

000 PARIEDCONTRAST: A MULTIMODAL BENCHMARK 001 002 FOR CONTRAST IMAGE TRANSLATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT

011 Contrast medium play a pivotal role in radiological imaging, as it amplifies le-
012 sion conspicuity and improves detection in the diagnosis of tumor-related dis-
013 eases. However, depending on the patient’s health condition or the medical re-
014 sources available, the use of contrast medium is not always feasible. Recent
015 work has therefore explored AI-based image translation to synthesize contrast-
016 enhanced images directly from non-contrast scans, aiming to reduce side effects
017 and streamline clinical workflows. Progress in this direction has been constrained
018 by data limitations: (1) existing public datasets focus almost exclusively on brain-
019 only paired MR modalities; (2) other collections include partially paired data but
020 suffer from missing modalities/timestamps and imperfect spatial alignment; (3)
021 explicit labeling of CT vs. CTC or DCE phases is often absent; (4) substantial
022 resources remain private. To bridge this gap, we introduce the first public, fully
023 paired, pan-cancer medical imaging dataset spanning 11 human organs. The MR
024 data include complete dynamic contrast-enhanced (DCE) sequences covering all
025 three phases (DCE1–DCE3), while the CT data provide paired non-contrast and
026 contrast-enhanced acquisitions (CTC). The dataset is curated for anatomical cor-
027 respondence, enabling rigorous evaluation of $1 \rightarrow 1$, $N \rightarrow 1$, and $N \rightarrow N$
028 translation settings (e.g., predicting DCE phases from non-contrast inputs). Built
029 upon this resource, we establish a comprehensive benchmark. We report results
030 from representative baselines of contemporary image-to-image translation. We
031 release the dataset and benchmark to catalyze research on safe, effective contrast
032 synthesis, with direct relevance to multi-organ oncology imaging workflows.

033 1 INTRODUCTION

036 Accurate diagnosis from medical images often depends on how clearly subtle tissue differences can
037 be visualized. Contrast medium amplifies these differences by highlighting lesions and vascular
038 structures, thereby improving the sensitivity and reliability of tumor detection. Yet their use is
039 not always feasible: certain patients face health risks from contrast administration, and resource
040 limitations can further restrict availability. Consequently, many scans are acquired without contrast
041 enhancement, leaving clinicians with incomplete diagnostic information.

042 Recent advances in generative AI (Heusel et al., 2017; Rombach et al., 2022; Peebles & Xie, 2023)
043 offer promising solutions by synthesizing contrast-enhanced images directly from non-contrast
044 scans (Atli et al., 2024; Chartsias et al., 2018). Such approaches open the door to safer imaging
045 protocols and streamlined clinical workflows. However, their development critically depends on
046 access to large-scale, well-curated paired datasets spanning diverse organs and cancer types.

047 Existing resources remain inadequate. (1) Publicly available paired MRI datasets, such as
048 BraTS (de Verdier et al., 2024), are almost exclusively limited to brain imaging. (2) Other col-
049 lections, including AMOS (Ji et al., 2022) or datasets from TCIA (Clark et al., 2013), provide
050 partially paired CT and MRI data but suffer from missing modalities, timestamps, or imperfect spa-
051 tial alignment. (3) Explicit annotations distinguishing non-contrast CT from contrast-enhanced CT
052 (CTC) or delineating dynamic contrast-enhanced (DCE) MRI phases are often absent, as in CT-
053 ORG (Rister et al., 2020). (4) Finally, substantial multi-organ resources cohorts remain private,
limiting community-wide benchmarking.

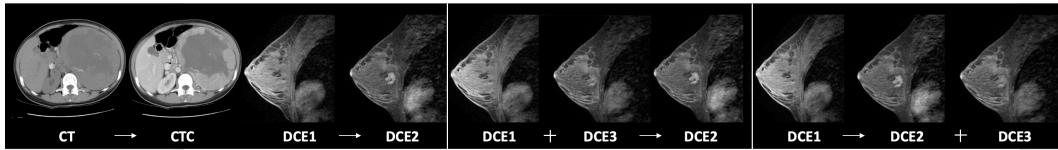


Figure 1: Representative task settings with examples. (a) $CT \rightarrow CTC$ (1→1), (b) $DCE_1 \rightarrow DCE_2$ (1→1), (c) $DCE_1, 3 \rightarrow DCE_2$ ($N \rightarrow 1$), (d) $DCE_1 \rightarrow DCE_2, 3$ (1→ N).

To bridge this gap, we introduce *PariedContrast*, the first *public, fully paired, pan-cancer* dataset covering 11 human organs. It provides complete dynamic contrast-enhanced MRI sequences (DCE_1 – DCE_3), alongside paired non-contrast and contrast-enhanced CT (CTC). All data are carefully curated for anatomical correspondence, enabling systematic evaluation of image translation tasks under $1 \rightarrow 1$, $N \rightarrow 1$, and $N \rightarrow N$ settings.

Building upon this resource, we establish a comprehensive benchmark by evaluating representative baseline methods in image-to-image translation, including GAN-based and diffusion-based models. Beyond these baselines, we introduce FlowMI, a flow-based missing modality imputation model inspired by recent advances in latent flow matching. Instead of substituting missing inputs with zeros or noise, FlowMI projects both complete and incomplete modalities into a shared latent space, via modality-specific encoders combined through a product-of-experts aggregation. It then learns a continuous flow that transforms the resulting “broken” latent codes to their fully observed counterparts. This design allows robust reconstruction under arbitrary missing patterns and achieves superior performance in recovering details. Notably, the ability to recover fine-grained details is critical for downstream clinical tasks such as tumor detection. Together, the dataset, benchmark, and FlowMI establish a strong foundation for advancing safe and effective contrast synthesis. Our key contributions are summarized as follows:

1. We present the first *public, fully paired* contrast-enhanced and non-contrast, *pan-cancer* dataset, providing a large-scale, high-quality resource to facilitate medical imaging research.
2. We propose FlowMI, a flow-matching model that captures complex cross-modality relationships and leverages an uncertainty mitigation strategy, leading to more reliable multimodal image synthesis with better potential for downstream clinical applications.
3. We conduct a comprehensive benchmark across diverse organs, modalities, and translation tasks, establishing strong reference results for future research. Our proposed FlowMI achieves consistently superior performance across settings.

2 THE BENCHMARK

In this section, we first define the task enabled by *PariedContrast* (section 2.1). We then describe the data curation and preparation process (section 2.2), followed by a quantitative analysis of the quality and diversity of *PariedContrast* (section 2.3). Finally, we compare our dataset against existing benchmarks (section 2.4) to highlight its unique advantages.

2.1 TASK DEFINATION

Generative models for medical image translation aim to model complex anatomical structures, capture modality-specific features, and learn accurate cross-modality mappings. Formally, given a set of input modalities $X = \{x_1, x_2, \dots, x_n\}$ and one or more target modalities $Y = \{y_1, y_2, \dots, y_m\}$, a generative model f produces synthesized images \hat{Y} that approximate the ground-truth targets Y :

$$\hat{Y} = f(X). \quad (1)$$

In this study, we consider several widely used imaging modalities: Computed Tomography (CT), contrast-enhanced CT (CTC), and multiple Magnetic Resonance Imaging (MRI) sequences, including Dynamic Contrast-Enhanced MRI (DCE).

To comprehensively evaluate different generative models, we design benchmark tasks that reflect both increasing levels of difficulty and common clinical scenarios of missing modalities. As illustrated in Fig. 1, we consider three representative settings:

108

109

Table 1: Detailed statistics of the PairedContrast dataset.

