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Abstract

Upside Down Reinforcement Learning (UDRL) is a promising framework for
solving reinforcement learning problems which focuses on learning command-
conditioned policies. In this work, we extend UDRL to the task of learning a
command-conditioned generator of deep neural network policies. We accomplish
this using Hypernetworks—a variant of Fast Weight Programmers, which learn
to decode input commands representing a desired expected return into command-
specific weight matrices. Our method, dubbed Upside Down Reinforcement Learn-
ing with Policy Generators (UDRLPG), streamlines comparable techniques by
removing the need for an evaluator or critic to update the weights of the generator.
To counteract the increased variance in last returns caused by not having an evalua-
tor, we decouple the sampling probability of the buffer from the absolute number of
policies in it, which, together with a simple weighting strategy, improves the empir-
ical convergence of the algorithm. Compared with existing algorithms, UDRLPG
achieves competitive performance and high returns, sometimes outperforming
more complex architectures. Our experiments show that a trained generator can
generalize to create policies that achieve unseen returns zero-shot. The proposed
method appears to be effective in mitigating some of the challenges associated with
learning highly multimodal functions. Altogether, we believe that UDRLPG repre-
sents a promising step forward in achieving greater empirical sample efficiency in
RL.

1 Introduction

Reinforcement Learning (RL) is a powerful framework for solving sequential decision-making
problems. In RL, the standard approach to policy optimization typically involves training a policy
network to maximize expected returns. Upside Down RL (Schmidhuber, 2019), or UDRL, bridges the
gap between RL and supervised learning by transforming much of the RL problem into a supervised
learning task. With UDRL, the algorithm is no longer directly learning to maximize the expected
return, but is instead learning a mapping between commands (e.g., desired returns) and actions. The
data for training the model can be collected either offline—as in Decision Transformers (Chen et al.,
2021)—or online as the model learns to generalize to higher and higher returns. One notable extension
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of UDRL is GoGePo (Faccio et al., 2023), which extends UDRL from working in action space to
working in parameter space. However, this approach relies on a generator-evaluator (actor-critic)
architecture. Here, the generator learns to produce policies that follow a given command, and the
evaluator network assesses the quality of the generated policies. This introduces a considerable
amount of additional complexity, as the evaluator must be jointly optimized with the generator.

We propose UDRL with Policy Generators (UDRLPG): a simpler alternative to GoGePo that sidesteps
the need for an evaluator. UDRLPG learns a single policy generator, capable of producing policies
that can achieve any desired return, without relying on a generator-evaluator pair. Through hindsight
learning, the model minimizes the error between policies it previously generated and new policies it
produces, without a critic, thereby reducing the architectural complexity.

2 Background

Formally, the RL problem is often modeled as a Markov Decision Process (Puterman, 2014;
Stratonovich, 1960), or MDP, which is a tuple (S,A, P,R, γ, µ0), where at each timestep t, the
agent observes a state st ∈ S, chooses an action at ∈ A, and receives a reward rt = R(st, at). The
action leads to a new state according to the transition probability P (st+1|st, at). Each episode begins
in an initial state s0 selected with probability µ0. The policy πθ : S → ∆(A) controls the agent,
where θ ∈ Θ are the policy parameters. The objective is to find πθ that maximizes the expected
return: πθ = argmaxπθ

J(θ), where

J(θ) =

∫
T
p(τ |θ)R(τ)dτ. (1)

Here, p(τ |θ) is the distribution over trajectories induced by policy π with parameters θ.

Goal- and command-conditioned RL (Andrychowicz et al., 2017; Schaul et al., 2015; Schmidhuber,
1991; Schmidhuber & Wahnsiedler, 1993) agents differ from classic RL agents as they learn to
maximize a goal- or command-conditioned expected return. UDRL and related approaches employ
supervised learning to train command-conditioned RL agents by receiving command inputs that
specify the desired outcome within a certain timeframe. However, in the episodic setting, it is often
the case that there is no single sequence of actions or behaviors that satisfies a given command. For
this reason, a unimodal maximum likelihood approach may not be able to capture the variability in
the data.

UDRL takes the problem of learning to act within an environment closer to a supervised learning
task, as the goal of the model now becomes learning a mapping from state and command to actions
rather than learning a mapping from state-action pair to value (expected return) or maximizing return
directly using policy search. The primary benefit of this formulation lies in its ability to convert a
portion of the RL problem into a supervised task. This allows us to handle part of the complexity
of reinforcement learning problems within the supervised learning domain, which is the main area
where artificial neural networks are most successfully applied. In UDRL, the agent is trained using
hindsight. It learns to predict which action it took, given the current state and command (g, h), where
g is the actual return observed. UDRL also requires the definition of a command selection strategy.
Typically, for online RL reward-maximization problems, the commands being issued should increase
over time.

