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Abstract

Fair machine learning aims to avoid treating individuals or sub-populations un-
favourably based on sensitive attributes, such as gender and race. Those methods
in fair machine learning that are built on causal inference ascertain discrimination
and bias through causal effects. Though causality-based fair learning is attracting
increasing attention, current methods assume the true causal graph is fully known.
This paper proposes a general method to achieve the notion of counterfactual
fairness when the true causal graph is unknown. To select features that lead to
counterfactual fairness, we derive the conditions and algorithms to identify ances-
tral relations between variables on a Partially Directed Acyclic Graph (PDAG),
specifically, a class of causal DAGs that can be learned from observational data
combined with domain knowledge. Interestingly, we find that counterfactual fair-
ness can be achieved as if the true causal graph were fully known, when specific
background knowledge is provided: the sensitive attributes do not have ancestors
in the causal graph. Results on both simulated and real-world datasets demonstrate
the effectiveness of our method.

1 Introduction

With the widespread application of machine learning in various fields (e.g., hiring decisions [23],
recidivism predictions [1, 11], and finance [26, 55]), the ethical and social impact of machine learning
is receiving increasing attention. In particular, machine learning algorithms are sensitive to the bias
in training data, which may render their decisions discriminatory against individual or sub-population
group with respect to sensitive attributes, e.g., gender and race. For example, bias against African-
Americans was found with COMPAS, a decision support tool used by U.S. courts to assess the
likelihood of a defendant becoming a recidivist [12].

To achieve fair machine learning, a large body of methods have been proposed to mitigate bias
according to different fairness measures. These methods can be roughly categorized into two groups.
The first group focuses on devising statistical fairness notions, which typically indicate the statistical
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discrepancy between individuals or sub-populations, e.g., statistical parity [14], equalized odds [22],
and predictive parity [8]. Built on the causal inference framework [40], the second group treats the
presence of causal effect of the sensitive attribute on the decision as discrimination [4, 19, 25, 27–
29, 37, 48, 49, 58, 60, 64, 65, 67–69].

Among the causal fairness works, counterfactual fairness [29], which considers the causal effect of
sensitive attributes on the individual level, has received much attention. Given the true causal graph,
Kusner et al. [29] provide the conditions and algorithms for achieving counterfactual fairness in
the constructed predictive model. Wu et al. [60] and Chiappa [4] extend counterfactual fairness by
considering path-specific effects. When the counterfactual effect is unidentifiable, counterfactual
fairness can be approximately achieved by lower and upper bounds of counterfactual effects [59].

Existing counterfactual fairness methods assume the availability of a causal directed acyclic graph
(DAG) [39], which encodes causal relationships between variables. However, in many real-world
scenarios, the causal DAG is often unknown due to insufficient understanding of the system under
investigation. An obvious path forward is to infer the causal DAG from observational data using
causal discovery methods [6, 9, 24, 43, 44, 51–53, 66]. Unfortunately, without strong assumptions
on the data generating process, such as linearity [51] and additive noise [24, 44], one cannot uniquely
recover the underlying true causal graph from observational data alone. In the general case, causal
discovery methods could output a Markov equivalence class of DAGs that encode the same set of
conditional independencies from data, which can be represented by a completely partially directed
acyclic graph (CPDAG) [6, 54]. With additional background knowledge, we can discern more causal
directions, which can be represented by a maximally partially directed acyclic graph (MPDAG) [34],
but we still cannot obtain a unique causal DAG.

Following this augment, we have a natural question to answer: can we learn counterfactual fairness
with a partially known causal graph represented by MPDAG? 2 In a causal DAG, if a variable S

has a causal path to another variable T , then S is an ancestor of T and T is a descendant of S.
Counterfactual fairness deems the prediction to be counterfactually fair if it is a function of the
non-descendants of sensitive attributes [29], which are straightforward to identify in DAGs. However,
in an MPDAG, with respect to a variable S, a variable T can be either

• a definite descendant of S if T is a descendant of S in every equivalent DAG,
• a definite non-descendant of S if T is a non-descendant of S in every equivalent DAG,
• a possible descendant of S if T is neither a definite descendant nor a definite non-descendant

of S.

