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Abstract

The practical utility of causality in decision-
making is widely recognized, with causal discov-
ery and inference being inherently intertwined.
Nevertheless, a notable gap exists in the evalua-
tion of causal discovery methods, where insuffi-
cient emphasis is placed on downstream inference.
To address this gap, we evaluate six established
baseline causal discovery methods and a newly
proposed method based on GFlowNets, on the
downstream task of treatment effect estimation.
Through the implementation of a robust evalu-
ation procedure, we offer valuable insights into
the efficacy of these causal discovery methods
for treatment effect estimation, considering both
synthetic and real-world scenarios, as well as low-
data scenarios. Furthermore, the results of our
study demonstrate that GFlowNets possess the
capability to effectively capture a wide range of
useful and diverse ATE modes.

1. Introduction
Causal inference has a wide variety of real-world applica-
tions in domains such as healthcare (Tu et al., 2019; Huang
et al., 2019; Bica et al., 2020; Geffner et al., 2022) , market-
ing (Zhang & Chan, 2006; Battocchi et al., 2021; Sanchez
et al., 2022), political science, and online advertising (Wais-
man et al., 2019; Maiya, 2021). Treatment effect estimation,
the process of estimating the effect or impact of a treatment
on an outcome in the presence of other covariates as poten-
tial confounders (and mediators), is a fundamental problem
in causal inference that has received widespread interest for
decades (Chu et al., 2023).
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The existing powerful methods for treatment effect estima-
tion from data require a complete (or partial) a priori knowl-
edge of the causal graph (Pearl, 2009a; Pearl & Mackenzie,
2018). When the graph is unknown, this requires solving a
problem of causal structure learning, also known as causal
discovery. In structure learning, one learns a graph (typi-
cally characterized by a directed acyclic graph or DAG for
short) that best describes the dependence structure in a given
data set (Drton & Maathuis, 2017; Heinze-Deml et al., 2017;
Glymour et al., 2019). In this approach, structure learning
is required to learn a causal graph, which can then be ap-
plied to infer the influence of treatments on the outcomes
of interest (Pearl, 2009a; Naser, 2022). It should be noted
that the actual causal graph can only be inferred up to its
Markov Equivalence class (MEC), and the available data
does not offer any means of further differentiation (Maathuis
et al., 2008; Pearl, 2009b). Learning a single graph has been
shown to lead to poor predictions in a downstream causal
inference task (Madigan et al., 1995a; Cundy et al., 2021;
Tigas et al., 2022).

Instead of learning a single causal graph, the problem of
structure learning can be tackled from a Bayesian perspec-
tive where we learn a posterior over the causal graphs. This
has the unique advantage of accounting for epistemic uncer-
tainty over the causal graphs in the MEC, thereby leading to
a more enriching predictive performance in a downstream
causal inference task. However, learning such a posterior
over the causal graphs is plagued by challenges. One major
issue is the combinatorially large sample space of causal
graphs. The second major challenge is related to MCMC
mode-mixing (Jasra et al., 2005; Bengio et al., 2012): the
mode-mixing problem occurs when the chances of going
from one mode to a neighboring one may become expo-
nentially small and require exponentially long chains, if the
modes are separated by a long sequence of low-probability
configurations. Therefore by using MCMC, there is an
important set of distributions for which finite chains are
unlikely to provide enough diversity of the modes of the dis-
tribution (Bengio et al., 2021b). While there are a number of
existing causal discovery methods (both Bayesian and non-
Bayesian), our benchmark study centers on DAG-GFlowNet
(Deleu et al., 2022), which is a unique method that lever-
ages a novel class of probabilistic models called Generative
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Flow Networks (Bengio et al., 2021a;b) to approximate the
posterior distribution over causal graphs.

Although causal inference is an inherent downstream appli-
cation of causal discovery, most causal discovery evalua-
tion methods are not aligned with causal inference because
these two fields are typically studied independently (Geffner
et al., 2022). For example, many causal discovery evaluation
methods use the structural hamming distance (SHD) which
compares the learned causal DAG (or the samples from
the posterior distribution of DAGs in Bayesian structure
learning) to the true DAG of the data generating process.
Measuring the proximity of the learned DAGs, however,
does not reveal much about their actual performance in
treatment effect estimation given a treatment and outcome
variable of interest, which is a predominantly downstream
evaluation.

