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Abstract

Machine learning models play a key role in safety-critical applications, such as au-
tonomous vehicles and advanced driver assistance systems, where their robustness
during inference is essential to ensure reliable operation. Sensor faults, however,
can corrupt input signals, potentially leading to severe model failures that com-
promise reliability. In this context, pretraining emerges as a powerful approach
for learning expressive representations applicable to various downstream tasks.
Among existing techniques, masking represents a promising direction for learning
representations that are robust to corrupted input data. In this work, we extend this
concept by specifically targeting robustness to sensor outages during pretraining.
We propose a self-supervised masking scheme that simulates common sensor fail-
ures and explicitly trains the model to recover the original signal. We demonstrate
that the resulting representations significantly improve the robustness of predic-
tions to seen and unseen sensor failures on a vehicle dynamics dataset, maintaining
strong downstream performance under both nominal and various fault conditions.
As a practical application, we deploy the method on a modified Lexus LC 500 and
show that the pretrained model successfully operates as a substitute for a physical
sensor in a closed-loop control system. In this autonomous racing application, a
supervised baseline trained without sensor failures may cause the vehicle to leave
the track. In contrast, a model trained using the proposed masking scheme enables
reliable racing performance in the presence of sensor failures.

Figure 1: Although traditional pretraining with masking produces representations suitable for down-
stream tasks, these representations can lack robustness to common sensor failures like signal offsets.
In contrast, our proposed pretraining scheme yields representations that are robust to sensor faults.
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1 Introduction

Sensor failures pose a significant challenge to the reliable deployment of machine learning models in
safety-critical domains, such as autonomous driving and robotics [Durlik et al., 2024, Ji et al., 2022].
Failures can stem from hardware malfunctions, challenging environmental conditions, or malicious
attacks [Schober et al., 2022, Balaban et al., 2009]. To improve reliability in such circumstances, any
model ingesting raw sensor data needs to be robust to distribution shifts [Braiek and Khomh, 2024,
Freiesleben and Grote, 2023].

Self-supervised learning (SSL) offers a promising solution to this problem, enabling the extraction
of meaningful representations from unlabeled data. The learned representations can be used for
various downstream tasks, such as classification, regression, or anomaly detection [Zhang et al.,
2024, Zerveas et al., 2021]. Masked Image Modeling (MIM) is a major family of SSL methods
that aims to train generative models capable of predicting an original image from a corrupted or
masked version [Balestriero et al., 2023]. In masked modeling for time series applications, common
approaches involve replacing randomly selected segments of the input sequence with a constant (e.g.,
zero) or a learnable value, and subsequently training the model to reconstruct the original unmasked
input [Zerveas et al., 2021, Goswami et al., 2024, Dong et al., 2023, Nie et al., 2022]. This masking
strategy encourages the model to learn robust representations that effectively capture the underlying
patterns and structures in the data, even when missing significant portions of the inputs. This body of
work suggests that masked modeling is suitable for learning representations robust to sensor outages.
However, while Balaban et al. [2009] and Jesus et al. [2017] outline sensor failure modes that are
predominantly characterized by additive noise and constant or time-dependent offsets, these differ
markedly from the masks typically used in masked modeling. This suggests that sensor outages
remain out-of-distribution even after pretraining, potentially leading to performance degradation.

Motivated by this discrepancy and the need for robust sensing in safety-critical applications, we pro-
pose a novel self-supervised masking scheme for robust representation learning that explicitly targets
sensor failure robustness by incorporating three common outage scenarios into the reconstruction
objective. We further systematically analyze the effectiveness of our method on a dataset from the
vehicle dynamics domain and demonstrate it in a real-world application involving autonomous racing.

2 Related work

Early foundational work by Vincent et al. [2010] introduces stacked denoising autoencoders, demon-
strating how models pretrained to reconstruct inputs subject to noise using a local denoising criterion
can learn robust and invariant features. Building upon this concept, more recent work in the vision
domain by He et al. [2022] introduces Masked Autoencoder (MAE), which is trained to reconstruct
original inputs from partially masked data, encouraging the model to learn robust representations.

Zerveas et al. [2021] proposes a transformer-based self-supervised framework specifically designed
for multivariate time series. Their approach demonstrates improved performance in downstream
classification and regression tasks by employing a masked input modeling strategy, where portions of
the input are masked (set to zero). Yuan et al. [2024] explores multi-task SSL using large unlabeled
accelerometer datasets from the UK Biobank. Their methodology incorporates multiple common
time-series augmentation techniques, such as reversing, permuting, and time-warping, alongside a
multi-head architecture for pretraining. Their findings highlight the strong generalization capabilities
of pretrained deep convolutional neural networks when finetuned on diverse activity recognition
benchmarks. Narayanswamy et al. [2024] introduces LSM, a multi-modal representation learning
model for wearable sensor data. This study of the LSM explores scaling laws and demonstrates
superior few-shot learning performance compared to established benchmarks by combining a vision
transformer architecture with various masking strategies.

To further evaluate the reliability of deep learning methods beyond standard benchmarks, Hendrycks
and Dietterich [2019] provides a dataset for common image corruptions. Building on this, Hendrycks
et al. [2019a,b] show that an additional self-supervised loss significantly enhances model resilience
against common input corruptions, adversarial attacks, and label corruptions. They furthermore
show improved robustness for the latter two cases using adversarial pretraining following Madry
et al. [2018], with a model pretrained on ImageNet using adversarial training and then fine-tuned on
CIFAR-10 and CIFAR-100.
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Figure 2: Sensor failure modes. The faulty sensor output x̃ (red) and underlying signal x (gray).

Alternative approaches include data augmentation and domain randomization, which both expose
models to varied input conditions during training. Adversarial training represents a specialized form of
data augmentation that enhances resilience by training on adversarially generated examples designed
to maximize prediction errors [Shorten and Khoshgoftaar, 2019, Tobin et al., 2017]. Imputation
strategies address missing or corrupted data by reconstructing absent values to support robust inference
[Wang et al., 2024]. While these approaches advance robustness across various domains, real-world
sensor failures often exhibit structured patterns, such as persistent biases, drifts, or hard faults, that
differ from the random or adversarial corruptions typically considered.

These findings motivate the design of a pretraining scheme that explicitly prepares models for real-
world sensor failures. To date, the impact of pretraining on common input corruptions, especially in
the domain of multivariate time series data, remains underexplored. In this setting, we aim to train
models for accurate predictions under realistic sensor failures and input disturbances (see Figure 1).

3 Sensor failure modes and robustness via reconstruction

3.1 Sensor failure modes

Sensor faults manifest as unexpected deviations in measurements [Balaban et al., 2009]. These
deviations reflect distinct failure modes independent of their physical root causes or application
domain. A systematic classification of these modes is essential for fault diagnosis and mitigation.
Following the taxonomy of Balaban et al. [2009] (1,2,7) and Jesus et al. [2017] (3-6), we define
the principal failure modes relative to a nominal sensor model representing normal operation: x =
xnom + ϵnom, where xnom is the true signal and ϵnom is sensor noise. We define various fault functions
D(·) that act on x to produce the faulty sensor signal, x̃, under different failures (see Figure 2).

1. Bias. An offset from the true measurement: D(x) = x+ β, where β is a constant offset.
2. Drift. An offset from the true measurement: D(x) = x+ β(t) where the time-varying offset β(t)

is either (a) linear or (b) nonlinear in t.
3. Hard fault: The sensor measurement is stuck at a constant value C: D(x) = C.
4. Noise. Additive zero-mean noise: D(x) = x+ ϵ, with Var(ϵ) ≫ Var(ϵnom).
5. Outliers. Occasional deviations from the true measurement at random times: D(x) = x+γ(t)δ(t),

where γ(t) ∈ {0, 1} indicates outlier presence and the δ(t) is sampled uniformly over [l,u].
6. Trimming. Signal values are restricted to [l,u] and, for values outside these bounds, are either

(a) fixed at the boundary or (b) vary proportionally with their deviation from the boundary:

D(x) =


l + α(x− l) if x < l

u+ α(x− u) if x > u

x otherwise
We consider (a) hard clamping with α = 0, and (b) controlled dampening strength with 0 < α < 1.

7. Scaling. A multiplicative error affecting signal amplitude: D(x) = α(t) where (a) the gain α is
constant, or (b) α(t) is a function of time t.