To achieve counterfactual fairness in MPDAGs, we need to select the definite non-descendants and
some possible descendants of the sensitive attributes that could be non-descendants in the true DAG
to make prediction. This comes to the core challenge: the identifiability of the ancestral relation
between two distinct variables in an MPDAG. We refer the interested readers to a summary of existing
identifiability results in Appendix G.

In this paper, we assume no selection bias and presence of confounders because the causal discovery
algorithms themselves will not work well in such challenging scenarios. Under this assumption,
which can also be found in the most related work [4, 7, 59, 68], but removing the assumption on a fully
directed causal DAG, we make the following main contributions towards achieving counterfactual
fairness on MPDAGs:

• We provide a sufficient and necessary graphical criterion (Theorem 4.5) to check whether a
variable is a definite descendant of another variable on an MPDAG;

• Based on the proposed criterion, we give an efficient algorithm (Algorithm 2) to identify
ancestral relations between any two variables on an MPDAG;

• We propose the first approach for achieving counterfactual fairness on partially known
causal graphs, specifically MPDAGs;

• We find that on an MPDAG, counterfactual fairness can be achieved as if the true causal
graph is fully known with the assumption that the sensitive attributes can not have ancestors
in the causal graph.

2CPDAG is a special case of MPDAG without background knowledge, so we deal with MPDAG generally.

2



2 Background

In this section, we first review the structural causal model, causal graph and counterfactual inference.
Then we introduce counterfactual fairness criterion and its intuitive implications.

2.1 Structural causal model, causal graph, and counterfactual inference

Structural causal model (SCM) [40] is a framework to model causal relations between variables. It is
defined by a triple (U, V, F ), where V are observable endogenous variables and U are unobserved
exogenous variables that cannot be caused by any variable in V . F is a set of functions f1, ..., fn, one
for each Vi " V expressing how Vi is dependant on its direct causes: Vi = fi(pai, Ui), where pai is
the observed direct causes of Vi and Ui is the set of unobserved direct causes of Vi. The exogenous
Uis are required to be jointly independent. The set of equations F induces a causal graph D over
the variables, usually in the form of a directed acyclic graph (DAG), where the directed causes of Vi
represents its parent set in the causal graph.

Based on SCM, one can perform counterfactual inference to answer the problems in the counterfactual
world. For example, consider in a fairness context, A, Y and X represent the sensitive attributes,
outcome of interest, and other observable attributes, respectively. For an individual U = u with
A = a, Y = y and X = x, a common counterfactual query is: “For this individual u, what would
the value of Y have been had A taken value a

¨”. The solution, denoted as YA⇥a¨(u) can be obtained
by three steps in the deterministic case: Abduction, Action and Prediction [40, Chapter 7.1]. In
probabilistic counterfactual inference, the procedure can be modified to estimate the posterior of u
and the distribution of YA⇥a¨(u).

DAGs, PDAGs and CPDAGs. In a directed acyclic graph (DAG), all edges are directed and there
is no directed cycle in the graph; when some edges are undirected, we say it is a partially directed
graph (PDAG). A DAG encodes a set of conditional independence relations based on the notion
d-seperation [38]. Multiple DAGs are Markov equivalent if they encode the same set of conditional
independence relations. A Markov equivalence class of a DAG D can be uniquely represented by a
completed partially directed acyclic graph (CPDAG) Gò, denoted by [Gò].
MPDAGs. The CPDAGs with background knowledge constraint is known as maximally oriented
PDAGs (MPDAGs) [34], which can be obtained by applying Meek’s rules R1, R2, R3 and R4 in
[34]. The Algorithm 1 in [42] can be used to construct the MPDAG G from the CPDAG Gò and
backgroud knowledge B, where the background knowledge B is assumed to be the direct causal
information in the form X � Y , meaning that X is a direct cause of Y . The subset of Markov
equivalent DAGs consistent with the background knowledge B can be uniquely represented by an
MPDAG G, denoted by [G]. Both a DAG and a CPDAG can be regarded as special cases of an
MPDAG when the background knowledge is completely known and not known, respectively.