Modality	Overall of Modality	Type of Modality	Dataset	System	Overall of Dataset	Organ	Overall of Organ	Source Dataset	Overall of Dataset	Type of Cancer
MR	1116	dce1, dce2, dce3	Breast_MR_train_val_test	Female Reproductive	1116	Breast	1116	TCGA-BRCA UCSF I-SPY 1	378 180 558	Breast Cancer
CT	1526	Non contrast CT, Contrast enhanced CT	Adrenal.CT.train_val_test Uterus_Ovary_CT.train_val_test Stomach_Colon_Liver_Pancreas_CT.train_val_test Bladder_Kidney_CT.train_val_test Lung.CT.train_val_test	Endocrine Female Reproductive Digestive Urinary Respiratory	82 66 614 684	Adrenal Ovary Uterus Stomach Pancreas Liver Colon Bladder Kidney	82 12 54 86 54 432 22 86 598	Adrenal-ACC-Ki67-Seg TCGA-OV TCGA-UCEC CPTAC-UCEC TCGA-STAD CPTAC-PDA HCC-TACE-Seg TCGA-LIHC CMB-CRC TCGA-COAD TCGA-BLCA TCGA-KIRC C4KC-KiTS CPTAC-CCRCC TCGA-KIRP TCGA-KICH CMB-LCA Lung-PET-CT-Dx Anti-PD-1_Lung TCGA-LUSC CPTAC-LSCC CPTAC-LUAD	82 12 14 40 86 360 72 18 4 86 278 216 66 26 12 28 6 6 2 28 10	Adrenocortical carcinoma Ovarian Serous Cystadenocarcinoma Uterine Corpus Endometrial Carcinoma Stomach Adenocarcinoma Ductal Adenocarcinoma Hepatocellular carcinoma Colorectal Cancer Colon adenocarcinoma Bladder Endothelial Carcinoma Kidney Renal Clear Cell Carcinoma Kidney Cancer Clear Cell Carcinoma Kidney Renal Papillary Cell Carcinoma Kidney Chromophobe Lung Cancer Lung Squamous Cell Carcinoma Squamous Cell Carcinoma Lung Adenocarcinoma

1-to-1 Translation: Single input modality to a single target (e.g., CT → CTC or DCE₁ → DCE₂). This setting tests a model’s ability to capture modality-specific features and preserve one-to-one anatomical correspondences.

N-to-1 Translation: Multiple input modalities to a single target (e.g., DCE₁, DCE₃ → DCE₂). This evaluates how well models integrate complementary anatomical information across sequences while maintaining structural fidelity and modality consistency. In DCE imaging, this setting further corresponds to reconstructing an intermediate phase from its neighbors, thereby probing whether models can capture temporal dynamics of contrast uptake.

1-to-N Translation: A single input modality to multiple targets simultaneously (e.g., DCE₁ → DCE₂, DCE₃). This setting assesses whether models can jointly capture inter-modal dependencies and generate anatomically consistent outputs across domains. Clinically, it is relevant for scenarios where only an early phase or a non-contrast scan is acquired, and later phases must be synthesized to approximate the full dynamic sequence.

Together, these tasks can be unified under the general **N-to-N translation** formulation, where both input and output may consist of multiple modalities. They span a spectrum from fundamental to highly challenging scenarios, ensuring that our benchmark is representative of real-world clinical requirements for missing modality synthesis.

2.2 DATASET CURATION AND PREPARATION

A major obstacle for contrast synthesis research is the lack of large-scale, paired datasets spanning multiple organs and imaging modalities. To address this, we curated PairedContrast, a multi-organ, pan-cancer resource constructed entirely from publicly available sources.

PairedContrast distinguishes itself by providing: (i) explicit pairing of contrast-enhanced (CE) and non-contrast-enhanced (NCE) scans across both CT and MRI, and (ii) broad coverage of clinically relevant organs frequently encountered in oncology. As illustrated in Fig. 2, the curation process consists of dataset selection, quality filtering, and standardized preprocessing to ensure anatomical correspondence and clinical validity.

Targeted organs and imaging modalities. Based on three criteria—(i) availability of paired CE/NCE scans, (ii) prevalence in oncology imaging studies, and (iii) the clinical importance of con-

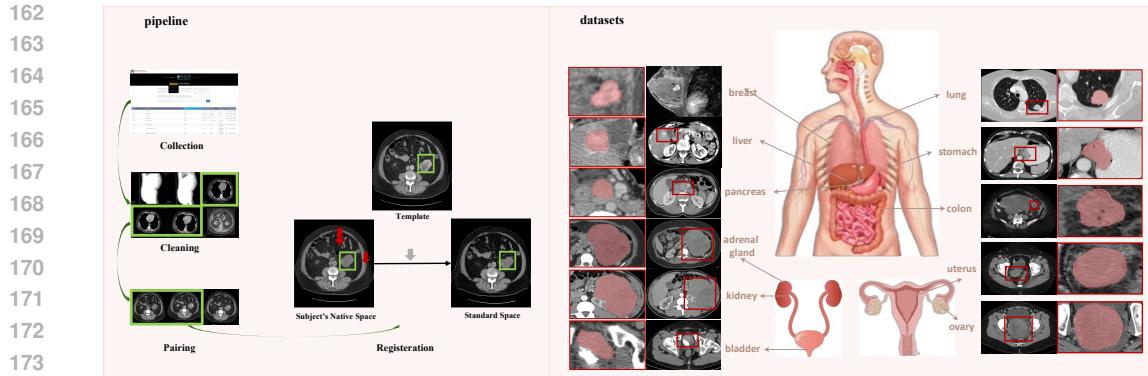


Figure 2: *Left*: dataset curation pipeline. *Right*: representative examples from PariedContrast. contrast enhancement for lesion delineation—we selected 11 organs spanning both CT(adrenal gland, ovary, uterus, stomach, pancreas, liver, colon, bladder, kidney, lung) and MRI(breast).

Data selection and quality filtering. All scans were sourced from publicly available repositories such as The Cancer Imaging Archive (TCIA) and related datasets (*e.g.*, TCGA, CPTAC, CMB, UCSF, I-SPY). We identified collections with paired CE/NCE scans or reliable metadata indicating contrast phase, retrieved the raw DICOM/NIfTI files, and excluded studies with severe artifacts, incomplete coverage, or corrupted files. This multi-stage filtering ensured that only scans with reliable contrast information and sufficient anatomical coverage were retained for preprocessing.

Preprocessing with clinical validation. To harmonize diverse sources into a unified benchmark, we applied a standardized pipeline:

Contrast-pair identification: automated metadata parsing (SeriesDescription, ContrastBolusAgent, AcquisitionTime) was used to distinguish CE/NCE scans.

Validation and quality control: trained annotators verified preliminary CE/NCE modalities and overall image quality, discarding ambiguous or low-quality cases. Final confirmation was provided by experts, who explicitly labeled CT *vs.* CTC and identified DCE time steps.

Registration: rigid and affine alignment of CE and NCE scans, with deformable registration for motion-prone organs (*e.g.*, liver, lung).

Cropping and resampling: organ-level bounding box cropping and resampling to isotropic spacing (1×1×1 mm).

Normalization: For CT, hounsfield Unit (HU) windowing per organ (*e.g.*, soft tissue: [−200, 300] HU), then min–max normalization. For MRI, z-score normalization per scan to mitigate inter-patient intensity variation.

Pairing verification: final visual inspection to ensure anatomical correspondence between CE and NCE scans.