These sensor failure modes can occur due to manufacturing errors, wear and tear with long-term
usage, incorrect calibration, or mishandling [Balaban et al., 2009], and they can have detrimental or
even catastrophic effects on the performance of machine learning models, especially when deployed
in real-world robots and autonomous vehicles.
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3.2 Robustness via reconstruction

Reconstruction-based SSL involves training models to reconstruct original input data that has been
partially masked or corrupted. For language and image data, common tasks include predicting
missing words or pixels, image inpainting, and colorization [Balestriero et al., 2023]. In multivariate
time series, this typically involves masking intervals of the input with zeros [Zerveas et al., 2021]
or learnable masks [Goswami et al., 2024]. Early SSL methods, such as denoising autoencoders
[Vincent et al., 2010], corrupt inputs by masking features and calculate the loss based on the full
reconstructed input. Grounded in the manifold hypothesis [Chapelle et al., 2006]—that natural
high-dimensional data reside near a non-linear low-dimensional manifold—this corruption process
pushes data away from the manifold, forcing the neural network to project corrupted inputs back
onto it by capturing essential input features [Vincent et al., 2010]. Modern SSL methods modify the
reconstruction objective. Approaches like BERT [Devlin et al., 2019] and MAEs [He et al., 2022]
compute the reconstruction loss solely on masked input regions. This design choice is deliberate: by
not requiring the model to reproduce the already visible parts, it avoids wasting capacity on trivial
copying, encouraging the model to focus on inferring the missing content from the context provided
by the unmasked parts, emphasizing the learning of global feature dependencies.

We hypothesize that, although calculating the loss only on masked regions relaxes the requirement of
exact reconstruction, models still implicitly project inputs onto the data manifold. This occurs because
repeatedly training on diverse mask configurations fosters a universal representation that allows
reconstructions coherent with the data’s true structure. Following the argumentation of Vincent et al.
[2010], since the learned representation is robust to input masking by design, utilizing this training
paradigm should enhance robustness to similar input perturbations in downstream tasks. Models
trained with partial context learn stable patterns and dependencies, becoming resilient to variations or
corruptions. Thus, they retain coherent internal representations under noisy or incomplete inputs,
potentially benefiting real-world applications. However, the perturbations encountered in real-world
scenarios, such as the diverse sensor failure modes described in Section 3.1, can differ substantially
from the masks typically employed during pretraining, potentially limiting direct transferability.

4 Method

4.1 A self-supervised pretraining method to learn robust representations

We propose a pretraining scheme that simulates real-world sensor failures by introducing artificial
faults to the input data and training the model to reconstruct the original signal (see Figure 3).
Following the sensor failure definitions in Section 3.1, we formulate the pretraining objective as a
multi-task learning problem with n distinct masking functions {Di}ni=1. Formally, consider an input
tensor X ∈ RB×S×F , where B is the batch size, S is the sequence length, and F is the number of
channels. We partition each batch X into n sub-batches {Xi}ni=1, where each Xi ∈ RBsub×S×F has
size Bsub = B/n and corresponds to one of the n distinct masking functions Di.

For each sample in sub-batch Xi, we generate a binary mask tensor Mi ∈ {0, 1}Bsub×S×F indicating
the indices to be masked. The masking process follows the geometric distribution sampling strategy
from Zerveas et al. [2021], controlled by two parameters: the overall masking ratio mr (proportion
of total elements to mask per sample) and the average mask block length lm. This strategy generates
contiguous masked spans, making reconstruction challenging via pure interpolation and promoting
the learning of feature inter-dependencies. An element Mb,s,f = 0 indicates that the b-th sample
within sub-batch i is masked at timestep s and channel f . Once the mask tensor Mi is generated,
the corresponding sensor failure-inspired masking strategy is applied directly to this mask. X̃i

denotes the respective masked sub-batch, where the masked regions are corrupted according to the
chosen strategy. The implemented masking strategies, which are applied after feature-wise z-score
normalization of the input data, are detailed below.

Mean masking: Sets the values at the masked indices to the respective channel mean Cb,f = µf

resulting in a tensor Ci ∈ RBsub×S×F (see Section 3.1, case 3). Since the input data Xi undergoes
channel-wise z-score normalization before masking, the mean of each channel is zero. Consequently,
replacing masked values with µf is equivalent to setting them to zero. This simplification allows us
to implement mean masking by directly multiplying the normalized input with the binary mask Mi
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Figure 3: Pretraining scheme: The input X is split into n sub-batches Xi, each associated with
a sensor failure mode Di. For each sub-batch, a binary mask identifies positions to be corrupted
according to Di. The encoder E maps the corrupted input X̃i to a latent representation, which is
passed through the pretraining head P to produce a reconstruction X̂i. The model is trained to
reconstruct the original input by minimizing the sum of n reconstruction losses.

(where Mb,s,f = 0 indicates a masked position). Formally, the corrupted signal is given by

X̃i = Xi ⊙Mi, (1)

where ⊙ denotes element-wise multiplication. This approach is commonly used in masked modeling
for time series data and reflects a standard fallback in technical systems.

Bias masking: Introduces a constant offset to the masked regions (see Section 3.1, case 1). Specifi-
cally, for each b-th sample and f -th feature, a bias value Cb,f is drawn independently from a uniform
distribution Cb,f ∼ U(lσ[f ],uσ[f ]), where l is the lower bound of the uniform distribution and u is
the upper bound multiplied with the channel-wise standard deviation σ[f ]. This sampled bias Cb,f

is then replicated across all S time steps to form the bias tensor Ci ∈ RBsub×S×F . Normalization
eliminates the need for separate bounds in each channel. We let

X̃i = Xi +Ci ⊙ (1−Mi), (2)

where 1 is a tensor of ones matching Mi’s dimensions, and the element-wise subtraction inverts Mi.
Each channel has a single sampled offset, and Mi ensures that these offsets are applied only to the
masked positions. We assume that for short observed sequences, the bias error serves as an effective
proxy for drift, outliers, trimming, and scaling behaviors. For domains with lower sampling rates or
longer sequences, including additional fault types in pretraining could be beneficial.

Noise masking: Adds random Gaussian noise to the masked regions (see Section 3.1, case 4).
Specifically, a zero-mean noise tensor Ci ∈ RBsub×S×F is drawn independently for each element
Cb,s,f ∼ N (0, rσ2

[f ]), where r is a scaling factor for the channel-wise variance. The noise is applied
as in Equation (2).

Loss calculation: Once the sub-batches {X̃i}ni=1 with their respective masking corruptions are
prepared, they are sequentially processed by the model. The reconstruction loss (Mean Squared Error
over masked elements) is defined as

L =

n∑
i=1

[ 1

|Mi|
∑

(b,s,f)∈Mi

(
[Xi]b,s,f − [X̂i]b,s,f

)2 ]
, (3)

where Mi = {(b, s, f) | [Mi]b,s,f = 0} is the set of masked indices in Mi, |Mi| denotes its
cardinality, and [X̂i]b,s,f is the reconstruction of the original value [Xi]b,s,f at the index (b, s, f),
given the masked input [X̃i]b. The implementation follows the masked reconstruction paradigm from
time series, vision, and language modeling [Zerveas et al., 2021, He et al., 2022, Devlin et al., 2019].

Architecture: Our encoder-backbone is based on the transformer architecture described by Zerveas
et al. [2021]. The encoder E processes the corrupted input X̃i:

zi = E(X̃i, θE), (4)
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where zi ∈ RBsub×S×dmodel is the latent representation that captures temporal dependencies and
contextual information from the input, and θE are the learnable parameters. dmodel is the dimension
of the initial input projection. The sequence dimension of the latent representation is concatenated:

zcati = Concat(zi) ∈ RBsub×(S·dmodel). (5)

This concatenated representation is then processed by the pretraining head P (·), a multi-layer percep-
tron with parameters θP , which performs the reconstruction by mapping the latent representation
back into the input space

X̂i = P (zcati , θP ). (6)

4.2 Finetuning procedure for downstream use

For finetuning on a supervised task, we replace the pretraining head P with a finetuning head F
(again a multi-layer-perceptron). The encoder is then frozen; its parameters, θ⋆E , are not updated
during the finetuning procedure. Only the parameters θF of the finetuning head are trained. For a
finetuning batch X ∈ RBFT×S×F where BFT is the finetuning batch size, and associated labels y,
the frozen encoder E computes the latent representation

z = E(X, θ⋆E), (7)

which is concatenated as in Equation (5) and mapped to the target space

ŷ = F (zcat, θF ). (8)

The finetuning objective is then

LFT = ℓ
(
F
(
Concat(E(X, θ⋆E)), θF

)
, y

)
, (9)

where ℓ(·, ·) denotes a mean squared error loss function. This procedure leverages the robust
representations learned during pretraining while adapting the finetuning head to the downstream task.