2.2 Counterfactual fairness

Counterfactual fairness [29] is a fairness criterion based on SCM [40]. Let A, Y and X represent
the sensitive attributes, outcome of interest and other observable attributes, respectively and the
prediction of Y is denoted by Ŷ . For an individual with X = x and A = a, we say the prediction Ŷ

is counterfactually fair if it would have been the same had A been a
¨ in the counterfactual world as in

the real world that A is a.
Definition 2.1 (Counterfactual fairness). [29, Definition 5] We say the prediction Ŷ is counterfactu-
ally fair if under any context X = x and A = a,

P (ŶA⇥a(U) = y∂X = x, A = a) = P (ŶA⇥a¨(U) = y∂X = x, A = a),
for all y and any value a

¨ attainable by A.

The definition of counterfactual fairness immediately suggests the following approach in Lemma 2.2
to design a counterfactually fair model.

Lemma 2.2. [29, Lemma 1] Let G be the causal graph of the given model (U, V, F ). Then Ŷ will be
counterfactually fair if it is a function of the non-descendants of A.
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3 Problem formulation

In this section, we introduce the task of achieving counterfactual fairness given PDAGs, especially
MPDAGs that can be learned from observational data using causal discovery algorithms [5, 9, 53].

Lemma 2.2 in Section 2.2 implies learning a counterfactually fair prediction can be framed as selecting
the non-descendants of A to predict Y . If a causal DAG is used to encode the causal relations of all
attributes, finding all non-descendants of A is straightforward. However, as mentioned in Section 1,
given observational data and optional background knowledge about direct causal information, we
can only learn a CPDAG or an MPDAG G, instead of the true DAG D " [G]. Unfortunately, not all
ancestral relations between A and attributes in X are identifiable in a CPDAG or MPDAG.

Therefore, to achieve counterfactually fair prediction, we have two problems to solve:

• Identify the type of ancestral relations of any other attributes with A in G, i.e., identifying
the definite non-descendants, definite descendants, and possible descendants of A in an
MPDAG (Section 4);

• Build a counterfactually fair model based on the identified ancestral relations (Section 5).

4 Identifiability of ancestral relations in MPDAGs

In this section, we give a sufficient and necessary graphical criterion on identifying the definite
ancestral relations between two distinct vertices in an MPDAG. We also provide an efficient algorithm
for implementing the proposed criterion. We denote the parents, children, siblings and adjacencies of
the node W in a graph G as pa(W,G), ch(W,G), sib(W,G) and adj(W,G), respectively. A chord
of a path in G is any edge joining two non-consecutive vertices on the path. A path without any chord
is called chordless path. In a graph G = (V,E), where V and E represent the node set and edge set
in G, the induced subgraph of G over V ¨ L V is the graph with vertex V

¨ and edges between vertices
in V

¨, that is E ¨ L E. A graph is complete if any two distinct vertices are adjacent.

4.1 Graphical criterion on identifying ancestral relations in MPDAGs

We first introduce the term b-possibly causal path [42] in MPDAGs where the prefix b- stands for
background.
Definition 4.1 (b-possibly causal path, b-non-causal path). [42, Definition 3.1] Suppose p = ÖS =
V0, ..., Vk = T ã is a path from S to T in an MPDAG G, p is b-possibly causal in G if and only if no
edge Vi ⇥ Vj , 0 & i & j & k is in G, including the edge not on p. Otherwise, p is a b-non-causal
path in G.

Perković et al. [42] state that T is a definite non-descendant of S in an MPDAG G if and only if there
is no b-possibly causal path from S to T in G. In this section, to identify whether T is a definite
descendant of S in an MPDAG, we provide a sufficient and necessary condition.

We introduce the term critical set [15] in CPDAGs as follows.
Definition 4.2 (Critical Set). [15, Definition 2] Let G be an CPDAG, S and T be two distinct vertices
in G. The critical set of S with respect to T in G consists of all adjacent vertices of S lying on at least
one chordless possibly causal path from S to T .