Building on the paradigm introduced by Fast Weight Programmers (FWPs), where one neural network
learns to generate weight updates for another network, parameter-based methods in RL (Mania et
al., 2018; Salimans et al., 2017b; Sehnke et al., 2008, 2010) sample policy parameters θ from a
hyperpolicy distribution νρ(θ) (Faccio et al., 2023), transforming the RL problem from finding the
parameters θ of a policy π such that the expected return obtained in the environment is maximized, to
finding the hyperpolicy parameters ρ that maximizes the expected return

J(ρ) =

∫
Θ

νρ(θ)

∫
T
p(τ |θ)R(τ), dτdθ. (2)

The objective can be made context-dependent as J(ρ, c) by conditioning the hyperpolicy on context
c,

J(ρ, c) =

∫
Θ

νρ(θ|c)
∫
T
p(τ |θ)R(τ) dτdθ. (3)
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3 Related Work

The development of UDRLPG builds upon several foundational concepts in RL and neural networks.
FWPs (Schmidhuber, 1992b, 1993), introduced the concept of using one neural network to output
weight updates for another target network—including implementations with deep and recurrent neural
architectures (Schmidhuber, 1992a)—enabling dynamic context-dependent weights after training.
This concept was later popularized under the name Hypernetworks. FWPs have found applications
across various domains, including memory-based meta learning (Miconi et al., 2018; Schmidhuber,
1993) and RL (Gomez & Schmidhuber, 2005).

Parameter-based value functions (Faccio et al., 2021; Harb et al., 2020) abstract traditional value
functions by learning to estimate expected returns conditioned on policy parameters over states or
state-action pairs. This enables evaluation and adjustment in parameter space, providing a mapping
between policy parameters and expected returns. The concept of inverting this mapping—determining
parameters given an expected return—forms a core principle of UDRLPG. UDRLPG removes the
need for the evaluator function Vw : Θ→ R that GoGePo uses to to optimize a policy generator. The
generator in GoGePo learns to minimize the difference between return commands and estimated
returns of generated policies through parameter-based evaluation.

Evolution Strategies demonstrate the effectiveness of directly exploring policy parameter space,
showing that parameter space optimization can overcome limitations of action-space methods like
sparse rewards. Policy Gradients with Parameter-Based Exploration addresses high variance in
policy gradient methods by replacing policies with probability distributions over parameters, enabling
trajectory sampling from single parameter samples (Salimans et al., 2017a).

4 Method

UDRLPG, as shown in Figure 1, is a parameter-based method that directly optimizes over policy
space to generate policies achieving desired returns. At its core, UDRLPG employs a FWP, in
the form of a hypernetwork Gρ : R → Θ functioning as a decoder, where c ∈ R represents the
command (desired return) and ρ are the FWP parameters. For exploration purposes, we consider a
non-deterministic FWP gρ(θ, c) = Gρ(c) + ϵ, where ϵ ∼ N (0, σ2I). Here, σ is a hyperparameter
that controls the extent of the perturbation, therefore directly controlling the exploration-exploitation
balance. Higher σ values enable broader exploration and help escape local optima, while lower
values favor exploitation of known high-performing policies. The introduction of noise is vital for the
learning process as it allows the algorithm to explore a wider range of potential policies, lowering the
chance of getting stuck in a local optimum.

The hypernetwork Gρ is trained to minimize the error

LG(ρ) = Ec∈D[(Gρ(c)− θc)
2], (4)

where D represents the replay buffer and θc is a policy with expected return c. The replay buffer is
initialized with random policies to ensure diverse starting conditions, enabling effective exploration
during the early stages of training. As a UDRL method, UDRLPG performs the usual hindsight
learning (Andrychowicz et al., 2017), which uses past experiences as examples of successfully
following specific commands. Generated policies are stored in the replay buffer together with their
observed return replacing the command (desired return), rather than the command (desired return).

The training process consists of an update and a rollout stage. The first stage is the update, where the
hypernetwork undergoes typical iterative gradient updates using policies sampled from the replay
buffer. During the rollout phase, new policies are generated using the updated weights, and, after
noise is added for exploration, the policies are evaluated using observation normalization and added
to the replay buffer. To address overrepresentation of particular return ranges during training, the
buffer is organized into performance-based buckets containing policies within specific return ranges.
This organization decouples sampling probability from the absolute number of policies in each
performance category, allowing one to follow the desired weighting strategy independently of the
returns of policies in the buffer.
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Algorithm 1 UDRLPG
1: Initialize: D ← empty replay buffer with performance-based buckets
2: Collect n random policies and add their (r, θ) pairs to D
3: Gρ ← differentiable policy generator (hypernetwork)
4: while not converged do
5: for update_repeats do
6: Sample minibatch B = {(c, θc)} from D
7: Update generator by stochastic gradient descent: ∇ρE{(c,θc)}∈B [(Gρ(c)− θc)