2.3 DATA STATISTICS AND DIVISION

The PariedContrast collection is organized hierarchically: first by imaging modality (Magnetic Resonance, MR; Computed Tomography, CT), and then by organ-specific groups. In total, the dataset spans 11 organs grouped into 6 subsets representing 5 anatomical systems: Endocrine (adrenal), Digestive (stomach, pancreas, liver, colon), Urinary (bladder, kidney), Respiratory (lung), and Female Reproductive (uterus, ovary, and breast).

Across these organs, the dataset covers 19 cancer types, including: adrenocortical carcinoma (adrenal); ovarian serous cystadenocarcinoma (ovary); uterine corpus endometrial carcinoma (uterus); stomach adenocarcinoma (stomach); ductal adenocarcinoma and hepatocellular carcinoma (liver); colon adenocarcinoma and colorectal cancer (colon); bladder urothelial carcinoma (bladder); kidney renal clear cell, papillary cell, and chromophobe carcinomas (kidney); lung adenocarcinoma and squamous cell carcinoma (lung); and breast carcinoma (breast). A detailed breakdown of case numbers per organ, modality, and cancer type is provided in Appendix.

For benchmarking, the dataset is split into training (70%), validation (10%), and test (20%) sets. Stratified sampling ensures proportional representation across organ systems and cancer types. The

216

217 Table 2: A comparison of our proposed PairedContrast to other benchmarks.

Benchmarks	Organ	MR	CT	Paired	Size	Application
CHAOS(Valindria et al., 2018)	Abdomen	✓	✓		120	Healthy abdominal organ research
BraTS 2025 (Maleki et al., 2025)	Brain	✓		✓	4425	Brain tumor research
IXI (IXI)	Brain	✓			600	Healthy brain research
crossMoDA (Dorent et al., 2023)	Ear	✓			379	Cochlear implant research
ACDC (Bernard et al., 2018)	Cardiac	✓			150	Cardiac diagnosis
MMWHS(Zhuang, 2018)	Cardiac	✓	✓		120	Cardiac research
FDG-PET/CT (Gatidis et al., 2022)	Whole body	✓	✓		1014	Tumor, lung cancer research
Ours	Adrenal,					
	Breast, Bladder,					
	Colon, Kidney,	✓		✓	2642	
	Liver, Lung,					Pan-cancer research
	Ovary, Pancreas,					
	Stomach, Uterus					

231 test set is further subdivided into a *test-mini* split (5% of the full dataset), designed for rapid val-
 232 idation while preserving the distribution of the complete test set. Unless otherwise specified, all
 233 reported results are based on the *test-mini* split.

234 235

2.4 COMPARISONS WITH EXISTING BENCHMARKS

236 We position PairedContrast against representative public benchmarks along five axes relevant for
 237 multimodal image translation and missing-modality synthesis: (i) organ/system coverage, (ii) imag-
 238 ing modalities (MR/CT and contrast availability), (iii) explicit CE–NCE pairing at the *per-patient*
 239 level, (iv) dataset scale and balance, and (v) primary application focus. Tab. 2 summarizes the
 240 comparison.

241 **Brain-centric MR benchmarks.** Resources such as BraTS (de Verdier et al., 2024), BraSyn (Li
 242 et al., 2024), IXI (IXI), OASIS-3 (LaMontagne et al., 2019), and ADNI (Rivera Mindt et al., 2024)
 243 provide large-scale brain MRI data, supporting tumor segmentation and neurodegeneration studies.
 244 However, they are *single-organ* and typically lack explicit CE–NCE pairing, limiting their applica-
 245 bility to pan-organ contrast translation.

246 **Cardiac and region-specific benchmarks.** Datasets such as ACDC (Bernard et al., 2018) and
 247 MMWHS (Zhuang, 2018) offer high-quality cardiac MR/CT for segmentation and multi-modality
 248 analysis. Similarly, crossMoDA (Dorent et al., 2023) focuses on inner-ear/temporal-bone MRI for
 249 domain adaptation. These are *task-focused* and *organ-specific* resources without systematic CE–
 250 NCE pairing, hence not tailored for generalizable contrast synthesis across diverse organs.

251 **PET/CT and dose-constrained benchmarks.** Whole-body PET/CT sets (e.g., FDG-PET/CT (Ga-
 252 tidis et al., 2022)) and ultra-low-dose PET studies (UDP, 2024) target cross-modality fusion or dose
 253 reduction and often assess PET synthesis from limited counts. While multi-modality is present,
 254 CE–NCE pairing for CT/MR contrast translation is typically outside their scope.

255 **Positioning of PairedContrast.** In contrast, PairedContrast (*PairedContrast*) provides explicit
 256 per-patient CE–NCE pairing across 11 organs spanning both CT and MR. It is designed for multi-
 257 modal translation and missing-modality synthesis, with harmonized preprocessing and radiologist-
 258 in-the-loop validation. As shown in Tab. 2, most existing benchmarks emphasize either a single
 259 organ (e.g., brain, cardiac) or tasks orthogonal to contrast translation (e.g., PET dose reduction).
 260 PairedContrast fills this gap by offering multi-organ breadth, dual-modality coverage, and rigor-
 261 ously verified CE–NCE pairs—enabling clinically meaningful benchmarking of contrast synthesis
 262 methods.

263

3 METHODS

264 265

3.1 PRELIMINARY: LATENT FLOW MATCHING

266 267 Flow Matching (FM) (Lipman et al., 2023; Liu et al., 2022) learns a continuous transport map
 268 269 between two distributions over a data space $\mathcal{X} \subseteq \mathbb{R}^d$, using only samples and without access to

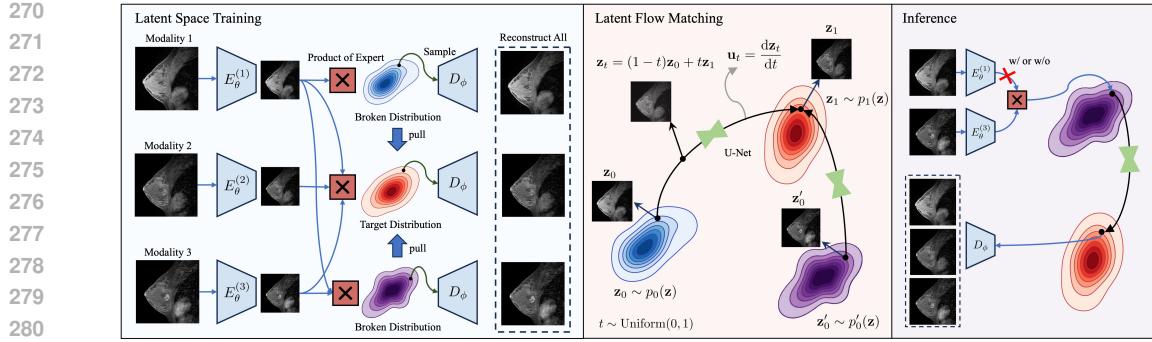


Figure 3: Overview of the proposed FlowMI framework. **Left:** Modality-specific encoders $E_\theta^{(i)}$ map inputs into a latent space, which are fused via a product-of-experts. The distribution with all modalities defines the *target*, while cases with missing modalities define the *broken* distribution. **Middle:** Latent flow matching learns a smooth mapping from $p_0(z)$ (broken) to $p_1(z)$ (target) using a U-Net parameterization of the velocity field, $\mathbf{u}_t = \frac{dz_t}{dt}$. **Right:** During inference, inputs with missing modalities are encoded and aligned through the learned flow, enabling consistent reconstruction or synthesis of complete modalities.

likelyhoods. Latent Flow Matching (LFM) (Dao et al., 2023; Chadebec et al., 2025) extends FM by introducing a lower-dimensional latent space \mathcal{Z} . An encoder $E_\phi : \mathcal{X} \rightarrow \mathcal{Z}$ maps data into this latent space, where a transport map is learned, *i.e.* $\mathbf{z} := E_\phi(\mathbf{x})$.