In this work, we set out to benchmark causal discovery meth-
ods for the downstream task of treatment effect estimation,
specifically the average treatment effect. As an extension
to the DAG-GFlowNet, we offer insights on the applica-
tion of GFlowNets to average treatment effect estimation,
by comparing it with six other baseline methods for causal
discovery.

2. Background
We provide a detailed background, in Section B of the
Appendix, on some of the key concepts used in this pa-
per: Bayesian network, interventional distribution, Bayesian
causal discovery, average treatment effect and our structure
learning baselines.

The structure learning baselines employed in our study fol-
low those utilized by Deleu et al. (2022). In addition to DAG-
GFlowNet (Deleu et al., 2022), we leveraged six baseline
causal discovery algorithms: PC (Spirtes et al., 2001), GES
(Chickering, 2003), MC3 (Madigan et al., 1995b), BCDNets
(Cundy et al., 2021), Gadget (Viinikka et al., 2020), and
DiBS (Lorch et al., 2021). Due to space restrictions, we
move our explanation of the causal discovery methods to
Section B.3 in the Appendix.

3. Experimental Setup
Figure 1 provides an illustrative overview of our experi-
mental pipeline. The initial step involves Bayesian causal
discovery, where, as discussed in Section B.1, the objective
is to learn a posterior distribution of the directed acyclic
graphs (DAGs) that provide the most plausible explanations
for the training dataset. The subsequent stage involves the
estimation of the average treatment effect (ATE). Here, the
ATE for each DAG in the posterior is estimated for every
non-matching variable pair. In addition, the DAGs within

the Markov equivalence class (MEC) of the true graph are
enumerated and used to calculate the ATE estimates for each
of them. The evaluation process, in stage 3, then involves
a comparison of the average treatment effect (ATE) distri-
butions between the true graph Markov equivalence class
(MEC) and the learned posterior distribution of DAGs.

For our experiments on synthetic data, we worked with
6 baselines in total and 25 seeds for each baseline. Each
seed corresponds to a causal discovery experiment with a
randomly sampled truth graph and observational data.

3.1. Causal discovery experiments

Following Deleu et al. (2022), we performed causal discov-
ery experiments on synthetic and real-world scenarios. For
PC and GES we implement bootstrapping to achieve DAG
posterior samples.

Analysis on synthetic data: Following Deleu et al.
(2022), we performed an experimental analysis on synthetic
graphs and simulated data. We sample synthetic data from
linear Gaussian Bayesian networks with randomly generated
structures. We experimented with Bayesian networks of two
sizes: d = 20 and d = 100. A small sample size of 20 was
specifically chosen to evaluate the capabilities of the causal
discovery algorithms in a low-data regime. The ground-truth
graphs are sampled according to an Erdos-Rényi model.

Analysis on flow cytometry data: DAG-GFlowNet was
evaluated against the baselines on real-world flow cytometry
data (Sachs et al., 2005) to learn protein signaling pathways.
The data consists of continuous measurements of d = 11
phosphoproteins in individual T-cells. They used the first
n = 853 observations and the DAG, inferred by Sachs
et al. (2005) and containing 11 nodes and 17 edges, as the
dataset and ground-truth graph respectively for their causal
discovery experiments. We continued with this direction
in our experimental analysis and our goal was to show the
downstream performance of DAG-GFlowNet on average
treatment effect of the phosphoproteins in the protein sig-
naling pathways.

3.2. ATE experiments

For our ATE experiments, we utilized all non-matching
variable pair combinations: the rationale behind this was
to thoroughly explore the possible treatment effects across
various combinations. Therefore given d random variables
{X1, ..., Xd}, we performed ATE evaluations on d2 − d
variable pairs. To achieve this in practice, we leveraged
the DoWhy package (Sharma et al., 2019; Sharma & Kici-
man, 2020), which facilitated the implementation of the
do-calculus algorithm. To ensure consistency and clarity in
our results, we set the treatment values at 1.0 and 0.0 for
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Figure 1. Illustration of our experimental pipeline using four random variables. We start with (Bayesian) causal discovery which involves
learning a posterior over DAGs that best explain the training dataset. The next step is average treatment effect estimation (ATE). For each
pair of non-matching variable pairs, the second stage involves estimating its ATE for each DAG in the posterior. Furthermore, from the
true graph, we enumerate the DAGs in its Markov equivalence class (MEC) and find the ATE estimates for all of them. This allows us to
perform our evaluation which involves comparing the ATE distributions between the true graph MEC and learned posterior distribution of
DAGs. For clarity, this illustration has been given using only one baseline and one seed. For our experiments, we worked with 6 baselines
and 25 seeds for each baseline.

all our experiments. The choice of values 1.0 and 0.0 does
not relate to the existence or absence of a treatment, as is
commonly used in most causal inference literature.

