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Abstract

We give efficient “collaboration protocols” through which two parties, who observe
different features about the same instances, can interact to arrive at predictions that
are more accurate than either could have obtained on their own. The parties only
need to iteratively share and update their own label predictions—without either
party ever having to share the actual features that they observe. Our protocols are
efficient reductions to the problem of learning on each party’s feature space alone,
and so can be used even in settings in which each party’s feature space is illegible
to the other—which arises in models of human/Al interaction and in multi-modal
learning. The communication requirements of our protocols are independent of
the dimensionality of the data. In an online adversarial setting we show how to
give regret bounds on the predictions that the parties arrive at with respect to a
class of benchmark policies defined on the joint feature space of the two parties,
despite the fact that neither party has access to this joint feature space. We also give
simpler algorithms for the same task in the “batch” setting in which we assume
that there is a fixed but unknown data distribution. We generalize our protocols
to a decision theoretic setting with high dimensional outcome spaces—the parties
in this setting do not need to communicate their (high dimensional) predictions
about the outcome, but can instead communicate only “best response actions” with
respect to a known utility function and their predicted outcome distribution.

Our theorems give a computationally and statistically tractable generalization of
past work on information aggregation amongst Bayesians who share a common and
correct prior, as part of a literature studying “agreement” in the style of Aumann’s
agreement theorem. Our results require no knowledge of (or even the existence of)
a prior distribution and are computationally efficient. Nevertheless we show how
to lift our theorems back to this classical Bayesian setting, and in doing so, give
new information aggregation theorems for Bayesian agreement. In particular we
give the first distribution-agnostic information aggregation theorems that do not
require making assumptions on the prior distribution, but instead are able to give
worst-case accuracy guarantees with respect to restricted classes of functions on
the parties’ joint feature spaces.

1 Introduction

Imagine that there are multiple parties who hold different kinds of information about the same
examples, and would like to collaboratively learn an optimal label predictor on their joint feature
space. The straightforward solution would be for them to pool their features and attempt to train
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an optimal predictor on the data containing the pooled features. But there are settings in which this
approach is infeasible. For example, the features legible to one party might not be legible to another.
This is the case in e.g. models of human/Al interaction in which one of the parties is a human being
and another is a predictive model [[Alur et al., 2024, Collina et al., 2025]]. In this case the human being
is in possession of qualitative features that are difficult to encode for a model (in a medical application,
e.g. observations about patient demeanor, mood, smell, etc. that are difficult to formalize) and the
model in turn has been trained on enormous amounts of data that cannot be easily used by the human
being. In other settings, directly sharing the data might be impossible because of legal or contractual
obligations, which is the case in regulated industries like healthcare. This setting motivates the field
of “vertically federated learning” [Wei et al,2022]. It may also be that the data itself is very high
dimensional, and communication bandwidth constraints preclude sharing it in its entirety — which
motivates the study of the communication complexity of distributed learning [Balcan et al.,2012].
Finally, the technical expertise to train on different kinds of features might be siloed: for example,
the data held by different parties might be multi-modal; one party might hold image data (e.g. CT
scans) while another might hold text data (e.g. physician notes). Each party might have the tooling
necessary to learn on data in their own modality, but none may have the tooling to be easily able to
learn on all of the data together.

Aumann’s agreement theorem suggests a tempting general (if stylized) solution to these problems:
it states that two perfectly informed Bayesians with a common prior, different observations, and
common knowledge of each other’s posteriors must share the same posterior [Aumann, [1976].
Subsequent work has given finite-time convergence protocols through which the different parties
engage in a conversation about their beliefs about the outcome [[Geanakoplos and Polemarchakis,
1982, |Aaronson| 2005]] without ever sharing their observations. In particular,|Aaronson|[2005] showed
that for 1-dimensional real-valued outcomes, two Bayesian will reach approximate agreement quickly
— in a number of rounds that depends only (polynomially) on the error parameters characterizing
“approximate” agreement, independently of the dimensionality or complexity of the prior distribution.
Agreement on its own does not in general solve the collaborative learning problem — it has been
known since |Geanakoplos and Polemarchakis| [1982] that agreement does not imply information
aggregatiorﬂ In other words, although two Bayesians engaging in an agreement protocol can only
improve the accuracy of their beliefs, they may agree on beliefs that are less accurate than those
they would have arrived at had they instead shared their information and formed a posterior belief
conditional on their joint observations. Nevertheless [Kong and Schoenebeck|[2023] and |[Frongillo
et al. [2023]] have studied conditions (on the prior distribution) under which agreement does imply
full information aggregation — i.e. optimal learning on the joint feature space. Unfortunately,
since it studies perfectly informed Bayesians, this literature makes implausible computational and
epistemic assumptions (Why do the two parties share the same, perfect prior knowledge? How do
they perform Bayes updates in complex settings?) which makes these approaches seemingly far
from algorithmic solutions. Recently, (Collina et al.|[2025]] showed how to recover and generalize
quantitative agreement theorems without making any distributional assumptions (i.e. in online
adversarial settings) using only computationally and statistically tractable calibration conditions that
substantially relax Bayesian rationality. But the work of |Collina et al.| [2025]] says nothing about
information aggregation, and so does not provide a solution to the collaborative learning problem.

In this paper we generalize the connection between agreement and information aggregation and give
computationally efficient protocols that provably result in information aggregation after only a small
number of rounds of communication, that need not make any distributional assumptions at all. In our
model, different parties hold different (possibly overlapping) features of the same examples, and may
interact over a small number of rounds to share (only) their label predictions, computed from their
own features, with each other. Because they hold different information from each other, different
parties will likely initially make different predictions about the same example. Nevertheless, during
the interaction, they may update their predictions in response to the predictions of their counterparty
in the collaboration protocol. We would like them to converge on predictions that are more accurate
than any single party could have obtained on their own — and ideally predictions that are optimal with
respect to some benchmark class of predictors that are defined on their joint feature space, despite the
fact that every participant in the protocol only has access to their own feature space. Because the

!Consider a joint distribution on bits x 4, 23, and y that are all marginally uniform, but such that y = x4+ p
mod 2. If Alice is in possession of z 4 and Bob is in possession of z i they will agree that Ply = 1] = %, even
though they would know y with certainty if they shared their data with each other.



parties only need to communicate their label predictions (to bounded precision) at each round, the
communication complexity of our protocol is independent of the dimensionality of the data.

We give two variants of our protocol: one for prediction in the online adversarial setting, in which we
make no distributional assumptions at all — and a simpler protocol for the batch setting, in which
data is assumed to be drawn i.i.d. from a fixed but unknown and arbitrary distribution. In both cases
we guarantee that the collaboration protocol is accuracy-improving, and give conditions under which
the predictions are provably optimal with respect to a benchmark class of models defined on the
pooled features. These conditions are frequentist “weak-learning” assumptions that substantially
generalize the “information substitutes” condition on prior distributions used by |Frongillo et al.
[2023]] in Bayesian settings. Moreover our protocols are computationally efficient to run in the sense
that they are computationally efficient reductions from the problem of multi-party learning to the
problem of single-party learning, and therefore efficient in the worst case whenever the single-party
learning problem can be efficiently solved. Each party only needs to run their own learning algorithm,
tailored to data from their own modality, on their own data a bounded number of times in order to
engage in the protocol.

Finally, we show that all of our results “lift” back to the Bayesian setting of |[Aumann| [[1976],
Aaronson|[2005], [Frongillo et al.|[2023]], resulting in new theorems about agreement and information
aggregation in the classical setting in which examples are assumed to be drawn from a fixed and
known prior, and a conversation between two perfect Bayesians occurs for a single draw from this
prior. Among other things, we show that Bayesian agreement implies accuracy at least that of the
best linear function on the joint feature space of the two parties, independently of any assumptions on
the prior distribution — the first such distribution-independent information aggregation theorem we
are aware of in the agreement literature.

1.1 Our Model and Results

We begin by describing our results in the online-adversarial setting, when our goal is to solve a
one-dimensional regression problem; we then describe extensions to more complex prediction tasks
and to simpler algorithms in the batch setting. Finally we describe how our results “lift” to one-shot
interactions if both parties are perfect Bayesians and share a common and correct prior — the
traditional setting for Aumann’s agreement theorem [[Aumannl [1976].

There is a feature space X' = A’y x X' partitioned into parts X'y and A5 which may each be arbitrary,
as well as a label space ) that initially we take to be ) = [0, 1]. At each day ¢, an arbitrary adaptive
adversarial process chooses an example ! = (2%, z%;) € X and a label y* € ). Party 1 (Alice)
receives x!; and Party 2 (Bob) receives x’;. Each day, Alice and Bob then engage in a “collaboration
protocol” which is an interaction that takes place across K rounds. In odd rounds k&, Alice produces a
prediction §%* € ) that may be a function of x%; as well as all previously observed history (including
Bob’s predictions at previous rounds on the same day). Similarly, in even rounds &, Bob produces
a prediction §%* € ) that may be a function of x%; and all previously observed history. Crucially
Alice and Bob never share their feature vectors with one another—only label predictions. At the final
round K each day, they fix their final prediction ¢ = %€, at which point both Alice and Bob learn
the true label 3¢, and time proceeds to the next day.

Our goal in interaction is to arrive at a set of predictions 7!, ..., 7" that have squared error that is as
low as the best predictor in hindsight in some class of models H ; defined on the joint feature space
of Alice and Bob: i.e. each function h € H; has the form h : X — R and produces a prediction
h(za,zp) that is a function of the features available to both parties. For example, we might take # ;
to be the set of all norm-bounded linear functions on the joint feature space. In other words, we want
to be able to guarantee, against an arbitrary adversarial sequence:

Definition 1.1 (Predictions have No (External) Regret to H ;). The final predictions 4*, . ..7)" have
no (external) regret to H j if for every h € H ;:

T T
(h(=") —y')?
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t=1 t

The difficulty is that there may be no predictor defined over X4 or X'z individually that can obtain
this — collaborating to use information from both parties is essential. What each party can try to do
instead is to make predictions 7** during their own rounds of conversation that have no regret with



respect to classes of functions H 4 and H g that are respectively defined only on their own feature
spaces — i.e. each function hy € H 4 is defined as h4 : X4 — R and each function hp € Hp is
defined as hp : Xp — R. For example, H 4 and H g might be the set of unit-norm linear functions
defined only over X4 and X5 respectively. We take as an intermediate goal to produce a single
sequence of predictions at some round k € {1,..., K} that has no swap-regret with respect to H 4
and H p simultaneously.

Definition 1 2 (Swap Regret (Informal Version of Definition [A.5). A sequence of predzcttons
9&*. .. §T* has no swap regret with respect to a class H if for every value v € {g**, ... §T*}
and for every h € H:

Z ]l[gt’k — U}(Qt’k _ < };I’lelﬁ <Z ]1 ~t,k ’U ( t) _ yt)2>
t=1

Swap regret is a stronger condition than external regret — it requires that our predictions g%, be as
accurate as the best model h € H not just marginally, but conditionally on the value of our own
predictions. As an intermediate step towards our goal of obtaining predictions with no regret to # s,
we will hope to produce a single sequence of predictions that has no swap regret with respect to
classes H 4 and H p which are individually weaker than 7 ; (as they are defined only on X4 and
Xp respectively). To relate this condition to our ultimate goal, we define a weak learning condition
(related to the weak learning condition used to characterize the relationship between multicalibration
and boosting by |Globus-Harris et al.| [2023]]) that relates H 4, Hp and H ;.

Definition 1.3 (Weak Learning for Regression (Informal Version of Definition|B.1)). We say that H 4
and H g jointly satisfy the weak learning condition with respect to H j if for any joint distribution D
over X x )Y we have that if:

min Epl(hy() = )?) < Ep[(u(D) - y)’

Then there either exists h o € H 4 such that:

Ep[(ha(za) —y)*] < Ep[(u(D) —y)?]
or there exists hg € Hp such that:

Ep|(hp(zs) = y)?] < Ep[(1(D) - y)?]
where (D) = Eply] is the label mean over the distribution.

In other words, the weak learning condition requires that if there is any model in the joint class H ;
that obtains predictions with lower error than a constant predictor, there must be some model in either
Alice’s class H 4 or Bob’s class H g that also obtains lower error than a constant predictor. This is a
weak learning condition because the model in the joint class might obtain much better error than a
trivial constant predictor, but we only require that 7{ 4 or H p obtain slightly better than trivial error.

In Section [B] we prove a “boosting” theorem: if LA and H p satisfy the weak learning condition with
respect to H 7, and a sequence of predictions {'*, ..., 97°*} has no swap regret with respect to H 4
and H g, then it must in fact have no external regret with respect to the joint class H ;. In fact, we
show that a slightly weaker condition than swap regret suffices. It is enough that the sequence of
predictions has low distance to no-swap regret with respect to H 4 and Hp — i.e. that it is possible
to perturb the sequence of predictions by a small amount in the L; norm such that the perturbed
predictions have no swap regret. This is related to recently studied notions of “distance to calibration”
[Btasiok et al.| [2023| |Qiao and Zheng| 2024} |/Arunachaleswaran et al., 2025]], and will be easier for us
to satisfy. It then follows that any other sequence of predictions {3, ..., 47} that has lower squared
error than predictions {7"*, ... §7"*} must in turn have no (external) regret with respect to H .

Given classes H 4 and H p that satisfy our weak learning condition with respect to a class of models
‘H j defined on the joint feature space X', our problem is thus reduced to giving a collaboration
protocol that quickly converges to a sequence of predictions that simultaneously has no swap regret
to both H 4 and H . Towards this end, we ask that both Alice and Bob satisfy a condition that we
call “conversation swap regret” relative to H 4 and H g respectively.

Definition 1.4 (Conversation Swap Regret (Definition[A.7)). We say that Bob’s predictions have no
conversation swap regret with respect to Hp if for every even round of conversation k and for every



pair of values v € {gVF, ... 9TFY and v’ € {gtF=1 . gTRL):

T T
oA = o = ol (5~ ) < i (Z g+t = v = vl(ha") - yt>2>

t=1

If Alice satisfies a symmetric condition on odd rounds k with respect to H 4 we say that Alice has no
conversation swap regret with respect to H 4.

In other words, conversation swap regret requires that Alice and Bob satisfy the no swap regret
condition (with respect to their respective model classes H 4 and H ) not just marginally over the
whole sequence, but on each subsequence defined by the other party’s prediction at the previous
round of interaction. Whenever H 4 and H  contain all constant functions with range in [0, 1], having
no conversation swap regret implies satisfying the “conversation calibration” condition defined in
Collina et al.|[2025]].

In Section [C] we show that when both Alice and Bob make predictions with no conversation
swap regret with respect to H 4 and H p respectively, then if the collaboration protocol runs for
sufficiently many rounds K, there must exist some round k£ < K at which the sequence of predictions
{9V F, ..., 97°*} has low distance to swap regret with respect to both H o and H simultaneously.
Although this round £ may not be the final round K, we also show that the final set of predictions has
only lower squared error than the predictions made at any previous round k:

T

T
Z(gt,K _ yt)Q < Z(gt,k _ yt)Q
t=1

t=1

Thus, by applying our “boosting” theorem from Section[B] we can conclude that if # 4 and 7 g satisfy
the weak learning condition with respect to a joint class H ;, then the final sequence of predictions
{yl, R ng} has no (external) regret with respect to the joint class H ;.

It remains to ask: for which classes H 4 and H g do there exist efficient algorithms for satisfying
the no-conversation-swap regret condition, and are there examples of classes (H 4, Hp, H ) that
satisfy the weak learning condition? In Sections and we provide answers to these questions.
Garg et al.|[2024] gave an efficient reduction (in the style of |Blum and Mansour| [2007]) from the
problem of obtaining no swap regret with respect to an arbitrary class of functions H to the problem
of obtaining no external regret with respect to . We in turn give an efficient reduction from the
problem of obtaining no conversation swap regret with respect to an arbitrary class of functions H
to the problem of obtaining no swap regret with respect to 4. In combination, these results mean
that there are computationally efficient algorithms for engaging in our collaboration protocol for
any class of models H 4, H p that admit standard efficient online learning algorithms with regret
guarantees — and “oracle efficient” algorithms for any class of models for which there are online
learning algorithms with good (external) regret bounds, even if they are not computationally efficient
in the worst case. Because there exist computationally efficient algorithms for online adversarial
norm-bounded linear regression |Azoury and Warmuth| [2001]], Vovk! [2001]] and related problems
(e.g. squared error regression over reproducing kernel Hilbert spaces Vovk|[20006]), this immediately
implies efficient algorithms for obtaining no conversation swap regret with respect to classes H 4, Hp
representing norm-bounded linear functions over X4 and X'p respectively. Moreover, we show
in Section [B.1] that norm-bounded linear functions over X4 and X respectively satisfy the weak
learning condition with respect to norm-bounded linear functions on the joint feature space &X'. In
fact we show a more general theorem for any class of functions 7{ ; that can be represented as the
Minkowski sum of classes H 4 and H p that are themselves bounded and star-shaped. Moreover we
show (also in Section [B.T)) that the weak learning condition we prove is quantitatively tight for linear
functions.

All together, this means that we have a computationally and statistically efficient collaboration
protocol for learning predictors that are as accurate as the best linear function on the joint feature
space (and more general classes of functions).

Theorem 1.5 (Informal statement of Theorem|[C.7). Fix any triple of hypothesis classes Ha, Hp,
and H ;. Suppose H 4 and Hp consist of functions with bounded range and admit efficient online
algorithms guaranteeing no external regret with respect to H o and H g respectively. If H 4 and Hp
satisfy the weak learning condition with respect to H j, and the conversation length K is sublinear in



T (but not constant), then there is an efficient collaboration protocol such that:
T T

st N2 : h ty _ t2< T
;(y y") higngt:l( (@) —y")? <o(T)

In particular, this is true for the classes of norm-bounded linear functions.

1.1.1 Tightness of Our Approach

In Appendix |D|we give several lower bounds intended to illustrate the tightness of various aspects of
our approach, answering several questions:

Is interaction necessary? Perhaps for sufficiently simple classes of functions (e.g. linear functions)
that satisfy our weak learning condition, no interaction is necessary — maybe the optimal linear
predictor on X4 and X5 already contains enough information to compete with the best linear predictor
on the full feature space. We show that this is not the case, by exhibiting a lower bound instance
(Theorem [D.1) such that the Bayes optimal predictors h*(z.4), h*(z ), and h*(z) defined on X4,
Xp, and X are all linear, and yet no function of h*(x 4) and h*(z ) has squared error competitive
with h*(x).

Is our weak learning condition necessary? Can we relax our weak learning condition? We show
that the answer is no, at least for any similar approach. Our boosting theorem demonstrates that the
weak learning condition is sufficient for no swap regret with respect to H4 and Hp to imply no
external regret with respect to ;. We give a lower bound instance (Theorem [D.2)) showing that it is
also necessary: for any triple of function classes H 4, H, H s that fail to satisfy the weak learning
condition, there is a distribution and a sequence of predictions such that the predictions have no swap
regret with respect to H 4 and H g and yet have positive external regret with respect to H ;. We also
show that our weak learning condition is strictly weaker than the “information substitutes” condition
studied in [Frongillo et al.| [2023]], and that indeed linear functions do not satisfy the information
substitutes condition on all distributions (Theorem [D.4]and Theorem [D.3)).

Is swap regret necessary? Our collaboration protocol is designed to converge to a single sequence
of predictions that has low (distance to) swap regret with respect to H 4 and H p simultaneously —
despite the fact that our ultimate goal is simply to have no external regret with respect to ;. Might it
instead suffice to converge to a single sequence of predictions that has no external regret with respect
to 7 4 and 7 3? No. We give a lower bound instance (Theorem [D.6) exhibiting that even for linear
functions H 4 and H p (which satisfy the weak learning condition relative to linear functions on the
joint feature space H ;), predictions that have no external regret with respect to H 4 and H p can still
have positive external regret with respect to H ;.