Definition 4.2 can be extended to MPDAGs directly, based on which, we provide a sufficient and
necessary graphical condition in Lemma 4.3 for identifying the definite ancestral relation between
two distinct vertices in an MPDAG.
Lemma 4.3. Let G be an MPDAG and S, T be two distinct vertices in G, then T is a definite
descendant of S in G if and only if the critical set of S with respect to T always contains a child of S
in every DAG D " [G].
The proof of Lemma 4.3 is in Appendix B.1. Note that we have to enumerate all Markov equivalent
DAGs for checking the condition given in Lemma 4.3. To resolve this problem, we provide a
condition in Lemma 4.4 to check the graphical characteristic of the corresponding critical set in the
MPDAG directly. The graphical criterion in Lemma 4.4 has been proved by [16, Lemma 2] and [3,
Lemma 1] for CPDAGs. We extend it to general MPDAGs here.
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Lemma 4.4. Let G be an MPDAG and S, T be two distinct vertices in G. Denote by C the critical set
of S with respect to T in G, then C = ch(S,D) = o for some DAG D " [G], if and only if C = o,
or C induces a complete subgraph of G but C = ch(S,G) = o.

The proof of Lemma 4.4 is in Appendix B.2. Building on Lemma 4.3 and Lemma 4.4, we arrived at
the desired sufficient and necessary graphical criterion in Theorem 4.5.

Theorem 4.5. Let S and T be two distinct vertices in an MPDAG G, and C be the critical set of S
with respect to T in G. Then T is a definite descendant of S if and only if either S has a definite arrow
into C, that is C = ch(S,G) j o, or S does not have a definite arrow into C but C is non-empty
and induces an incomplete subgraph of G.

With Theorem 4.5, we can identify whether T is a definite descendant of S in an MPDAG by
finding all chordless b-possibly causal path from S to T and checking graphical characteristic of the
corresponding critical set. We provide an example to illustrate Theorem 4.5 in Appendix C.

4.2 Algorithms

Here we provide an efficient algorithm to identify the ancestral relation between any two distinct
vertices in an MPDAG based on the theoretical results in Theorem 4.5. It is straightforward to identify
the non-ancestral relation by checking if there exists a b-possibly causal path from the source to the
target. However, discriminating between a definite ancestral relation and a possible ancestral relation
in an MPDAG by Theorem 4.5 requires finding the critical set.

According to the definition of the critical set, we need to find all chordless possibly causal paths from
the source variable to the target variable first. However, it is cumbersome to check whether a path is
chordless, since it involves considering many edges not on the path. In Proposition 4.7 we propose a
more efficient way to find critical sets by leveraging the relation between chordless path and definite
status path in Lemma 4.6. We first provide the notion of collider and definite status path.

Colliders and Definite Status paths. In a path p = ÖS = V0, ..., Vk = T ã, if Vi�1 � Vi and
Vi ⇥ Vi+1, then we say Vi is a collider on p. If Vi�1 and Vi+1 are not adjacent, then the tripleÖVi�1, Vi, Vi+1ã is called a v-structure collided on Vi, and Vi can be called unshielded collider.
A node Vi is a definite non-collider on a path p if there is at least one edge out of Vi on p or
Vi�1 � Vi � Vi+1 is a subpath of p and Vi�1 is not adjacent with Vi+1. A node is of definite status
on a path if it is a collider, a definite non-collider or an endpoint on the path. A path p is of definite
status if every node on p is of definite status.

Lemma 4.6. Let S and T be two distinct vertices in an MPDAG G. If p is a chordless path from S to
T in G, then p is of definite status.

Proposition 4.7. Let G be an MPDAG, S and T be two distinct vertices in G. Denote by CST the
critical set of S with respect to T in G, then CST = FST , where FST denotes all adjacent vertices
of S lying on at least one b-possibly causal path of definite status from S to T in G that there is no
chord with S as an endpoint.

Proposition 4.7 implies that, instead of enumerating all chordless possibly causal path from the source
vertex to the target vertex, we enumerate b-possibly causal paths of definite status, excluding paths
that contain any chord where the source vertex is an end node. The nodes adjacent to the source
vertex on these paths constitute the desired critical set.

The proof of Lemma 4.6 and Proposition 4.7 are in Appendix B.4 and Appendix B.5, respectively.

Following from Proposition 4.7, we develop Algorithm 1 showing how to efficiently find the critical
set of S w.r.t. T in an MPDAG G. Given an MPDAG G, the source vertex S and the target vertex
T , the output of Algorithm 1 is the critical set of S w.r.t. T in G. Using the breadth-first-search
algorithm, Algorithm 1 searches b-possibly causal path of definite status without any chord ending in
S from S to T . A detailed explanation of this algorithm is provided in Appendix D.