Performing such a robust experiment involved a huge com-
putation load. For example, for our baselines, each with 25
random seeds, each consisting of 1000 sampled DAGs, we
had to do d ∗ (d− 1) ∗ 1000 ∗ 25 ∗ 6 ATE estimations. For
the synthetic graph with 20 nodes, this leads to 57M estima-
tions. In order to optimize the computational efficiency of
our experiments, we implemented parallelism techniques.
The GNU parallel computing tool (Tange, 2011) enabled
us to distribute the computational workload across multi-
ple processors or cores, thereby significantly reducing the
overall computation time.

3.3. Evaluation Framework

Our evaluation methodology goes beyond single-point ATE
estimation, which is employed in standard causal inference
benchmarking, by performing ATE evaluations based on
posterior samples. This approach aims to provide a more
comprehensive assessment of the quality of the learned

posterior average treatment effect (ATE). Specifically, our
evaluation pipeline involves the following metrics:

Wasserstein distance (WD): To obtain a quantitative mea-
sure of the similarity between the true ATE sample-based
distrbution and that of the learned ATE, we calculate and
report their Wasserstein distance (Ramdas et al., 2017) using
their samples1.

Precision and Recall: We compute the precision and re-
call of the modes present in the learned ATE distribution
and compare them to the modes in the true ATE distribution.
In order to calculate the precision and recall, we first iden-
tify the unique modes for each of the true, AT and learned
A′ ATE samples. Then based on these set of modes, we
calculate the true positive (modes from AT that are found
in A′) , false negative (modes from AT that are missed in
A′), and false positive (modes from A′ that are not in AT ).
Note that the lists AT and A′ have been regrouped prior to
running the evaluation (see Section 3.4).

1We utilize the Python implementation available here.
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3.4. Additional settings

Enumerating the MEC of the true graph: In order to
achieve our evaluation using our strategy (see Section 3.3),
it is necessary to not work with just one true graph. For a
given ground-truth graph, we enumerate all the DAGs in its
Markov equivalence class (MEC).

Regrouping ATE values: The estimation of average treat-
ment effects (ATE) through regression analysis is suscepti-
ble to generating estimates that may exhibit slight variations
within numerical precision (e.g., 1.000000001 and 1). As
our precision and recall metrics essentially perform ‘hard
matches” on floating point values, it becomes crucial to
consider the influence of numerical precision. In order to
accomplish this objective, we group ATE values that are
numerically close. More details are in Appendix D.

4. Results & Discussion
The results presented in Table 1 illustrate the Wasserstein
distance (WD), precision, and recall metrics of all baseline
methods in terms of their learned ATE samples. Upon ex-
amining the Wasserstein distance, PC achieves the lowest
Wasserstein distance, while GES attains the highest.

Table 1. ATE Evaluation on synthetic data (20 variables, 20 sam-
ples). We chose a small sample size of 20 in order to evaluate
the capabilities of the causal discovery algorithms in a low-data
regime. We report the Wasserstein distance (WD), precision and
recall of all baselines. Average and variance is taken over all the
20 ∗ 19 variable combination pairs and over the 25 seeds for each
baseline.

WD ↓ PRECISION ↑ RECALL ↑
BCDNETS 0.273 ±0.797 0.80 ±0.39 0.75 ±0.41
BOOTSTRAP-GES 0.328 ±0.615 0.01 ±0.01 0.98 ±0.11
BOOTSTRAP-PC 0.256 ±0.787 0.52 ±0.33 0.79 ±0.39
DIBS 0.263 ±0.770 0.49 ±0.41 0.80 ±0.37
GADGET 0.304 ±0.709 0.01 ±0.01 0.94 ±0.21
MC3 0.297 ±0.650 0.01 ±0.04 0.94 ±0.20
DAG-GFLOWNETS 0.325 ±0.610 0.01 ±0.01 0.97 ±0.15

When focusing on precision, we observe that apart from
BCDNets, all the methods seem to be performing very
poorly. However all the methods attain relatively high re-
call scores, with the highest achieved by GES and closely
followed by DAG-GFlowNet. This high recall indicates the
ability of the methods to capture diverse modes within their
ATE distribution.