Let π_0, π_1 be distributions over the latent space $\mathcal{Z} \subseteq \mathbb{R}^d$. Define a time-dependent velocity field $v : \mathcal{Z} \times [0, 1] \rightarrow \mathbb{R}^d$ and consider a stochastic process $(\mathbf{z}_t)_{t \in [0, 1]}$ governed by the stochastic differential equation (SDE):

$$d\mathbf{z}_t = v(\mathbf{z}_t, t)dt + \sigma(\mathbf{z}_t, t)dB_t, \quad \mathbf{z}_0 \sim \pi_0, \quad (2)$$

where B_t is standard Brownian motion and σ is the diffusion coefficient. In practice, v is approximated using the analytically defined target velocity field:

$$v^*(\mathbf{z}_t, t) := \frac{\mathbf{z}_1 - \mathbf{z}_t}{1 - t}, \quad (\mathbf{z}_0, \mathbf{z}_1) \sim \pi_0 \times \pi_1, \quad (3)$$

with intermediate states \mathbf{z}_t sampled from the stochastic interpolant (deterministic when $\sigma \rightarrow 0$):

$$\mathbf{z}_t = (1 - t)\mathbf{z}_0 + t\mathbf{z}_1 + \sigma\sqrt{t(1 - t)}\epsilon, \quad \epsilon \sim \mathcal{N}(0, I). \quad (4)$$

A neural velocity field $v_\theta(\mathbf{z}, t)$ is trained to match v^* by minimizing the following error:

$$\mathcal{L}_{\text{LFM}}(\theta) = \mathbb{E}_{t, \mathbf{z}_0, \mathbf{z}_1, \epsilon} \left[\left| v_\theta(\mathbf{z}_t, t) - \frac{\mathbf{z}_1 - \mathbf{z}_t}{1 - t} \right|^2 \right]. \quad (5)$$

Once trained, the learned velocity field v_θ is used to integrate the SDE in Eq. equation 2, transporting samples from \mathbf{z}_0 toward \mathbf{z}_1 . The final outputs in the original data space are obtained by decoding the transported latent samples: $\mathbf{x}_1 := D_\psi(\mathbf{z}_1)$.

3.2 FLOWMI: FLOW-BASED MISSING MODALITY IMPUTATION

Existing multimodal models often handle missing modalities by simply substituting zeros or noise, which yields semantically meaningless inputs and degrades performance.

In contrast, we propose **FlowMI**, which treats missing-modality imputation as a latent-space reconstruction problem. In our framework, a multi-modal autoencoder projects both complete and incomplete inputs into a shared latent space. An input with missing modalities produces a broken latent code (due to the absent information), and we learn a continuous flow in latent space to transform this broken code into a corresponding full latent code as if all modalities were present. We train this latent transformation via a flow-matching objective that aligns broken latents with their ground-truth complete counterparts, enabling accurate reconstruction under arbitrary missing patterns. We detail the components of FlowMI below.

Problem Setup. Consider a multi-modal input $\mathbf{x} = \{x^{(1)}, x^{(2)}, \dots, x^{(M)}\}$ consisting of M modalities. Due to data missingness, only a subset of these modalities may be available at inference time. We represent the observed pattern with a binary mask $\mathbf{m} \in \{0, 1\}^M$, where $\mathbf{m}^{(i)} = 1$ indicates modality i is present and $\mathbf{m}^{(i)} = 0$ indicates it is missing. Given a mask \mathbf{m} , let $\mathbf{x}^{\mathbf{m}}$ denote the set of observed modalities and $\mathbf{x}^{\neg\mathbf{m}}$ the set of missing modalities for input \mathbf{x} . The goal of imputation is to predict the missing components $\mathbf{x}^{\neg\mathbf{m}}$ from the observed ones $\mathbf{x}^{\mathbf{m}}$. For notational convenience, let $\mathbb{1} = \{1, 1, \dots, 1\}$ denote the mask of all ones (all modalities present), so $\mathbf{x}^{\mathbb{1}}$ is a fully observed input.

Latent Representation. We adopt a multi-modal variational autoencoder (VAE) framework in which each modality has a dedicated encoder and all modalities share a common latent space. Formally, let $\mathcal{M} = \{1, 2, \dots, M\}$ be the set of modality indices. For each $m \in \mathcal{M}$, the encoder $E_{\theta}^{(m)}$ produces an approximate posterior distribution over the latent \mathbf{z} given that modality's input:

$$q_{\theta}^{(m)}(\mathbf{z} | \mathbf{x}^{(m)}) = E_{\theta}^{(m)}(\mathbf{x}^{(m)}). \quad (6)$$

When a subset of modalities $\mathcal{O} \subseteq \mathcal{M}$ is observed, we combine their encoders' outputs using a Product-of-Experts (PoE) to obtain a unified latent posterior:

$$q_{\theta}(\mathbf{z} | \{\mathbf{x}^{(m)}\}_{m \in \mathcal{O}}) \propto p(\mathbf{z}) \prod_{m \in \mathcal{O}} q_{\theta}^{(m)}(\mathbf{z} | \mathbf{x}^{(m)}), \quad (7)$$

where $p(\mathbf{z})$ is the prior distribution (i.e. $\mathcal{N}(0, I)$). Missing modalities are handled by simply omitting their encoder "expert" from the product. A shared decoder D_{ϕ} then maps latent codes back to the data space. Given a latent sample \mathbf{z} drawn from the posterior q_{θ} , the decoder produces a reconstruction for all modalities: $\hat{\mathbf{x}} = D_{\phi}(\mathbf{z})$.

During training, we randomly mask out modalities to create partial observations and optimize three loss terms. Given an observed subset \mathcal{O} (with target modalities \mathcal{T} to reconstruct, typically $\mathcal{T} = \mathcal{M}$), we sample $\mathbf{z}_{\mathcal{O}} \sim q_{\theta}(\mathbf{z} | x^{(m)} : m \in \mathcal{O})$ and decode it to $\hat{\mathbf{x}} = D_{\phi}(\mathbf{z}_{\mathcal{O}})$. We minimize the mean squared error between the reconstruction and the ground truth target $\mathbf{x}^{\mathbb{1}}$:

$$\mathcal{L}_{\text{rec}} = \mathbb{E}_{\mathbf{x}, \mathcal{O}} \left[\|D_{\phi}(\mathbf{z}_{\mathcal{O}}) - \mathbf{x}^{\mathbb{1}}\|_2^2 \right]. \quad (8)$$

To encourage coherence between partial-input latents and full-input latents, we introduce a alignment penalty that brings the two posterior distributions, the broken latent $\mathbf{z}^{\mathbf{m}}$ (from incomplete inputs) and the full latent $\mathbf{z}^{\mathbb{1}}$ (from complete inputs), closer. Using stop-gradient on $\mathbf{z}^{\mathbb{1}}$, we minimize:

$$\mathcal{L}_{\text{pull}} = \mathbb{E}_{\mathbf{x}, \mathbf{m}} \left[\|\mathbf{z}^{\mathbf{m}} - \text{sg}(\mathbf{z}^{\mathbb{1}})\|_2^2 \right], \quad (9)$$

where $\text{sg}(\cdot)$ denotes stop-gradient.