Finally, we present Algorithm 2 to identify the type of ancestral relation. We first find the critical
set C of S with respect to T . When C = o, there is no b-possibly causal path from S to T , so T

is a definite non-descendant of S. When C j o, using Theorem 4.5, we can decide whether T is a
definite descendant or a possible descendant of S.
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Algorithm 1 Finding the critical set of S with respect to T in an MPDAG
1: Input: MPDAG G, two distinct vertices S and T in G.
2: Output: The critical set C of S with respect to T in G.
3: Initialize C = o, a waiting queue Q = [], and a set H = o,
4: for ↵ " sib(S) < ch(S) do
5: add (↵, S,↵) to the end of Q,
6: while Q j o do
7: take the first element (↵,�, ⌧) out of Q and add it to H;
8: if ⌧ = T then
9: add ↵ to C, and remove from S all triples where the first element is ↵;

10: else
11: for each node � in G do
12: if ⌧ � � or ⌧ � � then
13: if ⌧ � � or � is not adjacent with � or ⌧ is the endnode then
14: if � and S are not adjacent then
15: if (↵, ⌧,�) ä H and (↵, ⌧,�) ä Q then
16: add (↵, ⌧,�) to the end of Q,
17: return C

Algorithm 2 Identify the type of ancestral relation of S with respect to T in an MPDAG
1: Input: MPDAG G, two distinct variables S and T in G.
2: Output: The type of ancestral relation between S and T .
3: Find the critical set C of S with respect to T in G by Algorithm 1.
4: if ∂C∂ = 0 then
5: return T is a definite non-descendant of S.
6: if S has an arrow into C or C induces an incomplete subgraph of G then
7: return T is a definite descendant of S.
8: return T is a possible descendant of S.

Since in Algorithm 1, the same triple like (↵,�, ⌧) can only be visited at most once, where ↵ is
a sibling or a child of S in the MPDAG G, ⌧ is a node on a b-possibly causal path of definite
status from S to T without any chord ending in S, and � lies immediately before ⌧ on such path.
The complexity of Algorithm 1 in the worst case is O(∂sib(S,G) + ch(S,G)∂ ò ∂E(G)∂), where∂E(G)∂ is the number of edges in G. Consequently, the computational complexity of Algorithm 2 is
O(∂sib(S,G) + ch(S,G)∂ ò ∂E(G)∂).

5 Counterfactual fairness in MPDAGs

Now, we return to our problem of learning counterfactually fair models via selecting features from
X . We will consider two cases: 1) a general MPDAG and 2) an MPDAG learned with background
knowledge that A is a root node.

5.1 General case

We can identify the set of definite descendants, possible descendants and definite non-descendants of
the sensitive attribute by simply applying Algorithm 2 to each pair of sensitive and any other attribute,
which is concluded in Algorithm 4. The detailed description of Algorithm 4 is provided in Appendix E.
As the computational complexity of Algorithm 2 in the worst case is O(∂sib(S,G) + ch(S,G)∂ ò∂E(G)∂), the complexity of Algorithm 4 is directly O(∂sib(S,G)+ ch(S,G)∂ ò ∂E(G)∂ ò ∂V (G)∂),
where ∂E(G)∂ is the number of edges and ∂V (G)∂ is the number of nodes in G. We consider two
feature selection methods. The first method (called Fair) only selects the definite non-descendants,
which ensures counterfactual fairness. However, the number of definite non-descendants in an
MPDAG might be too small, resulting in low prediction accuracy. Therefore, we also propose a
second method (called FairRelax),which uses possible descendants of A to increase the prediction
accuracy at the cost of a violation of counterfactual fairness.
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5.2 Under root node assumption

Kusner et al. [29, Section 3.2] mentioned the ancestral closure of sensitive attributes, meaning that
typically we should expect the sensitive attribute set A to be closed under ancestral relationships given
by the causal graph. For instance, in the example that religion can be affected by the geographical
place of origin, if religion is a sensitive attribute and geographical place of origin is a parent of
religion, then it should also be in A. Therefore, A will be the root node in most cases except some
counterintuitive scenarios. Thus, we consider the following assumption, which is often true in
real-world datasets.
Assumption 5.1. The sensitive attribute can only be a root node in a causal MPDAG.