The WD, precision, and recall for the synthetic data exper-
iments with 100 samples are presented in Table 2. Given
an increased number of observational samples compared to
the previous table, it is anticipated that the task of causal
discovery will be simpler. This is evidenced in the lower
WD scores compared to Table 1. In a manner similar to

Table 2. ATE Evaluation on synthetic data (20 variables, 100 sam-
ples). We report the Wasserstein distance (WD), precision and
recall of all baselines. Average and standard deviation are taken
over all the 20 ∗ 19 variable combination pairs and over the 25
seeds for each baseline.

WD ↓ PRECISION ↑ RECALL ↑
BCDNETS 0.100 ±0.293 0.79 ±0.38 0.79 ±0.37
BOOTSTRAP-GES 0.165 ±0.411 0.01 ±0.03 0.99 ±0.09
BOOTSTRAP-PC 0.178 ±0.537 0.50 ±0.35 0.82 ±0.36
DIBS 0.187 ±0.489 0.05 ±0.12 0.97 ±0.13
GADGET 0.244 ±0.528 0.02 ±0.07 0.91 ±0.26
MC3 0.177 ±0.450 0.06 ±0.20 0.93 ±0.23
DAG-GFLOWNETS 0.201 ±0.484 0.03 ±0.13 0.95 ±0.20

the scenario involving 20 samples, it is observed that the
methods, with the exception of BCDNets, exhibit a consid-
erably low precision score, while concurrently displaying
high recall values.

Table 3. ATE Evaluation on Sachs dataset (Sachs et al., 2005). We
report the Wasserstein distance (WD), precision and recall of all
baselines. Average and standard deviation are taken over all the
11 ∗ 10 variable combination pairs.

METHOD WD ↓ PRECISION ↑ RECALL ↑
BCDNETS 0.040 ±0.109 0.97 ±0.15 0.65 ±0.36
BOOTSTRAP-GES 0.037 ±0.099 0.13 ±0.13 0.96 ±0.09
BOOTSTRAP-PC 0.038 ±0.103 0.83 ±0.24 0.82 ±0.27
DIBS 0.037 ±0.101 0.17 ±0.14 0.94 ±0.13
GADGET 0.038 ±0.103 0.42 ±0.26 0.92 ±0.14
MC3 0.041 ±0.111 0.46 ±0.33 0.86 ±0.24
DAG-GFLOWNETS 0.039 ±0.107 0.14 ±0.19 0.98 ±0.08

Table 3 presents the evaluation results of the analysis on
flow cytometry using the Sachs dataset. Overall, all meth-
ods demonstrate comparable performance in terms of the
Wasserstein distance: the range of the WD is 0.004, unlike
in Table 1 which is 0.072 or Table 2 which is 0.144. When
considering precision, BCDNets and PC outperform DAG-
GFlowNet, which exhibits lower performance. Notably,
DAG-GFlowNet achieves the highest recall, indicating its
ability to learn samples from diverse modes within the true
ATE distribution.

4.1. Filtering Low-Probability Modes

In all our evaluations (Tables 1, 2, 3), we witness a trend
of DAG-GFlowNet and other methods exhibiting very low
precision scores.

In Figure 3 we observe that DAG-GFlowNet (and other
baselines like GES, DiBs) tends to learn new modes, but
those modes have a very low probability in the estimated
distribution. In our current evaluation framework however,
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Figure 2. Lineplot of the average precision (top) and recall (bottom) for each of the methods. The lineplots are visualized for each dataset
used in our experiment, denoted by the columns.

Figure 3. Comparison of ATE distribution of the methods using
flow cytometry data. We focus on the treatment variable PKA
and the outcome variable PIP3 from the Sachs dataset. We see
that while DAG-GFlowNet correctly captures all modes of the true
distribution (just like BCDNets), it additionally learns values at
0.04 albeit with a very low probability mass.

we include all values in the list that have non-zero densities,
which leads to unfair penalization of methods that exhibit
multimodal diversity. Consequently, these methods receive

disproportionately low precision values. However, when we
apply a filtering approach that removes the low-probability
modes before calculating the metrics, a more insightful
narrative emerges for these methods, as shown in Figure 2.
In particular, we notice a significant increase in precision for
all the methods that initially exhibited very low precision
values (in Tables 1, 2, and 3), when we apply a density
relaxation tolerance of 0.05 (i.e for any list of ATEs, we
only consider ATE values that have a mass of at least 0.05).
This trend is consistent across all the experimental settings
(100 samples, 20 samples, Sachs dataset).