We also regularize the each modality-specific latent distribution against the prior $p(\mathbf{z})$ (as in a standard VAE):

$$\mathcal{L}_{\text{KL}} = \sum_{m=1}^M \mathbb{E}_{x^{(m)}} \left[D_{\text{KL}}(q_{\theta}^{(m)}(\mathbf{z}^{(m)} | x^{(m)}) \parallel p(\mathbf{z})) \right]. \quad (10)$$

The full objective combines all three terms:

$$\mathcal{L} = \mathcal{L}_{\text{rec}} + \lambda \mathcal{L}_{\text{pull}} + \beta \mathcal{L}_{\text{KL}}, \quad (11)$$

where λ and β control the relative contributions.

Latent Flow Matching. The key component of FlowMI is a learned latent-space transformation that maps a broken latent code to its complete counterpart. We define a time-dependent vector field $v_{\theta}(\mathbf{z}, t)$ (implemented by a neural network) which generates a continuous trajectory from the broken latent to the full latent. Specifically, let $\mathbf{z}_0 = \mathbf{z}^{\mathbf{m}}$ be the latent obtained from an incomplete input (with mask \mathbf{m}), and let $\mathbf{z}_1 = \mathbf{z}^{\mathbb{1}}$ be the latent of the same input if all modalities were present. We define an ordinary differential equation (ODE) in latent space:

$$\frac{d\mathbf{z}_t}{dt} = v_\theta(\mathbf{z}_t, t), \quad \text{with } \mathbf{z}_0 := \mathbf{z}^m, \quad \text{and } \mathbf{z}_1 := \mathbf{z}^l, \quad (12)$$

To make learning the flow tractable, we prescribe a simple path and train v_θ to follow it. In particular, we use the straight-line interpolation between the endpoints as the target trajectory: $\mathbf{z}_t = (1-t)\mathbf{z}_0 + t\mathbf{z}_1$. Along this path, the true velocity is constant and given by $d\mathbf{z}_t/dt = \mathbf{z}_1 - \mathbf{z}_0$. We train the vector field v_θ to match this velocity at every point along the path via a flow-matching loss:

$$\mathcal{L}_{\text{LFM}} = \mathbb{E}_{(\mathbf{z}_0, \mathbf{z}_1), t \sim \mathcal{U}(0, 1)} \left[\|v_\theta(\mathbf{z}_t, t) - (\mathbf{z}_1 - \mathbf{z}_0)\|^2 \right] \quad (13)$$

In essence, the learned flow function v_θ provides an efficient latent-space imputation dynamics that can handle arbitrary missing modality patterns.

Inference. At test time, given an incomplete input \mathbf{x}^m with mask \mathbf{m} , we first obtain its broken latent code via the encoders: $\mathbf{z}^m = E_\theta(\mathbf{x}^m)$. We then apply the learned latent flow to transform \mathbf{z}^m toward an estimate of the full latent. Starting from $\mathbf{z}_0 = \mathbf{z}^m$, we numerically integrate the ODE $d\mathbf{z}_t/dt = v_\theta(\mathbf{z}_t, t)$ from $t = 0$ to 1 . For example, using a simple Euler integration with step size Δt , we update the latent as:

$$\hat{\mathbf{z}}_{t+\Delta t} = \mathbf{z}_t + \Delta t \cdot v_\theta(\mathbf{z}_t, t), \quad \text{for } t = 0, \Delta t, 2\Delta t, \dots, 1 - \Delta t. \quad (14)$$

After integrating to $t = 1$, we obtain an approximate full latent $\hat{\mathbf{z}}^l = \mathbf{z}_1$. Finally, we feed this latent into the decoder to reconstruct the complete input: $\hat{\mathbf{x}}^l = D_\phi(\hat{\mathbf{z}}^l)$. The output $\hat{\mathbf{x}}^l$ is the imputed multi-modal data, in which all originally missing modalities have been filled in by FlowMI method.

4 EXPERIMENTS

4.1 BASELINE SETUP

We evaluate and benchmark four categories of models for multimodal translation and missing-modality synthesis on PariedContrast: **Direct methods** (UNet (Ronneberger et al., 2015), ResViT (Transformer) (Dalmaz et al., 2022), MambaIR (Guo et al., 2024), I2IMamba (Atli et al., 2024), and RestoreRWKV (Yang et al., 2024)); **GAN-based methods** (CycleGAN (Zhu et al., 2017) and Pix2Pix (Isola et al., 2017)); **Diffusion-based methods** (PatchDiff (UNet) (Özdenizci & Legenstein, 2023) and DiTSR (Transformer) (Cheng et al., 2025)); **Flow-matching methods** (ConcatFM (Lipman et al., 2022), DirectFM (Lipman et al., 2022), PMRF (Ohayon et al., 2024), and our proposed FlowMI).

Training uses direct supervision on explicitly paired CE–NCE scans. All methods are trained under the same data split and preprocessing pipeline (Sec. 2.2), without external data. We follow each method’s public implementation for loss functions and training protocols. Training is performed on 2D slices from registered volumes, resized to a fixed resolution. *Additional implementation details and hyperparameters are provided in the Appendix.* We report results using PSNR and SSIM as quantitative metrics.

4.2 EXPERIMENT RESULTS

Quantitative comparison.

Tab. 3 shows that flow-matching methods consistently outperform direct, GAN, and diffusion baselines. Across all tasks, our model achieves the highest PSNR and competitive SSIM, with a clear lead on CT→CTC, demonstrating its ability to generate both sharp and structurally faithful reconstructions. We observe that $n \rightarrow 1$ translation generally benefits from complementary temporal information, whereas $1 \rightarrow n$ remains the most challenging due to the difficulty of preserving structural consistency across multiple targets. Overall, diffusion models yield stable but moderate results, and state-space approaches improve SSIM by capturing temporal enhancement patterns. Flow-matching provides robust gains across both PSNR and SSIM.

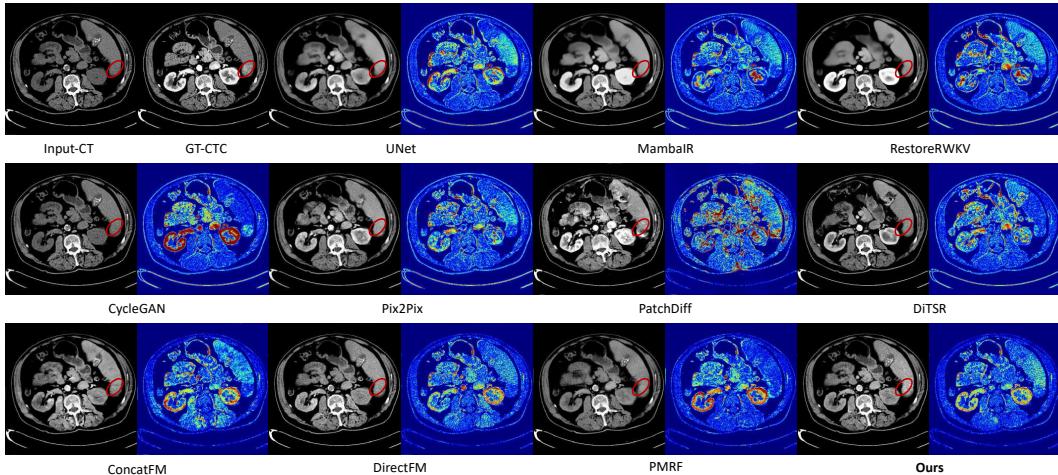


Figure 4: CT → CTC (liver). Red circles mark tumor regions. Input CT shows no clear lesion, ground-truth CTC shows bright enhancement. Most methods under-enhance the tumor, while PatchDiff and ours recover the correct signal. Alongside each result, the blue residual maps visualize differences from ground truth (darker indicates larger error).

Table 3: Quantitative comparison on the PairedContrast CT and MR paired pan-cancer contrast media dataset using methods grouped by generative mechanism and architecture. *Trans: Transformer.