1.1.2 Lifting to the One-Shot Bayesian Setting

In Section [E] we show that the theorems we prove in the online adversarial section can be “lifted”
to the one-shot Bayesian setting in which agreement theorems have been traditionally studied
[Aumann, |1976, |(Geanakoplos and Polemarchakis}, |1982, |Aaronson| 2005, |Kong and Schoenebeck,
2023|, [Frongillo et al.||2023]]. This is, informally, because Bayesians with correct priors have beliefs
that are unbiased conditional on any event, and in particular their predictions are guaranteed in
expectation to have no conversation swap regret with respect to any fixed collection of benchmark
functions. For any class of benchmark functions for which empirical squared error converges
uniformly to expected squared error (e.g. any class of functions with bounded fat shattering dimension)
this means that they are guaranteed to satisfy the conditions of our boosting theorems on any
sufficiently long sequence of instances drawn from a known prior. Thus we can imagine that Bayesian
Alice and Bayesian Bob engage in an interaction for an arbitrarily long sequence of examples drawn
i.i.d. from their commonly shared prior, and apply our theorems to bound the accuracy of the
predictions that result along this imagined sequence. But when examples are drawn i.i.d. from a fixed
prior the final predictions at each day in this imagined sequence will also be i.i.d. Thus our theorems,
which generically apply to the average error of predictions over a sequence, actually in this case
apply to the expected squared error of the predictions that result from the collaboration protocol on
the first day of the sequence, and hence apply in the one-shot setting. The result is new information
aggregation theorems in the classical Bayesian setting.
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.0.3 Other Extensions

We give two additional extensions of our results:

A Decision Theoretic Extension for Higher Dimensional Outcome Spaces. In Appendix [H|we
give a decision theoretic extension of the online setting to high dimensional outcome spaces. Now
the outcome space Y C [0, 1]d is d dimensional, and we model a decision maker with a finite action
space A and a utility function u : A x ) — [0, 1] that maps an action and an outcome to a utility. The
natural extension of our one-dimensional solution to a d-dimensional outcome space—by asking for
swap regret with respect to outcome predictions themselves—would inherit exponential dependencies
on d. We circumvent this difficulty by not communicating predictions of the outcome itself, but
instead actions that are utility maximizing given agents’ predictions. Here, we appeal to decision
swap regret, a coarser notion of swap regret given by |[Lu et al.[[2025]], to satisfy the no conversation
swap regret condition; this allows us to invoke a fast agreement theorem from Collina et al.| [2025].
Together with a decision version of the boosting theorem of Section[B] we show that the sequence
of actions that result from the collaboration protocol have no regret with respect to a collection
of action policies defined on the joint feature space. Our regret bounds and our communication
requirements are independent of the dimensionality of the data, depending instead only polynomially
on the dimension of the outcome space and the cardinality of the action space.

Simpler Algorithms in the Batch Setting. In the bulk of this paper, we study the collaborative
learning problem in the difficult online adversarial setting, in which examples are assumed to arrive
adversarially. Of course the problem is still interesting in the more standard batch setting, in which
examples (z,y) are assumed to be drawn i.i.d. from a fixed but unknown distribution. In Appendix
we give a simpler algorithm for this setting, which can be viewed as a two-party generalization of
the “level-set boosting” algorithm given in|Globus-Harris et al.[[2023]]. This algorithm is a reduction
to the problem of squared error regression over the classes H 4 and H g respectively; we prove fast
convergence and out-of-sample generalization theorems for it. Our algorithm in this setting uses fes?-
time compute to make predictions on new instances: the two parties engage in a polynomial-length
interaction exchanging and updating predictions about each test-time instance before agreeing on a
final prediction.

.1 Related Work

Agreement. Aumann’s classic “agreement theorem” [[Aumann, |1976] states that two Bayesians
with a common and correct prior, who have common knowledge of each other’s posterior expectation
of any predicate must have the same posterior expectation of that predicate. “Common Knowledge”
is the limit of an infinite exchange of information, but Geanakoplos and Polemarchakis [Geanakoplos
and Polemarchakis| [1982]] showed that whenever the underlying state space is finite, then agreement
occurs after a finite number rounds in which the information exchanged in each round is the posterior
expectation of each party. Aaronson [[Aaronson, [2005]] showed that for 1-dimensional expectations,
e-approximate agreement can be obtained (with probability 1 — § over the draw from the prior
distribution) after the parties exchange only O(1/¢2§) messages. Two papers [Kong and Schoenebeck,
2023} |[Frongillo et al., 2023 study conditions under which Aumannian agreement implies information
aggregation — i.e. when “agreement” is reached at the same posterior belief that would have resulted
had the two parties shared all of their information, rather than interacting within an agreement
protocol. These papers all assume perfect Bayes updates based on a correctly specified and commonly
known prior distribution, and so in general do not correspond to computationally tractable algorithms.
Collina et al.[[2025]] generalizes |Aaronson| [2005]] and proves agreement theorems without making
any distributional assumptions (i.e. in an online adversarial setting as in this paper), and using
tractable calibration conditions that relax Bayesian rationality — but says nothing about information
aggregation. Our paper extends the work of |Collina et al.| [2025] to be able to give information-
aggregation like statements in an online adversarial setting — in particular, regret bounds with respect
to a class of models defined on the joint feature space across the two parties. When applied to the
Bayes optimal predictors, our “weak learning” condition is strictly weaker than the “information
substitutes” condition given by [Frongillo et al.|[2023]], and our weak learning condition can be applied
to any other class of models (not necessarily Bayes optimal). Our results can be lifted back to the
Bayesian setting of [Aumannl (1976} |Aaronson 2005, |[Frongillo et al.,[2023]] to give new information
aggregation theorems.
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Calibration, Ensembling, and Boosting. Beyond (Collina et al.|[2025] which replaces the as-
sumption of Bayesian rationality with tractable calibration conditions in the context of Aumann’s
agreement theorem, several papers [Camara et al., 2020, |Collina et al., |2024]] have replaced traditional
assumptions of Bayesian rationality (and common prior assumptions) with calibration assumptions
in principal agent problems arising e.g. in contract theory and Bayesian Persuasion. In particular,
Collina et al.| [2024] shows how to do this with tractable decision calibration conditions.

Our weak learning condition is a generalization of the weak learning condition given by |Globus-Harris
et al.[[2023]], which they showed characterizes when multicalibration |[Hébert-Johnson et al.| [2018]]
with respect to one class of functions implies error optimality with respect to another. An important
step in our analysis is that agents with “conversation swap regret” converge quickly to predictions that
agree on most days, which we obtain by showing that conversation swap regret implies conversation
calibration as defined in|Collina et al.|[2025]], which in turn implies fast agreement. The fact that swap
regret with respect to squared loss implies low calibration error is a classical result originally due to
Foster and Vohra) [1999]. In the “action setting” in Appendix [H] the conditions we require on each
party are that they be decision calibrated and decision “cross-calibrated” with respect to a benchmark
class of functions — conditions that were recently used in Lu et al.| [2025]. These conditions are
variants of decision calibration as studied by Zhao et al.|[2021]], [Noarov et al.|[2023] and “decision
outcome indistinguishability” as studied by |Gopalan et al.|[2023]]. We use the algorithm of Noarov,
et al.| [2023] to constructively enforce these conditions. “Cross calibration” conditions have also been
used to ensemble models in accuracy improving ways [Roth et al., [2023] |Alur et al., [2024]] — but
with the exception of |Globus-Harris et al.|[2023]] (which gives results in a single-party setting) these
methods do not promise to compete with a benchmark class of models that is strictly more accurate
than the initial models.

Other Related Work. The setting we study, in which different parties hold different features about
the same example and want to coordinate on a single learning task resembles co-training as studied
by Blum and Mitchell| [1998]], [Balcan et al.|[2004]]. Models of co-training generally assume that the
features each party hold are sufficient to learn a perfect model, but that labels are scarce: co-training
protocols seek to use agreement with the other party as a regularization technique that allows them
to learn with only small amounts of labeled data (together with larger amounts of unlabeled data).
In contrast, our interest is in the setting in which each individual’s features are not sufficient to
learn an accurate model, and the goal is to collaboratively learn a model that is more accurate than
could be learned by any party alone, even with arbitrarily many samples. Blum et al.[[2017] define
collaborative learning, later studied by [Haghtalab et al., 2022} [Donahue and Kleinberg, 2021} Blum
et al.| [2021| [Zhang et al., 2024} |Peng et al., 2024, Haghtalab et al.,|2023]]. In the collaborative learning
setting, multiple parties have data from different distributions that are all labeled with the same
function, and are interested in collaborating to learn their shared label function with fewer samples
than it would take for each party to learn the function only from their own data. In contrast, in our
setting, there is a single distribution (or no distribution, in the online adversarial setting), and it is
the features that are distributed amongst parties. We defer a discussion on additional related work to

Appendix [G|

A Preliminaries

We study a setting with two parties, Alice and Bob. Both parties are able to make predictions about a
label not only given their observed features, but as a function of an interaction that they have had with
their counterparty. With the exception of Section[E]and Appendix[I| we consider the adaptive, online
setting where Alice and Bob interact to make label predictions over a sequence of dayst =1,...,7.
We let X4 and A5 denote feature spaces for Alice and Bob, respectively, and we let X = X4 X Xp
denote the joint feature space. We let ) represent the outcome (label) space which we will take to be
Y =0, 1] for much of the paper, generalizing it to higher dimensions in Appendix

On each day ¢, the parties converse for exactly K rounds about their predictions of that day’s outcome
y' based on the features they each see: x4 and zt;, respectively. At each round k& when they are

speaking, an agent makes a prediction of the label, denoted g)i,k and gjgk respectively. This prediction
can be a function of everything the agent has observed so far — the features relevant to the instance,
the predictions sent by the other party, and past outcomes on previous days.
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They will alternate speaking, and we suppose that Alice (Party 1) acts in odd numbered rounds; Bob

(Party 2) acts in even numbered rounds. In an odd round k, Alice sends her prediction gj?’k, and then
in the next round & + 1; Bob responds with a prediction ygkﬂ. We use the subscript A and B for
readability, so there is a clear distinction between Alice and Bob’s messages when possible. However,
since which party is speaking is simply a function of the parity of the round &, we can also write §**
as shorthand for th’k or yﬁ;’“ when the round £ is even or odd, respectively.

We formalize the interaction between the two agents in Protocol [Al—a generic “collaboration proto-

col."

[ht] Imput (X, Y, K,T)eachday ¢t =1,...,T Receive 2* = (z!y,z%). Alice sees z!;, and Bob
sees z';. eachround k = 1,2,..., K k is odd Alice predicts g)ﬁ;"’ € Y, and sends Bob g)i;k. k is

even Bob predicts g}gk, and sends Alice g]%’k. Alice and Bob observe 3* € ).

We informally refer to the history of interaction within any given day ¢ as a “conversation." This is,
the sequence of predictions exchanged by Alice and Bob specifically about the currently unknown
label yt. We refer to the history of interaction across multiple days as a “conversation transcript." It
is an object that records the interactions between the agents and is visible to both, and which they can
use to make their predictions.

Definition A.1 (Conversation Transcript 7+ 7"1:5), A conversation transcript 7% 11K ¢ {yK “}
is a sequence of tuples of predictions over rounds made by Alice and Bob (alternating across rounds),
and the outcome, over T days:

1.T1:K __ ~1,1 ~1,2 ~1,3 ~1,K 1 ~T,1 ~T,2 ~T,3 T K T
7T *{(yAavayAv"'yA 7y)7"'a(yA ayB ayA a"'yA 7y )}

We define 7% to be the restriction to only round k of conversation across days as follows:

LTk {{(igiik’ yt)}te[T] if k is odd,

{(Zﬁék’yt)}tem otherwise.

We will use the notation 757 to refer to a single sequence of predictions over 7" days, outside the
context of a conversation.

Definition A.2 (Prediction Transcript 74:7). A prediction transcript n%1 € {yQ} is a sequence of
tuples of predictions and outcomes over T days:

AT {(y17y1) e (ZJTJJT)}

A.1 Information Aggregation

Our focus is on giving algorithms in this collaborative learning setting that give strong information
aggregation guarantees, in the sense that the parties, using only their own sets of features individually,
converge on predictions that are optimal with respect to a benchmark class of predictors is defined
with respect to both parties’ features.

In order to state such guarantees, we need to define a benchmark class. We first define the class of
benchmark functions that map each of Alice and Bob’s features, individually, to predictions, and then
the class of benchmark functions defined on their joint feature space.

Definition A.3 (Individual Hypothesis Classes Ha,Hp). Let Ha : {h : X4 — R} be a set of
Sunctions mapping from Alice’s feature set to R. Analogously, let Hp : {h : Xp — R} be a set of
functions mapping from Bob’s features to R.

Definition A.4 (Joint Hypothesis Class H y). Let Hy : {h : X — R} be a set of functions mapping
from the joint feature set X = X4 x Xp to R.

For simplicity, it will be convenient for us to assume that the hypothesis classes H 4, H g, H s contain
constant functions (this is the case for most natural concept classes and is easy to enforce for any
class for which it is not true originally)

Assumption 1. We assume that the hypothesis classes H we work with contain the set of all constant
functions {h(x) = v},e0,1)-
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The goal of our collaboration protocol will be to guarantee that the sequence of predictions resulting
from the interaction have error that is competitive with the best model in H ;. In service of this, we
will leverage the ability of Alice and Bob to make predictions that have low swap regret with respect
to their individual hypothesis classes H 4 and H g respectively:

Definition A.5 ((f, H)-Swap Regret). Fix an error function f : {1,..., T} — R and a hypothesis
class H. A transcript 75T has (f, H)-swap regret if:

S -2 - Y min (Z 15" = vl(h(a") - W) < (1)

F
P} " WeEH

Here v ranges over values of the predictions: v € {j*,..., 97 }.

It will also be useful to have a notion of distance to swap regret. Distance to swap regret, which we
define below, is analogous to the recently defined measure of distance to calibration |Blasiok et al.
[2023]]. A sequence of predictions has low distance to swap regret, informally, if they are close (in ¢;
distance) to a sequence of predictions that itself has low swap regret.

Definition A.6 ((q, f, H)-Distance to Swap Regret). Fix an error functions f,q: {1,..., T} - R
and a hypothesis class H. Let Q ¢ 3, be the set of prediction sequences pY T that have (f, H)-swap
regret. A transcript ™1 has (q, f, H)-distance to swap regret if-

; ~1:T 1:T
min Yy P 1 < q(T
PITEQ), H || ( )

A.2 Conversation Swap Regret

Our collaboration protocols involve “conversations” over k rounds. An important condition for us in
our construction is called “conversation swap regret”, which informally requires that the predictions
that Alice (resp. Bob) make at each round of conversation have no swap regret with respect to H 4
(resp. ‘H g) not just marginally, but conditionally on the prediction that their counter-party made at
the round before.

Definition A.7 ((f, g, H)-Conversation Swap Regret). Fix an error function f : {1,...,T} - R,
a bucketing function g : {1,...,T} — R and a prediction class Hp. Let v range over the values
e {g} Ty Gi : LT 1K ; ion in the Collab :
Ues - - -+ Uy, }- Given a conversation transcript T from an interaction in the Collaboration
Protocol (Protocol E]), Bob has (f, g, Hp)-swap regret if for all even rounds k and buckets i €

S @ -y =Y min | 3T W=~y | < F(Talk 1))

heHp
te€TA (k—1,1) v teTa(k—1,3)

Where Ta(k — 1,4) = {t : g**~1 € [(i — 1)g(T),ig(T))} is the subsequence of days where the
predictions of Alice in round k — 1 fall in bucket i.

If Alice satisfies a symmetric condition on odd rounds k with respect to H 4, we say that Alice has
(f, g, Ha)-Conversation Swap Regret with respect to H 4.

Assumption 2. We assume that all error functions f(-) are concave.

B Boosting for Collaboration

In this section we give a weak learning condition that characterizes when swap regret guarantees with
respect to H 4 and H p on a single sequence of predictions imply regret guarantees with respect to
a richer hypothesis class H ;. We also show that linear functions (and substantial generalizations)
over X4 and X' indeed satisfy the weak learning condition with respect to H 7, linear functions over
the joint feature space X'. This justifies the algorithmic approach we pursue in Section [C] giving
collaboration protocols whose aim is to arrive at a sequence of predictions that have no swap regret
with respect to both H 4 and H p — the final accuracy guarantees in those sections will then follow
from applying the boosting theorem we will prove here.
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We first state our weak learning condition, which roughly speaking requires that on every distribution,
if there is any model in H ; that is able to obtain error lower than that of a constant predictor (by
any margin ), then there must also be a model in either H 4 or ‘H g that can obtain error better than
a constant predictor (by some smaller margin w(~y)). This is a generalization of a condition given
in|Globus-Harris et al.|[2023]] in the context of studying the boosting properties of multicalibration.
Our definition below generalizes that of |(Globus-Harris et al.| [2023]] to multiple parties, and to a
general margin function w (rather than just a linear function w(y) = + as stated in |Globus-Harris
et al.| [2023]]). This generalization is important because as we will see, linear functions satisfy the
weak learning condition only with the margin w(v) = ©(72).

Definition B.1 (w(-)-Weak Learning Condition). Let Hy = {ha : X4 — YV} and Hp = {hp :
Xp — YV} be hypothesis classes over X4 and X respectively. Let H j be a hypothesis class of over
the joint feature space X = Xa x Xpg. Let w : [0,1] — [0, 1] be a strictly increasing, continuous,
convex function that satisfies w(y) < . We say that H and Hp jointly satisfy the w(-)-weak
learning condition with respect to H j if for any distribution D over X4 x Xp X Y, and any v € [0, 1],
inEp[(c—y)*] — min Ep[(hs(z) —y)*] >
minEp[(c —y)°] — min Ep[(hs(z) —y)7] 2,
then there exists either ha € Ha or hp € Hp such that:
min Ep[(c - y)’] - Ep[(ha(za) = )*] > w(v)

or:

minEp|(c - y)*] — Ep[(hn(rs) - y)°] > w(y)

Remark B.2. We note that the conditions that w is convex and satisfies w(y) < =y is without loss.
Indeed, if H 4 and Hp jointly improve by a margin w' that is non-convex, there exists a convex
Sunction w such that w(y) < w'(y) for all v € [0, 1], and thus, H 4 and H p also jointly improve by
the margin w. Similarly, if w(vy) > ~y for some v — i.e. H o and H g jointly improve by more than ~y
— then they certainly improve by at least ~y. We impose these conditions for technical reasons in the

proof of Theorem|B.3]

We now state our “boosting” theorem. In fact, we will not need that our predictions have low swap
regret — it will suffice that they have low distance to swap regret, which will be an easier condition
to obtain. If we have a single sequence of predictions such that those predictions have low distance to
swap regret with respect to H 4 and H p, and H 4 and H p satisfy our weak learning condition with
respect to a stronger joint class of functions H s, then in fact the sequence of predictions has no regret
with respect to H ;.

Theorem B.3. Let H; be a hypothesis class over the joint feature space X. Let Ha = {ha :
Xa = YVyand Hp = {hp : X — YV} be hypothesis classes over X4 and Xp respectively. Let
D € A(X x ) be the empirical distribution over a sequence (xt,y*)1_,. If:

s Predictions 35T have (q, f, Ha U H g)-distance to swap regret over D, and
* H 4 and H g jointly satisfy the w(-)-weak learning condition with respect to H ;

Then:

Ep[(§—y)*] — h?g-tl(, Ep[(hs(z) —y)?] < 2w™! <f(TT)> + 3%11)

whenever the inverse of w exists.
We first show that if our predictions have no distance to swap regret, then the weak learning condition

implies low external regret with respect to H ;. We will then argue that perturbing the predictions by
a small amount cannot increase external regret by very much.

Lemma B.4. Let H; be a hypothesis class over the joint feature space X. Let Ha = {ha :
Xa = YVyand Hp = {hp : X — YV} be hypothesis classes over X4 and Xp respectively. Let
D € A(X x ) be the empirical distribution over a sequence (xt,y*)1_,. If:

e Predictions 45T have (f,H.a U Hp)-swap regret over D, and

* H 4 and H g jointly satisfy the w(-)-weak learning condition with respect to H ;
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Then:

Ep((j — y)?] = ,min Ep[(hs(x) - ) < 207! (T

whenever the inverse of w exists.

Proof. We show the contrapositive. Suppose there exists h; € H ; such that:

TZZ]ly = (ks (= ZZI ’U—yt)2—2w1<f(TT)>

v t=1 v t=1

Since a swap benchmark is only stronger, there exists a collection {h, }, C H; such that:

T
LS S A = ) — o < £ S A = allhse) -

v t=1 v t=1

and thus:

fZZ]L (R (2t <—ZZ]1 — )2 — 2w (f(TT)>

v t=1 v t=1

Let S, = {t : §' = v} be the level set corresponding to the subset of the domain that the prediction
isv. Let g, = ﬁ ST, 1[§" = v]y" be the label mean of this subset. By Assumption HaUHp
contains the set of all constant functions in [0, 1]. Let He C Ha U Hp denote the set of constant
functions. Since, for every v, h.(x) = g, is the constant function that minimizes squared error, and
91T has (f, Hc)-swap regret, we have that the average swap regret with respect to H ¢ is bounded
by:

; Zil@t =vlv -y - EZZT:W = v](go —y")?
I T4
1 £l 1 T
= PSS = - 3 mip SO =0l

In the last step, we use the fact that w(y) < 7, and so v < w~(«). Then, since the squared error of
{hJw}v is less than the squared error of 97T, and the squared error of 95T is close to the squared
error of the label mean ¢, on each level set, we have that:

t\2 1 l . o L)
i;; hjv( ) y) <T;;1[y_y](v_y) — 2w (T)
T
T
A =l - (1)
Letting
e \; | Z 19" = vl —9')" - |; | Z 1[5" = v)(hyo(z') —y")?,
Ult=1 vl =



we can rewrite the expression above as:

T T
%ZZ 1[5" = o] (5, —y')* — %ZZ 1[g" = v](hyu(2%) = y')?

v t=1 v o t=1

T T
1 1 . _ 1 1 N
:TZ‘SU| ‘S |Zl[yt:v}(yv_yt)2_TZ|Sv‘ |S |Z]]'[yt:v](h<],v(xt)_yt)2
v vli=1 v vl =1

= %Z ‘Svh/v

()

Observe that since # ; contains the set of all constant functions (Assumption|[I)), there is always a
choice of {h .}, such that 7, is non-negative for all v.