For example, ‘sex’ cannot be caused by factors like ‘education’ and ‘salary’. In an MPDAG G, given
Assumption 5.1, the ancestral relation between the sensitive attribute and any other attribute is fully
identified, as shown in the following proposition.
Proposition 5.2. In a MPDAG G with sensitive attribute A, if Assumption 5.1 holds, then any other
attribute is either a definite descendant or definite non-descendant of A. Moreover, an arbitrary
attribute W is a definite descendant of A if and only if there is a causal path from A to W in G.

The proof of Proposition 5.2 is in Appendix B.6. From Proposition 5.2, it is very interesting to see
that fitting a model with the definite non-descendants of A in G is exactly the same thing as fitting a
model with the non-descendants of A in the true DAG D. Thus, the counterfactual fairness can be
achieved as if the true causal DAG is fully known.

Under Assumption 5.1, since there is a causal path from A to any definite descendant of A, we can
directly identify whether a target attribute is a descendants of A by checking if there is a causal path
from A to the target. To find all definite descendants in an MPDAG, we can use a breath first search
algorithm with computational complexity O(∂V ∂+ ∂E∂), where ∂V ∂ is the number of nodes and ∂E∂
is the number of edges in G. Then the remaining nodes are definite non-descendants of A in G.

6 Experiment

In this section, we illustrate our approach on a simulated and a real-world dataset by evaluating the
prediction performance and fairness of our approach. The prediction performance is evaluated by root
mean squared error (RMSE). The counterfactual unfairness can be measured by the discrepancy of
the predictions in the real world and counterfactual world for each individual. In addition, unfairness
can also be revealed by comparing the distributions of the predictions in two worlds, which coincide
if the prediction is counterfactually fair.

Baselines. We consider three baselines: 1) Full is a standard model that uses all attributes, including
the sensitive attributes to make predictions, 2) Unaware is a model that uses all attributes except the
sensitive attributes to make predictions, and 3) Oracle is a model that makes predictions with all
attributes that are non-descendants of the sensitive attribute given the groundtruth DAG. As mentioned
in Section 5, our proposed methods include FairRelax, which makes predictions using all definite
non-descendants and possible descendants of the sensitive attribute in an MPDAG, and Fair, which
makes predictions using all definite non-descendants of the sensitive attribute in an MPDAG.

6.1 Synthetic data

The synthetic data is generated from linear structural equation models according to a random DAG.
As the simulated DAG is known, we obtain the CPDAG from the true DAG without running the causal
discovery algorithms.3 We also add background knowledge to turn a CPDAG into its corresponding
MDPAG.

We first randomly generate DAGs with d nodes and 2d directed edges from the graphical model
Erdős-Rényi (ER), where d is chosen from {10, 20, 30, 40}. For each setting, we generate 100
DAGs. For each DAG D, two nodes are randomly chosen as the outcome and the sensitive attribute,
respectively. The sensitive attribute can have two or three values, drawn from a Binomial([0,1]) or

3Given a sufficiently large sample size, current causal discovery algorithms can recover the CPDAG with
high accuracy on the simulated data [20].
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Multinomial([0,1,2]) distribution separately. The weight, �ij , of each directed edges Xi � Xj in the
generated DAG, is drawn from a Uniform([�2,�0.5]< [0.5, 2]) distribution. The data are generated
according to the following linear structural equation model:

Xi = =
Xj"pa(Xi)

�ijXj + ✏i, i = 1, ..., n, (1)

where ✏1, ..., ✏n are independent N(0, 1.5). Then we generate one sample with size 1000 for each
DAG. The proportion of training and test data is splitted as 0.8 ⇥ 0.2. Once the CPDAG Gò is
obtained, where D " [Gò], we randomly generate the direct causal information A � B as the
background knowledge from the edges where A � B is in DAG D, while A �B is in CPDAG Gò.
We show a randomly generated DAG D, the corresponding CPDAG Gò and MPDAG G as in Figure 8,
see Appendix F.1. For additional experiments based on more complicated structural equations and
varying amount of possible background knowledge, please refer to Appendix F.4 and Appendix F.5.
We also analyze the model robustness experimentally on causal discovery algorithms in Appendix F.6.