Mechanism	Architecture	Methods	CT → CTC	DCE ₁ → DCE ₂	DCE ₁ → DCE _{2,3}	DCE _{1,3} → DCE ₂
			PSNR SSIM	PSNR SSIM	PSNR SSIM	PSNR SSIM
Direct	UNet	UNet (Ronneberger et al., 2015)	22.64 0.7726	24.36 0.7160	24.78 0.7720	27.54 0.7575
	Trans	ResViT (Dalmaz et al., 2022)	20.80 0.7419	25.12 0.7055	24.65 0.6347	25.24 0.5983
	Mamba	MambaR (Guo et al., 2024)	23.88 0.7643	25.61 0.6756	26.12 0.7777	28.78 0.7889
	Mamba	I2IMamba (Atli et al., 2024)	20.97 0.7456	23.25 0.5588	23.57 0.5798	26.82 0.7006
	RWKV	RestoreRWKV (Yang et al., 2024)	23.58 0.7794	26.32 0.7748	26.29 0.7969	25.97 0.7100
GAN	UNet	CycleGAN (Zhu et al., 2017)	21.90 0.7579	24.18 0.6566	24.46 0.7137	25.74 0.7237
	UNet	Pix2Pix (Isola et al., 2017)	21.39 0.7264	23.24 0.6462	23.90 0.7223	26.42 0.7015
Diffusion	UNet	PatchDiff (Özdenizci & Legenstein, 2023)	21.44 0.7295	24.25 0.7041	25.32 0.7579	27.53 0.7563
	Trans	DiTSR (Cheng et al., 2025)	22.68 0.7612	25.59 0.7556	25.69 0.7645	27.50 0.7573
Flow-matching	UNet	ConcatFM (Lipman et al., 2022)	23.10 0.7712	26.31 0.7292	26.25 0.7177	29.06 0.7612
	UNet	DirectFM (Lipman et al., 2022)	22.84 0.7665	25.74 0.6848	25.98 0.7110	27.90 0.7415
	UNet	PMRF (Ohayon et al., 2024)	21.91 0.7656	25.06 0.6751	26.11 0.7012	27.53 0.7494
	UNet	FlowMI (Ours)	24.47 0.7846	26.52 0.7415	26.63 0.7369	29.17 0.7622

Qualitative comparison. As shown in Fig. 4, the qualitative results echo the quantitative findings. While most methods generate visually plausible CT images, they often leave tumor regions under-enhanced, making lesions difficult to distinguish. In contrast, PatchDiff and our flow-matching model successfully reproduce the bright enhancement seen in the ground-truth CTC, and the accompanying blue residual maps confirm lower reconstruction errors. These results highlight that beyond visual realism, clinically accurate contrast synthesis is essential for downstream diagnosis.

5 CONCLUSIONS

In this work, we introduced PairedContrast, a comprehensive pan-cancer benchmark for multi-modal image translation and missing-modality synthesis in clinically realistic settings. It provides high-quality, per-patient paired CT and MR scans across 11 organs with both contrast-enhanced and non-contrast modalities, curated through a standardized and reproducible pipeline. We defined three benchmark tasks—1-to-1, n -to-1, and n -to- n translation—and reported reference results using representative generative models. While limitations remain, such as biases in public data sources and variability in clinical imaging, PairedContrast offers a valuable foundation for developing robust multimodal translation methods and advancing clinically reliable decision support. Future work could extend the dataset with additional modalities, larger cohorts, and more advanced synthesis techniques to further enhance generalization and applicability.

486 REFERENCES
487488 Ixi dataset (rrid:scr_005839). <http://brain-development.org/ixi-dataset/>.489 Ultra-low dose pet imaging challenge 2024 (udpet). Dataset and challenge information available
490 online, 2024. Accessed via <https://udpet-challenge.github.io/>.491
492 Oguz Akin, Pierre Elnajjar, Matthew Heller, Rose Jarosz, Bradley J Erickson, Shanah Kirk, Yueh
493 Lee, Marston W Linehan, Rabindra Gautam, Raghu Vikram, et al. The cancer genome atlas
494 kidney renal clear cell carcinoma collection (tcga-kirc)(version 3)[data set]. *Cancer Imaging
495 Arch*, 2016.496
497 Omer F Atli, Bilal Kabas, Fuat Arslan, Arda C Demirtas, Mahmut Yurt, Onat Dalmaz, and Tolga
498 Cukur. I2i-mamba: Multi-modal medical image synthesis via selective state space modeling.
499 *arXiv preprint arXiv:2405.14022*, 2024.500 Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann
501 Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al.
502 Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagno-
503 sis: is the problem solved? *IEEE transactions on medical imaging*, 37(11):2514–2525, 2018.
504 <https://ieeexplore.ieee.org/document/8360453>.505 C Biobank. Cancer moonshot biobank-lung cancer collection (cmb-lca)(version 3)[dataset]. *The
506 Cancer Imaging Archive*, 2022a.507
508 Cancer Moonshot Biobank. Cancer moonshot biobank – colorectal cancer collection (cmb-crc)
509 (version 8) [data set], 2022b. The Cancer Imaging Archive. <https://doi.org/10.7937/djg7-gz87>.511
512 Clément Chadebec, Onur Tasar, Sanjeev Sreetharan, and Benjamin Aubin. Lbm: Latent bridge
513 matching for fast image-to-image translation. *arXiv preprint arXiv:2503.07535*, 2025.514 Agisilaos Chartsias, Thomas Joyce, Mario Valerio Giuffrida, and Sotirios A. Tsaftaris. Multimodal
515 mr synthesis via modality-invariant latent representation. *IEEE Transactions on Medical Imaging*,
516 37:803–814, 3 2018. ISSN 1558254X. doi: 10.1109/TMI.2017.2764326.517
518 Kun Cheng, Lei Yu, Zhijun Tu, Xiao He, Liyu Chen, Yong Guo, Mingrui Zhu, Nannan Wang,
519 Xinbo Gao, and Jie Hu. Effective diffusion transformer architecture for image super-resolution.
520 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 2455–2463,
521 2025.522 Kenneth Clark, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen
523 Moore, Stanley Phillips, David Maffitt, Michael Pringle, Lawrence Tarbox, and Fred Prior. The
524 cancer imaging archive (tcia): maintaining and operating a public information repository, 2013.
525 TCIA website: <https://www.cancerimagingarchive.net/>.526
527 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium et al. The clinical pro-
528 teomic tumor analysis consortium lung squamous cell carcinoma collection (cptac-lscc). (*No
529 Title*), 2018a.530
531 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium et al. The clinical pro-
532 teomic tumor analysis consortium lung adenocarcinoma collection (cptac-luad)(version 12)[data
533 set]. *The Cancer Imaging Archive. Published online*, 2018b.534
535 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium et al. The clinical pro-
536 teomic tumor analysis consortium uterine corpus endometrial carcinoma collection (cptac-ucec),
537 version 10 [dataset]. *The Cancer Imaging Archive*, 10:k9, 2019.538
539 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
540 proteomic tumor analysis consortium clear cell renal cell carcinoma collection (cptac-ccrcc) (ver-
541 sion 14) [data set], 2018a. The Cancer Imaging Archive. <https://doi.org/10.7937/k9/tcia.2018.oblamn27>.

540 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
 541 proteomic tumor analysis consortium pancreatic ductal adenocarcinoma collection (cptac-pda)
 542 (version 15) [data set], 2018b. The Cancer Imaging Archive. <https://doi.org/10.7937/k9/tcia.2018.sc20fo18>.