Thus, by the w(-)-weak learning condition applied to the empirical distribution over the sequence
on which §* = v for any level set v, if h ., improves over the best constant prediction %, by 7,
there is some h, € Ha U Hp that improves over g, by w(~,). That is, there exists a collection
{hy} C Ha U Hp such that:

T T
Sl = - o) 10 = el (at) — o)

v t=1 v t=1
1 1 1 1 «
=) 1Sl e DL =0l — ¥ = S D 1Sl gy 2 1T = 0l(hu(a") — y')?
r v |55 t=1 T v S| t=1
> lz:|S |w(vy) (by the w-weak learning condition)
A o | WY y the w g
> ! Z | Syl (by convexity of w and Jensen’s inequality)
T v| v X 1
2w | g d g y convexity of w quality
T
> w <w1 <]C(T)>> (by monotonicity of w)
(D)
T
In particular, this implies that:
T T
: Llat = ol(h* (2t) — )2 < 1[4t = v](hy (zt) — y)2
Zv:h;e%%%; [9" = v](hy(=") = ) _Zv:; [9" = v](ho(=") — )

Here, the third line follows from the fact that on level set v, the squared error of the constant prediction
v is at least the squared error of the best constant prediction ,,. This violates the (f, H 4 UH g)-swap
regret condition, which completes the proof.

O

We can now complete the proof by noting that squared error is Lipschitz in the predictions — so
perturbing predictions that have low swap regret to those that merely have low distance to swap regret
does not affect the final error bound by much:
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Proof of Theorem By definition of distance to swap regret, there is a sequence p:7 with
(f,Ha U Hp)-swap regret such that ||§*" — p*T'||; < ¢(T). Furthermore, by Lemma ptT
satisfies:

T -y min 23 (et g < 20! (ﬂTT))

hyeH
JEH =1

Applying Lemma[K.T4] we can conclude:

1 < 1 <&
- ~1 _ t\2 _ - t _ t\2
T @ —y) ,min > (hs(a') =y
t=1 t=1
T T
1 1 q(T)
< t_ t\2 - h t t\2 g\ )
<7 ;Zl(q )~ min T;:l( J(@%) —y)" + 375
1 [ f(T) q(T)
< L s
< 2w ( T +3 T
as desired. O

B.1 Function Classes Satisfying the Weak Learning Guarantee

Next, we show that a broad set of function classes satisfy our weak learning assumption. What we
require is that 4 and H  be “star shaped” (i.e. closed under downward scaling), bounded, and closed
under additive shifts, and that H ; be representable as the Minkowski sum of H 4 and H p — that is,
for every h; € H s there should be hy € H 4 and hp € Hp such that hy(x) = ha(xa) + hp(zs).
In particular, the class of linear functions over the feature spaces of Alice and Bob respectively satisfy
our weak learning assumption relative to linear functions on their joint feature space.

In order to define Alice and Bob’s function classes, let us first define a few useful properties.

Definition B.5 (Bounded and star-shaped function class). For any class F = {f : X — R} on
domain X, we say it is

1. C-bounded: if there exists C' > 0 such that sup ¢ r e |f(2)| < C
2. Star-shaped: if f € F then af € F forall0 < a < 1.

Note that the function class of linear functions with bounded norms F = {z + 0Tz : ||0]|» < C}
over bounded inputs X = {x € R? : ||z||y < 1} is C-bounded and star-shaped.

We now state our weak-learnability guarantees with respect to the Minowski sum of our base function
classes satisfying the above properties.

Theorem B.6. Let Hy = {fa+ba: fa € Fa,ba € R}and Hp = {fp+bp : f5 € Fp,bp € R}
where Fa = {fa : Xa — R} and Fg = {fp : X — R} are C-bounded and star-shaped. Let
Hy=1{ha+hp:ha €Ha,hg € Hp} be the Minkowski sum of Hp and Hp. If C > 1/2, then
H 4 and H p jointly satisfy the w(-)-weak learning condition with respect to H j for:

2

ol
w(y) = T6C2

The key idea is to show that if a function in the joint class hj(x) = ha(xza) + hp(xp) improves
over the constant predictor then this translates to at least one of the base functions h4(z4) or hp(xp)
having non-trivial correlation with the label y. Now appropriately choosing the scaling of the base
function allows us to transfer this correlation to an improvement in squared loss over the constant
predictor. This transfer is not exact and leads to the weaker 72 improvement, which we later show is
actually tight!

Proof of Theorem|[B.6] Consider a distribution D over X4 x X x Y with p = Ep[y]. Define
§ =y — u so that Ep[g] = 0, and for any predictor h(x), define the centered predictor h(x) =
h(z) — p. The best constant predictor for predicting § is O with error Ep[?], and for any predictor,

Ep[(h(z) — y)’] = Ep[(h(z) — )*].

17



To prove the weak learnability condition, assume that there exists hj(z) = ha(xa) + hp(zp) =
fa(xa)+ fe(xp) +ba + bp and its corresponding centered version h j(x) = hy(z) — p such that

Ep[(hs(z) - §)*] < Eply’] —v = —Ep|(hs(x))’] + 2Ep[hs(2)7] = 7.
Given that Ep[(hs())?] > 0, we have:

Eplhs(z)y] > X

-2
= Ep|(fa(za) + fe(zp) +ba+bp — p)y] > %
= Ep[fa(za)y] +Ep[f(xp)y] = %,
where the last inequality follows from the fact that Ep[y] = 0. This implies that either

or Eplfp(zs)y] > 1.

Ep[fa(za)y] > 1

7
4
Without loss of generality, assume Ep[f4(z.4)y] > 7. Now letus construct ha(za) = afa(xa)+p
and corresponding centered predictor by (1) = afa(xa) for & = ;2. Note that hy € H 4 since
a < 1 (by assumption) and F 4 is star-shaped.

Now let us compute the error of h4(z4).

Ep[7°] — Ep[(ha(za) — §)°] = —Ep[(ha(24))?] + 2Ep[ha(z.4)7)

= —Ep[(afa(za))?] + 2Eplafa(za)7]

ay 9

2 16C?°

where the inequality follows from C-boundedness of F4 and Ep[fa(za)y] > . Removing the
centering gives us,

2c2

Ep((1 — y)?] — Epl(ha(za) — )] = Ep[§?] — Ep|(ha(za) — §))] = —

We next establish the tightness of various aspects of our theorem, both qualitatively and quantitatively.
First, we have assumed that our function classes are bounded. This is necessary:

Theorem B.7. There exists classes Fa = {fa : Xa — R} and Fg = {fp : Xp — R} that are star-

shaped but unbounded over some domain X, Xp suchthat Ha = {fa +ba : fa € Fa,ba € R}

and Hp ={fp +bp : [B € FB,bp € R} do not jointly satisfy w(-)-weak learning with respect to
={ha+hp:ha € Ha,hp € Hp} for any strictly increasing w.

To prove this theorem, we construct a simple distribution (X4 and A'p are one-dimensional and H 4,
‘H p, and H ; are linear functions) where both the features to the individual parties x 4 and xp have a
small signal to noise ratio and hence cannot predict the label y very accurately, but their difference
can exactly cancel out the noise to recover a scaled down version of the signal. Now scaling it up can
recover the label y exactly. The signal to noise ratio for the individual parties is inversely proportional
to the norm of the joint predictor, therefore we can make this arbitrarily small if the norms are allowed
to be unbounded.

Using the same construction, we establish that the quadratic dependence on the weak learning margin
w(7) = ©(72) cannot be improved. In particular, despite bounding the norm of the predictors, the
perfect canceling of noise allows the joint predictor to do an order of magnitude better than any
individual predictor on noisy features.

Theorem B.8. There exists classes Fa = {fa : Xa = R} and Fp = {fp : Xp — R} that are star-
shaped and 1-bounded over some domain X4, Xp such that Ha = {fa +ba : fa € Fa,ba € R}
and Hp = {fp +bp : fB € Fp,bp € R} do not jointly satisfy w(-)-weak learning with respect to
Hy={ha+hp:ha € Ha, hp € Hp} for any strictly increasing w such that w(vy) = w(y?).
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C Collaboration in the Online Setting

In Section [B} we established that if H 4 and H p satisfy our weak learning condition with respect to
‘H s, a sequence of predictions that has low distance to swap regret with respect to H 4 U Hp has
low external regret with respect to H ;. In this section, we show how to arrive at such a prediction
sequence via a collaboration protocol.

The high level idea of the proof is straightforward, but the details are surprisingly subtle. |Collina
et al. [2025]] defines a notion called Conversation Calibration in settings (such as our collaboration
protocol) in which two parties engage in conversations about predictions of a real valued outcome.
This notion is formally defined in Appendix Informally speaking, conversation calibration
requires that at each round k of the conversation, the sequence of predictions made over the 7" days is
unbiased relative to the outcomes, conditional both on the prediction made at round £ and on the
prediction made by the other party at round k£ — 1. |Collina et al.| [2025] show that if both parties
satisfy the conversation calibration condition across all rounds, then most conversations must quickly
converge to approximate agreement. The conversation swap regret condition we require of our parties
implies that the predictions also satisfy conversation calibration, and so the theorem of |Collina et al.
[2025]] implies fast approximate agreement in our setting as well. The idea at a high level is that if
Alice’s predictions have no swap regret with respect to H 4 at every round, and Bob’s predictions
have no swap regret with respect to H p at every round, then when they agree, we will have a single
sequence of predictions that has no swap regret with respect to both H 4 and H g simultaneously,
exactly the condition that we need in order to invoke our boosting theorem.

However, several difficulties arise. First, the agreement theorem of (Collina et al.| [2025]] states
informally that conversations on most days must reach agreement quickly, but they might reach
agreement at different rounds on different days. Just because the predictions at each round satisfy
swap-regret guarantees does not mean that the sequence of final “agreed upon” predictions — stitched
together from different rounds at different days — will have the same guarantee. To solve this
problem, we use a different protocol than |Collina et al. [2025]]: rather than halting conversation at
agreement, we continue each conversation for K rounds even if agreement is reached earlier. We
generalize the agreement theorem of |Collina et al.| [2025]] to show that (even if it is not the final
round), for sufficiently large K there must exist a round % at which Alice’s predictions at round % are
close to Bob’s predictions at round k£ — 1:

Theorem C.1. If Alice has (fa, ga, Ha)-conversation swap regret and Bob has (B, g5, Hp)-
conversation swap regret and they engage in a Collaboration Protocol (Protocol[A)) for K rounds,
then for any € € (0, 1), there is at least one round k such that

T
1 . ot 1 B(T, fa, fB)
- ]I t,k _ t,k—1 > < ) ?
T ; [ =y 2 d < opat =)o

That is, the fraction of predictions in round k that are e-away from those in round k — 1 is at most

1 /B(Ta.fAv.fB)
2K ¢€? 2¢2

Here, and for the other theorems following, we let (T, fa, fB) = fA(ngt((qujT) + fBéggi(?jT) +
9a(T) +g8(T), fi(x) = V- fa(z) and fp(x) = \/z - fp(z).

The proof for this theorem (and all other theorems this section) can be found in Appendix [K]

If on Alice’s rounds, she has low swap regret with respect to H 4 and on Bob’s rounds, he has low
swap regret with respect to # g, then if on a pair of adjacent rounds, they made exactly the same
predictions, then on (both) of these rounds, the predictions would have no swap regret with respect
to H 4 and H p simultaneously. Unfortunately Theorem [C.I| does not guarantee a pair of rounds
on which Alice and Bob’s predictions are exactly the same — it only guarantees a pair of adjacent
rounds on which the predictions are close on most days. Naively, this gives us two sequences, one
of which has low swap regret with respect to H 4 and low distance to swap regret with respect to
‘H B, and the other of which has low swap regret with respect to H g and low distance to swap regret
with respect to H 4. But to apply our boosting theorem, we need a single sequence of predictions
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that simultaneously has low distance to swap regret with respect to both 4 and H . The following
theorem (Theorem [C.2)) shows that in fact the round £ identified in Theorem [C.T|has this property:
Theorem C.2. If Alice has (fa, ga, Ha)-conversation swap regret and Bob has (B, 95, HpB)-
conversation swap regret, and they engage in a Collaboration Protocol (Protocol[A) for K rounds,
then there exists a round k of the protocol such that the transcript mT°* at round k has (q, f, Ha U
H B)-distance to swap regret, where

4= 5 (94(T) +95(T))

and

B(T, f, ‘2’5’) + 1/K> T %Tﬁ(ﬂ far f5)

f=sT (
We have thus established that there must be a sequence of predictions corresponding to some round
in the collaboration protocol which we can apply our boosting theorem to. However, this will not
necessarily be the final round, and so the accuracy guarantees that we get from our boosting theorem
will not necessarily apply to the final sequence of predictions. We show in the following theorem
(Theorem [C.3) that, while the final sequence of predictions do not necessarily have swap regret
guarantees with respect to H 4 and H g, it nevertheless has external regret guarantees with respect to
‘H s, the joint function class.

Theorem C.3. Let H j be a hypothesis class over the joint feature space X. Let Ha = {ha : X1 —
Yyand Hp = {hp : Xo — YV} be hypothesis classes over X4 and Xg respectively. Consider some
transcript 75T K generated via the Collaboration Protocol (Protocol|A) between Alice and Bob
over K rounds. If:

o Alice has (fa,ga,Ha)-conversation swap regret
* Bob has (g, 9B, Hp)-conversation swap regret

* H 4 and H g jointly satisfy the w(-)-weak learning condition with respect to H ;

The transcript 7575 on the last round K satisfies:
T T
Atk £\2 . t t\2
S =y = min Y (hs(zh) —y')? <
t=1 o€t i

o (8 (ALl RN Dot fB>> ST (ga (T +gp(T) 43K (T, 14, f5)

Remark C.4. This result establishes that to engage in the protocol, Alice and Bob need only produce
predictions that have no conversation swap regret with respect to their individual classes H s and
Hp. In particular, Alice and Bob do not need to know the joint hypothesis class H j to execute the
protocol, and so the regret bound holds simultaneously for every class H j that satisfies the weak
learning condition given H 4 and Hp. We note that the same observation applies to our results in the
Bayesian setting (Section[E), the online setting with higher dimensional outcome spaces (Appendix
[H), and the batch setting (Appendix[l).

To prove this theorem, we apply our boosting theorem (Theorem to the round k identified in
Theorem[C.2] which establishes an external regret guarantee with respect to # ; for the predictions
made at round k. We then show that the swap regret conditions we assume of Alice and Bob also
imply that the squared error cannot substantially increase at any subsequent round, which allows is
to conclude that the error of our predictions at the final round K is not much larger than it is at the
round £ at which our boosting theorem applied. External regret (unlike swap regret) is monotone
in the squared error of our predictions, which thus allows us to conclude that our final predictions
satisfy the claimed external regret bound with respect to H .

C.1 Reducing Conversation Swap Regret to External Regret

We have now established that two agents, engaging in our collaboration protocol, will arrive at
predictions that have no external regret to H ; if their predictions have no conversation swap regret
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with respect to classes H 4 and ‘H g respectively. We now turn to reducing the algorithmic problem of
engaging in our collaboration protocol with conversation swap regret guarantees with respect to a
hypothesis class H to the well studied problem of making predictions in an adversarial environment
that simply have no external regret with respect to H. |Garg et al.|[2024] give a generic reduction
that efficiently transforms an algorithm guaranteeing no external regret with respect to H into an
algorithm that guarantees no swap regret with respect to 7. We in turn show how to transform any
algorithm guaranteeing no swap regret with respect to H into one that can engage in a collaboration
protocol and guarantee no conversation swap regret with respect to H. |Collina et al.| [2025]] use
a similar reduction from conversation calibration to calibration. Together, this gives an efficient
reduction from the problem of interacting with collaboration protocol [A] with no conversation swap
regret guarantees (what is needed to invoke Theorem to the problem of making no (external)
regret predictions. As we will see, whenever we start with an algorithm that guarantees sublinear
external regret rates, we obtain an algorithm that guarantees sublinear conversation swap regret rates.

We begin by quoting the result of |Garg et al.|[2024].
Theorem C.5 (Theorem 3.1 of (Garg et al.| [2024])). Fix a hypothesis class H. If:

 All h € H satisfy h(z)? < Bforallz € X
* M has finite sequential fat-shattering dimension (Definition[K.11))

s There exists an efficient online algorithm producing predictions 4", ..., 4T that achieve, for
any sequence of outcomes y', ..., yT, external regret with respect to H bounded by r(T),
i.e. . .

D@ =y —min Y (h(z') - y")* <r(T)
t=1 t=1
where r(T) is a concave function.

Then, for any m > 0, there exists an efficient online algorithm which, with probability 1 — p,
guarantees (f, H)-swap regret, where

f(T)<m'7”(T>+3T+m+max(83,2\/§)-m.cﬂ. T10g<4m>
m m P

Here, C'y is a constant that depends on the sequential fat-shattering dimension of H.
[ht] Input External regret algorithm My, hypothesis class 7, bucketing function g

Let M be the swap regret algorithm given by Theorem [C.5] when initiated with Mj.

For every odd k € {3, ..., K} and bucket ¢ € {1,...,1/g(T')}, instantiate a copy of M, called Mj, ;.
For the first round k£ = 1, instantiate a copy of M, called M.

Let 7'**I* denote the transcript on round k up until day ¢, restricted to {t : §>*=1 € [(i —
1)g(T),ig(T))}, the subsequence where the previously communicated predictions falls into bucket 4.

Let M (Trl’t’k‘i, ‘H) denote the output of M given this transcript and hypothesis class H.

each day t = 1,...,T Receive !, Make prediction 3" = M (7%~ #) Send to Bob §;' each

odd round k = 3,5, ..., K Observe Bob’s prediction from the previous round yAtB’kfl and let 7 be an
integer such that gg’“‘l € [(i —1)g(T),i9(T)). Make prediction gjzk = My, (¥ Lk ) Send
to Bob g]i{k Observe y* € V.

We formalize our reduction from conversation swap regret to external regret in Algorithm [C.T|and
prove its correctness in Theorem[C.6] We state the algorithm from the perspective of Alice; Bob’s is

symmetric.
Theorem C.6. Fix a hypothesis class H. If:

 All h € H satisfy h(z)? < Bforallz € X

* H has finite sequential fat-shattering dimension
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 There exists an efficient online algorithm guaranteeing external regret with respect to H
bounded by r(T) where r(T) is a concave function.

Then, for any m > 0 and bucketing function g, Algorithm|[C.1|guarantees, with probability 1 — p
(over the internal randomness of the algorithm), (f, g, H)-conversation swap regret for:

FIT(k=1,4)]) <m-r (T(k;f’i)%gmkr; 1’i)l—&—m—l—maX(SB,2\/§)'m~Cy-\/|T(k —1,i)|log (%;)

where T'(k — 1,1) is the subsequence of days where the predictions of round k — 1 fall into bucket i
and Cyy is a constant that depends on the sequential fat-shattering dimension of H.

C.2 End-to-End Results

Now we are able to state our end-to-end reduction which starts with algorithms with external regret
guarantees to H 4 and H g respectively and instantiates a collaboration protocol with external regret
guarantees to 7{ ;. In Theorem[C.7] we show that as long as the external regret bounds we start with
are sublinear in 7" and the number of rounds K that parameterize the collaboration protocol grows
sublinearly with 7" (but is not constant), we obtain sublinear regret guarantees with respect to # ;.

Theorem C.7. Fix any tuple of hypothesis classes Ha, Hpg, and H ;. If:

s Allh € Ha and h € Hp satisfy h(z)? < B for some constant B, for all v € X.
* Ha and Hp have finite sequential fat-shattering dimension

* There exists an efficient online algorithm guaranteeing external regret with respect to H
bounded by r o(T'), and there exists an efficient online algorithm achieving external regret

with respect to Hp bounded by r5(T), where r4(T) < O(T*4) and r3(T) < O(T*?),

a1, a9 € (0,1), are sublinear in T
* H 4 and Hp jointly satisfy the w(-)-weak learning condition with respect to H ;

Then, there is an efficient online algorithm such that if Alice and Bob both use the algorithm to
interact in the Collaboration Protocol (Protocol E]), then the transcript 7 TK gt the last round K
satisfies, with probability 1 — p:
T T
> =y = min > (hy(ah) —y')

t=1

~ / IS ]_ ~ " K
1 —a j e 1/4 e
< 2Tw (O (T log (p) + 1/3>> +0 <KT log <p )) +O(T?)

for some constants a, o, o’ € (0,1).
Moreover, if K = w(1) and K = o(T*"), then the transcript 7K satisfies, with probability 1 — p:

T T 1

S ) i () )t <O (108 (5 )) +otr)

t=1

Sfor some constant """ € (0,1) and T sufficiently large (larger than a constant that depends on
w,aq, ap, and p). Here, o(T) is a sublinear term that depends on w, K, a4, and ap. That is, the
transcript on the last round achieves sublinear regret.