5 Sensor failure robustness results

We evaluate our method on the problem of vehicle sideslip angle (VSA) estimation, as accurate
VSA estimation is necessary for vehicle stability and control [Liu et al., 2020]. Modern advanced
driver-assistance systems, such as Electronic Stability Control, utilize the VSA to adjust brake forces
at each wheel, thereby mitigating oversteer and understeer and enhancing overall performance and
safety [Liu et al., 2020, Chindamo et al., 2018, Bonfitto et al., 2020]. However, systems that directly
measure the VSA can be prohibitively expensive for consumer vehicles, necessitating alternative
estimation methods. Virtual sensing, which leverages machine learning models to estimate the VSA
from other sensors, such as wheel speed sensors in the car, offers a cost-effective solution. Yet virtual
sensing is prone to sensor failures, motivating the development of robust models. VSA estimation
involves heterogeneous sensor inputs (vehicle control signals, wheel speeds, and accelerations) with
diverse statistical properties. Since similar modalities are used in robotics and aviation, the study of
VSA estimation may have broader implications for robust estimation beyond the domain of driving.

The VSA is the angle between the vehicle’s direction of travel and the heading angle of the vehicle
[Liu et al., 2020], expressed as a function of the vehicle’s longitudinal (vx) and lateral (vy) velocities:

β = arctan

(
vy
vx

)
. (10)

In practice, the VSA can be estimated directly or computed from the estimated lateral velocities in
combination with the typically more accessible longitudinal velocities. Both approaches are common
in virtual sensing, depending on the available sensor data and model design [Liu et al., 2020]. In
the following, we first assess the effectiveness of our approach on a public dataset augmented with
simulated sensor failures and then validate it in a real-world autonomous racing scenario.
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5.1 Simulation of sensor failures

The REVS Program Vehicle Database [Kegelman et al., 2016a,b] comprises measurements collected
from expert drivers operating under real-world racing conditions at two race tracks, providing data
representative of extreme vehicle dynamics and operating scenarios. We evaluate the proposed method
under several simulated sensor outages on two test sets (one from the same track and another from
an unseen track) and compare its performance to a classical masking scheme and a non-pretrained
baseline, respectively. Details on the dataset, features, and splitting are given in Section A.

Figure 4: Lateral velocity MSE under individual sensor failures on seen and unseen tracks for the
non-pretrained baseline (purple), mean-only pretrained baseline (red), and our multi-mask approach
(blue). Bootstrapped means (200 resamples) with 95% confidence intervals on the test set.

We pretrain the model using 11 sensor signals with a fixed sequence length of 20 and a 20 Hz
sampling rate. To align the pretraining task close to actual sensor failures, we set the average mask
length lm to 20—masking an entire channel on average—and use a masking ratio mr of 0.1 to retain
sufficient information in the remaining channels for reconstruction. We set the parameters of the
noise mask to µf = 0 and r = 1.0 and the parameters of the bias mask to l = −3 and u = 3 (see
Section 4.1). Further implementation details can be found in Section B. As a downstream task, we
fine-tune an estimator that learns to estimate the lateral velocity.

We evaluate the robustness using the three pretraining failure modes (bias: one-standard-deviation
offset; noise: zero-mean, standard deviation of the respective feature times 0.4; hard faults: channel
mean replacement), an unseen scaling failure (α = 2) to test generalization to novel sensor faults, and
nominal conditions (see Section 3.1). Each error is applied separately to every channel. We report
the lateral velocity MSE (Figure 4) with: model pretrained on all three corruptions (Mean, Bias, and
Noise); a non-pretrained baseline; and a mean-only pretrained baseline (traditional zero masking).

Nominal conditions: Without sensor corruptions, our method improves downstream performance on
the seen track and matches the performance of the non-pretrained baseline on the unseen track.
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Seen failures: Under noise corruptions, pretraining yields subtle performance gains. For sensor
outages simulated by mean-value replacement, the model pretrained solely on mean masking exhibits
the best robustness. However, its robustness against bias errors on an unseen track degrades below the
non-pretrained baseline. Our approach achieves the strongest robustness to bias failures as evidenced
by reduced error magnitude and variance. On an unseen track, the performance of our approach is
largely consistent with those on the seen track.

Unseen failure: The strong estimation performance under the unseen scaling error suggests that the
model is robust to sensor faults that were not used during pretraining, indicating that the learned
representations generalize to out-of-distribution failure modes. Evaluations on all remaining failure
modes presented in Section 3.1 and detailed in Section J show similar results, with our approach
consistently improving robustness.

Ablations: Varying the masking combinations confirms that incorporating bias masking is critical for
robustness to both bias and scaling errors, with our approach achieving a good trade-off (Section C).
When subjecting models to increasingly severe sensor failures, our model remains robust across a
wide range of bias, noise, and scaling strengths, consistently outperforming the baselines (Section D).
We also note improved performance over baselines with simultaneous sensor failures, as detailed in
Section I. Repeating training across ten random seeds demonstrates that our scheme is consistent,
whereas the performance of a mean-only baseline varies markedly on unseen failure types (Section E).
Finally, we observe that larger models tend to enhance robustness across failure modes (Section F).
Additional experiments indicate that, compared to a state-of-the-art baseline (SimMTM), our approach
provides enhanced robustness under sensor failure conditions (Section K). Tested in a different domain,
our method also improves reliability in environmental sensing tasks (Section M).

5.2 Enhanced robustness for closed-loop control

Figure 5: Nominal trajectory of the car
(green) and virtual track limits (white).

To show the benefits of the proposed pretraining pro-
cedure, we evaluate it in a closed-loop autonomous
racing scenario using the controller described in [Lew
et al., 2024]. This experiment shows how estimation
errors propagate and impact the coupled controller-
vehicle system in a real-world application. A modi-
fied 2019 Lexus LC 500 is driven on a skidpad, with
our model estimating the VSA from other available
sensors (for an overview of the available sensors in
this experiment and implementation details, see Sec-
tion N). The estimated VSA is then used for feedback
control. While racing autonomously along the planned trajectory shown in Figure 5, we inject
artificial sensor outages and record the system response. The experiment is repeated with a baseline
model directly trained on the VSA estimation task without initial pretraining.

Open-loop tests indicate that VSA estimation is most sensitive to potential failures in the wheel speed,
steering angle, yaw rate, and longitudinal velocity sensors. Thus, we compare our approach against
the baseline by corrupting one wheel-speed sensor at a time by applying heavy noise, bias, and hard
faults (each channel set to its mean). Additional closed-loop experiments and details are in Section O.

The first attempt with the baseline model fails, and the safety driver must intervene after a few
seconds of autonomous driving. The second attempt is shown in Figure 6. The pretrained model
maintains a good VSA estimate throughout, resulting in a stable trajectory (see top-right subplot)
even under challenging conditions. The baseline’s VSA estimates under noise show occasional
deviations with increased variance. Bias failure leads to significant offset errors (see bottom-left
subplot), whereas mean input errors have minimal effect, suggesting robustness to such disturbances.
Notably, the baseline’s estimation leads to unstable trajectories (see top-left subplot) that cause a
violation of the virtual track boundaries. Additional experiments with outages at the other sensors
show similar behavior for the pretrained model (see Section O). One notable exception arises under
longitudinal-velocity sensor outages: here the pretrained model also produces unstable trajectories,
but the baseline’s parallel open-loop estimations still degrade to a greater extent. Our approach
demonstrates significant improvements in robustness across a vast majority of tested failure cases,
highlighting its potential for reliable deployment in real-world applications.
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Figure 6: Robust virtual sensing in closed-loop control. Top: full driven trajectory (car image illus-
trative, indicating driving direction). Middle: perturbed (x̃) vs. true (x) wheelspeed measurements.
Bottom: sideslip estimate (ŷ) under corruptions vs. true VSA (y).

6 Limitations and future work

The results demonstrate that the proposed masked pretraining significantly improves robustness
against common sensor failures for driving applications. However, while the model extrapolates
beyond the masks used during pretraining (see Section 5.1), studying more complex mode config-
urations (e.g., coupled errors) and assessing its performance in additional domains would broaden
the applicability of the proposed method. The experiments show that certain sensor failures, such
as errors in the longitudinal velocity, are more detrimental to closed-loop performance than others.
A limitation of this work is that all failure modes across all channels are weighted equally, but we
speculate that this can be addressed by re-weighting of the loss. Finally, as the method employs
multiple mask-based tasks, interference between the gradient updates could lead to poor convergence
during training. Leveraging advanced multi-task learning techniques, such as [Yu et al., 2020], may
mitigate this and improve performance, and will be explored in future work.