543

544 Onat Dalmaz, Mahmut Yurt, and Tolga Çukur. Resvit: Residual vision transformers for multimodal
 545 medical image synthesis. *IEEE Transactions on Medical Imaging*, 41(10):2598–2614, 2022.

546

547 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint*
 548 *arXiv:2307.08698*, 2023.

549

550 Maria Correia de Verdier, Rachit Saluja, Louis Gagnon, Dominic LaBella, Ujjwall Baid,
 551 Nourel Hoda Tahon, Martha Folty-Dumitru, Jikai Zhang, Maram Alafif, Saif Baig, et al. The
 552 2024 brain tumor segmentation (brats) challenge: Glioma segmentation on post-treatment mri.
 553 *arXiv preprint arXiv:2405.18368*, 2024. <https://arxiv.org/abs/2405.18368>.

554

555 Reuben Dorent, Aaron Kujawa, Marina Ivory, Spyridon Bakas, Nicola Rieke, Samuel Joutard,
 556 Ben Glocker, Jorge Cardoso, Marc Modat, Kayhan Batmanghelich, et al. Crossmoda 2021
 557 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma
 558 and cochlea segmentation. *Medical Image Analysis*, 83:102628, 2023. <https://www.sciencedirect.com/science/article/pii/S1361841522002560>.

559

560 BJ Erickson, D Mutch, L Lippmann, and R Jarosz. The cancer genome atlas uterine corpus endome-
 561 trial carcinoma collection (tcga-ucec). *The Cancer Imaging Archive*, 2016a.

562

563 Bradley J Erickson, Shanah Kirk, Y Lee, Oliver Bathe, Melissa Kearns, C Gerdes, Kimberly Rieger-
 564 Christ, and John Lemmerman. The cancer genome atlas liver hepatocellular carcinoma collection
 565 (tcga-lihc)(version 5)[data set]. *The Cancer Imaging Archive*, 2016b.

566

567 Sergios Gatidis, Tobias Hepp, Marcel Früh, Christian La Fougère, Konstantin Nikolaou, Christina
 568 Pfannenberg, Bernhard Schölkopf, Thomas Küstner, Clemens Cyran, and Daniel Rubin. A whole-
 569 body fdg-pet/ct dataset with manually annotated tumor lesions. *Scientific Data*, 9(1):601, 2022.
<https://www.scopus.com/pages/publications/85139504476>.

570

571 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
 572 baseline for image restoration with state-space model. In *European conference on computer
 573 vision*, pp. 222–241. Springer, 2024.

574

575 Nicholas Heller, Nithesh Sathianathan, Arveen Kalapara, Ethan Walczak, Kenneth Moore, Holly
 576 Kaluzniak, Jacob Rosenberg, Paul Blake, Zachary Rengel, Michael Oestreich, Joel Dean,
 577 Matthew Tradewell, Adeel Shah, Rishi Tejpaul, Zachary Edgerton, Matthew Peterson, Sohaib
 578 Raza, Samip Regmi, Nikolaos Papanikopoulos, and Christopher Weight. Data from c4kc-
 579 kits [data set], 2019. The Cancer Imaging Archive. <https://doi.org/10.7937/TCIA.2019.IX49E8NX>.

580

581 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 582 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 583 neural information processing systems*, 30, 2017.

584

585 Chandra Holback, Rose Jarosz, Fred Prior, David G Mutch, Priya Bhosale, Kimberly Garcia, Yueh
 586 Lee, Shanah Kirk, Cheryl A Sadow, Seth Levine, et al. The cancer genome atlas ovarian cancer
 587 collection (tcga-ov)(version 4)[data set]. *The Cancer Imaging Archive*, 10:K9, 2016.

588

589 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
 590 conditional adversarial networks. In *Proceedings of the IEEE conference on computer vision and
 591 pattern recognition*, pp. 1125–1134, 2017.

592

593 Nazia F Jafri, David C Newitt, John Kornak, Laura J Esserman, Bonnie N Joe, and Nola M Hyl-
 594 ton. Optimized breast mri functional tumor volume as a biomarker of recurrence-free survival
 595 following neoadjuvant chemotherapy. *Journal of Magnetic Resonance Imaging*, 40(2):476–482,
 596 2014.

594 Yuanfeng Ji, Haotian Bai, Chongjian Ge, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan
 595 Zhanng, Wanling Ma, Xiang Wan, et al. Amos: A large-scale abdominal multi-organ benchmark
 596 for versatile medical image segmentation. *Advances in neural information processing systems*,
 597 35:36722–36732, 2022.

598 S Kirk, Y Lee, P Kumar, J Filippini, B Albertina, M Watson, K Rieger-Christ, and J Lemmerman.
 599 The cancer genome atlas lung squamous cell carcinoma collection (tcga-lusc)(version 4)[data set].
 600 *The Cancer Imaging Archive*, 2016a.

602 S Kirk, Y Lee, CA Sadow, S Levine, C Roche, E Bonaccio, and J Filippini. The cancer genome atlas
 603 colon adenocarcinoma collection (tcga-coad)(version 3)[data set]. *The Cancer Imaging Archive*.
 604 <https://doi.org/10.7937/K>, 9, 2016b.

605 Shahar Kirk, Yueh Lee, Fabiano R Lucchesi, Natalia D Aredes, Nicholas Grusauskas, James Catto,
 606 Kimberly Garcia, Rose Jarosz, Vinay Duddalwar, Bino Varghese, et al. The cancer genome atlas
 607 urothelial bladder carcinoma collection (tcga-blca). In *The Cancer Imaging Archive*. 2016c.

609 Pamela J LaMontagne, Tammie LS Benzinger, John C Morris, Sarah Keefe, Russ Hornbeck,
 610 Chengjie Xiong, Elizabeth Grant, Jason Hassenstab, Krista Moulder, Andrei G Vlassenko,
 611 et al. Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and
 612 alzheimer disease. *medrxiv*, pp. 2019–12, 2019. <https://www.medrxiv.org/content/10.1101/2019.12.13.19014902v1>.

614 Hongwei Bran Li, Gian Marco Conte, Qingqiao Hu, Syed Muhammad Anwar, Florian Kofler,
 615 Ivan Ezhov, Koen van Leemput, Marie Piraud, Maria Diaz, Bryone Cole, et al. The brain tu-
 616 mor segmentation (brats) challenge 2023: Brain mr image synthesis for tumor segmentation
 617 (brasyn). *ArXiv*, pp. arXiv–2305, 2024. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10441440/>.

619 Ka-Loh Li, Savannah C Partridge, Bonnie N Joe, Jessica E Gibbs, Ying Lu, Laura J Esserman,
 620 and Nola M Hylton. Invasive breast cancer: predicting disease recurrence by using high-spatial-
 621 resolution signal enhancement ratio imaging. *Radiology*, 248(1):79–87, 2008.

622 Peng Li, Shaoke Wang, Tianyu Li, Jie Lu, Yufan HuangFu, and Dong Wei Wang. A large-scale ct
 623 and pet/ct dataset for lung cancer diagnosis (lung-pet-ct-dx) [data set], 2020. The Cancer Imaging
 624 Archive. <https://doi.org/10.7937/TCIA.2020.NNC2-0461>.

626 M Linehan, R Gautam, C Sadow, and SJ Levine. The cancer genome atlas kidney chromophobe
 627 collection (tcga-kich)(version 3). *The Cancer Imaging Archive*, 2016a.

628 Marston Linehan, R Gautam, S Kirk, Y Lee, C Roche, E Bonaccio, J Filippini, K Rieger-Christ,
 629 J Lemmerman, and R Jarosz. The cancer genome atlas cervical kidney renal papillary cell carci-
 630 noma collection (tcga-kirp), version 4. *The Cancer Imaging Archive*, 2016b.