Remark C.8. Observe that Theorem[C.7|allows us to trade off K, the parameter controlling the length
of the conversation at each day in our collaboration protocol, with the final regret bound. Increasing
K can improve the regret bound, at the cost of increasing the amount of daily communication and
computation. There is a range of choices of K, growing with T, that guarantee regret that grows only
sublinearly with T'. The algorithm itself is an efficient reduction to the external regret algorithms for
H 4 and H g that we start with.
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Finally, we derive concrete regret bounds when H 4, H g, and H are norm-bounded linear functions
over the domains X4, Xp C R? and X; C R?? respectively (recall that these classes satisfy the
weak learning condition). First, for linear functions there indeed exists an efficient algorithm due
to|Azoury and Warmuth|[[1999] that achieves diminishing external regret — and thus conversation
swap regret — and so we can apply our reductions to get worst-case polynomial-time algorithms to
interact in our collaboration protocol.

Theorem C.9. [Azoury and Warmuth| |[1999|] There exists an efficient online algorithm producing
predictions such that for 2t € R, [|xt]|2 < 1 and for all parameter vectors € R%:

T T

> -y = Yo (8,0),y)? < 2dIn(T + 1) + [

t=1 t=1

Recall that norm-bounded linear functions satisfy the weak learning condition with margin w(vy) =
Q(+?) (Theorem B.6)). Together with the conversation swap regret rates we have just derived, we can
instantiate Theorem |C.3|for norm-bounded linear functions on the joint feature space. Our result is
Theorem[C.10

Theorem C.10. Let X4 = Xp = {z € R% : ||z||s < 1}. Let Ha = {za > (0,24) : ||0]]2 < C}
and Hp = {xp — (0,2p) : ||0||]2 < C} be the sets of all linear functions with bounded norm over
X1 and Xy respectively, for C > 1/2. Let Hy = {ha+hp : ha € Ha,hp € Hp} be the Minowski
sum of Ha and Hp. Consider some transcript w1V generated via the Collaboration Protocol
between Alice and Bob over K rounds (Protocol[A). There exists an online algorithm (Algorithm|[C1]
instantiated with the algorithm of Theorem such that the transcript 7515 at the last round K
satisfies, with probability 1 — p:

T T
Z(gt,K _ yt)2 — min (hJ(l’t) o yt)2 <

_ 1/8 ) 1/8
) <T47/48\/max(0270)d10g (KT ) +TK™ 6 + KT* \/max(CQ,C)dlog (KT >>
P P

Remark C.11. By setting K = T35, the external regret is sublinear:

A [ /a8 T15/56 55/56 | 55/56 T15/56
O [ T*7/*8, lmax(C2, C)dlog + T95/56 4 755/56, Imax(C2, C)d log
p p

. T15/56
=0 <T55/56\/max(02, C)dlog ( ))
p

C.3 A Decision Theoretic Extension for Higher Dimensional Outcome Spaces

In Appendix [H| we extend our results in the online setting to high dimensional outcome spaces. Here
we give an overview of our techniques. Now the outcome space ) C [0, 1]d is d dimensional, and we
model a decision maker with a finite action space .A and a utility function u : A x ) — [0, 1] that
maps an action and an outcome to a utility. The natural extension of our one-dimensional solution
to a d-dimensional outcome space—by asking for swap regret with respect to outcome predictions
themselves—would inherit exponential dependencies on d. We circumvent this difficulty by not
communicating predictions y of the outcome y € ) itself. Instead, in each round k, parties produce
predictions 7% € ) but communicate only actions a** € A that are utility maximizing given their
predictions: a*** = BR,,(§*"*) where the best response function is defined as:

BR,,({) = 0
Ru.(9) argglea}u(a,y)

We use a definition of decision calibration sufficient to guarantee swap regret of the best response
actions first used by [Noarov et al.| [2023]], generalizing the original definition given by Zhao et al.
[2021]] (the definition from Zhao et al.|[2021]] does imply swap regret bounds).
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Definition C.12 (Decision Calibration (Definition[H.7)). Fix an acnon space A and a utility function
u: AxY —[0,1]. A sequence of outcome predictions {4, ... §TF} is decision calibrated if for
every action a € A:

T
Z (%) = a) (3" —y)|| =0
We also use a definition of decision cross-calibration first used by |Lu et al.|[2025]):
Definition C.13 (Decision Cross Calibration (Definition [H.8)). Fix an action space A, a utility
Sunction u : A xY — [0,1), and a class of benchmark policies C containing functions ¢ : X — A

mapping contexts to actions. A sequence of outcome predictions {j**, ... 4T*} is decision cross-
calibrated with respect to C if for every pair of actions a,a’ € A and for every ¢ € C:

Z (%) = aL[e(a") = o' —y)

=0

If a sequence of predictions {7"*, ... §7*} is simultaneously decision calibrated and decision cross-
calibrated with respect to C, then the corresponding sequence of actions a*** = BR,,(9'*) have no
swap regret with respect to C — i.e. for every ¢ € C and for every a € A:

T
Z ]l[at’k = a]u(at’k,yt) > meacx ]l[a“€ = aju(c(z?), y")
C
= t=1

We ask that both Alice and Bob are decision calibrated and decision cross calibrated conditional
on the action that the other communicated at the previous round — which implies that both parties
have no conversation swap regret with respect to C 4 and Cp respectively on their own rounds. It also
allows us to invoke a fast agreement theorem from Collina et al.|[2025]] which lets us establish fast
convergence to a round of predicted actions that simultaneously has no swap regret to C4 and Cp.
This lets us apply a similar boosting theorem to the one we develop in Section [BJto establish that the
final sequence of actions a™* ... o™X that result from the collaboration protocol have no regret
with respect to a collection Cy of action policies defined on the joint feature space.

Theorem C.14 (Informal statement of Theorem [H.26). Fix any triple of policy classes Ca,Cp, and
Cj. If C4 and Cp satisfy the weak learning condition with respect to C 5, and the conversation length
K is sublinear in T (but not constant), then there is an efficient collaboration protocol such that:
T
max u(ey Z u(a < o(T)
t=1

cyeC
s€Cs

D Lower Bounds: Necessity of Interaction, Weak Learning and Swap Regret

Next we provide qualitative lower bounds to motivate the design choices in our collaborative learning
protocols. We demonstrate the necessity of interaction between parties, the necessity of a condition
like our weak learning assumption for achieving information aggregation guarantees, and the necessity
of using a stronger criterion than external regret (like swap regret) within the protocol.

Interaction is Necessary. One might wonder if interaction is necessary, especially when the
underlying function classes are simple, like linear functions, which satisfy our weak learning condition
(Theorem . Perhaps some non-adaptive combination of the optimal linear predictors h* (z 4)
and h’;(x ) is sufficient to achieve performance competitive with the optimal joint linear predictor
h*% (z). The following example, adapted from the proof of Theorem shows this is not the case. It
demonstrates that even when the Bayes optimal predictors are themselves linear for Alice, Bob, and
the joint feature space, the information required for optimal joint prediction might not be recoverable
just by combining the optimal individual linear predictors.

Theorem D.1 (Interaction Necessity for Linear Functions). There exists a joint distribution D over
X4 x Xp x Y and classes Ha, Hp,Hj corresponding to (bounded) linear functions over X, Xp,
and X = X X Xp respectively, such that forany f : Y x Y — ),

Ep [(f(hy(xa).Ki(e) —9)*] > min Ep [(hs(x) ~9)?].

where 1Yy, h}; are the optimal linear predictors in H 4, H g respectively.
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The proof uses a similar construction as Theorem [B.7| where the label has no correlation with Alice’s
features, and weak correlation with Bob’s feature. However, subtracting Alice’s features from Bob’s
features gives the signal exactly. Since the optimal predictor on Alice’s features is 0 (no correlation
to the label), there is no way for any aggregation function to subtract Alice’s features from Bob’s to
get the performance of the joint predictor.

The Weak Learning Condition is Necessary for Boosting. Our boosting result (Theorem B.3)
shows that if H 4 and H p satisfy the weak learning condition with respect to H z, then achieving low
swap regret with respect to {4 U H g implies low external regret with respect to H ;. We now show
this condition is necessary: if a triple (H 4, Hp, H ) fails the weak learning condition, there exist
distributions and prediction sequences with no swap regret to 7 4 U H g but positive external regret
to Hy.

Theorem D.2 (Necessity of Weak Learning for Boosting). For any triple of function classes
(Ha,Hp,Hy) that fails to satisfy the w(-)-weak learning condition (Definition for any strictly
increasing function w, there exists a sequence of examples (z'y, x'5, y*)I_| and predictions §** such
that, as T — oo, the sequence §%1 has 0 swap regret with respect to H o and H g, but has positive

external regret with respect to H j.

The proof follows from observing that if the weak-learning condition is not satisfied for any w(-) then
there is a distribution such that the joint predictor gets a non-zero gain over the constant predictor
but both Alice and Bob do not improve over the constant predictor. Now predicting according to the
best constant predictor guarantees no swap-regret to either Alice or Bob, but has non-zero external
regret to the joint predictor, since there is a joint predictor better than the constant predictor on the
distribution.

Weak Learning is Weaker than Information Substitutes. We show that our weak learning
condition is strictly weaker than the “information substitutes” condition studied by [Frongillo et al.
[2023]]. The concept of information substitutes, in the context of Bayesian agreement, fundamentally
concerns the diminishing marginal value of information. When applied to predictors, it says that the
improvement gained by adding Bob’s information (or signal) is smaller if the Alice’s information is
already available, and vice-versa.

To translate this concept for comparing function classes (H 4, H 5, H s), we need a measure of the
“value” provided by each parties features when used by functions in one of these classes. In prediction
tasks with squared error loss, a natural measure of value is the reduction in expected squared error
compared to a baseline constant predictor. This gives us the following condition:

Definition D.3 (Information Substitutes for function classes). Let H 4 : X4 — YV and Hp : Xp — Y
be hypothesis classes for Alice and Bob, respectively, and let H j be a hypothesis class of over the
joint features Hy : X4 X Xp — Y. We say model classes H 4 and H p satisfy information substitutes
with respect to ‘H j if, for all distributions D,

yin El(ha(z) —y)*] = min E[(hy(z) —y)°] < minE[(c —y)°] - min E[(hp(r) - y)’]

Information substitutes, as defined here, imposes a stronger, quantitative relationship on the magni-
tudes of the maximum achievable gains compared to weak-learning which asks if any positive gain
with the joint features implies some positive gain for either individual class.

Lemma D.4. If model classes H 4 and H g satisfy information substitutes with respect to ‘H j, they
also jointly satisfy the w(-)-weak learning condition with respect to H y for w(vy) = /2.

Combining this with Theorem [B.8] gives us that our weak-learning condition is significantly weaker
than the information substitutes condition.

Corollary D.5. There exists Ha, Hp, Hy that satisfy the w(-)-weak learnability condition for
w(vy) = O(72) but do not satisfy the information substitutes condition. In fact, the class of bounded
linear functions over X4 = Xp = [—1, 1] witnesses this gap.

External Regret is Insufficient. Our protocol aims to produce predictions p that have low swap
regret with respect to 74 and Hp. One might ask if the weaker condition of low external regret
would suffice. That is, if p has low external regret to H 4 and low external regret to H 5, does it follow
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(under the weak learning condition) that p has low external regret to H ;? The following example
shows the answer is no, even for linear functions where the weak learning condition holds.

Theorem D.6. There exists a joint distribution D over X4 x Xp X Y and classes Ha, Hp, H
corresponding to linear functions over X, Xp, and X4 X Xp, respectively, such that there exists a
sequence of examples (x%y, x5, y*)L_, and predictions §*1 such that, as T — oo, the sequence j*T

no external regret to H 4 and H g, but has positive external regret with respect to H. ;.

E Lifting to the One-Shot Bayesian Setting

Our paper primarily concerns itself with information aggregation in frequentist settings — both the
online adversarial setting studied in Section [C](and Appendix [H) in which there is no distribution at
all, and the batch setting studied in Appendix [[]in which there is a distribution, but the learners have
no prior knowledge of it except through a training sample. However, the theorems we prove can be
lifted to the one-shot Bayesian setting studied by /Aumann|[[1976], /Aaronson| [[2005]], |[Frongillo et al.
[2023]], which extends and generalizes the information aggregation result from [Frongillo et al.| [2023]]
in the original setting of Aumann’s agreement theorem. We generalize the information aggregation
theorem of |[Frongillo et al.|[2023]] in two ways: first, our weak learning condition is strictly weaker
than the information substitutes condition given by [Frongillo et al.|[2023]] — for example, as we
have shown, our weak learning condition is satisfied by linear functions, whereas the information
substitutes condition is not (as we demonstrate in Section D). Second, our information aggregation
theorems are agnostic in the sense that we can guarantee that independently of the prior distribution,
Bayesians with a common prior must agree on predictions that are as accurate as the best model
on their joint feature space in any hypothesis class with bounded fat shattering dimension, so long
as the hypothesis class satisfies our weak learning assumption. In contrast [Frongillo et al.| [2023]]
apply their information substitutes condition only to the Bayes optimal predictors on X4, X'p, and X
respectively.

Rather than the online adversarial setting we study in Sections [C|and [H] we assume (as we do in
Section that instances are drawn from D: (x4, 25,y) ~ D, where D is a joint distribution over
X4 x X x Y. However, unlike in Section |I] we now assume that this distribution is known to
both Alice and Bob as their (common) prior distribution. We now model Alice and Bob as perfect
Bayesians, who at each round of conversation, form a posterior distribution conditional on all of their
observations thus far (both the features visible to them and the transcript of the conversation so far)
and communicate their posterior expectation of y. For simplicity, rather than communicating these
expectations to arbitrary precision, Alice and Bob communicate expectations rounded to multiples of
some discretization parameter m € N (which guarantees among other things that the communication
requires only a bounded number of bits). Let [--] represent the discretization of the unit interval into

1
m
m grid points: {0, %, %, ..., 1}. We denote a prediction ¢ that is rounded to the nearest multiple of
1 —
— as {.
m

Definition E.1 (Bayesian Learner). Fix a joint distribution D € A(X4 x Xg X )) over features
observable to Alice, features observable to Bob, and labels. We say that Alice (resp., Bob) is a
Bayesian Learner if for all t,k > 0, given observable features 'y, prediction transcript 7*=1, and
conversation C’f: k1> they make a prediction as

ok e
yf4 :]ED[Y|:CE477T1t 170{:]671]‘

[ht] Imput (D, Y, K) eachday t = 1,... Receive z* = (2%, 2%, y") ~ D. Alice sees z’, and Bob

sees x';. eachround k = 1,2,..., K k is odd Alice predicts g)zk € ), and sends Bob gjzk (i.e. the

rounded version of ygk) k is even Bob predicts ng, and sends Alice y};’k. Alice and Bob observe
t

yt e .

Our argument will proceed as follows:

1. First, we observe that the predictions of a Bayesian are always unbiased at the time they are
made. Among other things, this implies that a Bayesian always has no expected conversation
swap regret with respect to any benchmark policy.

2. A consequence of this is that a Bayesian’s average realized conversation swap regret tends
to zero as the number of days of interaction tends to infinity, for any benchmark class for

26



which the realized squared error uniformly converges to the expected squared error with
sufficiently many samples. This is the case for any benchmark class of policies with finite
fat shattering dimension [Anthony and Bartlett, [1999].

3. Thus, if we imagine sampling 7T instances (4, g, y) ~ D from the prior distribution and
two Bayesians collaborating on these instances, in the limit as 7' — oo, we can apply our
information aggregation theorems with respect to any benchmark class that satisfies our
weak learning condition and has bounded fat shattering dimension to bound the expected
squared error of the final predictions.

4. Finally, we observe that since the examples are drawn i.i.d. and Bayesians will not condition
on the history of past instances (as they are independent from the current instance), the
distribution on the sequence of interactions is permutation invariant. Thus we can bound
the expected squared error of the prediction arrived at for the first example, and hence our
theorems apply even when 7' = 1.

The broad strokes of this proof strategy mirror how (Collina et al.|[2025] lifted their sequential agree-
ment theorems to the one-shot Bayesian setting. Since we aim for the stronger goal of information
aggregation, we must now reason about swap regret with respect to an infinite benchmark class (rather
than simple calibration).

E.1 Bayesians and Conversation Swap Regret

We first want to establish that Bayesians will have low conversation swap regret (Definition |A.7))
when they participate in a sequential collaboration protocol (Protocol [E). Then, in the following
section, we can proceed by instantiating Theorem|[C.3] In fact, Bayesians always have zero expected
swap regret with respect to any fixed class of benchmark functions. To bound their realized swap
regret, we need to uniformly bound the loss with respect to its expectation across every function in the
benchmark class H g, which is the step that causes us to require that H g has bounded fat shattering
dimension.

Theorem E.2. Fix d,e,m > 0. Suppose the fat shattering dimension of H 4 is finite at any scale e.
Fix transcript 15TV E - Let v range over values in [%] and g (T) be some bucketing. If Alice is
a Bayesian learner with discretization m, with probability 1 — §, Alice’s sequence of predictions
resulting from Protocol |E| has low conversation swap regret with respect to bucketing gg(T') and
function class H o: for all odd rounds k and buckets i € {1,.. ., gﬁm} such that P [jp € B;] > 0,

£/256 (1 1
if|Tp(k —1,i)| > %

2, @) i >, T =t -y

teTp(k—1,i) teTp(k—1,1)

VK T
< 21/2T1nM +— +mTe,
0 m?

where Tp(k—1,1) = {t | yjték_l € B;(1/gB (T))} is the subsequence of days where the predictions

of Bob at the previous round fall in bucket i, C5, , is the fat shattering dimension of H 4 at scale e,
and K is the number of rounds on each day. A symmetric condition holds for Bob.

Before proceeding to the proof of Theorem [E.2] we first formalize a simple observation: if we
resample the label every day after the ;™ round of conversation from the posterior distribution on
the label conditional on the transcript of interaction so far, this does not change the distribution of
transcripts. This allows us to conduct all of our subsequent analysis under this resampling thought
experiment.

Lemma E.3 (Lemma 6.3 of |Collina et al.|[2025]]). Let D be a probability distribution over X,, X
Xj, x Y and fix a day t € [T). Fix a transcript through day t — 1: 71,

* Consider an interaction at day t under Protocol|E] Let 7t be the transcript of day t from this
interaction.

e Fix an arbitrary round j. Consider an interaction when (x4, xp,y") is sampled from D
at the beginning of day t and then Alice and Bob correspond according to Protocol
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until round j. Then, in round j, the outcome is resampled from the posterior distribution
conditional on the information observed so far: y ~ Dy|x'y, =1 Ct._| ', where
Dy is the marginal distribution on Y. Let 7_T§ be the transcript of day t from this interaction,
with y' replaced with vy’

For all rounds k,

t,1:k1 _ _t,1:k
%[7‘( | =P

Proofs in this section are deferred to Appendix [M]

Now, we analyze the expected conversation swap regret of Alice and Bob. Recall that in the definition
of swap regret (Definition[A.7), we compare the squared error of Alice’s (or Bob’s) predictions to the
predictions of the best comparator function in the benchmark class, separately for each level set of
their prediction. Here, since predictions are restricted to the discretization [%], we have m level sets.
We first want to argue that for any possible swap function (i.e. selection of m functions from H 4,
one for each levelset), Alice’s expected swap regret is small.

Lemma E.4. Fix some bucketing function gg(-). If Alice is a Bayesian as in Protocol |E} she has

low expected conversation swap regret with respect to any fixed swap function {hg,h1,...,h1} €
{H a}™, where h,, is the function she compares to her prediction v € [%] For all odd rounds k and
. 1 .
buckets i € {1,..., gT(T)}'
_t,k )2 _t,k t )2 1
max = — Iy~ = v](hy(z") — < —.
P RO (O EU: 05" = vl(ho(a") = ¢")*| < —

Having established that Bayesians have low expected swap regret with respect to any fixed set of swap
functions, we now want to establish that they have low realized swap regret with high probabiilty
over sufficiently long interactions, for large families of swap functions. We do this by applying two
concentration arguments. The first (which establishes that the realized squared error of each sequence
of predictions made by Alice and Bob are close to their expected squared error) is just an application
of Azuma’s inequality:

Lemma E.5. Fix T, > 0 and bucketing gg(T). Let 7% T"%K be the transcript after running
Protocol @for T days. For all even rounds k and buckets i € {1,. .., g%m} with probability 1 — 6,

T
. g 1
D3 =)~ Epl(mi — )Pt <24 /2Tn .