Counterfactual fairness. According to the predefined linear causal model, we first generate the
counterfactual data given counterfactual sensitive attributes. For each individual, the noise of any
counterfactual feature is the same as that in the observational data. In order to evaluate the counterfac-
tual fairness of the baseline methods, we sample data from both the original and counterfactual data
and fit them with all the models. Here, unfairness can be measured by the absolute difference of two
predictions, ŶA⇥a(u) and ŶA⇥a¨(u). The results for each model with different graph settings are
shown in Table 1 and Figure 1a. Obviously, Oracle and Fair is counterfactually fair, since they do
not use any feature that is causally dependant on the sensitive attribute. Full and Unaware have high
counterfactual unfairness, while our FairRelax has very low counterfactual unfairness. Additionally,
when the model is counterfactually fair, the distributions of the predictions in two worlds should
lie on top of each other, as in the Oracle and Fair models. Although counterfactual unfairness is
exhibited in the other three models, FairRelax is closer to strictly counterfactually fair methods. An
exemplary density plot of the predictions of all the models in one original and counterfactual dataset
is shown in Figure 2.

Table 1: Average unfairness and RMSE for synthetic datasets on held-out test set. For each graph
setting, the unfairness gets decreasing from left to right and the RMSE gets increasing from left to
right.

Node Edge Full Unaware FairRelax Oracle Fair

U
nf

ai
rn

es
s 10 20 0.288 ± 0.363 0.200 ± 0.322 0.023 ± 0.123 0.000 ± 0.000 0.000 ± 0.000

20 40 0.203 ± 0.341 0.165 ± 0.312 0.019 ± 0.145 0.000 ± 0.000 0.000 ± 0.000
30 60 0.155 ± 0.304 0.143 ± 0.312 0.020 ± 0.123 0.000 ± 0.000 0.000 ± 0.000
40 80 0.095 ± 0.189 0.075 ± 0.182 0.009 ± 0.055 0.000 ± 0.000 0.000 ± 0.000

R
M

SE

10 20 0.621 ± 0.251 0.637 ± 0.261 1.031 ± 0.751 1.065 ± 0.751 1.137 ± 0.824
20 40 0.595 ± 0.255 0.599 ± 0.253 0.818 ± 0.488 0.847 ± 0.55 0.952 ± 0.645
30 60 0.597 ± 0.24 0.601 ± 0.242 0.797 ± 0.489 0.849 ± 0.644 1.024 ± 0.908
40 80 0.600 ± 0.273 0.601 ± 0.272 0.755 ± 0.441 0.766 ± 0.452 0.800 ± 0.480

Accuracy. For each graph setting, we report average RMSE achieved on 100 causal graphs by fitting
a linear regression model for the baselines and our proposed models in Table 1 and Figure 1b. We can
observe that, for each graph setting, the Full model obtains the lowest RMSE, which is not surprising
as it uses all features. In addition, our FairRelax methods obtains better accuracy than the strictly
counterfactually fair methods Fair and Oracle, which is consistent with the accuracy-fairness
trade-off phenomenon. More discussion on accuracy-fairness trade-off is included in Appendix H.

6.2 Real data

The UCI Student Performance Data Set [10] regarding students performance in Mathematics is used
in this experiment. The data attributes include student grade in secondary education, demographic,
social, and school related features. It contains 395 students records with 32 attributes. We regard
sex as the sensitive attribute in this dataset. Besides, we remove the first, second and final period
grade, denoted by G1,G2, and G3 in the dataset and generate the value of target attribute Grade as
the average of G1,G2, and G3.
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Figure 1: Average unfairness and RMSE for synthetic datasets on held-out test set. For each graph
setting, the unfairness gets decreasing from left to right, while RMSE has the opposite trend. The
extreme unfairness and high RMSE is because almost all attributes are descendants of the sensitive
attribute in around 10/100 randomly generated graphs. This also explains why the standard deviation
of unfairness for the model Full, Unware, FairRelax and RMSE for FairRelax, Oracle and
Fair is that large in Table 1.
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Figure 2: Density plot of the predicted YA⇥a(u) and YA⇥a¨(u) in synthetic data.

In this section, we first learn the corresponding CPDAG from this dataset leveraging the GES structure
learning algorithm [5], which is implemented by a general causal discovery software - TETRAD [45].
After uploading the preprocessed data, we can learn the CPDAG Gò. The evolution of the CPDAG to
MPDAG is shown in Appendix F.2.