7 Conclusion

In this work, we introduce a novel self-supervised masking scheme designed to strengthen model
resilience by directly incorporating common sensor failure modes into the learning objective. By
training models to reconstruct signals corrupted by realistic fault simulations, we foster representations
significantly more robust to sensor outages than those learned via traditional masking. We demonstrate
the effectiveness of this approach through extensive validation on a vehicle dynamics dataset and,
through successful deployment as a virtual sensor in closed-loop control of a real autonomous vehicle
operating at its limits. The results demonstrate significantly improved robustness against various
sensor failures, including generalization to a fault type unseen during pretraining. We believe that by
directly addressing this critical vulnerability, our work contributes to the development of resilient
deep learning systems, which are essential for robust deployment in safety-critical applications.
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A Data and preprocessing

The dataset, recorded in 2013 and available at https://cars.stanford.edu/datadriven/
revs-program-vehicle-dynamics-database, contains various vehicle dynamics measurements.
The models were trained on a subset of the 2013 Monterey Motorsports Reunion dataset and tested
on a holdout CSV from the same dataset, as well as the 2013 Targa Sixty Six dataset, which is
used to test the performance of the models on an unseen track. All measurements were taken on a
1963 Corvette Grand Sport. Two CSV files exhibiting anomalous events (engine issue and vehicle
spinning) were excluded. We down-sampled the data to 20 Hz.

Table 1: CSV files used for training and testing
Train Data Test - Same Track Test - New Track Excluded
20130810_01_01_01 20130811_02_01_01 20130222_01_01_03 20130817_01_01_02
20130810_02_01_01 20130222_01_02_03 20130815_01_01_02
20130811_01_01_01 20130222_02_01_03
20130816_01_01_02 20130223_01_01_03
20130817_02_01_02 20130223_01_02_03

The collected signals include parameters related to vehicle motion, engine performance, control
inputs, and positional data. Table 2 lists all channels we used for training our models.

Table 2: Input channels and target for downstream task
Feature Description
vyCG (target) Lateral velocity (m/s)
engineSpeed Engine speed (RPM )
handwheelAngle Handwheel angle (deg)
throttle Throttle position (%)
brake Brake pedal force (%)
axCG, ayCG Longitudinal and lateral accelerations (m/s2)
yawRate Yaw rate (deg/s)
chassisAccel (FL, FR, RL, RR) Vertical chassis accelerations (m/s2)

All rows where the longitudinal velocity vxCG was below 1 m/s were removed, as data in this range
exhibited outliers in the sideslip angle, likely resulting from its computation based on longitudinal
and lateral velocities. Given Equation (10), small measurement noise in vyCG can lead to large errors
in the sideslip angle when vxCG is low. Input data were standardized using z-score normalization,
and 10% of the training set was used for validation during training.

B Implementation details

All models were trained using the same architecture and hyperparameters, except for the regularization
parameters of the non-pretrained baseline model. The pretrained models (Mean, Bias, and Noise,
and only Mean masking) were pretrained for 600 epochs and then finetuned for 50 epochs. The non-
pretrained baseline was trained for 50 epochs. The models were implemented in PyTorch and trained
on a single NVIDIA H100 GPU. The code is available at https://github.com/JBrandt97/
FaultsToFeatures.

Pretraining

Model architecture: The proposed model is based on a transformer architecture composed of a
backbone and a projection head. The transformer backbone consists of 4 encoder layers, each with
an embedding dimension (dmodel) of 512, 16 attention heads, and a feedforward network dimension
of 2048. GELU activations, batch normalization, and residual connections are employed within each
transformer block. Dropout is not applied. The projection head transforms the flattened transformer
encoder output (sequence length of 20 time steps × 512 dimensions = 10,240 dimensions) into an
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output dimension of 220 (20 time steps × 11 features) through an intermediate hidden layer of size
512. Similar to the backbone, dropout is set to 0.

Optimization procedure: The model was trained for 600 epochs using an AdamW-based optimizer
with custom hyperparameters. The learning rate schedule (cosine) consisted of an initial learning rate
of 3.6040 · 10−5, increased linearly to a peak learning rate of 6.6039 · 10−4, and then decreased to a
minimum learning rate of 6.3811 · 10−5. Gradient clipping was applied with a maximum norm of
1.0. The optimization parameters β1 and β2 were set to 0.96075 and 0.96127, respectively. Weight
decay was not used, and a linear warm-up strategy scaled the learning rate from an initial division
factor of 20 (total training steps divided by 20) to the peak learning rate. Training was conducted
with a batch size of 4096.

Finetuning

Regression head: The pretraining projection head was exchanged with the finetuning regression
head. The regression head flattens the latent space and consists of two intermediate layers with 256
and 64 neurons, respectively, and a final output layer with 1 neuron. The activation function is ReLU,
and dropout is set to 0.32 and 0.14.

Optimization procedure: The finetuning head was trained for 50 epochs using an AdamW-based
optimizer. The learning rate schedule (cosine) involved an initial learning rate of 8.6013 · 10−5,
linearly increasing to a peak learning rate of 4.233 · 10−4, and subsequently decreasing to a minimum
learning rate of 1.987 · 10−5. Gradient clipping was applied with a maximum norm of 1.0. The Adam
optimizer parameters β1 and β2 were set to 0.81596 and 0.96962, respectively. A weight decay of
0.0584 was used. A linear warm-up strategy scaled the learning rate from an initial division factor of
10 (total training steps divided by 10) up to the peak learning rate. The encoder backbone remained
frozen during this phase.

Non-pretrained baseline model

This baseline utilizes the same transformer backbone and regression head architecture employed
during the fine-tuning stage of the pretrained models. However, it was trained directly for 50 epochs
without any pretraining phase, and the encoder backbone was not frozen. While the non-pretrained
baseline model used the same learning rate schedule and AdamW optimizer parameters (β1, β2)
as the finetuning stage of the pretrained models, its regularization parameters—specifically weight
decay, backbone dropout, and gradient clipping norm—were tuned independently. This separate
tuning was necessary as pretraining can act as a form of regularization [Erhan et al., 2010], which the
model lacks. The dropout rate in the backbone was set to 0.04, and the weight decay was set to 0.001.
Gradient clipping was applied with a maximum norm of 3.0.

Hyperparameter selection

The hyperparameters for pretraining, finetuning, and the non-pretrained baseline model were deter-
mined through a combination of automated hyperparameter optimization and informed selection
based on established practices in related literature. For the automated tuning part, we utilized Ray
Tune [Liaw et al., 2018] with an Asynchronous Successive Halving Algorithm (ASHA) scheduler
[Li et al., 2020]. Architectural choices and certain training configurations also drew inspiration from
successful transformer-based time series models such as Informer [Zhou et al., 2021] and the work
by Zerveas et al. [2021].

Experiments compute resources

All pretraining and fine-tuning experiments were conducted on a single NVIDIA H100 GPU. For the
specific experiments presented in Section 5.1, each complete training run (pretraining followed by
finetuning) required approximately 3 hours. Model evaluations, including the simulation of sensor
failures and performance assessment for both baseline models and our approach across all test sets,
were performed on an Apple MacBook Pro equipped with an M3 Max processor and 128 GB of
unified memory. A full evaluation cycle covering all sensor failure modes took approximately 20
minutes (Figure 4). The total computational effort for the entire project was substantially greater,
including extensive hyperparameter tuning and architectural refinements conducted over several
months, as individual model training runs never utilized more than a single H100 GPU.
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C Different masking combinations

To further understand the contribution of each mask to the overall robustness and downstream perfor-
mance, we conducted an ablation study where models were pretrained using different combinations of
the mean, bias, and noise masking objectives introduced in Section 4.1. Specifically, we trained sepa-
rate models using each masking type (Mean only, Bias only, Noise only), all pairwise combinations
(Mean+Bias, Mean+Noise, Bias+Noise), and the full combination (Mean+Bias+Noise) presented in
the main paper. Each pretrained model was subsequently finetuned on the lateral velocity estimation
task. We then evaluated these models following the same protocol as in Section 5.1, assessing their
robustness against the four sensor failure modes (mean, bias, noise, scaling) across all input channels
on both the seen and unseen test tracks, as well as their baseline performance without induced failures.
The results of this comparative analysis are presented in Figure 7.