To argue that Bayesians have low realized swap regret with respect to a (possibly infinite) benchmark
class of functions, we next need to argue that the squared error for every function in the benchmark
class (across each of the levelsets of our predictions) concentrates uniformly around its expectation.
To do this we recall the fat shattering dimension, which captures the capacity of real-valued function
classes [Anthony and Bartlett, 1999]. Full details are in Appendix [M]

. . C5/*% In(1)+1n(2) e .
Lemma E.6. Fixe,0 > 0. Let |Tg(k — 1,i)| > —#———5——2, where C5, , is the fat shattering
dimension_ of H 4 at scale . Fix bucketing gp(T). Let 71"V X be the transcript after running

Protocol |E|for T days. For all even rounds k, buckets i € {1,..., gﬁm} for Bob’s prediction in
round k — 1, and level set v € [ -] of Alice’s prediction in round k, with probability 1 — §,

m

]- —t,k __ t — o it—1
S0 Ttk —1,4)| teTB(Zk—u)H[yAk =v](h(z") —y)* = Ep[l[ga(z) = v)(h(x) — y)* || <e.

Finally, we can proceed to the proof of Theorem [E.2} which gives a high probability bound on the
realized swap regret on the predictions made by Bayesians in Protocol [E] The proof is deferred to

Appendix [M] but follows directly from Lemmas [E;3] and [E.6
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E.2 Online to One-Shot Reduction

In this section, we show that if an instance is drawn from a common prior and both agents are
Bayesian, then our theorems which guarantee information aggregation with high probability on all
instances over an arbitrarily long sequence of length 7" hold in fact for a single conversation with
high probability.

We can imagine an arbitrarily long sequence of conversations over many days. Each conversation on
any given day continues for exactly K rounds. We have shown that Bayesians satisfy our notion of
conversation swap regret with parameters growing sublinearly with 7'. In a Bayesian setting, since
instances are drawn i.i.d. from a fixed prior, Bayesians need not condition on information from prior
days. Thus, instances drawn each day (and subsequently, conversations each day) are distributed
identically. Therefore, the theorems we give which apply to the average cumulative regret over the
course of a subsequence of length 7" also holds in expectation over the draw from the prior, on any
single instance. Since we don’t actually need to run the protocol for 7" rounds to get predictions on
the first round, we can take 7" — oo (as it is just a thought experiment).

[ht] Input D € A(X, x X, X ), instance for which you want information aggregation:
(xp,2),,y*) ~ D Parameter number of samples: T' Fix (x,l%, i, yl) ~DFort e {2,...,T}
draw (z},x%,,y") ~ Deachdayt =1,...,T Alice observes x'y and Bob observes z';. each round
k=1,2,...,L kisodd Alice predicts g)ﬁ"k, and sends Bob g]i{k k is even Bob predicts QtB’k e,

and sends Alice ;zjg,k Alice and Bob observe 3t € Y

Theorem E.7. Let Hj be a hypothesis class over the joint feature space X. Let Ha = {ha :
Xa = Y}yand Hp = {hp : Xp — Y} be hypothesis classes over X4 and Xp. Consider instance
(QUA?:TBJJ) ~D. If

* Alice and Bob are both Bayesian learners

e H 4 and Hp have finite fat shattering dimension at every scale, and H 4 and Hp jointly
satisfy the w(-)-weak learning condition with respect to H j, for continuous w(-) such that
w(y) > 0forall v > 0,

then, if they engage in K rounds of conversation on a single instance (x4, xg,y), the prediction in
round K will have regret to the best function in H j bounded by:

B[ - )] - min El(h;(#) ~3)’] <O (vt (K1),

We can instantiate the above result for bounded norm linear functions, which satisfy our weak learning
guarantee (Theorem[B.6).

Remark E.8. If Ha4 and Hp are the classes of linear functions with bounded norm parameter
vectors: Ha = {xa — 0Tz : ||0] < C} and Hp = {xp — 0Tz : ||0||2 < C} and H is the
Minkowski sum of H 4 and Hp, then for an arbitrary prior distribution, when Bayesian learners
engage in a conversation of length K :

E[(§"F — y)?] = min E[(h;(z) —y)*] < O(CK5).

h;eH s
F Discussion and Future Work

We present efficient protocols for collaborative information aggregation, enabling two parties with
distinct feature spaces—even if mutually illegible—to provably achieve the accuracy of joint feature
access without sharing their features. Our protocols require the two parties to operate only on their own
feature spaces and communication occurs solely through label predictions or best-response actions,
making our framework practical in modern Al systems, particularly human-Al interaction and multi-
modal settings, where challenges like privacy, data modality differences, and computational overheads
often render feature sharing impractical. Moreover, our protocols underscore the fundamental role
of interaction to achieve performance that surpasses that of the individual parties, or simple non-
interactive aggregation methods, opening up a new avenue of research in collaborative learning.

Our work naturally leaves open several questions. Theoretically, extending the analysis of the weak
learning condition beyond the linear-like classes and Minkowski sum structure would broaden the
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applicability of our framework to more complex function classes encountered in practice. Additionally,
our online guarantees hold against worst-case adversarial sequences, hence, exploring settings under
beyond-worst-case assumptions—for instance, leveraging models like smoothed analysis |[Haghtalab
et al.|[2024] or incorporating mechanisms such as selective prediction |Goel et al.| [2023]]—could
potentially yield tighter bounds and reduce the number of communication rounds.

From a practical and safety perspective, the current protocols assume honest participation of both
parties. A crucial direction, particularly for human-AlI collaboration, involves designing protocols
inherently robust to strategic manipulation, mitigating risks where a capable Al might deceptively
steer outcomes towards misaligned objectives. Ensuring trustworthiness in these interactions would
require designing strategy-proof protocols within our collaborative framework.

Empirically evaluating the feasibility of our protocols is an important direction. While empirical
evaluations in realistic human-AlI settings may be challenging, evaluations in the multi-modal setting
should be a good test ground for understanding the practical challenges of scalability, performance,
and communication efficiency, to guide further development of the framework.

30



G Additional Related Work

Vertically Federated Learning. Vertically federated learning (see e.g. |Wei et al.[[2022])) studies
distibuted learning problems in which features are distributed amongst parties, just as we do. The
goal in this literature is to simulate learning on the shared feature space without sharing the data in
the clear. Standard techniques in this literature involve running stochastic gradient descent over the
full feature space over a cryptographic substrate — see e.g|Hardy et al.|[2017] who give an algorithm
for solving logistic regression over the joint feature space using additively homomorphic encryption
and|Cheng et al.|[2021]] who give similar results for tree based models. In contrast to this line of work,
our protocols require only learning on one’s own data and communicating only predictions. This is
what allows us to lift our results to the Bayesian agreement setting (all of the learning conditions
we need are satisfied by Bayesian reasoners), gives us protocols whose communication complexity
is independent of the data dimension, and gives our protocols the form of direct reductions from
multi-party learning to single-party learning, with no cryptographic overhead.

Human-AI Collaboration. The HCI literature on human-Al interaction has identified complemen-
tarity as a core goal — that a team consisting of a human and a model should perform measurably
better than either of them could perform alone Bansal et al.|[2021]]. In particular, collaboration in
the form of interaction is an explicit design goal Gomez et al.| [[2025]], although one that has been
hard to realize. Peng, Garg, and Kleinberg [Peng et al.| |2024]] prove a “no-free-lunch” theorem
for human-Al collaboration, showing that for protocols that do not engage in an interaction (i.e.
are just a post-processing of individual static predictors), non-trivial aggregation schemes (that do
not always follow the prediction of a single model) must sometimes perform worse than the worst
single predictor. Other empirical and theoretical studies of human-AlI collaboration with the goal of
improving over the best individual model include [|Green and Chen, 2019} [Donahue et al., 2022| Noti
et al.,[2025]]. We give a protocol involving interaction (thus circumventing the barrier result proven
by [Peng et al.|[2024])) that guarantees that a collaborative team can do strictly better than either
alone. Additionally, common empirical approaches to human-AlI collaboration often use insights
into the model’s reasoning through ’explanations’ as a form of communication. However, empirical
studies show mixed results |Bansal et al.| [2021]],|(Goh et al.[[2024]]; explanations can sometimes be
ineffective or even misleading, potentially hindering human understanding or team performance,
particularly if the explanations themselves are flawed. Our framework explores a different pathway
for collaboration, that circumvents the need for explanations by replacing them with sharing only
predictions.

Multi-modal Learning. Effectively integrating information across modalities like vision and
language is a key challenge in multi-modal learning (see BaltruSaitis et al.| [2018]],|Li and Tang| [2024]
and citations within). Standard techniques often involve either early fusion, combining representations
before joint processing, or late fusion, typically averaging predictions from unimodal models. Early
fusion may require complex joint models and careful feature alignment, while our theoretical results
suggest simple late fusion can be suboptimal. In contrast, our protocols utilize iterative prediction or
action exchange, requiring only learning on native data modalities. This mechanism avoids feature-
level fusion entirely, enables communication complexity independent of data dimensionality, and
represents a direct reduction to single-party learning, thus sidestepping the need for explicit feature
alignment or joint model training overhead.

H Collaboration via Decisions

Thus far we have focused on real valued outcome spaces ) = [0, 1] in which we evaluate predictions
by their squared error. Next we turn to an extension where the outcome space Y = [0,1]? is d-
dimensional. The number of possible predictions (up to any reasonable discretization) now grows
exponentially in d, and so the natural extension of our previous approach of asking the two parties to
obtain no swap regret with respect to our predictions becomes infeasible — all known algorithms
for obtaining this would have both run-time and regret bounds scaling exponentially with d or else
regret bounds diminishing exponentially slowly with 7. To circumvent this issue, we model Alice
and Bob as decision makers who use predictions to inform downstream actions. More concretely,
Alice and Bob have an action set A and a utility function u : A x ) — [0, 1] taking as input an
action and outcome. As before, both parties will maintain predictions of the real-valued underlying
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outcome. However, rather than communicating their estimates of the state directly, they will now
simply communicate actions — specifically, the utility-maximizing action relative to their prediction.

H.1 Decision Preliminaries

Definition H.1 (Best Response Action). Fix a utility function v : A x Y — [0,1] and an
outcome/prediction y € ). The best response to y according to u is the action BR,(y) =

argmax,c 4 u(a, y)

Throughout this section, will assume that the utility function w is linear and Lipschitz in the outcome.

Assumption 3. We assume that the utility function u : A x Y — [0, 1] satisfies: for every action
ac A

s u(a,-) is linear in its second argument: for all oy, € R, y1,y2 € [0,1]4,

u(a, cyr + aye) = aqula, y1) + asu(a, yo)

e u(a,-) is L-Lipschitz in its second argument in the L..-norm: for all y1, yo € [0, 1]¢,

lu(a,y1) — u(a,y2)| < Lllyr — y2|lco-

Remark H.2. One natural special case is when y represents a probability distribution over d discrete
outcomes ci, . . ., cq, such that there is an arbitrary mapping M (a, c) from action/outcome pairs to
utilities [0, 1]. In this case, u(a,y) represents the expected utility of the action a over the outcome
distribution, which is linear in y by the linearity of expectation. The utility function is L-Lipschitz
in the Log-norm, where L = maxg ¢, ¢,(M(a,c1) — M(a,c2)) < 1. So our assumption is satisfied
by any risk neutral (expectation maximizing) decision maker with arbitrary utilities over d payoff
relevant states—and is only more general.

[ht] Input X', Y, K, T, action space A, utility function v : A x Y — [0,1] eachday ¢t =1,...,T
Receive ! = (24, zt;). Alice sees x'y and Bob sees z%;. eachround k = 1,2,..., K kis odd Alice

predicts gi;’“ € V, and sends Bob ai{k = BRu(y”Qk). k is even Bob predicts gg’“ , and sends Alice

' = BR,(§%"). Alice and Bob observe y' € V.
The interaction between Alice and Bob is formalized in Protocol [H.T] (we will sometimes omit the
subscripts A and B when it is not important). The history of interaction is similarly captured by a

conversation transcript, which now additionally contains the actions communicated by both parties.

Definition H.3 (Conversation Transcript 7%7"VK), A conversation transcript =V EK ¢

T, . .
{yK 1 AKX } is a sequence of tuples of predictions made and actions chosen over rounds
by Alice and Bob (alternating across rounds), and the outcome, over T days:

1:T,1: K __ ~1,1 1,1 ~1,2 1,2 ~1,K 1,K 1 71 T)1 T2 T2 T'K T,K T
m - yA 7aA 793 aaB a"'yA 7aA 7y A yA 7aA 793 7a’B 7"'yA 7a'A 7y .

We define V7% to be the restriction to only round k of conversation across days as follows:
ko tk ol
1:T:k {(yA 7a’A 7yt)}t€[T] lfk s Odd’
i - ko btk ¢ .
{5, a5",y" ) ey otherwise.
Similarly, we will use the notation 717" to refer to a single sequence of predictions and actions over
T days, outside the context of a conversation.

Definition H.4 (Prediction Transcript 7*7). A prediction transcript m*'T € {¥? x A}" is a
sequence of tuples of predictions, actions, and outcomes over T days:

7T1:T — {(g17a17y1) ge ey (gTaa/T?yT)}

Our goal is still to effectively aggregate information — in that the sequence of actions that results
from interaction between two parties only with access to their own features has utility comparable to
the best function mapping the parties joint feature space to actions in some benchmark policy class.
Below, we define benchmark classes for our setting as a collection of policies mapping contexts to
actions.
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Definition H.5 (Individual Policy Classes C4,Cp). Let C4 : {Xa — A} be a set of functions
mapping from Alice’s feature set to an action in A. We analogously refer to Cp for Bob.

Definition H.6 (Joint Policy Class Cj). LetCy : {X — A} be a set of functions mapping from the
entire feature set X = X4 X Xp to an action in A.

Assumption 4. As before, we assume that all classes C contain the set of all constant functions

{c(z) = ataca.
H.2 Decision Calibration and Regret

We will appeal to a coarse notion of calibration suitable for high dimensional prediction problems
called “decision calibration" [Zhao et al., 2021} [Noarov et al., [2023| |Gopalan et al., 2023|]. For a
single sequence of predictions, decision calibration asks that the predictions are unbiased conditional
not on the predictions themselves, but on the actions induced by best responding to the predictions.
The variant we use here is from Noarov et al.| [2023]].

Definition H.7 (f-Decision Calibration). Fix a utility function v : A x Y — [0, 1]. Fix an error
function f : [T] — R. We say that a transcript 7*T is f-decision calibrated with respect to u if for

alla € A:
T
Z )

where a' = BR,(9') and T(a) = {t : a’ = a} is the subsequence of days in which the best response
to ) according to u is a.

< f(IT(a)])

oo

When we are interested in competing with a benchmark class C, another condition is also useful:
decision cross-calibration asks that predictions be unbiased conditional on the policy that best
responds to our predictions, and the decision made by each benchmark policy in C:

Definition H.8 ((f, C)-Decision Cross Calibration). Fix a utility functionu : A x Y — [0,1] and a
policy class C : {c : X — A}. Fix an error function f : [T —> R. We say that a transcript w7 is

(f, C)-decision cross calibrated with respect to w if for all a,a’ € Aand all ¢ € C:

< f(IT(a,a")))

Lla" = a,c(a) = a](G — 1)

oo

where a' = BRu(gt) and T(a, a') ={t:a' =a,c(z') = a'} is the subsequence of days in which
the best response to 4 according to v is a and the action suggested by policy c is a’.

We can also define an analogous notion of swap regret with respect to a policy class C, which we will
call decision swap regret. Decision swap regret compares the utility of best response actions induced
by predictions # to the counterfactual utility of actions suggested by policies in C.

Definition H.9 ((f°,C)-Decision Swap Regret). Fix a utility function v : A x ) — [0 1 and
a policy class C : {c : X — A}. Fix an error function f° : [T] — R. A transcript 7T has
(f9,C)-decision swap regret if:

T T
mas (Z 1o’ = a]u(c(a:myt)) - Yl < 7°)

acA t=1

Remark H.10. This is the same as the notion of decision swap regret defined in|Lu et al.| [2025]],
restricted to a single utility function (Lu et al.| [2025]] ask for this condition to hold over a class of
utility functions).

Lu et al.|[2025] relate decision calibration and decision swap calibration (conditions on predictions)
to decision swap regret on the sequence of actions that result from best-responding to the predictions:

Theorem H.11 (Theorem 1 of [Lu et al., 2023]). Fix a utility function u : A x Y — [0,1] and a
policy class C : {c : X — A}. If a transcript 7%*T is f-decision calibrated and (f',C)-decision cross
calibrated, and a* = BR,, (") for all t € [T, then 7%T has (f°,C)-decision swap regret, where:

7o) < 2iAlf () + 247 ()
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Remark H.12. We remark that under the assumption that the class C contains constant functions,
(f, C)-decision cross calibration implies f-decision calibration (in fact, decision cross calibration
implies decision calibration even if C does not contain constant functions, but with a loss of a factor of
|A| in decision calibration error). Thus, (f,C)-decision cross calibration alone suffices to guarantee
diminishing decision swap regret.

Moving to the collaboration setting, we define decision conversation calibration following |Collina
et al.|[2025]; this condition asks for decision calibration conditional on the previous action sent by
the other party. In other words, the predictions that each party makes should be unbiased conditional
on both their own best response action and the best response action communicated at the previous
round.

Definition H.13 ( f-Decision Conversation Calibration). Fix a error function f° : [T] = R. Given
a transcript 75T VK from an interaction in the Collaboration Protocol (Protocol , Alice is
[-decision conversation calibrated if for all odd rounds k and all pairs of actions a,a’ € A:

T
Sl = a,al T =@ - 0| < STk a,d))
t=1

(oo}

where T(k,a,a’) = {t : aiik = aand afg}k_l = a'} is the subsequence of days in which Alice

communicates action a on round k and Bob communicates a' on round k — 1.

Symmetrically, Bob is f-decision conversation calibrated if for all even rounds k and all pairs of
actions a,a’ € A:

T
S olal =a,a T =)@ - Y| < F(T(Ra,d)])
t=1 [e'e)

where T(k,a,a’) = {t : afg’k = aand af&k71 = a'} is the subsequence of days in which Bob

communicates action a on round k and Alice communicates a’ on round k — 1.

Similarly, we extend conversation swap regret to decision conversation swap regret, which is the
decision swap regret conditional on the action chosen by the other party in the previous round.

Definition H.14 ((f°,C)-Decision Conversation Swap Regret). Fix a utility function u : A x ) —
[0, 1]. Fix an error function f° : [T] — R and a policy class C. Given a transcript = T"%K from an
interaction in the Collaboration Protocol (Protocol , Alice has (f°,Ca)-decision conversation
swap regret if for all odd rounds k and all a' € A:

domax| > i =du(cl).y) | - D0 ulafhy) < (T - 1)),
acA

teTp(k—1,a’) teTp(k—1,a’)

where ai;k = BRu(fgzk) and Tp(k —1,a") = {t : BRU(ng_l) = a'} is the subsequence of days
where Bob’s action in round k — 1 is a.

If Bob satisfies a symmetric condition on even rounds k with respect to Hp, we say that Bob has
(f, H)-decision conversation swap regret.

Assumption 5. As before, we assume that all error functions f : [T]| — R are concave.

Our approach will be different compared to the one we took in Section [C] for real valued outcomes.
There, we argued that swap regret (with respect to the predictions) implied conversation calibration,
and hence fast agreement. In the action setting, decision swap regret does not necessarily imply
decision calibration, which is what is needed to invoke the fast agreement theorems of |Collina et al.
[2025]). Instead we argue that decision calibration and decision cross calibration together imply both
decision conversation swap regret and decision conversation calibration.

H.3 A Boosting Theorem for Decisions

We now give a weak learning condition that parallels Definition [B.I] Whereas Definition [B.T|requires
that C4 and Cp jointly improve on the squared error of the best constant prediction whenever C ;
does, the condition now requires that C4 and Cp jointly improve on the utility of the best constant
action whenever C; does.
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Definition H.15 (w(-)-Weak Learning Condition for Decisions). Fix a utility functionu : A x Y —
[0,1]. Let Cj be a policy class over the joint feature space X. Let C4 = {ca : X4 — A} and
Cp = {cp : Xp — A} be policy classes over X, and Xp respectively. Let w : [0,1] — [0,1] be a
strictly increasing, continuous, and convex function that satisfies w(vy) < . We say that C4 and Cp
Jjointly satisfy the w(-)-weak learning condition with respect to C if for any sequence of contexts
2T and labels y*'T, any S C [T), and any v € [0, 1], if:

ma. Z C — ma. Z (l
¢s€C; |5] 4 s aca || )

tes

then there exists either c4 € C4 or cg € Cp such that:

5 2 eawl ) —ma g 3 u(of) 2wl

tes tes
or:
cp(zh —max — Y u(a,y’) > w(y)
El ; 5) acA [S] 4 Z

Next we show that if C4 and Cp satisfy the weak learning condition with respect to C, then low
decision swap regret with respect to the classes C4 and Cp implies that the best response action
obtains utility as high as any policy c¢; € C; (up to regret terms). The proof mostly mirrors that of
Theorem B3l

Theorem H.16. Fix a utility function v : A x Y — [0, 1]. Let C; be a policy class over the joint
feature space X. Let Cy = {ca : X4 — A} and Cp = {cp : X — A} be policy classes over X4
and Xg respectively. Fix a transcript 75T If:

o 77 has (f°,Ca U Cp)-decision swap regret (Deﬁnition@)

* C4 and Cg jointly satisfy the w(-)-weak learning condition with respect to C; (Definition

Then, "7 has (2Tw71 (@) ,C J) -decision swap regret when choosing the best response action.
That is:
T

- (1)
nggZﬂBR ) = aJu(cs(z'),y") = > uBRu(§"),y") < 2Tw™ (T)
acA t=1

t=1

whenever the inverse of w exists.