Our experiments are carried out under the root node assumption on the MPDAG G in Figure 9c, as
sex cannot be caused by other variables in the dataset. Due to the space limit, Figure 9c is provided
in Appendix F.2. Thus, the ancestral relations can be fully identified according to our theoretical
results in Section 5.2. Our algorithm will find all the non-descendants of the sensitive attribute. On
this dataset, the definite descendants of sex can be identified as {Walc, goout, Dalc, studytime} and all
the other nodes are definite non-descendants of sex.

The counterfactual fairness and accuracy are measured in almost the same way as in Section 6.1. The
details on counterfactual data generation and model fitting can be referred to Appendix F.3. The
results are reported in Table 2. Since under the root node assumption, there is no possible descendants
of the sensitive attribute, the model Fair and FairRelax give the same RMSE result and both of
them achieve counterfactual fairness at the cost of slight accuracy decrease. Instead, the model Full
and Unaware are unfair and the Full model is more unfair than Unaware. Besides, the distribution
of predictions for the original and counterfactual data for all models have the same trend as the
synthetic data. Figure 3 is the corresponding density plot.

7 Conclusion and discussion

In this paper, we have developed a general approach to achieve counterfactual fairness when the
true causal graph is unknown. In order to select features that lead to counterfactual fairness, we
propose a sufficient and necessary condition and an efficient algorithm to identify the ancestral
relations between any distinct vertices on an MPDAG, which may be applied to more applications.
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Table 2: Average RMSE and unfairness for Student dataset on held-out test sets.
Full Unaware FairRelax Fair

Unfairness 0.761 ± 0.228 0.250 ± 0.085 0.000 ± 0.000 0.000 ± 0.000
RMSE 3.49 ± 0.292 3.482 ± 0.297 3.509 ± 0.356 3.509 ± 0.356
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Figure 3: Density plot of the predicted Gradesex⇥a(u) and Gradesex⇥a¨(u) for Student dataset.

Furthermore, an intriguing finding is that, under the assumption that the sensitive attribute can only
be a root node in the graph, there is no possible descendant of the sensitive attribute, so that the fair
features can be selected correctly whatever the true DAG is. Experiments on synthetic and real-world
dataset show the effectiveness of our method.

One may claim that the fair prediction could be a function of the descendants of the sensitive
attributes by balancing the observables, thus making the effect of the sensitive attribute canceled
out. We agree with this opinion. However, it concerns the structural equations, which are in general
unfalsifiable even if interventional data for all variables is available. In this paper, we do not address
the assumptions on structural equations for achieving counterfactual fairness on MPDAGs. As a first
step to obtaining a counterfactual fair predictor on an MPDAG, we focus on utilising the property
of the causal graph (Level 1 in [29]) — making prediction with the definite non-descendants (and
possible descendants) of the sensitive attribute. But our work can also be extended to the case where
“cancel out“ could happen on an MPDAG. One possible idea is to learn latent variables by specifying
the structural equations (or more relaxed, conditional distributions). However, due to the fact that an
MPDAG represents a set of DAGs with different conditional distributions components and thus enjoy
different latent space, the intuitive way to enumerate all DAGs is unrealistic. Addressing such issue
on an MPDAG is an interesting future direction.

Following prior work on establishing counterfactual fairness [4, 7, 59, 68], we assumed no selection
bias and the presence of confounders throughout this paper. Yet, another fundamental assumption
in these earlier studies in causal modelling is that the causal graph is known, which offers a new
chance for the bias induced by misspecifying the causal DAG. Our work gives the first method to
achieve counterfactual fairness without requiring the causal DAG to be specified. In the presence
of selection bias and confounders on a causal DAG, a counterfactual fairness measure degenerates
to demographic parity, which is discussed extensively by Fawkes et al. [17]. In this situation, it
is considerably more difficult to provide a clear causal interpretation without specifying the causal
DAG. This gives rise to an exciting topic to research in future work. Exploring causal discovery
algorithms to find the ground-truth causal graph in the presence of selection bias and confounders
and then achieving counterfactual fairness on partially ancestral graphs [46, 63], which would be
significantly more difficult, is another possible future direction.
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