Each data point (color/shape) represents the model’s MSE under a specific sensor failure mode,
illustrating robustness and performance variability across failures; the black line denotes performance
without failures. Models lacking bias masking exhibit increased variability in bias and scaling
errors, while those with bias masking demonstrate enhanced robustness. The three-masking approach
achieves the second-best downstream performance without errors and shows decreased variability
and good robustness for the seen and unseen tracks.

Figure 7: Robustness evaluation for all different masking combinations.
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D Robustness to increasing sensor failure strength

This section explores the impact of varying sensor failure strengths on lateral velocity estimation.
We tested the models with different severity for bias (σ[f ] ∈ [0.5, 2.5]), noise (

√
r ∈ [0.2, 1.0]), and

scaling (α ∈ [1.5, 3.5]) failures. The results show a clear distinction: baseline performance degrades
notably with stronger failures, while our pretrained model remains robust. The results also highlight
significant variation in impact across input features. For the non-pretrained baseline, the lateral
velocity estimation shows high sensitivity to failures in some input features, while failures in others
have minimal impact, implying the latter may contribute less to the overall estimation.

Figure 8: MSE on lateral velocity estimation under sensor failures with varying strengths. This
experiment was done on data from a track included in the training data.
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Figure 9: MSE on lateral velocity estimation under sensor failures with varying strengths. This
experiment was done on data from a new track not seen during training.

E Pretraining and finetuning over multiple seeds

To assess the influence of random initialization on model performance and robustness, we repeated
the pretraining and finetuning process for the non-pretrained baseline model, the model pretrained
solely with mean masking, and our proposed model (pretrained with mean, bias, and noise masking)
using 10 random seeds. Each resulting model was evaluated following the same robustness procedure
described in Section 5.1. The results are shown in Figure 10, where columns distinguish between
evaluations on the test set from the same track used during training (left) and an unseen track (right).
The rows correspond to the four different sensor failure modes applied during evaluation (mean, bias,
noise, scaling). Within each subplot, individual points represent the MSE for a single model trained
with a specific seed, color-coded according to the training scheme.
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Figure 10: Robustness evaluation across 10 random seeds for the non-pretrained baseline, mean-only
pretrained baseline, and our approach. Columns distinguish between test sets (left: same track as
training, right: unseen track). Rows represent the four sensor failure modes applied during evaluation
(mean, bias, noise, scaling). Each point shows the MSE for a single seed, color-coded by model type.

The results indicate that robustness against noise failures is largely unaffected by the random seed
for all three model types. Our proposed approach (Pretrained Mean+Bias+Noise) demonstrates
consistently strong robustness across all failure modes and seeds, exhibiting minimal performance
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variation. While the model pretrained only on mean masking also shows consistent robustness for
mean and noise failures, its performance under bias and scaling failures varies significantly depending
on the seed. This suggests that achieving robustness against failure modes not explicitly seen during
pretraining (like bias and scaling for the Mean-only model) can be highly sensitive to initialization;
a specific seed might yield a model robust to a particular unseen failure, while another might not.
In contrast, our multi-masking approach improves generalization and is more robust to the unseen
scaling failure across different seeds.

F Effect of model size on robustness

To investigate the influence of model capacity on robustness, we pre-trained models with varying
sizes. Specifically, we adjusted the transformer encoder’s embedding dimension dmodel through the
sequence [32, 64, 128, 256, 512], setting the feedforward dimension to 4× dmodel accordingly.

Figure 11: Robustness evaluation for models pretrained with different embedding dimensions (dmodel).
Each point represents the model’s MSE under a specific sensor failure mode (color/shape) for a given
model size. The upper and lower plots show results on the training and holdout tracks, respectively.

The model (MBN) with dmodel = 512 corresponds to the architecture used in the main paper. Each
pretrained model was finetuned and evaluated using the same robustness protocol described in
Section 5.1, assessing performance under mean, bias, noise, and scaling failures across all input
channels for both seen and unseen tracks. The results, presented in Figure 11, indicate a general
trend where larger models exhibit enhanced robustness and reduced performance variability across
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different sensor failure modes and input channels. This suggests that increased model capacity allows
for learning more comprehensive representations that better handle diverse input corruptions.

G Effect of pretraining bias bounds

This experiment explores how the range of bias values encountered during pretraining affects robust-
ness to bias and scaling failures of varying strengths during evaluation. We pretrained separate models
using the full Mean+Bias+Noise masking strategy, where the bias masking offset (Section 4.1) was
sampled uniformly using bounds l = −k and u = k, with k ∈ {1, 2, 3, 4}. The model with k = 3
corresponds to the configuration used in the main paper. These models were then evaluated simi-
larly to the experiments in Section D, specifically focusing on their performance degradation as the
severity of applied bias and scaling failures increased. As shown in Figure 12 and Figure 13, models
pretrained with narrower bias bounds (e.g., k = 1) exhibit a noticeable decline in robustness when
the applied bias or scaling errors exceed the magnitude seen during pretraining. This suggests that
while pretraining enhances robustness within the experienced distribution of failures, generalization
to significantly stronger, out-of-distribution failures remains challenging, highlighting the importance
of selecting appropriate pretraining parameters based on expected real-world failure characteristics.

Figure 12: MSE on lateral velocity estimation under bias and scaling failures with varying strengths,
evaluated on the same track as training data. Lines represent models pretrained with different bias
bounds (k ∈ {1, 2, 3, 4}). Log-scaled y-axis.
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Figure 13: MSE on lateral velocity estimation under bias and scaling failures with varying strengths,
evaluated on an unseen track. Lines represent models pretrained with different bias bounds (k ∈
{1, 2, 3, 4}). Log-scaled y-axis.

H Effect of pretraining noise ratio

Complementary to the bias bounds experiment, we investigated the impact of the noise level used
during pretraining on robustness against noise failures of varying strengths. Models were pretrained
using different noise ratios

√
r ∈ {0.5, 1.0, 1.5, 2.0}. The model with

√
r = 1.0 corresponds to

our main configuration. We evaluated these models against noise failures with increasing severity
(variance scaling

√
r ∈ [0.2, 1.0]), following the protocol in Section D. The results, depicted in

Figure 14, indicate that the magnitude of noise applied during pretraining generally has a limited
influence on robustness against noise failures at inference. An exception is the model pretrained
with the smallest noise ratio; this model exhibits reduced robustness, particularly when confronted
with stronger noise failures during evaluation. This observation aligns with the findings from the
bias bounds experiment, where robustness was most pronounced when evaluation conditions closely
matched pretraining conditions.
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Figure 14: MSE on lateral velocity estimation under noise failures with varying strengths, evaluated
on both the same track and an unseen track. Lines represent models pretrained with different noise
ratios (

√
r ∈ {0.5, 1.0, 1.5, 2.0}). Log-scaled y-axis.

I Effect of coupled sensor errors

To evaluate robustness under multi-sensor failure scenarios, we systematically vary the number of
failing sensors from 1 to 10 out of 11 total signals, where all failing sensors exhibit the same failure
mode: bias shifts (multiplicative factor 1.0), additive noise (σ = 0.4), scaling errors (multiplicative
factor 2.0), or complete sensor dropout (mean imputation). For each combination of failure count and
error type, we sample 10 random sensor combinations and report average performance. We compare
three model configurations: (1) non-pretrained baseline, (2) mean-only pretrained baseline, and (3)
our multi-fault pretraining approach (mean, bias, noise). Performance is assessed on both the same
track and the new track test data using mean squared error (MSE).

Our approach consistently outperforms the non-pretrained baseline until approximately 5 sensors
fail, and surpasses the mean-only pretrained baseline across all tested fault types except complete
sensor dropout (mean imputation). As expected, we observe performance degradation for all models
as the number of failing sensors increases, with our approach demonstrating improved stability
across multiple simultaneous failures. Notably, pretraining exclusively on mean failures can actually
worsen robustness to other failure modes, such as scaling, compared to the non-pretrained baseline,
highlighting the importance of diverse fault exposure during pretraining. Similar performance patterns
are observed in the evaluation on an unseen track.
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Figure 15: Performance degradation under multiple simultaneous sensor failures on test data on the
same track. The x-axis denotes the number of simultaneously failing sensors.