Proof. Leta' = BR(g"). We show the contrapositive. Suppose there exists a collection {¢ 4 }aea C
C such that:

3 3 7(1)
ZZ]]‘ CJa( ,yt) > Zu(at’yt)+2wal <>
a€At=1 panry T
Equivalently,
) T
TaGA t=1 TaEA =1 T

Since 74T has (f S.cauC )-decision swap regret, and C4 and Cp contain the set of all constant
functions (Assumption [}, the decision swap regret with respect to the collection of best constant
actions is:

T s S
T Z gngﬁ 1[a" = aJu(a®,y") — % > > [t = afu(a,y’) < ! ;T) w™? (f ;,T))

acA acAt=1

IN
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where the second inequality uses the fact that w(v) <+, and so v < w~!(7y). Then, since the utility
of actions a’ is close to the utility of the collection of best constant actions, we have that:

) s
T Z Z u(cra(a),y) > % Z Z 1la’ = alu(a,y*) + 2w ™! <f(T)>

(LE_A t=1 acAt=1 T

> — Z XT; a*,y') — 1(fsj(,T))+2w1<

cA”

g e (°F)

=1

Let S, = {t:a' =a}and

T T
1 1
— 1 t — t _ 1 t — * t
Ya \Sa\; la* = alu(ca(@"),y") g}gﬁwal; [a" = au(a®,y")
Then, we can rewrite the expression above as
T
LS S 1 = au(esale)9) - & 3 max 3 14 = (e,
’ T a*cA ’
aE.At 1 acA t=1
1 1 o1 1,
:TZ\SQ|.|S 3 cJa(x),y)——Z|SaH*laX|S|Z]L[a:]( Ly
acA “l =1 acA ¢ ol t=1
1
= T Z 1SalVa
acA

()

Observe that since C; contains the set of all constant functions (Assumption [), there is always a
choice of {cj 4 }qc4 such that -y, is non-negative for all a. Thus, we can invoke the weak learning
condition: on any subsequence S, for which c , improves over the best constant action by ,, there
is some ¢, € C4 UCp that improves over the best constant action by w(7,). Specifically, there exists
a collection {¢, }aea € Ca UCp such that:

1 L 1 L
7 >N e’ = au(ca(a'), y') — 7 > max > 1fa" = aJu(a”,y")

acAt=1 acA

1 1
:TZ|SII|'|S

| Z 1[a’ = alu(c,(z"),y") — % Z [Sa max ! Z 1[a" = a]u(a*, y")

acA ali=1 acA "eA |5 t=1
1 . .
> T Z |Salw(va) (by the w-weak learning condition)
acA
! S, b ity of dJ s i li
Zwl g Z |Salva (by convexity of w and Jensen’s inequality)
acA
(T
> w (w_l (Jc;)>) (by monotonicity of w)
S
T
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In particular, this implies that:

T
t t > t: t t
C*ErgichE 1a (@), y') > > Y 1a" = alu(ca(a), y")
acA acA t=1

T
= uld'y") + f5(T)

which violates the (f,C4 U Cp)-decision swap regret condition. This completes the proof.

H.4 Online Decision Collaboration

We now extend our collaboration protocol to the action setting. We show that if both parties make
predictions that have low decision conversation swap regret with respect to C4 and Cp respectively
and are decision conversation calibrated, then they must quickly converge to a sequence of predictions
at some round & (not necessarily the final round) at which they have low decision swap regret to both
C 4 and Cp simultaneously. At this round, if C4 and Cp satisfy the weak learning condition relative
to a joint class Cz, then we can argue that the predictions have utility as high as the best policy in the
joint class. We then go on to show that the final sequence of predictions must have utility not much
lower than the predictions at round &, and therefore also the best policy in C ;.

We begin by arguing that if Alice and Bob have low decision swap regret and are decision conversation
calibrated with respect to their individual policy classes C4 and Cp, the best response actions at some
round & will have low decision swap regret to both C4 and Cp. The argument will closely follow that
of Theorem|[C.2} Since both Alice and Bob are decision conversation calibrated, there will exist some
round k (assume for now that Alice communicates on round k) such that on most days, their actions
e-agree — that is, Alice’s action at round k& is an e-approximate best response for Bob at round & + 1,
and vice versa (Lemma . Our goal is to show that on round &, Alice has bounded decision
swap regret simultaneously against C4 and against Cg. The first is simple: on round k, Alice has
low decision conversation swap regret with respect to C 4, and thus she has low decision swap regret
with respect to C4 (Lemma . To argue the second: on round k£ + 1, Bob has bounded decision
conversation swap regret with respect to Cg. In particular, this means that conditioned on Alice’s
action on round &, Bob’s actions are competitive against any policy in C Bﬂ We will additionally show
that since they agree, Alice’s actions at round k obtain similar utility to Bob’s actions at round & + 1
(Lemma . Thus, conditioned on Alice’s action on round &, Alice’s actions are also competitive
against any policy in Cg. Since this is true for any action that Alice chooses, Alice must also have
low decision swap regret with respect to Cp on this round.

Theorem H.17. Suppose Alice has (f ﬁ, Ca)-decision conversation swap regret and fa-decision
conversation calibration. Similarly, suppose Bob has (f g, Cp)-decision conversation swap regret
and fp-decision conversation calibration. If they engage in Protocol for T days, with K
rounds each day, then there exists a round k of the protocol such that the transcript T%TF has
(max{Aa, Ap},Ca UCp)-decision swap regret, where:

s () + 40 () 27 (g o)

o < () + 400 (1) +27 (et o)

“Notice that the decision conversation swap regret condition is in fact stronger, since it guarantees that Bob’s
actions are competitive conditioned on both Alice’s action on round k and Bob’s action on round k + 1. We will
only use the weaker “external” regret guarantee at this step.

and
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LI|AJ?

e 500) = 4 (14 () + 0 (25))
To prove Theorem we first introduce key lemmas we will use. In what follows, we denote

= BR.(9% 9! and at +1 — BR, (9% M) for all k € [K] and ¢ € [T]. The first lemma shows
how to convert a d601s10n conversation swap regret guarantee into a decision swap regret guarantee
for the sequence of predictions on any round k. Observe that decision conversation swap regret
stronger than decision swap regret, since it additionally conditions on the action chosen by the other
party in the previous round.
Lemma H.18. If Alice has (f5,Ca)-decision conversation swap regret, then for all odd k € [K],
the transcript TVTF satisfies (f!y,Ca)-decision swap regret, where:

) <1485 ()

A symmetric statement holds for Bob.

Proof. We can compute the decision swap regret with respect to C 4 over round k:

T
k &
Hel%X 1[a* = alu(c(zt),y') — Zu(ai‘ )
ac A= M =1 t=1
k 3 kot
= Zmax YooY ai =dule@l)y) - Y Y @ity
a'€ALeTg (k—1,a") a'CALeTg (k—1,a")
<) Z max Yo e =dule@h),y) | = > ulaftyh)
a’'€A aEA teTp(k—1,a") teTp(k—1,a")
(by the fact that moving the max inside the sum only strengthens the benchmark)
< Z fA(Ts(k —1,d")|) (by (f3,Ca)-decision conversation swap regret)
a’'€A
s( T . s
< |A|fa A (by concavity of f7)

O

We next argue that if Alice and Bob communicate for sufficiently many rounds, there will exist some
round where they c-agree on a large fraction of days. To do this, we use a result from |Collina et al.
[2025]] showing that the utility must increase on any round they disagree.

Lemma H.19 (Lemma 5.4 of |Collina et al.|[2025])). If Bob is fp-decision conversation calibrated,
then after engaging in Protocol for T days, for all odd rounds k € [K], we have:

. T
S g = 3 i) 2 el — 2214 *fn (1)
t=1 t=1

where D(T**1) is the subset of days over round k + 1 such that Alice and Bob c-disagree, i.e.:

‘u(azk, g - u(a%kﬂ,g]ff)‘ >
or
u(a g > e
Furthermore, if Alice is f4-decision conversation calibrated, then after engaging in Protocol|[H.1\for
T days, for all even rounds k € [K|, we have:

T T

T
> ulaf ™ y") = Y uag ') > e DI 2L Al fA<| AQ)
t=1 t=1

tk atk+1
‘ (a s ,Yp ) —
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Remark H.20. Lemma 5.4 of|Collina et al.| [[2025]] is stated for a slightly different setting where,
every day, the conversation protocol halts after both parties -agree (whereas our protocol runs for a
fixed number of rounds). There, the decrease in utility is a function of the number of days the protocol
advances to the next round. This is equivalent to the number of days Alice and Bob e-disagree, and
so the result translates straightforwardly to our setting.

Lemma H.21. After engaging in Protocol[H |for T days, each with K rounds, there is at least one
round k (without loss, assume k odd) such that the fraction of days Alice and Bob c-agree, i.e.:

k Atk k ~t,k
‘u(ai‘ ’yix ) — u(a% +17yf4 )‘ <e

and

(a7 — ulag g <

is at least 1 — <(K oz + 5(T)) where B(T) = L\AI2 (fA (ﬁ) s (%))

Proof. Using Lemma[H.19] we can calculate the difference in utility over two rounds:

T T

2 : tk 2 j : tk 1 t 2 : tk: 1 § :
= ula +7 t ula +7 + ula +7 t uaA7y

t=1

> e|D(T**?)| — 2L| A fa <|A2> +e|D(T*Y)| — 2L A f3 <Z|2> (by Lemma[H.19)
e(|D(T*3)| + |D(T*)|) — 2T6(T) (by definition of 3(T'))

Now, to calculate the difference in utility over K rounds (we assume without loss that K is odd; we
obtain the same result if K is even), we iteratively apply the above (K — 1)/2 times:

T T K K1
Zu aA ) Zu(af&l,yt) > EZ |D(T*)| — — 2TB(T)
t=1 t=1

k=2
K

=e) |D(T")| - (K - )TB(T)
k=2

Observe that since utilities are bounded between [0, 1], the left hand side of this expression is at most
T'. Thus, rearranging, we have that the total number of e-disagreements is at most:

3

Therefore, there must exist some round £* with a number of e-disagreements at most:

T+ (K-1)TBT) T TB(T)

DT < (K —1)e (K —1) L

That is, on round k*, the fraction of e-disagreements over 71" days is at most:

D) 1 )
T ~(K-1)e €

which proves the claim. O

Finally, we show that on any round where Alice and Bob c-agree, the utilities under their best
response actions do not differ by too much.
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Lemma H.22. Suppose that on some odd round k € [K|, on at least 1 — ¢ fraction of days t € [T,
we have:

U( t,k gt k-‘rl) U( t,k+1 gt k:-‘rl) <

ap s Yp g »Yp €

If Bob is fp-decision conversation calibrated, then:

T T T
Zu (a4 Zu aiFyt) < (e +0)T + LIA| fB(|A|2>
t=1

t=1

A symmetric statement holds for even round k and Alice.

Proof. We can compute:

T T
E u(aly 1yt E u(a’, yt)
t=1

T T
< Z u(afékﬂ7 gg’““) — Z u(af;‘k, y") (by definition of best response to yt kY
t=1 t=1

T
_ Zu(a%k+l7yt k:+1 Z Z Z ]]. t, k+1 a’atA,k _ a/]u(a/’yt)

t=1 a€Aa’€At=1
T T
= Zu(atéﬂl,ﬂt AL Z Z (a’,z a5 = a,dF = a }yt> (by linearity of u)
t=1 acAa’€A t=1
T T T
L gtk k+1 k bkl
<>l - Y (z § =0l = ) 2o (g
t=1 acAa’cA t=1
= LR ok Lk gkl T o
:Zu(aB U5 Zu ait0s ) + LIAP fe e (by linearity of u)
t=1 t=1

T
tk atk+1 tk+1 At k41 tk+1 At k+1 tk ~tkt1
ZZ]IHu(aA W5 ) —ulag L 95 )’ SE] (U(GB+ g ) —ulay, 9 ))
1
T
tk atk+1 tk+1 At k+1 th+1 At k+1 Lk atk+1
+ZHHU(GA’:UB ) — u(ag +7yB+)’>5} (u(aB+7yB+)_u(aA’yB ))

T
2142 ()

e(1 = 8T + 6T + LIA f < |j2) (by assumption)
< (5+6)T+L|.A|2f3 (|AT|2> (since £, > 0)
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Here, the first inequality uses fp-decision conversation calibration and the fact that u is L-Lipschitz;
we can see that for any a’ € A:

T T
Z Z <u <a’, Z 1o ! = a,d"F = a ]y%kH) —u (a’, Z a5 ! = a,a = a']yt>) ’
=1

acAa’€A =1
T T
< z Z " (alvz 1al* = g, 0t = al]gtB,k+l> . (alvz 1! = a,a%" = a }yt>‘
a€Aa'eA =1 =
T
< Z Z Z a3 k+1 ai’lk = a/](ﬁgfék+1 ) (by L-Lipschitzness)
acAa’ €A t=1 o
<L Z Z fB(T(k+1,a,a")|) (by fp-decision conversation calibration)
acAa’'€A
2 T .
< LIA|*fB (A|2) (by concavity of fg)

The second inequality follows from the fact that on at least 1 — ¢ fraction of the days, the difference
in utility is at most €. On the remaining days, the difference in utility is at most 1. O

Putting this all together, we can prove Theorem [H.17]

1/2
Proof of Theorem|H.17] Lete = (ﬁ + 8 (T)) . By Lemma|H.21| there exists a round & such

thaton 1 — (( R=1) ) fraction of the days, Alice and Bob’s actions are e-approximate best

responses to each others’ predlctions. First, consider the case where & is odd, i.e. Alice communicates
on round k. We have that:

k Atk K+l Atk
‘ (ai‘,yi,)—u(afgﬂ,yz) <e

and

tk ~tk+1 k+1 ~tk+1
(95 — ulal g < 0

Since Alice has (%, C.)-decision conversation swap regret, by Lemma|H.18} the transcript at round
k satisfies (|A| f3 (ITT\) ,C A) -decision swap regret. Next, we show that the transcript at round k
additionally has bounded decision swap regret with respect to C.
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We can calculate the decision swap regret as:

zn;w;z )Yl )

acA t=1 t=1
T
o gl gt 1 B(T) r
<Z,4mcx A el ) = el o+ (et e+ ) T s
(by Lemma[H.22)
Lk = gt 1 Yz T
= a = alu u t+2T<+6T) + LA ( >
;?gg;“ huletay). ) = 3 ulai e APF5 (
(by our setting of €)
= Z max BE— g (u(c(xt ),yt) — u(al ! yt)) or (1 + B(T) v + LIAPfB r
= c€Cp £ B/ B (K —1) | A2

T
= Z max Z Z 1f aA =a, agkﬂ a’] (u(c(x%),yt) — u(afgk“?yt))

aEA PauecAt=1

+2T ((Kl—l) + 6(T)> v + LA fp <|ATQ)

< Z Z maxz 1f aA =aq a%’”l a’] (u(c(m%),yt) — U(atBk+17yt)>

acAa’'cA t=1

+2T ((K1—1) + ﬂ(T)> . + LIAPfB <|§2)

/2
s 1 ! T

< X S5t ) 27 (g @)+ 24P (g

(by (f3,Cp)-decision conversation swap regret)

T 1 1/2 T
<|Alfs | = | +2T | ——— + B(T + L|A]? by concavity of f3
Here, the second inequality holds, since moving the max inside the sum can only make the quantity
larger.

For brevity, let:

= A () and = Al (g >+2T(1+B(T)>1/2+LIA o ()
A\ 5\ 14 -1 AP

Hence, the transcript at round & simultaneously has (%%, C 4 )-decision swap regret and (A%, Cp)-
decision swap regret. Therefore, it has (max{\%, A%} C4 U Cp)-decision swap regret.

Now, consider the case where k is even. Since all statements hold symmetrically, we have that, for:

even S T 1 12 cven S T

the transcript at round & simultaneously has (A§’°",C4)-decision swap regret and (A5*",Cp)-
decision swap regret, and therefore (max{\%°", A%*"},C4 U Cp)-decision swap regret.

Since \even > \odd gpd \odd > )even e can conclude that there exists a round & such that the
transcript at round k has (max{\§¢", X934} C4 U Cp)-decision swap regret. O

Theorem shows that at some intermediate round, the transcript has bounded decision swap
regret with respect to C4 U Cp. Our boosting result (Theorem [H.T6) states that if, additionally, C4
and Cp are weak learners for C;, then the transcript also has bounded decision swap regret with
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respect to C . Together, these results imply that at an intermediate round, the transcript has bounded
decision swap regret with respect to C ;.

One difficulty is that Alice and Bob will not know a priori which intermediate round will have these
guarantees — and so it is not clear a priori which downstream action to take on any day. However,
we will use a similar argument as we did in the proof of Theorem [C.3|to argue that the transcript on
the last round inherits an external regret guarantee. That is, as long as Alice and Bob act according to
the last round, they are sure to to achieve bounded external regret with respect to C ;.

Theorem H.23. Fix a utility function u : A x Y — [0,1]. Let C; be a policy class over the joint
feature space X. Let Cy = {ca : X4 = A} and Cp = {cp : X — A} be policy classes over X4
and X respectively. Fix a transcript 1TV K generated via Protocol If:

o Alice has (f ;19 ,C)-decision conversation swap regret and f -decision conversation calibra-
tion

* Bob has (f g, Cp)-decision conversation swap regret and fp-decision conversation calibra-
tion

* C4 and Cp jointly satisfy the w(-)-weak learning condition with respect to C ;

Then, there exists a round k of the protocol such that the transcript w5T* has

_ Aa,\ .. . .
<2Tw 1 (%) ,C J) -decision swap regret, whenever the inverse of w exists. Moreover, on

the last round K, the transcript w1 K satisfies:
4 max{A4, \p}
max Zu ) < 2Tw <A’B> + (K —1)TpB(T)
cj€Cy v} P} T

whenever the inverse of w exists. Here,

1/2
A () + o () 20 (e +om)

A < AIfS <|T> LA s <|AT|2) +2T ((Kl_ 3 +B(T)>1/2
whereﬂ(T)z%’W(fA( )+f3< ))

Proof. By Theorem [H.17| there exists a round k* of the protocol such that the transcript 747"
has (max{Aa, Ag},Ca UCp)-decision swap regret. Then, since C4 and Cp satisfy the w(-)-weak

learning condition, Theorem [H.16|gives us that 757"%" has (2Tw_1 (%) ,C J>-decision

swap regret. This proves the first part of the theorem.

To prove the second part, we use Lemma[H.19] which bounds the decrease in utility from every round
k to k + 1. We have that over two rounds, the change in utility is:

T
2 : t,k z : tk+2 t
u(a’A ay U Y
t=1 t=1
T T T
2 : 2 : tk 1 E : tk 1 2 : tk 2
U aA 7y ula + LY t + U + t ula + t
t=1 t=1 t=1

t=1

!

< 2LIAPfB (3{2) —e|D( (THH| + 2L|A|*fa (|A|2> —5\D(Tk+2)| (by Lemma[H.T9)
T T
< 2L|~A| fB (A) +2L|A‘ fA <A|2)
=2T6(T) (by definition of 5(T))
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Thus, we can bound the decrease in utility by applying this expression iteratively from round £* to
the last round K. There are at most K — 1 rounds between k£* and K, and so applying this expression
(K — 1)/2 times bounds the decrease in utility, i.e.:

S ula* gy = Y ula Ryt < T B = (K - )IA()

t=1 t=1 2

Therefore, we can bound the external regret of the last round:

max{Aa, Ag}

< 2Tw™ !
< w( -

) (K~ )TH(T)

Here, the last line follows from the fact that external regret is upper bounded by decision swap regret,
and we have previously bound the decision swap regret of the transcript at round k*. This completes
the proof. O

H.5 Achieving Conversation Decision Cross Calibration Algorithmically

Finally, we turn attention to an algorithm that obtains low decision conversation swap regret and low
decision conversation calibration; this will allow us to instantiate our results with concrete regret
bounds. We use the algorithm of [Lu et al.|[2025]], which guarantees diminishing decision calibration
and decision cross calibration error and thus, by Theorem [H.T1] diminishing decision swap regret.