2]
8: end for
9: for rollout_repeats do

10: Select a desired return command c
11: Sample policy parameters θ ∼ Gρ(θ | c)
12: Sample noise ϵ ∼ N (0, σ2I)
13: θ ← θ + ϵ ▷ Exploration
14: Simulate policy πθ for one episode to obtain return r
15: Add (r, θ) to D ▷ Store observed return r as hindsight command c
16: end for
17: end while

Figure 1: Pseudocode for Upside-Down Reinforcement Learning with Policy Generators. A full
implementation of UDRLPG is publicly available at https://github.com/JacopoD/udrlpg_

5 Results and Discussion

We compare UDRLPG to two baseline algorithms: GoGePo and DDPG in the
InvertedPendulum-v4, Swimmer-v4, and Hopper-v4 environments from the OpenAI gym
suite (Brockman et al., 2016). For each environment, we report the mean return and the variance
of the last few returns. We also analyze the model’s ability to produce policies across the return
spectrum.

Results in Figure 2, show competitive performance against both baselines. In InvertedPendulum,
UDRLPG converges to the same value but slower than both baselines. While it achieves the max-
imum possible reward of 1000, it exhibits higher variance in final returns compared to GoGePo,
indicating less stability across runs. For Swimmer, UDRLPG reaches a mean final return of 300,
underperforming against GoGePo which reaches 320. The method shows a steady improvement
throughout training with no signs of plateauing, with higher variance in final performance compared
to GoGePo. In Hopper, the hardest environment tested, UDRLPG matches the performance of
GoGePo with a mean final return of 2070. UDRLPG appears to explore the parameter space more
extensively than the baselines, resulting in higher return bounds. As shown in Figure 5, UDRLPG
can produce policies across the return spectrum, resulting in strong identity curves, suggesting robust
generalization over commands. Performance-based buckets and a fine-tuned weighting strategy for
the replay buffer were crucial for stable training. This approach reduces learning stagnation and
ensures a balanced representation of high and low return policies during training, leading to more
consistent convergence toward higher return policies. Our ablation experiments, shown in Figure 4,
provide empirical evidence for this claim.

UDRLPG inherits from UDRL potential challenges deriving from multimodality. The newly gen-
erated policy θnew, obtained by conditioning the generator on a command c may be significantly
different from the policies θ in the buffer, where R(θ) = c. If |D(c)| ≥ 2, the generator will try to
fit θmean: the mean of the policies. However, there is no guarantee that R(θmean) = R(θ). In this
case, the learning process may start degrading. This issue does not arise frequently while training
UDRLPG. One possible explanation is that, early on during training, the hypernetwork develops
an understanding of the underlying structure or distribution of the policy weights based on the first
policies in the buffer. Weight initialization biases the hypernetwork towards a specific arrangement of
the neural network’s weights (Chen et al., 1993). This arrangement includes the order of the neurons
within hidden layers (neuron permutation) and the magnitudes of the weights (weight scaling). The
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Figure 2: Performance of policies from UDRLPG, GoGePo, and DDPG during training in all envi-
ronments. Lines show mean return and 95% bootstrapped confidence intervals from 20 independent
runs.
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Figure 3: Variance of final returns. Lines show mean and 95% confidence intervals from 20 evaluation
runs.

bias induced by the initialization constrains the search space in a part of the solution space where all
weights follow the same configuration. The hypernetwork learns changes around the configuration,
reducing the likelihood of generating policies with similar returns that are very different in weight
space.
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Figure 4: Performance comparison of UDRLPG policies across test all environments using four
buffer strategies. The proposed strategy is buckets and weighted sampling, in blue. Curves show
mean returns with 95% bootstrapped confidence intervals from 20 runs.
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6 Conclusion

This work introduced UDRLPG, an approach to RL focused on generating policy parameters con-
ditioned on return commands. Compared with existing methods, UDRLPG removes the need for a
separate evaluator in the architecture, thus simplifying the overall structure. Empirical results show
that UDRLPG generalizes effectively across commands, is competitive with existing methods, and
is able to explore the parameter space more extensively than some competing methods, resulting
in higher return bounds. Additionally, we note that the hypernetwork’s initialization bias confines
the search to a specific region of the solution space where weights share a common configuration,
effectively circumventing the challenge of multimodality. We identify some limitations of UDRLPG
here. In some environments, convergence is slower and the variance in final returns across runs is
higher than that of GoGePo. Compared to GoGePo, UDRLPG simplifies the learning process and
provides further insight into goal-conditioned policy generation.
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