Figure 16: Performance degradation under multiple simultaneous sensor failures on test data on a
new track.
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J Robustness on further sensor failure modes

To comprehensively evaluate our approach’s generalization to the complete taxonomy of sensor
failures (see Section 3.1), we conducted additional experiments assessing robustness against drift,
outliers, trimming, and varying scaling failures on the lateral velocity estimation task. Following the
same experimental protocol and using the same dataset as in Section 5.1, we applied these failure
modes individually to each input channel and compared the performance of our pretrained model,
the mean-only baseline, and the non-pretrained baseline. The linear and nonlinear drift masks are
parameterized such that the maximum drift at the final timestep equals twice the feature standard
deviation. Outlier errors are injected with a probability of 0.05 per timestep, with deviations sampled
uniformly from [−3σ, 3σ]. Trimming errors restrict values to [µ− σ,µ+ σ], with constant trimming
clamping at the boundary and dampened trimming using a factor α = 0.6. Time-varying scaling
errors linearly interpolate the scaling factor from 1.0 to 2.0 over the sequence length. The results
demonstrate that our multi-fault pretraining approach maintains improved robustness across these
unseen failure modes.

Figure 17: Robustness evaluation of our pretraining approach across additional sensor failure modes
on lateral velocity estimation.

K Further Baseline Comparison

Next, we compare our approach against SimMTM [Dong et al., 2023], a recent pretraining method
for time series. This comparison demonstrates the specific benefits of robustness-focused pretraining
compared to general-purpose time-series representation learning methods.

We adapt SimMTM from its original classification and forecasting setting to our state estimation task,
using the recommended hyperparameters from the original paper. Both methods are evaluated on
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the REVS dataset following the same experimental protocol described in Section 5.1, applying each
failure type individually to all sensor channels and measuring MSE on lateral velocity estimation.

The comparison demonstrates the same performance patterns observed in our baseline comparisons.
Our robustness-aware pretraining consistently outperforms SimMTM across all sensor failure scenar-
ios, with particularly pronounced improvements for bias failures. While SimMTM performs very well
under nominal conditions (for which it is designed), the performance gap widens substantially when
sensors degrade. These results confirm that general-purpose pretraining methods, despite achieving
strong nominal performance, fail to learn representations that are robust to common sensor failures.

Figure 18: Robustness evaluation of our pretraining approach and SimMTM across different sensor
failure types.

L Comparison with Kalman Filtering for VSA estimation

Next, we compare the proposed method with a nonlinear Kalman filter (KF) (see, e.g., Särkkä and
Svensson [2023]). The KF estimates a latent state {xk : k = 1, ...,K} given a set of measurements
{yk : k = 0, ...,K}. It is natural to consider the KF for VSA estimation, as this signal can be
modeled in the latent state [Berntorp et al., 2022]. The filter assumes a known estimation model

x0 ∼ p(x0) = N(x0;m0,P 0), (11a)
xk ∼ p(xk|xk−1) = N(xk;f(xk−1, k − 1),Q), (11b)
yk ∼ p(yk|xk) = N(xk;h(xk),R), (11c)

where the prior {m0,P 0}, the noise covariance {Q,R}, and the nonlinear functions f ,h are known,
and N denotes a multivariate Gaussian PDF. Following [Berntorp et al., 2022], we implement a
single-track bike model, here defined with the full nonlinear Fiala tire model parametrized as in [Lew
et al., 2024]. We define a state space x = (r, v,β,ω) comprising yaw rate r (rad/s), longitudinal
velocity v (m/s), side-slip angle β (rad), and average rear wheel speed ω (rad/s). In addition, we
define control signals u = (δ, τ), with steering angle δ (rad) and engine torque τ (Nm). We describe
the time-evolution of the state by a differential equation ẋ(t) = f̄(x(t),u(t)) as in [Lew et al., 2024],
use the shorthand xk = x(hk), and discretize it by forward Euler at a time-step of h (s), yielding

xk = xk−1 + hf̄k−1(xk−1,uk−1) ≜ f(xk−1, k − 1), (12)

For the measurement model, we simply include a subset of the measurements used as input to the
pretrained transformer model, in particular, the yaw-rate, side-slip angle, and rear-wheel speed, as
h(xk) = (rk, vk,ωk)

⊤. We then implement a nonlinear Cubature KF [Arasaratnam and Haykin,
2009] to compute the marginal filtering posterior p(xk|yk) and tune the noise levels {Q,R} manually
as hyperparameters to minimize the root mean square error (RMSE). We refer to [Berntorp et al.,
2022] for algorithm details and to the implementation for parameter choices (see Section B). In
this setting, the nonlinear KF has access to more information than the pretrained transformer, as
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it assumes a parametrized physics-based model along with the control signal trajectory u(t). This
makes a direct and truly fair comparison challenging. Nonetheless, we report the MAP estimate when
using the same disturbed wheel speeds as realized in the experiment in Sec. 5.2 (see Fig. 6), and
compare the side-slip angle reconstruction of the resulting KF to that of the baseline and pre-trained
transformer models, with the results reported in Tab. 3 and shown qualitatively in Fig. 19. We note
that the nonlinear KF significantly improves over the baseline, despite the failure modes violating the
assumptions encoded in the estimation model. However, the model utilizing the proposed pretraining
method yields better VSA results, despite not having access to the physics-based vehicle model.

Table 3: Root mean square error (RMSE) and maximum absolute error (MAE) of VSA estimate.
Method RMSE (rad) MAE (rad)

Baseline 0.047 0.462
KF 0.018 0.170

Ours (PT) 0.006 0.030

Figure 19: Disturbed average rear wheel speed signals and VSA estimate with the KF (c.f., Fig. 6).

M Robust estimation in environmental sensing

To test the generalization of our approach beyond automotive applications, we evaluate our method on
the Beijing PM10 and PM2.5 air quality prediction tasks from the Time Series Extrinsic Regression
(TSER) benchmark [Tan et al., 2020, Zhang et al., 2017], where the objective is to predict PM10 and
PM2.5 concentrations from nine environmental sensors (SO2, NO2, CO, O3, temperature, pressure,
dew point, rainfall, wind speed). We simulate individual sensor failures using the same four error types
as in our automotive experiments: bias shifts (two-standard-deviation offset), additive noise (σ = 0.8),
scaling errors (multiplicative factor 2.0), and complete sensor dropout. Each sensor failure is evaluated
independently to assess the impact of losing specific environmental measurements on PM10 and
PM2.5 prediction accuracy. We compare three model configurations: a baseline without pretraining,
a baseline with mean-only pretraining, and our multi-fault pretraining approach (mean, bias, noise).
Our approach again improves reliability across failure modes and failing sensors, with particularly
pronounced benefits observed for scaling errors in pressure measurements, which cause substantial
performance degradation in the baseline models. While the overall performance differences are less
pronounced than in the automotive domain, the results demonstrate the cross-domain applicability of
our pretraining strategy.
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Figure 20: Robustness on Beijing PM10 air quality prediction with single sensor failures.

Figure 21: Robustness on Beijing PM2.5 air quality prediction with single sensor failures.

N Closed-loop experiments

The closed-loop experiments conducted on the Lexus LC 500 were implemented utilizing ROS2
Humble. The experimental setup was adapted to mirror the conditions under which the models
were originally pretrained and subsequently finetuned. To ensure congruity with the initial training
regimen, which was based on the REVS dataset, several modifications were made concerning feature
extraction methodologies, input signal frequencies, and overall system integration.

Real-time sensor data from the vehicle served as the principal interface for the estimator. While the
REVS dataset was sampled down to a frequency of 20 Hz, the on-vehicle system operated at 62.5 Hz.
To preserve temporal alignment with the REVS dataset, the input data stream was down-sampled
by selecting every third sample, yielding an effective input frequency of approximately 20.8 Hz.
Consequently, the estimator maintained a sequence length of 20, thereby encompassing approximately
one second of driving history, a configuration consistent with the previous experiments.

The feature set was tailored to the available onboard signals. The extracted features incorporated
yaw rate, longitudinal and lateral accelerations, vertical chassis accelerations at all four corners,
individual wheel speeds, steering angle, wheel torques, brake torques, and longitudinal velocity.
Table 4 provides an overview of the channels employed for the LC 500 experiments.