Theorem H.24 (Theorem 2 of |Lu et al.| [2025]]). Fix a utility function u : A x Y — [0,1]. Fixa
policy class C. There is an algorithm that with probability 1 — p, for any sequence of outcomes
yt, ...,yT, outputs predictions ', ..., 4" that are f-decision calibrated and (f,C)-decision cross

calibrated, where:
flr) <0 <1n<dIAIICIT) + \/T In (C”A!C”’))

To guarantee diminishing decision conversation swap regret and decision conversation calibration,
we instantiate a copy of this algorithm for each pair of rounds & and actions a. On round k of day ¢,
we call on the copy corresponding to that round and the action chosen in the previous round on that
day. This gives us precisely what we want: diminishing decision swap regret and decision calibration,
conditioned on every round and the most recently communicated action. This reduction is formalized
in Algorithm [H.5] (here, we take the perspective of Alice; Bob’s is symmetric).

forany T € [T).

[ht] Input Algorithm M, policy class C

For every odd k € [K] and a € A, instantiate a copy of M, called M), ,. For the first round k = 1,
instantiate a copy of M, called M.

Let 74t¥lo denote the transcript on round k up until day ¢, restricted to {t : a¥*~1 = a}, the
subsequence where the previously communicated action was a.

Let M (7'**l () denote the output of M given this transcript.

each da?llt = 1,..., T Receive !, Make prediction §;' = M;(7**~1! () Send to Bob a'}' =
BRu.(94")

each odd round &k = 3,5,..., K Observe Bob’s action from the previous round a%kfl Make
prediction 5" = M, ex—1 (Wl‘tfl’k‘“iékfl,C) Send to Bob a’;" = BR,, (") Observe y* € V.
4B
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Theorem H.25. Fix a utility function u : Ax Y — [0, 1]. Fix a policy class C. With probability 1 — p,
Algorithm II-Z51 instantiated with the algorithm of Theorem and C, obtains (f°,C)-decision
conversation swap regret and f-decision conversation calibration for:

ff(r) <o (LIAI2 In(d|Al|C|T) + LJ4|\/T1n (‘W))

and

f(r)<o0 <ln(d|A||C|T) + \/Tln (dKIApICIT)>

forany T € [T].

Proof. Let M be the algorithm of Theorem Letp' = %. By Theorem , with probability

1 — p’, M produces predictions that are f-decision calibrated for:

f(r) <o <1n(d|A||C|T) n \/Tln (dIALICIT»

Moreover, plugging the guarantees of M into Theorem[H.11} we have that with probability 1 — o,
M obtains (f°,C)-decision swap regret for:

;=0 <L|A21n<d|A|C|T> + LIA|) | T1n (dlAplclT»

By construction, on every odd round k, a separate copy Mj, , is run for every subsequence on which
the action from the previous round a*~! is a. By a union bound, the probability that any one of
the copies fails is at most §|A|p’ = p. Therefore, since decision conversation calibration asks
for decision calibration on every such subsequence, with probability 1 — p, Algorithm [H.5]is also
(f,C)-decision conversation calibrated. Likewise, since decision conversation swap regret measures
the decision swap regret on every such subsequence, with probability 1 — p, Algorithm [H.3]also
achieves (f°,C)-decision conversation swap regret. O

To end this section, we instantiate Theorem with the algorithmic bounds. As before, we face a
tradeoff in the choice of K, the length of the conversation. We show that for appropriately chosen K,
we guarantee sublinear regret bounds with respect to C .

Theorem H.26. Fix a utility function v : A x Y — [0,1]. Let C; be a policy class over the joint
feature space X. Let Cy = {ca : X4 — A} and Cp = {cp : X — A} be policy classes over X4
and X respectively. Suppose Alice and Bob interact via Protocol [H.1} If:

* Both Alice and Bob use Algorithm[H.3] instantiated with the algorithm of Theorem
and policy classes C 5 and Cg respectively

» C4 and Cp jointly satisfy the w(-)-weak learning condition with respect to C

Then, with probability 1 — p, the transcript 7575 on the last round K satisfies:
T LIAPIn (dmAHcAHcBlT) )
ty ot LKt -1 p
Inax t:1u(c.](:v ),y)—;u(a YY) <2Tw @) Ti/t + ]

+0 ((K —1)L|A]In (W) ﬁ)

whenever the inverse of w exists.
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Moreover, if K = w(1) and K = o(\/T), then the transcript 7K satisfies, for some constant
a € (0,1):

T T L|.,4|3 In (d|AHCf;HCB|T)
max Zu cy(x Zu H<2Tw ™ | O Ti/ +o(1)
cr€Cr i t=1
0 (puap i (AAEAICST) 1)
<o(7T)

That is, the transcript at the last round achieves sublinear external regret with respect to Cj.

Proof. Let p' = p/2. By Theorem|[H.25] Algorithmachieves, with probability 1 — o/, (f°,Ca)-
decision conversation swap regret and f4-decision conversation calibration for:

Jir) <0 (LIA|21n<d|A||cA|T> + LIAJ [T n (W))

fa(r) <0 <ln<d|A||cA|T> + \/Tln (W))

for any 7 € [T]. Likewise, Algorithm achieves, with probability 1 — o', (f5,Cp)-decision
conversation swap regret and fp-decision conversation calibration for:

and

J3(r) <0 (LAIQIn(dlAHcmT) + LA /Tn (W))

1ot <0 Ao+ Jrm (ST

Thus, by a union bound, if Alice and Bob both use Algorithm [H.5|to interact, then with probability
1—2p" =1— p, Alice has ( [, C4)-decision conversation swap regret and f4-decision conversation
calibration, and Bob has (3 2 C p)-decision conversation swap regret and fz-decision conversation
calibration.

Then, by Theorem|H.23| the transcript 717X on the last round satisfies:

and

a d max{Aa, A\p}
t K t —1 Ay, \B
Jnax tE:l u(ey(z ;:1 u(a"™,y") < 2Tw (T > + (K —1)TpB(T)
where:

o) =225 (12 (ap) + 95 (7))

LIA[2 In(d|A||CA|T) 1 (M) LIAP n(d|A|(C5|T) 1 (W)
n A 2 P n B ) »
< S\ )
@) T +L|A‘ T + T +L|.A| -

2 In ((4EIAlCAlICs|T
< o | HAPIAAIAICSIT) | 1) ( Tp )

(by Cauchy-Schwartz)

46



and thus:

1/2
A < JA|If3 (2) + LIA fa (|«4T|2> +2T ((Kl_l) +B(T)>

<dKA||cA|T>
p

<0 <L|A|3 In(d|A||CA|T) + LA|2\/T In

T

+
vK -1

p
(by concavity of the square root function)

K T T
<0 <L|A|3 In(d|A||Cal[C|T) + L|A2\/In (CHAHC;‘HCB'>T3/4 4 K1>

+ | AT LI A[CA[CIT) + | AVE In*/4 (W) T3/4>

Since the expression for Ap is symmetric, we have that:

, dK T\, . T
A <O (LA|31n(d|A||CA||cB|T) + LA|2\/1n <|A”(IZO“‘”CB|)T3/4 - )

K—-1
Hence, plugging this in, we can compute:
T T
max Y u(cs(z'),y") =Y u(a"*,y")
1€ i t=1

< 2Tw™! (W) + (K —1)TB(T)

LA2\/1n dic|AllCal CiT
v | o AP m@ALcalcary | PATY M (HGEE)
B T T4 K—1

+0 ((K — D)LIAP* In(d].A|[Cal [CB|T) + (K — 1)L|A|2\/T In (dKlAicAicB'T>>

p
: AllCal|C

oot [ o LIAP In (iKl Call B|T> L

= /4 K1

+0 ((K —1)LIAIn (W) \/T>

which proves the first part of the theorem.

To prove the second part, suppose K = w(1) and K = o(v/T). Then, we can compute:

T T
N tLK ot
max 3 ules(#),y') = Y _ula,y")
t=1 t=1
L|A\3ln dlA|[CallCB|T dlAllc
_ ’ AllCs|T
<2Tw ™t (O ( (T1/4 ) +o(1) +0 <L|A21n (p T
LIAP n (44114 liCnIT)
for some constant o € (0, 1). Now, observe that any function O T + o(l)) —
L‘Alzsln(d\AHCAHCBIT)
0asT — oo. Hence, by Lemma|K.18} w1 (O ( T +o(1)>> —0asT — oo
and thus,
) LA In (d\.AHC,:)HCB\T)
Tw™ | O T/ +o(1) =o(T)
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Notice that since w is strictly increasing, w—! exists for sufficiently large T" (larger than a constant).
Therefore, for sufficiently large 7', the regret is bounded by:

T T
d|A||CallCB|T
max Y u(cy(x'),y") — Zu(at’K,yt) <o(T)+ O (L|.A|2 In (|'A|A||3|) Ta)
€ t=1 P
which completes the proof. O

I Collaboration in the Batch Setting

Thus far, we have studied the online setting, in which participants jointly predict the label on a new
adversarially chosen example every day. However, we can also study this form of collaborative
learning in the simpler distributional or batch setting, where Alice and Bob both receive different
features x4 and zp drawn from a distribution. They will train on a sample of such data (paired
with labels) at training time, and then at test time (when labels are unavailable) will be evaluated on
examples drawn from the same distribution. This setting is strictly easier than the online adversarial
setting, and hence admits (morally if not notationally) simpler algorithms which we develop in this
section.

At a high level, the algorithm here will proceed over R rounds that we index by 7. In the training
phase, Alice and Bob will iteratively build their models as follows:

* Bob will begin by generating an initial model and sending his model’s initial predictions for
all of the points in the training set, P°, to Alice. These predictions will be discretized to a
finite range.

* In the next round, Alice will refine her model according to Bob’s predictions:

— First, she will bucket her data into level sets according to Bob’s predictions. “Level set
v” corresponds to all the points in the training set for which Bob predicted v.

— On each level set v in parallel, Alice will run an internal boosting procedure which

we call INTERNAL-BOOST with respect to her hypothesis class (defined only on her
: rlv P . . .

own features), generating a model f,". This internal boosting process is equivalent
to the LSBoost algorithm from |Globus-Harris et al.|[2023]]. In essence, it repeatedly
performs squared error regression over H 4 on Alice’s own level sets, until doing so no
longer substantially improves squared error. This procedure results in a (discretized)
ensemble of models from H 4 defined in parallel for each of the v level sets.

— For each level set v, Alice will look at the error of her resulting model on that level
set fi’”, and compare it to the error of Bob’s (constant) predictor v constrained to that
level set. Depending on whether her predictions improve substantially over Bob’s, she
will either set fi’” to fi’” or to the constant predictor v (i.e. “agreeing” with Bob’s
predictions on that levelset).

— She will define her final predictor at the end of round 1, f}«’ as an ensemble of these
models such that if a datapoint © = (x4, ) is given predicted label v by Bob’s initial
predictor, fi(z4) = fi"(za).

* She will then evaluate f} on every point in the training sample and send the resulting
predictions P to Bob.

+ In the next round, Bob will run a symmetric procedure using Alice’s predictions P'. They
will continue in this manner in rounds until the predictions have converged to agreement.

During this process, Alice and Bob will separately maintain transcripts of the models which they
have iteratively built across the rounds of communication. At test time, to make a prediction on a new
datapoint with features * = (x 4, 2 ) partitioned across Alice and Bob, they will again engage in an
interactive conversation, at each round making predictions according to the models recorded in the
transcript that was generated during training. This will proceed as follows:

* Bob will look at his model transcript, extract his initial model, and evaluate it on 5. He
will then send the prediction to Alice.
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« Alice will extract from her transcript the model ¥~ corresponding to the value of Bob’s
prediction v*, and send her prediction f%¥" (x4) to Bob.

» They will proceed in this manner across rounds until they have evaluated the final models
stored in their transcripts, whose predictions they will output.

I.1 Preliminaries for the Batch Setting

Formally, as in the online setting, Alice and Bob have feature spaces X4 and X5 and there is
a real-valued outcome space ). We now additionally assume that there is a joint distribution
D € A(X4 x X x ) from which examples are drawn. We will write D 4 to denote the marginal
distribution over (X4, Y) and D to denote the marginal distribution over (X, ).

I.1.1 Training Phase

In the training phase, a finite training set S = {(z%, 2, ¥i) }ic[n) ~ D™ of size n is sampled i.i.d,
where we write [n] to denote {1,...,n}. Alice is given Sa = {(2,¥') }ie[n) and Bob is given
Sp = {(2%3,¥") }ic[n)- Importantly, i here indexes over the same instances whose features are split
between parties: z° = (2%, 2'5). Over their rounds of communication, Alice and Bob’s models will
be generated by ensembling hypotheses h 4 and hp respectively in hypothesis classes H 4 and H g,
where hy : X4 — Rand hp : Xz — R. In particular, we will assume that they generate these
hypotheses via access to a squared error regression oracle:

Definition L.1. We say Oy : A(X xY)) — (X — ) is a squared error regression oracle for a class
of real-valued functions H if for every distribution D € A(X X Y), Oy outputs the squared-error
minimizing function h € H over the distribution. Le., if h = O (D) then

h € arg min By~ (0 (2) —)°]

When we feed such an oracle a sample S = (4, Y;)ic[n), we will interpret these expectations as over
the sample.

Across their interactions, Alice and Bob will round their predictions to some discretization, defined by
a discretization parameter m € Z*. We will write [1/m] := {0, %, ce mT’l, 1} be a discretization

of the range [0, 1] into multiples of 1/m. They will round their predictions as follows:

Definition 1.2 (Round(h;m)). Let F be the collection of all real valued functions from features
X — R. Then Round is a function Round : F x 77 — F where Round(h; m) outputs a function h
such that

h(z) = min |h(z) — vl
(@) =, min_[h(a) ~v

During training, Alice and Bob will separately generate model transcripts of the models they have
generated so far, which they will use to construct predictions of the model out of sample. In essence,
these model transcripts are simply a collection of models in H 4 and H p respectively, with the
exception that in some rounds, their algorithm will generate | instead of a model (indicating that
they are deferring to their counter-party’s prediction).

Definition 1.3 (Transcript). Let H 4 be Alice’s hypothesis class and let m € Z. Over her R rounds
of interaction with Bob, she will within each round run an internal algorithm in parallel m times.
This internal algorithm will either return L or run for at most K € Z phases. Over the course of
these interactions she will generate her model transcript, which is an object over both her interactions
with Bob and her internal algorithm:

4 = {9, ..., 7%} e ({L}uHE™)™"

)

where for each round r € [R)], we have

T4 = {75 Yoep/m)
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and each of these sub-transcripts 7'y" describes the (at most) K phases of each of Alice’s internal
algorithm.ﬂ

73 e (LU {5 ke |

and each
v,k rov,k,v . rv,k,v
TA = (hA )U’E[l/m]7 with hA € Hay.

Bob’s transcript 11 will be defined analogously.

Alice and Bob act in alternating rounds, Alice in even rounds and Bob in odd ones. At the end of
each round r, the active player sends the other their current predictions on the training set (which are
all discretized to lie in [1/m)]).

Definition 1.4 (Prediction at round r). We will write P" € [1/m]" to be the n predictions generated
at round r for each x* € S. If v is odd, P" = P}, are Alice’s predictions, and if r is even, P" = Pp,
are Bob’s predictions. In our analyses, we will denote the ith prediction in the vector P™ as P™*.

At the end of R rounds, Alice and Bob will know a collection of predictions
pR—(po, . pRy— [PB- Py PR if Riseven,
’ ’ Pg,...,Pf_l,Pg else.

Remark L.5. Note that the dimension of these predictions P" is different than in the online setting.
There, only a single prediction ™" is communicated between the players in their conversation. Here,
we have a set of n predictions communicated in each round — one for each point in the training set.

Atround r, Alice will generate a model f,. In the training algorithm defined in Section|[.2.1} this
model will be only well-defined defined for the training sample; in Section [[.2.2] we will discuss how
to generate predictions on new data using the training transcript.

Definition 1.6 (Model at round r). At round r of training, Alice will generate a model f} : X4 X
[1/m] — [1/m] which is based on her datapoint and Bob’s prediction from the previous round. In
general this model will be invoked in contexts where Bob’s prediction v is clearly defined so we will
write

fa(@a) = fa(za,v).
Bob’s model fy will be defined analogously.

Definition 1.7. At the final round R of our collaboration algorithm COLLABORATE (Algorithm
, Alice and Bob will have two models f% and f& which will agree for all datapoints on both the
training sample and at test time, so we can equivalently consider them as represented by a single
model fT. We will write F® to be the space of models which may be output by the collaboration
algorithm on samples of size n, i.e.,

F = {f¥|f < COLLABORATE((S4,SB): Or.s, Orns M)} (5.4.55)=L(

={(=ziy"). (259 e

where Sy and Sp have been generated from a joint sample S € (X4 X Xp x Y)™.

I.1.2 Test Time Evaluation

Once Alice and Bob have completed training, they will have models f f and f g and model transcripts
1% and T1E. However, their final models will be recursively defined in terms of their predictions in
previous rounds. Thus, in order to evaluate f% on a new sample (x4, 73 ), they will have to again
interact over R rounds, sending each other their predictions §" at each round, which will be computed
based on their model transcripts Hﬁ and Hg. Note that here, since the prediction is for a single
datapoint rather than a set of datapoints as it is in the training phase, we revert to the prediction

notation used in the rest of the paper (3" rather than P"). This algorithm is formally described in
Section [[.2.2]

3The internal algorithm will run for a variable number of phases across the rounds of the collaborative
algorithm between Alice and Bob, but we can assume this variable number of phases is bounded by K. For the
sake of notation, we can imagine instantiations with fewer phases to be padded with | to make them length K.
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.2 Batch Collaboration Algorithm

Our algorithm will make use of level sets of Alice and Bob’s model’s (discretized) predictions on
their own data as well as the level sets of each other’s models.

Definition 1.8 (Level Sets). Let S4 be Alice’s sample. Let Alice’s predictions at round r for
each point in her sample Sa be P, = {Py',... . Py™} and Bob’s predictions at round v be
Py ={Py",...,Py"}. Letv € R. We will say that

LS(SA,PIZ,’U) = {a:f4|P£’l = 'U}ie[n]
= {aY|fa(zh) = v}icm)

are Alice’s vth level set on her own predictions. Similarly, we will call Alice’s vth level set on Bob’s
predictions

LS(SA, PE;, v) = {xQ\PE,’Z = v}ie[n]
= {2ulfB(zB) = v}iem-
Remark 1.9. Note that the transcript at round r is directly computable based only on Alice and Bob’s

knowledge of their and the other players’ predictions P} and Pp—neither player has to recompute
fi or fg, nor do they need access to the other players’ features.

In general, for subroutines we use a subscript e to refer to either A or B, depending on whose inputs
the subroutine was called on, and a subscript o to refer to the other player. With this notation in place,
we can proceed to the algorithms.

I.2.1 Training Algorithm

While training, Alice and Bob will run Algorithm[[.2.1] COLLABORATE, on their training samples
(5S4, Sp). This algorithm proceeds in rounds, with Alice and Bob alternating who sends whom their
most current predictions. In each round, the current player will call a subroutine CROSS-BOOST
(Algorithm[[.2.T)), in which that player boosts their predictions in parallel on each of their datasets’
level sets as defined by the other players’ predictions. This “internal” boosting step which is done in
parallel on each of these level sets is itself a boosting algorithm, which we call INTERNAL-BOOST
(Algorithm [[.2.T), and is equivalent to the level set boosting algorithm from [[Globus-Harris et al.,
2023]]: we restate it here as our parametrization is slightly different and to make our notational
choices clear for the sake of our later analysis. At the end of the process, Alice and Bob will have a
collection of individual model transcripts, which they will later use to evaluate the final model on
new datapoints.