5. Conclusion
In conclusion, the practical importance of causality in
decision-making is widely acknowledged, and the inter-
play between causal discovery and inference is evident. In
order to bridge the gap in the evaluation of causal discovery
methods, where limited attention is given to downstream
inference tasks, we conducted a comprehensive evaluation
that assessed six established baseline causal discovery meth-
ods alongside a novel approach utilizing GFlowNets. By
implementing a robust evaluation procedure, we provided
valuable insights into their effectiveness for downstream
treatment effect estimation.
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A. Related Work
Benchmarking methods Benchmarks have played a crucial role in advancing entire research fields, for instance computer
vision with the introduction of ImageNet (Krizhevsky et al., 2012). When it comes to causal discovery, benchmarks usually
come in the form of research surveys (Vowels et al., 2022), benchmark datasets (Beinlich et al., 1989; Chevalley et al., 2022;
Menegozzo et al., 2022), learning environments (Runge et al., 2019; 2017; Ahmed et al., 2020), and software packages
or platforms (Kalainathan & Goudet, 2019a; Scutari, 2014; Kalainathan & Goudet, 2019b). However these methods only
evaluate the closeness of the causal DAG, or the samples from the posterior distribution of DAGs in Bayesian structure
learning, from various causal discovery methods to the ground-truth DAG. Measuring the proximity of the learned DAGs,
however, does not reveal much about their actual performance in treatment effect estimation given a treatment and outcome
variable of interest, which is a predominantly downstream evaluation.

In causal inference, datasets (MacDorman & Atkinson, 1998; Hahn et al., 2019), frameworks (Shimoni et al., 2018; Karavani
et al., 2018; Neal et al., 2020), and software packages (Sharma et al., 2019; Keith Battocchi, 2019) provide valuable tools
for predicting the causal effects of treatments on outcomes. Causal inference plays a crucial role in decision-making and
finds numerous practical applications in various domains such as healthcare, advertising, and decision-making processes.
This implies that causal inference has a more downstream impact. In causal inference, the graph represents the structure of
the joint distribution of variables, which is then leveraged to identify the causal estimand.

Therefore, the evaluation of causal discovery methods on downstream causal inference tasks provides more practical
insights into the effectiveness and practicality of causal methods within real-world scenarios. Typically, the fields of causal
discovery and inference are approached separately, resulting in limited intertwined evaluation methods. This is the aspect
that distinguishes our work. Similar approaches can be found in studies that jointly integrate causal discovery and inference
in an end-to-end manner, such as the notable example of DECI (Geffner et al., 2022). However, our work differs in two key
aspects: firstly, we employ the novel GFlowNets for causal inference, increasing our span and secondly, we specifically
focus on linear noise structural equation models, whereas DECI addresses the problem of end-to-end causal inference in
non-linear additive noise structural equation models (SEM).

B. Background
We offer a detailed background, in this section, on some of the key concepts used in this paper.

Bayesian network: A (causal) Bayesian network (Koller & Friedman, 2009; Pearl, 2009b) is a probabilistic model over d
random variables {X1, ..., Xd}, whose joint probability distribution factorizes according to a DAG G (whose edges express
causal dependencies) as:

P (X1, ..., Xd) =

d∏
k=1

P (Xk|PaG(Xk)), (1)

where PaG(X) is the set of parents of the node X , i.e the nodes with an edge onto X in G, interpreted as the direct causes
of X .

Interventional distribution: Given a random variable Xk, a (hard) intervention on Xk, denoted by do(Xk = a), is
obtained by replacing the conditional probability distribution (CPD) P (Xk|PaG(Xk)) with a Dirac distribution δXk=a

which forces Xk to take on the value of a. Note that intervening on a variable, in a graphical sense, results in a mutilated
graph where all incoming edges to the node corresponding to that variable are removed (Pearl, 2009a).