We trained a new model using historical data acquired from previous tests with the Lexus LC 500,
and the architecture underwent further tuning. In contrast to the REVS dataset approach, the non-
pretrained baseline (hereafter referred to as baseline) and pretrained architectures for the Lexus
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Table 4: Input channels and target for the LC 500 deployment
Feature Unit
Sideslip Angle (target) rad
Yaw Rate rad s−1

Longitudinal Acceleration m s−2

Lateral Acceleration m s−2

Vertical Acceleration m s−2

Wheel Speed FL m s−1

Wheel Speed FR m s−1

Wheel Speed RL m s−1

Wheel Speed RR m s−1

Steer Angle FL rad
Wheel Torque RL N m
Brake Torque FL N m
Brake Torque FR N m
Brake Torque RL N m
Brake Torque RR N m
Longitudinal Velocity m s−1

platform were tuned independently to ensure optimal performance for the closed-loop tests under
nominal conditions. The primary distinctions between the Lexus_Pretrained architecture (Lexus
PreT), Lexus_Baseline architecture (Lexus Base), and the REVS architecture are delineated below:

Table 5: Comparison of encoder architecture parameters
Parameter Lexus Base Lexus PreT REVS
Feature Dimensionality 15 15 11
Embedding Dimension 128 256 512
Encoder Layers 1 2 4
Attention Heads 4 16 16
Feedforward Network Dimension 128 512 2048
Backbone Output Dimension 300 300 220

Table 6: Comparison of regression head parameters
Parameter Lexus Base Lexus PreT REVS
Input Size 2560 5120 10240
First Estimation Head Dimension 128 256 256
Estimation Head Dropout Rates (0.4, 0.34) (0.32, 0.14) (0.32, 0.14)

The variations between the Lexus model and the REVS model are primarily attributable to the
requirement for real-time execution on an Intel Xeon E2278GE CPU @ 3.30 GHz. The difference
between the baseline and pretrained models stems from the comparatively simpler nature of the
classical end-to-end learning task for the baseline.

N.1 Setup

The architecture of the experimental setup is most effectively elucidated by the diagram presented in
Figure 22. The vehicle publishes its state, comprising the features detailed in Table 4. A dedicated
"disruptor node" subscribes to both the vehicle state and a predefined disruption schedule. This
schedule specifies the timestamp, the sensor to be targeted, the type of error to be injected, and the
magnitude of the error (applicable for noise and bias injections). The disruptor node then publishes
a "disrupted vehicle state", a replica of the original vehicle state, except for the designated sensors,
which are perturbed according to the disruption schedule. The sideslip estimator (which, depending
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on the specific experiment, can be the baseline model, the pretrained model, or both) subscribes to this
"disrupted vehicle state". It subsequently publishes a "Sideslip Angle Estimation". This estimation, in
conjunction with the "disrupted vehicle state", constitutes the "modified vehicle state". This modified
vehicle state serves as the control input for the controller, which, in turn, generates the control output
directed to the vehicle, thereby closing the loop.

Figure 22: Experimental setup illustrating the closed-loop data flow. The vehicle state is subjected to
scheduled disruptions, processed by the sideslip estimator, and the resulting estimation is integrated
into the modified vehicle state used by the controller.

To assess the estimator’s robustness under authentic closed-loop conditions, controlled fault injection
experiments were performed during autonomous driving operations with the LC 500. These experi-
ments were meticulously designed to replicate the perturbation regimes employed with the REVS
dataset, while simultaneously demonstrating real-world applicability by directly incorporating the
estimated sideslip angle into the vehicle’s controller.

Fault schedules were structured sequentially, perturbing a single sensor at a time for five seconds.
This perturbation phase was followed by a recovery interval, during which no faults were active.
This experimental design facilitated the unambiguous attribution of observed vehicle behavior to
specific sensor faults and ensured adequate recovery time between successive fault injections. The
injected sensor faults encompassed several distinct perturbation types. Bias errors were introduced by
adding one or two standard deviations of the respective sensor signal. Hard faults were simulated
by substituting sensor readings with their corresponding channel means. Additionally, Gaussian
noise perturbations were applied, characterized by standard deviations of 0.4 and 1.0 times the
feature-specific standard deviation.

We additionally tested our method on a race track to evaluate performance across different driving
contexts: the skidpad setup being more reflective of regular driving conditions, while the race
track introduces racing-like scenarios with increased complexity and variability. The initial results
showed comparable robustness across both environments. Ultimately, we decided to focus on the
skidpad experiments for the paper due to their superior reproducibility through structured, repeatable
maneuvers and clearer communicability of results.

O Sensor failure experiments

For the comparative analysis of the baseline and pretrained models, two distinct experimental
scenarios were investigated: Parallel Loop and Separate Loop.

In the Separate Loop scenario, both models functioned as the sideslip estimator in discrete test
sessions. This approach permits a robust comparison of the models and an examination of how
their respective estimation errors propagate. However, it does not guarantee identical experimental
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conditions across tests, primarily due to the controller’s reaction to estimation inaccuracies. For
instance, if an estimation error causes the vehicle to decelerate, a time-scheduled sensor disruption
will occur during a different driving maneuver than if the vehicle had maintained its original speed.
This methodology was employed for the Wheel Speeds sensor experiments, the results of which are
documented in the main paper (Section 5.2).

In the Parallel Loop scenario, the pretrained model served as the sideslip estimator within the closed-
loop system, as previously described. Concurrently, the baseline model operated in an open-loop
configuration, processing the same input data but without its output influencing the vehicle controller.
The principal advantage of this test scenario lies in the direct comparability of both models using
identical input data. Conversely, its limitation is that only the closed-loop model’s estimation error can
propagate through the system, thereby revealing the real-world consequences for only one of the two
models. By employing both testing scenarios, a comprehensive understanding of model performance
under sensor failure conditions is achieved. This experimental paradigm was implemented for the
wheel speed sensors, the yaw rate sensor, the steering wheel sensor, and the longitudinal velocity
sensor.

O.1 Parallel loop skidpad: wheel speed sensor perturbations

The experiments involving the disruption of wheel speed sensors were conducted using a structured
perturbation schedule. This schedule consisted of the following sequence for each targeted sensor:

1. 5 seconds of Gaussian noise, with a standard deviation (σ) equal to the standard deviation of the
original sensor signal.

2. 1 second recovery interval (no perturbation).

3. 5 seconds of a bias error, where a value equivalent to 2σ of the original signal was added to the
sensor readings.

4. 1 second recovery interval.

5. 5 seconds where the sensor signal was replaced by its mean value.

6. 1 second recovery interval.

This perturbation sequence was applied sequentially to each wheel speed sensor: front-left (FL),
front-right (FR), rear-left (RL), and rear-right (RR). The 1-second recovery intervals ensured that each
1-second input sequence to the model contained at most one type of disruption, enabling clear analysis
of each perturbation’s isolated effect. The resulting disruption patterns are shown in Figure 23.

Our pretrained model demonstrated no significant degradation in performance in response to any of
the applied disruptions on any wheel. This outcome suggests the successful impartation of robustness
through the pretraining process. Conversely, the baseline model experienced dramatic decreases in
performance, with the most severe instance observed during the bias error injection on the front-right
wheel speed sensor. This event led to an estimation error exceeding 0.30 rad.

It is also noteworthy that a bias error consistently induced a constant-like error pattern in the baseline
model’s estimation. In contrast, a noise error (most observable with the rear-right wheel speed
sensor perturbation) resulted in a noisy error pattern in the estimation. The mean value substitution,
however, produced varied error patterns: sometimes a spikey error pattern (e.g., front-left wheel
speed), sometimes no discernible real error pattern (e.g., front-right wheel speed), or a pattern similar
to that of the bias error (e.g., rear-right wheel speed). These observations confirm that, despite the
nearly identical information content across all wheel speed sensors, the baseline model remains
susceptible to errors when any single one of them is compromised.

Additionally, a separate experiment was conducted in which a constant bias of 2σ (relative to the
standard deviation of the original signal) was applied to the rear-right (RR) wheel speed sensor shown
in Figure 24. This sustained perturbation led to only minor estimation errors in our pretrained model
(occurring around the 35-second mark in the experiment). In contrast, the baseline model exhibited
severe errors. Interestingly, the error magnitude of the baseline model decreased as the absolute value
of the wheel speed increased (indicative of the vehicle traveling on a straight path, where the side-slip
angle is typically small or negligible). Conversely, as the wheel speed decreased, the estimation error
of the baseline model increased.
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Figure 23: Disruption patterns applied sequentially to individual wheel speed sensors (FL, FR, RL,
RR) and the corresponding sideslip angle estimation performance of our model versus the baseline
model. The top four plots show the original versus disrupted wheel speed signals. The subsequent
plots show the sideslip angle ground truth, our model’s estimation, the baseline model’s estimation,
and their respective errors.
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Figure 24: Disruption patterns applied constantly to the rear right wheel speed sensor (RR) and the
corresponding sideslip angle estimation performance of our model and the baseline model. The plot
shows the original versus the disrupted wheel speed signal. The subsequent plots show the sideslip
angle ground truth, our model’s estimation, the baseline model’s estimation, and their respective
errors.