632 Wilma Lingle, Bradley J Erickson, Margarita L Zuley, Rose Jarosz, Ermelinda Bonaccio, Joe Filip-
 633 pin, Jose M Net, Len Levi, Elizabeth A Morris, Gloria G Figler, et al. The cancer genome atlas
 634 breast invasive carcinoma collection (tcga-brca). *(No Title)*, 2016.

635 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 636 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

637 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
 638 ing for generative modeling. In *The Eleventh International Conference on Learning Representa-
 639 tions*, 2023.

641 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 642 with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2022.

643 FR Lucchesi and ND Aredes. The cancer genome atlas stomach adenocarcinoma collection (tcga-
 644 stad). *The Cancer Imaging Archive*, 2016.

646 Pranathi Madhavi, Shweta Patel, and Anne S. Tsao. Data from anti-pd-1 immunotherapy lung [data
 647 set], 2019. The Cancer Imaging Archive. <https://doi.org/10.7937/tcia.2019.zjjwb9ip>.

648 Nazanin Maleki, Raisa Amiruddin, Ahmed W Moawad, Nikolay Yordanov, Athanasios Gkampenis,
 649 Pascal Fehringer, Fabian Umeh, Crystal Chukwurah, Fatima Memon, Bojan Petrovic, et al. Analysis
 650 of the miccai brain tumor segmentation–metastases (brats-mets) 2025 lighthouse challenge:
 651 Brain metastasis segmentation on pre-and post-treatment mri. *arXiv preprint arXiv:2504.12527*,
 652 2025.

653 Ahmed W Moawad, Ayahallah A Ahmed, Mohab ElMohr, Mohamed Eltaher, Mouhammed Amir
 654 Habra, Sarah Fisher, Nancy Perrier, Miao Zhang, David Fuentes, and Khaled Elsayes. Voxel-level
 655 segmentation of pathologically-proven adrenocortical carcinoma with ki-67 expression (adrenal-
 656 acc-ki67-seg)[data set]. *The Cancer Imaging Archive*, 8, 2023.

657

658 AW Moawad, D Fuentes, A Morshid, AM Khalaf, MM Elmoehr, A Abusaif, JD Hazle, AO Kaseb,
 659 M Hassan, A Mahvash, et al. Multimodality annotated hcc cases with and without advanced
 660 imaging segmentation. *The Cancer Imaging Archive (TCIA)*, 2021.

661 David Newitt, Nola Hylton, et al. Multi-center breast dce-mri data and segmentations from patients
 662 in the i-spy 1/acrin 6657 trials. *Cancer Imaging Arch*, 10(7):2016, 2016.

663

664 Guy Ohayon, Tomer Michaeli, and Michael Elad. Posterior-mean rectified flow: Towards minimum
 665 mse photo-realistic image restoration. *arXiv preprint arXiv:2410.00418*, 2024.

666 Ozan Özdenizci and Robert Legenstein. Restoring vision in adverse weather conditions with patch-
 667 based denoising diffusion models. *IEEE TPAMI*, 45(8):10346–10357, 2023.

668

669 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, pp. 4195–
 670 4205, 2023.

671 Blaine Rister, Darvin Yi, Kaushik Shivakumar, Tomomi Nobashi, and Daniel L Rubin. Ct-org, a
 672 new dataset for multiple organ segmentation in computed tomography. *Scientific Data*, 7(1):381,
 673 2020.

674

675 Mónica Rivera Mindt, Alyssa Arentoft, Amanda T Calcetas, Vanessa A Guzman, Hannatu Amaza,
 676 Adeyinka Ajayi, Miriam T Ashford, Omobolanle Ayo, Lisa L Barnes, Alicia Camuy, et al. The
 677 alzheimer’s disease neuroimaging initiative-4 (adni-4) engagement core: A culturally informed,
 678 community-engaged research (ci-cer) model to advance brain health equity. *Alzheimer’s & De-
 679 mentia*, 20(12):8279–8293, 2024. <https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.14242>.

680

681 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 682 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 683 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

684

685 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 686 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
 687 ings, part III 18*, pp. 234–241. Springer, 2015.

688

689 Vanya V Valindria, Nick Pawlowski, Martin Rajchl, Ioannis Lavdas, Eric O Aboagye, Andrea G
 690 Rockall, Daniel Rueckert, and Ben Glocker. Multi-modal learning from unpaired images: Appli-
 691 cation to multi-organ segmentation in ct and mri. In *2018 IEEE winter conference on applica-
 692 tions of computer vision (WACV)*, pp. 547–556. IEEE, 2018. .

693

694 Jia Wu, Chao Li, Michael Gensheimer, Sukhmani Padda, Fumi Kato, Hiroki Shirato, Yiran Wei,
 695 Carola-Bibiane Schönlieb, Stephen John Price, David Jaffray, et al. Radiological tumour clas-
 696 sification across imaging modality and histology. *Nature machine intelligence*, 3(9):787–798,
 697 2021.

698

699 Zhiwen Yang, Jiayin Li, Hui Zhang, Dan Zhao, Bingzheng Wei, and Yan Xu. Restore-rwkv: Effi-
 700 cient and effective medical image restoration with rwkv, 2024.

701 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 702 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference
 703 on computer vision*, pp. 2223–2232, 2017.

702 Xiahai Zhuang. Multivariate mixture model for myocardial segmentation combining multi-source
703 images. *IEEE transactions on pattern analysis and machine intelligence*, 41(12):2933–2946,
704 2018. <https://ieeexplore.ieee.org/abstract/document/8458220>.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A ADDITIONAL DATASET DETAILS**
757758 Here we provide extended statistics for PariedContrast (see Tab. 1) as well as the original data
759 sources of each collection.760 All scans were obtained by downloading raw DICOM or NIfTI files from publicly available repos-
761 itories. The included collections are: Adrenal-ACC-Ki67-Seg (Moawad et al., 2023) TCGA-OV
762 (Holback et al., 2016), TCGA-UCEC (Erickson et al., 2016a), CPTAC-UCEC (Consortium et al.,
763 2019), TCGA-STAD (Lucchesi & Aredes, 2016), CPTAC-PDA (, CPTAC), HCC-TACE-Seg
764 (Moawad et al., 2021), TCGA-LIHC (Erickson et al., 2016b), CMB-CRC (Biobank, 2022b),
765 TCGA-COAD (Kirk et al., 2016b), TCGA-BLCA (Kirk et al., 2016c), TCGA-KIRC (Akin et al.,
766 2016), C4KC-KiTS (Heller et al., 2019), CPTAC-CCRCC (, CPTAC), TCGA-KIRP (Linehan
767 et al., 2016b), TCGA-KICH (Linehan et al., 2016a), CMB-LCA (Biobank, 2022a), CPTAC-LSCC
768 (Consortium et al., 2018a), CPTAC-LUAD (Consortium et al., 2018b), Lung-PET-CT-Dx (Li et al.,
769 2020), TCGA-LUSC (Kirk et al., 2016a), Anti-PD-1_Lung (Madhavi et al., 2019), TCGA-BRCA
770 (Lingle et al., 2016)(Wu et al., 2021), UCSF (Li et al., 2008)(Jafri et al., 2014)(Wu et al., 2021),
771 I-SPY 1 (Newitt et al., 2016)(Wu et al., 2021).772
773 **B LLM USAGE**
774775 We employed large language models (LLMs) strictly as writing assistants. Their role was lim-
776 ited to grammar correction, wording refinement, and improving readability. All technical content,
777 methodology, experiments, and analyses were conceived, implemented, and validated entirely by
778 the authors. No results, data interpretations, or methodological decisions were generated by LLMs.780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809