B.1. (Bayesian) Causal discovery

Given a dataset D def
=

{
x(i)

}n

i=1
of n observations, such that x(j) ∼ P (X1, ..., Xd), the goal of structure learning is to

learn the DAG G corresponding to the causal Bayesian network that best models D. It is important to note that D could
be observational samples or interventional data samples (got from performing hard or soft interventions). In a Bayesian
structure learning setting, the task is to approximate the posterior distribution P (G|D) over Bayesian networks that model
these observations. A distribution over the DAGs allows quantifying the epistemic uncertainty and the degree of confidence
in any given Bayesian network model, which is especially useful when the amount of data to learn from is small (Lorch
et al., 2021; Muller et al., 2021).
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B.2. Average treatment effect (ATE) estimation

The average treatment effect (ATE) is a quantity that allows us to estimate the impact of a treatment variable on an outcome
variable. Given XT and XY , our treatment and effect variables of interest respectively, the ATE on targets XY for treatment
XT = a given a reference XT = b is given by (Pearl, 2009a):

ATE(a, b) = E[XY |do(XT = b)]− E[XY |do(XT = a)]

In practice, this causal inference is broken down into two steps: identification and estimation. Identification deals with
converting the causal estimand P (XY |do(XT = b) into a statistical estimand that can be estimated using the dataset D.
Some identification methods include the back-door criterion, front-door criterion (Pearl, 2009a), instrumental variables
(Angrist et al., 1993) and mediation. Causal estimation then computes the identified statistical estimand from the data set
using a range of statistical methods. The do-calculus algorithm (Pearl, 1995) provides a powerful, systematic, programmable
framework for the identification and estimation of the causal estimand.

B.3. Causal discovery baseline algorithms

In Table 4 we briefly describe the structure learning algorithms we use in this work. The structure learning baselines
employed in our study follow those utilized by Deleu et al. (2022). For PC and GES we implement bootstrapping to achieve
DAG posterior samples.

Table 4. Details of baseline algorithms. We document the underlying algorithm behind each baseline, alongside an indication of whether
there is a guarantee that the learned graph is a DAG.

Baseline Underlying algorithm DAG Support

PC constraint-based ✔
GES score-based ✔
MC3 MCMC ✔
Gadget MCMC ✔
DiBS variational inference ✗
BCDNets variational inference ✔
DAG-GFlowNet GFlowNets ✔

DAG-GFlowNet: DAG-GFlowNet (Deleu et al., 2022) employs GFlowNets (Bengio et al., 2021a;b) as a substitute for
MCMC in order to estimate the posterior distribution of Bayesian network structures, based on a set of observed data.
An overview of GFlowNets is presented in Section C of the Appendix. The process of creating a sample DAG from an
approximate distribution is considered a sequential decision task. This involves constructing the graph incrementally, one
edge at a time, by utilizing transition probabilities that have been learned by a GFlowNet. We refer the reader to Deleu et al.
(2022) for a comprehensive study of DAG-GFlowNet.

DiBS: The DiBS framework (Lorch et al., 2021) is an approach to Bayesian structure learning that is fully differentiable.
It operates within the continuous space of a latent probabilistic graph representation. In contrast to prior research, the DiBS
method does not rely on a specific format for the local conditional distributions. Additionally, it enables the simultaneous
estimation of the graph structure and the parameters of the conditional distributions.

MC3: In the MC3 algorithm (also known as structured MCMC) (Madigan et al., 1995b), the authors present a hierarchical
Bayesian approach to structure learning that leverages a prior over the classes of variables using nonparametric block-
structured priors over Bayes net graph structures. This approach relies heavily on the assumption that variables come in one
or more classes and that the prior probability of an edge existing between two variables is a function only of their classes
(Madigan et al., 1995b).

GES: The Greedy Equivalence Search (GES) algorithm (Chickering, 2003) is a score-based method for causal discovery
that has been in use for a considerable amount of time. It operates by performing a greedy search across the set of equivalence
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classes of DAGs. The representation of each search state is accomplished through a completed partially directed acyclic
graph (CPDAG), which includes operators for the insertion and deletion of edges. These operators enable the addition or
removal of a single edge, respectively (Hasan et al., 2023).

