comparisons of
adjacent and overlapping texts. For adjacent texts, PB can distinguish individual texts correctly,
but the others are likely to combine them falsely. For overlapping texts, PB can detect complete
contours, while others are likely to detect incomplete contours or lose the overlapped texts.

6.7 INVESTIGATION OF PB’S CONFIGURATIONS.

Table 7: Comparisons of the number of different
supervision points per polynomial curve.

Number F. Prec. Rec.
6 84.6 90.5 79.5
12 86.0 90.4 81.9
24 87.1 92.1 82.6
30 86.5 91.1 82.4
36 86.4 91.1 82.3

Table 8: Comparisons of polynomial’s order.
Curve F. Prec. Rec.
Quadratic 87.1 92.1 82.6
Cubic 87.0 92.2 82.4
Quartic 86.7 91.0 82.7

We first analyze the influence of the polynomial order of PB. Theoretically, higher-order polyno-
mials could fit more complex texts, but the quadric curves can describe the texts in most current
datasets well. For this reason, the higher-order curves are overqualified to represent the text shapes
in the existing datasets, but they are easily overfitted. Secondly, we analyze the effect of sampling
points’ density. As Tab. 7 shows, too few points perform 2.5% worse since the quantity is insuffi-
cient to learn curved shapes, while too many points also decrease 0.7% due to redundant learning
points, especially for straight texts.

6.8 EFFICIENCY’S COMPARISONS OF DIFFERENT TEXT REPRESENTATION

The polynomial band is more efficient than segmentation masks and polygon points during infer-
ence, as Fig. 11 shows. The polynomial band is more efficient than Bezier points during ground
truth generations.

Polygon points need spline interpolation because the number of network’s output is too sparse for
evaluation, such as 16 points in TESTR, while more points are needed to compute accurate IoUs
in MMOCR’s evaluation protocol (Kuang et al., 2021), especially for curved texts. Therefore, as
Fig. 11 shows, after dividing points into splines, each of which is fitted by a polynomial, then evenly
sampling. In contrast, PB avoids the above two-stage iterative procedure because PB direct contains
four curves for the whole contour, which generates a dense contour by sampling.

Ground truths of Bezier points are calculated by the least square algorithm based on original polyg-
onal annotations (Liu et al., 2020), which consumes additional time and resources for generating
ground truth for extra data. Differently, PB directly utilizes the polygonal annotations without addi-
tional consumption to transform raw annotations.

6.9 MORE VISUALIZATIONS ON ATTENTION MAPS.

In Fig. 13, we select some representative attention maps of the cross-scale pixel attention module.
The CPA is capable of attending to text regions at a suitable layer adaptively. We see CPA learned
to attend at a single layer if texts have similar sizes. When different texts have size various, CPA
learned to attend to relatively small texts at the swallow layer while large texts at the deep layer.
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Figure 11: Comparisons of the process from network’s output representation to final text con-
tour. For segmentation maps, we only show main post-processing since there might be other prac-
tical processes such as outlier removal, distance (or directional) maps refinement, etc.

6.10 FAILURE CASES.

In Fig. 14, we visualize failure cases in two situations: (1) texts which are extremely small as
Fig. 14(a) shows; (2) texts which occupy a minority in common datasets, such as chinese-lingual
texts in Fig. 14(b) and texts processed into symbols or beautified by art-style.

The limitations may inspire our future work. Firstly, enlarging the input’s resolution can improve
the detection of small texts, but it further consumes more computations. Secondly, collecting multi-
lingual texts or adopting art-style augmentation on the common texts for training will improve the
recall of the results.

6.11 MORE QUALITATIVE RESULTS.

In Fig. 15 and Fig. 16, we present more qualitative results on CTW1500 and Total-Text. PBFormer
predicts not only accurate contour for curved texts but also handles multi-oriented data success-
fully. More importantly, when texts are crowded, PBFormer also distinguishes them clearly. Results
indicate that our PBFormer is robust in various scenes.
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Figure 12: Visualized comparisons of different text representations with the same network.
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Figure 13: CPA’s attention maps on Total-Text. A1, A2, A3 and A4 represent the attention map
weighting the multi-scale feature from network’s swallow to deep layers.

(a) (b) (c) (d) (e)

Figure 14: Visualization of failure cases. The yellow dashed boxes denote the failed detections.

22



Under review as a conference paper at ICLR 2023

Multi-oriented Texts

Curved Texts

Crowded Texts

Figure 15: More Qualitative results on CTW1500. We demonstrate different types of texts, such
as curved, crowded, or multi-oriented.
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Figure 16: More Qualitative results on Total-Text. We demonstrate different types of texts, such
as curved, crowded, or multi-oriented.
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