O.2 Parallel loop skidpad: yaw rate sensor perturbations

The robustness of the sideslip angle estimation was further evaluated by introducing simulated
perturbations to the yaw rate sensor signal. The perturbation schedule was structured in distinct
phases:

1. Initial phase (0-18 seconds):
• 6 seconds of additive Gaussian noise with a standard deviation equal to 0.4σ of the original

signal’s standard deviation.
• 1 second recovery interval.
• 6 seconds where the sensor signal was replaced by its mean value over the recording duration.
• 1 second recovery interval.
• 6 seconds of a constant bias error, with an added value equivalent to 1σ of the original signal’s

standard deviation.
• 1 second recovery interval.

2. Incremental noise phase (18 seconds onwards for a defined duration):
• The intensity of the additive Gaussian noise was progressively increased second-wise, starting

from 0σ and ramping up to a level exceeding 1σ of the original signal’s standard deviation.
• 1 second recovery interval.

3. Incremental bias phase (Following incremental noise phase for a defined duration):
• The magnitude of the constant bias error was incrementally increased, starting from 0.5σ and

escalating to 2σ of the original signal’s standard deviation.
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The impact of these perturbations on the yaw rate signal and the corresponding sideslip angle
estimations from both our pretrained model and the baseline model are depicted in Figure 25.

Figure 25: Perturbation effects on yaw rate and sideslip angle estimation during the Parallel Loop
Skidpad maneuver. The top panel shows the original versus the disrupted yaw rate signal. The middle
panel presents the ground truth sideslip angle alongside the estimations from our model and the
baseline model. The two bottom panels display the estimation error for both models.

The yaw rate is a critical input for sideslip estimation, directly reflecting the vehicle’s rotational
dynamics. As illustrated in Figure 25, our pretrained model consistently maintained a low estimation
error across all phases of the perturbation schedule. During the initial phase, the introduction of low-
magnitude noise (0.4σ) and mean substitution resulted in negligible deviations in our model’s output
from the ground truth. Even during the subsequent incremental noise phase, where the perturbation
intensity became significantly more pronounced, our model demonstrated remarkable resilience, with
estimation errors remaining minimal. Notable deviations in the estimation for our model occurred
during the bias perturbations, both the initial 1σ bias and subsequently during the incremental bias
phase.

In contrast, the baseline model exhibited significant sensitivity to the yaw rate perturbations. The
1σ bias applied around 15-21 seconds induced a noticeable and sustained error in its sideslip angle
estimation. As the noise intensity was incrementally increased (e.g., observe behavior post 25
seconds), the baseline model’s error correspondingly escalated, displaying significant noise in its
output. The incremental bias phase (e.g., observe behavior towards the latter part of the experiment)
led to a diverging estimation error for the baseline model. For instance, at a bias of 2σ, the baseline
model’s estimation error reached approximately 0.25 rad. This underscores the baseline model’s
apparent over-reliance on the yaw rate signal and its limited capacity to mitigate the effects of
significant sensor corruption, highlighting a stark contrast to the robustness achieved by our pretrained
approach.
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O.3 Parallel loop skidpad: steering angle sensor perturbations

To assess the impact of corrupted steering input on sideslip angle estimation, a series of simulated
perturbations was applied to the steering angle sensor signal. The experiment employed the same
multi-stage perturbation schedule as applied for the yaw rate sensor evaluation. Figure 26 illustrates
the original versus perturbed steering angle signal alongside the sideslip angle estimations from our
pretrained model and the baseline model, as well as their respective estimation errors.

Figure 26: Perturbation effects on steering angle and sideslip angle estimation during the Parallel
Loop Skidpad maneuver. The top panel shows the original versus the disrupted steering angle signal.
The middle panel presents the ground truth sideslip angle alongside the estimations from our model
and the baseline model. The two bottom panels display the estimation error for both models.

The results presented in Figure 26 highlight the differential response of the two models to steering
sensor corruption. Our pretrained model demonstrated robust performance throughout the experiment.
The initial perturbations (low noise, mean substitution, and 1σ bias) had a minimal effect on its
estimation accuracy. More critically, during the incremental noise and incremental bias phases, our
model’s estimations remained closely aligned with the ground truth, with only minor fluctuations in
error.

The baseline model’s performance under steering angle perturbations exhibited behavior largely
similar to our model during the initial low-noise and bias phases. However, a critical distinction
emerged with the introduction of the mean value substitute (around 9-15 seconds), which resulted in
a clear and sustained deviation in the baseline model’s sideslip estimation. This deviation highlights
a specific sensitivity of the baseline model to this type of sensor corruption.

O.4 Parallel loop skidpad: longitudinal velocity sensor perturbations

The final single-sensor perturbation experiment focused on evaluating the impact of corruption in
the longitudinal velocity signal. The same structured perturbation schedule utilized for the yaw rate
and steering angle sensor experiments was applied. Figure 27 displays the original versus perturbed
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longitudinal velocity signal, the ground truth sideslip angle, and the estimations and errors from both
our pretrained model and the baseline model.

Figure 27: Perturbation effects on longitudinal velocity and sideslip angle estimation during the
Parallel Loop Skidpad maneuver. The top panel shows the original versus the disrupted longitudinal
velocity signal. The middle panel presents the ground truth sideslip angle alongside the estimations
from our model and the baseline model. The two bottom panels display the estimation error for both
models.

Under these perturbation conditions, both models experienced significant degradation in performance.
The baseline model exhibited near-complete failure in estimating the sideslip angle from the beginning
of the first phase, rapidly reaching errors exceeding 0.5 rad. Our model estimate degraded particularly
during the 1σ bias perturbation, which led to errors close to 0.3 rad. The safety driver had to intervene
to maintain control of the vehicle, necessitating the premature termination of the experiment as
soon as the incremental bias phase was initiated, preventing the completion of the full perturbation
schedule. Nevertheless, despite the challenging conditions, our model consistently outperformed the
baseline model across all applied perturbations before the experiment was stopped. More about this
in Section 6.
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formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The pretraining scheme is described in detail in Section 4.1. The experimental setup
is described in Section 5.1, Section B, Section 5.2 and Section N. The data split and preparation is
detailed in Section A. The code and data for the evaluation in Section 5.1 will be made available.
While we can’t publish the data collected during the closed-loop control experiments, we provide a
detailed description of the experimental setup and results in Section 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code for the evaluation in Section 5.1 and the appendix will be made available.
While we can’t publish the data collected during the closed-loop control experiments, we provide a
detailed description of the experimental setup and results in Section 5.2 and Section N.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 5.1, Section B, Section 5.2, Section N and Section A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment in Section 5.1 reports the bootstrapped estimates (200 resamples)
showing mse means and their 95% confidence intervals on the test set. Furthermore, in Section D
we show the results for different severities of the sensor failures. In Section E we show the
evaluation done in Section 5.1 for 10 models trained with different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: See Section B and Section N.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research focuses on improving the safety and robustness of deep learning models
in critical applications, directly aligning with ethical considerations for AI deployment. We uphold
principles of transparency and reproducibility by providing detailed methodology and releasing
code, adhering to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The primary positive societal impact—enhancing the safety and reliability of ML
systems reliant on potentially faulty sensors—is discussed throughout. Potential negative impacts
are implicitly addressed in Section 6, which discusses scenarios where the method might fail (e.g.
unevaluated failure modes/domains), potentially leading to unsafe outcomes if deployed without
considering these limitations.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: This work does not involve the release of a trained model. The research focuses on a
methodology for improving robustness using specific vehicle dynamics time series data, which
itself does not pose a high risk for misuse. The primary dataset used is publicly available.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: The primary dataset used is publicly available and properly credited. Our codebase
utilizes parts of the publicly available code from Zerveas et al. [2021], which is also credited.
Standard open-source libraries used are governed by their respective permissive licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code implementing the proposed pretraining methodology will be released.
Documentation (e.g., README, comments) will be provided alongside the code to facilitate
understanding and usage.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing or experiments with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: This research does not involve crowdsourcing or experiments with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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