PC: The Peter-Clark (PC) algorithm (Spirtes et al., 2001) is a prominent constraint-based method for causal discovery. It
leverages conditional independence (CI) tests to infer the underlying causal structure. The algorithm yields a completed
partially directed acyclic graph (CPDAG) that represents the relationships between variables. It follows a three-step process:
1) identifying the skeleton of the graph, 2) determining v-structures or colliders (X −→ Y ←− Z) based on d-separation,
and 3) propagating edge orientations. Initially, the algorithm creates a fully connected undirected graph using all variables
in the dataset. It then eliminates edges that are unconditionally or conditionally independent (skeleton detection), identifies
and orients v-structures using the d-separation set, and finally orients the remaining edges while ensuring the absence of new
v-structures and cycles. The PC algorithm relies on the assumptions of acyclicity, causal faithfulness, and causal sufficiency.

BCDNets: BCDNets (Cundy et al., 2021) is another variational inference framework like DiBS. In their work they focus
on estimating a distribution over DAGs characterizing a linear-Gaussian SEM and propose techniques to scale to high
dimensions, such as using deep neural networks to model a variational family of factorized posterior distributions over the
SEM parameters (including the edge weights and noise variance), and a horseshoe prior (Carvalho et al., 2009) on the edge
weights, which promotes sparsity.

Gadget: Gadget (Viinikka et al., 2020) is based on MCMC: sampling DAGs by simulating a Markov chain whose
stationary distribution is the posterior distribution. However, to enhance the mixing of the chain, and reduce the space and
time requirements, they build a Markov chain on the smaller space of ordered partitions of the node set, each state being
associated with multiple DAGs.

C. Generative Flow Networks (GFlowNets)
The Generative Flow Networks (Bengio et al., 2021a;b), also known as GFlowNets, are a type of inference models that
have a broad range of applications. GFlowNets are capable of generating samples with a probability that is proportional to
a given reward function. The GFlowNets have been extensively studied and discussed in research papers such as Bengio
et al. (2021a) and Bengio et al. (2021b). The models facilitate the process of selecting a varied pool of potential candidates,
while adhering to a training objective that ensures a nearly proportional sampling based on a specified reward function.
GFlowNets are characterized unique training objectives like the flow-matching condition (Bengio et al., 2021a), the detailed
balance condition (Bengio et al., 2021b), etc, through which a policy is learned. Through the training objectives, this policy
is designed to ensure that the probability PT (s) of sampling an object s is roughly proportional to the value R(s) of a
specified reward function applied to that object. The GFlowNets technique is designed to reduce the computational burden
of MCMC methods by performing the necessary work in a single generative pass that has been trained for this purpose.

GFlowNets are well-suited for modeling and sampling from distributions over sets and graphs, as well as estimating free
energies and marginal distributions (Jain et al., 2022; Zhang et al., 2022). They excel in problem scenarios with specific
characteristics (Jain et al., 2023): (1) the ability to define or learn a non-negative or non-marginalized reward function
that determines the distribution to sample from, (2) the presence of a highly multi modal reward function, showcasing
GFlowNets’ strength in generating diverse samples, and (3) the benefit of sequential sampling, where compositional structure
can be leveraged for sequential generation.

Since its inception, GFlowNets have exhibited promising results in diverse domains such as discrete probabilistic modeling
(Zhang et al., 2022), molecular design (Bengio et al., 2021a; Jain et al., 2022), and causal discovery (Deleu et al., 2022).
The aim of our research is to provide significant findings on the feasibility of employing GFlowNets for causal inference.

D. Regrouping ATE values
The estimation of average treatment effects (ATE) through regression analysis is susceptible to generating estimates that may
exhibit slight variations within numerical precision (e.g., 1.000000001 and 1). As our precision and recall metrics essentially
perform ‘hard matches” on floating point values, it becomes crucial to consider the influence of numerical precision. In
order to accomplish this objective, we group ATE values that are numerically close. We use the following equation to test
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whether two floating point values, a and b, are equivalent:

|a− b| <= (atol + rtol ∗ |b|),

where rtol is the relative tolerance parameter and atol is the absolute tolerance parameter. Practically, we use the ‘isclose’
function from the Numpy package2 which uses the equation above and returns a boolean indicating whether a and b are
equal within the given tolerance. We used the default values from Numpy, rtol = 1e − 05, atol = 1e − 08. We apply
regrouping to the list of ATEs for precision and recall evaluation, but not for Wasserstein distance.

2https://numpy.org/doc/stable/reference/generated/numpy.isclose.html

https://numpy.org/doc/stable/reference/generated/numpy.isclose.html