[H] 1.15 Alice’s Input: O4,,Sa,m Bob’s Input: Oy, S, m Let h% € O, (Sp) and
f% =Round(h%;m). Let P~' = L and P} = {f}(2B)}(xp.4)es,- Bob sends P? = P} to Alice.
Letr = 0,I1% = 0, and 1% = {7%} = {{f%}}. P # P"~! ris even Alice plays, boosting her
predictions on Bob’s predictor’s level sets: 0.8

1 ! = CROSS-BOOST(S 4, O, Ph,m)

Alice generates her predictions for this round, P4 = {f ™! (z A)}(wa.y)esa Alice sends her

updated predictions P"+! = PQH to Bob. Alice updates her model transcript, setting HZ‘H =
", U {7;"*}. Bob does nothing, and sets 5" ' = f5 and IT);"" = II’;. Bob plays analogously,
boosting his predictions on Alice’s predictor’s level sets: 0.8

oH a5t = CROSS-BOOST(SE, Oy, Py, m)

Bob generates his predictions for this round, Pj;"" = {f5"! (= B)}(wp.y)es. Bob sends his updated

predictions P"+! = P;™! to Alice. Bob updates his model transcript, setting TT’;"* = Ty U {n7;t*}.
Alice does nothing, and sets f;frl = f4. r =r+1. Alice’s Output: f7,,II'; Bob’s Output: f;, 115

[H] 1.15 Imput: S,, Oy, , P;,meachv € [1/m)]
The player generates their vth level set on the other players’ predictions P.,0.7
St =LS(S., Py, v)
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Using only their data constrained to this level set, they run the internal boosting algorithm, and
evaluate their updated model’s performance: 0.7

frrbv zr+lLv — INTERNAL-BOOST(S. T, Oy, , m)
—~r+1,v rr v
& =B, s [(IF (@) — )7

They then compare their updated model’s performance to their counter-party’s constant predictor,
and determine which of the two to use as their final model: Let 0.4

err’ = E(m.,y)GSIJA’v [(1} — y)2]

(GI‘I“U _éﬁ,’l’“rl,v) > 1/m2 f.TJrl,v(x.) _ f”.r+1,v ,/T'r+1,v — #r+lv f:+1,v(x.) — v 7rr+1,v — | The
player then ensembles their models on each of the level sets of the others’ predictions and updates
their transcript for the round:

S = Y0 Az e Syt frT (),

vE[l/m]
ot = {7t} o Output: f7H1 7+t

[H] 1.2 Input: S,, Oy, ,mLetk =0Let hy"? = Oy, (S,) and 7770 = {h3""*} Let fo"F =
Round(hy""%; m?) Let err_; = oo and erry = E(ze,y)~S. [(ho"%(xe —y)?] errp_y — ety > 1/m?2

each v’ € [1/m?] SpuktLy LS(Ss, foF 0') Let UL Ox, (Sf’”’kﬂ’”,). The player
ensembles their models: 0.8

o @) = Y AT () = 0] R ()
v’ €[1/m]

f.7-71)7k,‘+1 ({L‘.) — Round(]?r,v,k-‘rl; m2)

Let eIl = E(m.,y)ws. [( ~l",’u,k’+1(x. _y)2] andk = k+1. Let vkl — {hi,v,k+1,1,/}vle[l/mz}.
Letk =k + 1. Let 7% = (770, .. 7"v*=1) Qutput: fI""F~1 zrv

1.2.2 Test-time Evaluation of Collaborative Model

Upon receiving a fresh datapoint (z 4, 2 ) from the distribution, Alice and Bob will use their model
transcripts from training and a R-round interaction to evaluate f* on the new datapoint. This is
described in detail in Algorithm @], which itself has two subroutines, CROSS-BOOST-EVAL
(Algorithm [[.2.2)) and INTERNAL-BOOST-EVAL (Algorithm [.2.7).

[H] 1.2 Alice’s Input: =4, 11§ = {7}y,... 7%} m. Bob’s Input: zp, I1% = {z%, ... &} m.

Bob extracts f% = Round(h%;m)) from 7% = {f%}. Bob evaluates §° = f%(x ), and sends it to
Alice. Let r = 0. » < R r is even Alice updates her prediction and sends it to Bob: She extracts
7r2+1 from IT% From her transcript from the round and Bob’s predictions §", she reconstructs :{H

and evaluates it on z 4, generating her prediction 4" for this round: 0.7
g™+ = CROSS-BOOST-EVAL(z 4,9", 74, m)

She sends her updated prediction §"+! to Bob.  Bob does nothing. Bob updates his prediction
and sends it to Alice: He extracts WEH from Hg He reconstructs fg“ and evaluates it on r g,
generating his prediction §"+! for this round: 0.7

g™+t = CROSS-BOOST-EVAL(z5, ", 75, m)

He sends his updated prediction §"+! to Alice. ~ Alice does nothing. r = r + 1 Alice’s Output:
7 Bob’s Output:
[H] Input: z,, 5", 7" = {7""},c[1/m], m- Let v* = §"~! be the value of the other player’s

ro*

predictions on x,. The player extracts 7>¥" from 7". 7Y = L §" = fI(z,) = v*. §" =
INTERNAL-BOOST-EVAL(z,, 7"**", m) Output: §"
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[H] Input: z, 77" = {x"%0 ... 7"%K} m. The player extracts 7"* = {h3"°} from

7Y, Let vy = fo"%(ze) = Round(hy"% m?)(x,.). Let k = 0. k < K The player ex-
tracts 7Tr,1),k+1 — {hiywk-i-lw }'u’e[l/m] from 7"V 7Tr,1;,k+1 7& 1 Let UZ+1 —_ :‘m,k—&-l(x.) _

Round (ALY (2,);m?2). Let k = k+1 Output: v = f"*(z,). Output: vi = 2" (x,).

LI.3 Algorithm Analysis

We will first show that the COLLABORATE algorithm is guaranteed to converge in a small number
of rounds. We will then show that if Alice and Bob’s model classes satisfy a joint weak learning
condition with respect to H ;, then the output of the COLLABORATE algorithm will have low regret
with respect to H ;, and finally will demonstrate that it generalizes out of sample.

First, we state our convergence guarantee.

Theorem L.10. In training, the subprocess INTERNAL-BOOST converges after K = m? (sub)rounds,
and the COLLABORATE Algorithmconverges after R = m? rounds on the training sample S.

Proof. To begin, assume that INTERNAL-BOOST always terminated after at most K rounds. At
round 7, let err” refer to the empirical squared error of the predictions P" generated at round 7:

1 . .
err” = — Z (Pnz _ yz)2’

" i€[n]

Consider what happens at round 7 of Algorithm [[.2.T|when CROSS-BOOST is called. The CROSS-
BOOST algorithm has two kinds of updates that can occur on the level sets of the other players’
predictions: either the current player can choose to update their predictor to the output of INTERNAL-
BOOST or they can set their predictions on that level set to be equivalent to Bob’s. Note that if, at any
roun<11, they choose on all their level sets to use Bob’s predictions, Algorithm [[.2.T) will halt, because
pr+l = pr,

Say that instead they choose to use the output of INTERNAL-BOOST on at least one level set v*.

Then, on this level set their predictions will be equal to froie” (z4). Note that the player’s level sets
on the other players’ predictions are disjoint, and that squared error is always non-negative. So,

err ™ —er” = e’ — E |STTLY| - err?
vE[l/m]
1 r+1,v r+1,4 i 2 r4+1,v v
== > lsUth Yooty ) = Y Isett] e
vE(l/m] zieSyth? vell/m]
- N\ 2
—— 2 : |S:’+1,v‘ § : (PT+1,’L _yz) —err’
vE[l/m] wiesythy
Sv” - ) *
> ‘ E (P'r‘+1,7, o yz) —err
n
mi65:+1‘v*
Sv” N . \ 2 .
_ ‘ E (fr—i—l,'u (.’EZ. _yz) —err’
n *
ziesythy
—p410* o*
=er T —em
> l/m2

Thus, at every round r in which they do not halt, they must improve the squared error of their
predictions by at least a.. In the worst case, err® = 1, i.e. Bob’s initial predictions are maximally
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incorrect. Squared error can never decrease below zero, so they must halt after at most R = m?

rounds.

It remains to show that INTERNAL-BOOST also terminates. This follows a similar potential
argument on the squared error as above. Modulo notational changes in our halting condition, the
complete proof is equivalent to that of the halting condition proved as part of Theorem 4.3 in
Globus-Harris et al.| [2023]]. O

We now prove an in-sample accuracy theorem for COLLABORATE. The proof of this statement
follows from our Boosting Lemma[B.4]and a series of Lemmas.

* Any time that INTERNAL-BOOST is invoked, the resulting model will have small swap
regret with respect to the players’ own hypothesis class on the subset of data it was called

on. (Lemma[l.12)

* For any invocation of the CROSS-BOOST algorithm, either a model from INTERNAL-
BOOST will be used or a constant predictor from the other player will be. If a model from
INTERNAL-BOOST was used, it will have small swap regret on that subsample. And if
not, the regret of the constant predictor which is used instead cannot be too much bigger,
because the player only decided to use this constant predictor because the improvement from
using INTERNAL-BOOST instead was small. Summing over the players’ level sets gives a
swap-regret guarantee on the entire model generated by CROSS-BOOST with respect to the
players’ own hypothesis class and their sample. (Lemmal|l.13)

* Because the final predictions by Alice and Bob generated by COLLABORATE always
agree, the final predictions have low swap regret on H 4 U H . (Corollary [[.14)

* Hence, if H 4 and Hp satisfy the weak learning condition with respect to H j, we can
directly apply the boosting result from Lemma [B.4]

Theorem L.11. Let H ; be a hypothesis class over the joint feature space X, and let Hy = {h4 :
Xa — YVyand Hp = {hp : X — YV} be hypothesis classes over X4 and Xp respectively. Let
1T be the final model output by COLLABORATE. Then, if H 4 and Hp jointly satisfy the w(-)-weak
learning condition with respect to H j,

i _ 3
Es|(#(z) ~v)*] = min Es|(hs(z) ~y)"] <207 () :

JEH
whenever the inverse of w exists.

We begin by proving a series of swap regret guarantees, first with respect to the individual runs of
INTERNAL-BOOST, then with respect to runs of CROSS-BOOST, and finally with respect to the
final model output by COLLABORATE.

Lemma L12. Let f™"X be the model output by a run of INTERNAL-BOOST on a player’s sample
S*®, and let Hq be that player’s own hypothesis class. Then, every time INTERNAL-BOOST is run by
a player, the final model has (2/m?, H,)-swap regret on the sample S°® it was run on:

2/m? 2 Ba, s, (75 (20) = 9)°] - Join B, )~s, 177" (2a) = v](h(2) = 9)*]

Proof. Say that INTERNAL-BOOST is run on a sample S, and outputs the model from round K.
Recall that in INTERNAL-BOOST if the output model is the model from round K, then in fact the
algorithm ran for K + 1 rounds, and the stopping condition at the final round K + 1 is in terms of
the error of the unrounded predictors f 70K and f v K+1 which were generated at that round and
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the previous one. So, since the algorithm halted,

l/m2 > eITg — eITr 41

= E(ge,y)~s. ( foo K (2a) — y)2 —E@ey)~s. [( foo Kt () — y)z]

2

= ]E(w.,y)ws. (]T-.r,v,K(x.) _ y) — E(x.,y)NS. Z 1 [fT’U’K(z) _ UI] . hr,v,K+1,v/ (x) _y
- - v’ €[1/m]
[ r a 2- v X ,U/ 2
> Eugyes, | (727K @) =) [ = Y Egoges. {MJ”’”’K(SC) = o] (R (@) — ) ]

- v’ €[1/m)]
(by Cauchy-Schwartz)

B | (£ () = 9) | = it (Biesipes, 75 o) =) 5. (Ea.1)

(by the definition of B™* K 11" € 0,,.)

This expression is nearly the swap regret statement we want, except we need to bound the swap regret
of our rounded predictor f 0K rather than our unrounded f v, K However, note that pointwise,
from the definition of Round, | f"*"¥ (z) — v ()| < 1/(2m?). Hence,

E(ze,y)~s. [(ff’“’K(x.) - y)z} =E@z, y)~5. :(Round (ff’”’K(x-); m2) - y)2]
S | (Rouna (K )
— 2E (s, y)~S. {Round (ff’”’K(:zr.); m2) . y} + E(ze y)~s, [yz]

T, 1 T, 1
S]E(z.,y)ws. < ° K( ) 2) _2( o ’K(JJ.)—M)ZJ‘F?J

< E@.y)~s. (frv i ) }

Combining this with the bound in Equation 1 gives us that

1/m? > Eg, s [(frwx.) y)Q] = min (g, yyes. [1F75 (@4) = o)(h(z) — 9)?])

heta
> B, y)~s, [(ff’v’K(mo) - y)Q] - hnelgl (E(zegyms, [LL70 7 (z) = 0] (h(z) —y)?]) — 4:12

And hence fo"""(z,) has at most 2/m2 > 1/m?2 4 3/4m? swap-regret on S, with respect to
He. O

Lemma 1.13. Let f] be the model generated by CROSS-BOOST at round r on the player’s sample
Se. Then f7 will have (3/m, H,)-swap regret on S,.

Proof. Recall that in CROSS-BOOST, the player will bucket their sample into level sets based on the
other players’ predictions, which we call Sg’”. Their final model fI" will be an ensemble of models

" generated on each level set v. On some of these level sets, their model will equal to a model
fo* which is output by INTERNAL-BOOST. On these level sets, we can directly invoke the swap
regret guarantee from Lemma@l However, if the INTERNAL-BOOST process did not sufficiently
improve their squared error on S,’”, they will instead set f,’" to always predict the other players’
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constant prediction v. We will first show that for any level set v where this happens, there is low swap
regret with respect to the sample Sg'”.

As in the statement of Algorithm [[.2.T] let
ert” = By yesp [0 9)7] and
& = By syt (27 (@) = 9)?]

Since the player chose to use Bob’s predictor v, we know that ert” — err” < 1/m?. But this means

1m? > By szt (0= 9] = Eguyszs [(F27 () ~ 9)?]

= Bewpsz [(0-0)%] - min (B, sy |17 (@) = v)(h(2) - 9)?))

| Blwsze [ @) =92 = 30 min (Baoypesye |17 (@) = )(h(@) - 9)?))

hE€H,
v’ €[1/m]
> By gymser [(0=9)°] = min (Eq, sz [LUF () = v|(h(@) - 9)?]) - 2/m?
v’ €[1/m] €7t
(By Lemma|[[.12))

Recall that low swap regret always implies low external regret. And for constant predictors, swap
regret and external regret are equivalent statements. So this inequality in turn implies that on the
subsample S¢”” where they used Bob’s constant prediction v instead of fo",

3/m” > Bay st [(0 = 9)%] = i (B sy () = 9)7])

=By [ (@a) = 9)?] - min (E, y)sp [LF () = V() —9)?) ).
v’ €ll/m]

In other words, the player will have at most (3/m?, H, )-swap regret with respect to the subsample
Se’” on any subsample where they chose to follow the other players’ prediction, which will be a
constant predictor on this subsample. We will now combine these marginal guarantees which are
with respect to the subsamples So’* into a swap regret guarantee on the entire sample S,.

On any level set Se'* where f7 evaluates to fo'*, they will have (2/m?, H,)-swap regret with respect
to S¢'*, and on any level set S¢*” where fI = v, they will have at most (3/m?, H, )-swap regret with
respect to S¢’”. So in the worst case they will have swapped out to the other players’ predictions on
each level set, and

B yy~s. [(fo(@e) —9)?] = > min (B, 4)~s, [11f0 = v](h(z) —9)°])
v€E[l/m]

Z P(xze € 53) <E(w,7y)~st“ [(f.r(xo) - y)Q]

< Egey)~s. l
vE[l/m]

heH

— min (E(x.,y)~sf’v [Jl[ff(l“-) = U](h(gj) - y)Q]) >] )
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Corollary L14. Let f% and fE be the models output by Alice and Bob after running Algorithm
which halted after v rounds. Then the models will have (3/m, H 4 U H g)-swap regret with respect to
the shared sample S.

Proof. Note that at the final round, Alice and Bob’s predictions will agree, because otherwise
Algorithm [[.2.T] will not have terminated. We know from Lemma that their models on their
respective samples S4 and Sp will have (3/m, H 4) and (3/m, H g)-swap regret respectively. So,
since they also agree at this round, it must be the case that they have swap regret bounded by 3/m
with respectto H4 U Hp. O

This gives us all of the technical machinery needed for the proof of Theorem[[.TT] as stated in Section

Proof of Theorem[[ 11} We know from Corollary that the final models f§ and fE output by
Algorithm have (3/m,Ha U Hp)- swap regret on the sample S. By assumption, # 4 and
‘H  jointly satisfy the w(-)-weak learning condition with respect to H ;. So, we can directly apply
boosting Lemma [B.4] which will guarantee that

2 : 2 -1 3
Bsl(/7(e) — y)?) - min Esl(hs(e) — )] < 20 (m) .

This gives us in-sample accuracy guarantees.

We will now state our generalization guarantee. As the models generated by the COLLABORATE
algorithm only include m possible values for the final predictor, we will leverage a multiclass uniform
convergence theorem which relies on the pseudodimension of H ;. We will then in turn use a bound
on the Natarajan dimension of  ; to bound its pseudodimension, applying a lemma that states that
if a model may be written as a decision rule over binary classifiers, then its Natarajan dimension is
bounded above by its pseudodimension. Writing our models as such decision rules will require a
small technical assumption that # ; is “closed" with respect to H 4 and H g, i.e. that H{ ; contains a
function equivalent to any function in H 4 or H g but defined over its input space X4 x Xp.

Definition 1.15 (Closure of # ; with respect to H 4 and H ). We will say that H ; is closed with re-
spect to Ha and Hp if for any ha € H 4 there exists some h € H j such that h(x) = h((xa,z5)) =
ha(xa) and for any hp € Hp there exists some h € H j such that h(z) = h((za,2p)) = hp(zp).

We now state the generalization theorem.

Theorem 1.16. Let c,6 > 0 and let F be the class of models output from Algorithm for any
Jjoint input distribution D. Let d be the pseudodimension of Alice and Bob’s joint hypothesis class
H 5, and assume that H j is closed with respect to H 4 and Hp. Let S = {(z 4,25, yi)}ie[n] ~ D"
be a sample of n iid points drawn from D. Then, if

n>0 <m7dlog(m(i)2+log(1/5)) )

P (;rgg Ewaasm~p (U= F(2)°] = E@aopm~s [0 = f@)°]] > e) <.

1.3.1 Definitions and Referenced Theorem Statements for Proof of Generalization

In order to prove this statement, we will need to rely on a variety of different definitions and standard
results from the machine learning theory literature.

Definition 1.17 (VC-dimension). |Vapnik and Chervonenkis| [1971|] Let H be a class of binary
classifiers h : X — {0,1}. Let S = {x1,...,x,} and let 113 (S) = {(h(x1),...,h(x,)) : h €
H} C {0,1}™. We say that S is shattered by H if I13;(S) = {0, 1}". The Vapnik-Chervonenkis (VC)
dimension of H, denoted VCdim(H), is the cardinality of the largest set S shattered by H.
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Definition 1.18. Pseudodimension||Pollard [2012|]] Let H be a class of functions from X to R.
We say that a set S = (T1,...,Tm,Y1s---,Ym) € X™ X R™ is pseudo-shattered by H. if for any
(b1,...,bm) € {0,1}™ there exists h € H such that Vi, h(z;) > y <= b; = 1 The pseudodimension
of H, denoted Pdim(H) is the largest integer m for which H pseudo-shatters some set S of cardinality
m.

Definition 1.19 (Shattering for multiclass functions). |Natarajan, [1989], |Shalev-Shwartz and Ben-
David [2014|] A set C C X is shattered by H if there exists two functions fo, f1 : C — [k] such
that

1. Foreveryx € C, fo(z) # f1(x).

2. For every B C C there exists a function h € H such that
Vo € B,h(z) = fo(x) andVx € C B, h(x) = fi1(x).
Definition .20 (Natarajan dimension). |Natarajan| [|1989)], \Shalev-Shwartz and Ben-David, [|2014]|]
The Natarajan dimension of H, denoted Ndim(H ), is the maximal size of a shattered set C C X.

Theorem 1.21 (Multiclass uniform convergence). |Shalev-Shwartz and Ben-David| [2014)] Lete,§ > 0
and let H be a class of functions h : X — [1/k| such that the Natarajan dimension of H is d. Let
D € A(X x [0,1]) be an arbitrary distribution and let D = {(x1,y1), . .., (Zn, Yn) } (z;,y:)~D be a
sample of n points from D. Then for

0 (dlog(k) +1og(1/5)) |

2

P |mase [Es )y — h(@)?] ~ Egenlly — h())?]] > e]] <s.

Lemma 1.22. [Shalev-Shwartz and Ben-David, [2014|]] Suppose we have ¢ binary classifiers from
binary class Hyin and a rule v : {0,1}* — [k] that determines a multiclass label according to the
predictions of the { binary classifiers. Define the hypothesis class corresponding to this rule as

Ho={r(hi(-)s.. . hel)) : (hay. .. he) € (FHpi)' ).
Then, if d = VCdim(Hpin),
Ndim(H) < 3¢dlog(¢d).

L.3.2 Generalization Proof
First, we show that the models generated by the COLLABORATE algorithm may be written as
decision rules over a polynomial number of binary predictors.

Lemma 1.23. Let K be an upper bound on the number of rounds that INTERNAL-BOOST ever runs
for, and let r be a round of COLLABORATE. Then we can write the player’s model f, at round r as
a decision rule p, : {0,1}¢ — [1/m] over £ < m + r Km? binary predictors. Assuming that H j is
closed with respect to H 4 and H g, each of these binary predictor g : X — {0, 1} will be a mapping
Sfrom the full feature space X = (X4, Xp) induced by a function h € H ;.

Proof. We proceed by induction, first showing that f” may be written as a decision rule over
classifiers and then arguing that the number of total classifiers is bounded by m + rKm?.

Base Case Consider the following m binary classifiers, ¢g%¥ : X — {0,1} defined for each
ve[l/mlandx = (z4,25) € X:

{1 if f3(zp) = v,

0 else

_ f1 if Round(h%;m)(zp) = v,
|0 else

We can then write the following decision rule
(9" Yoen/m)) (@) = arg max v-1[g""(z) =1] = fh(ep),

which exactly reconstructs the starting model.
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Induction step Say that at round » Bob has played, and his model f; may be written as a
decision rule p”. We will now show that Alice’s model 2“ may be written as a decision rule
recursively defined in terms of p”. First, we will will fix v, and consider what happens internally to

INTERNAL-BOOST:

Base case Consider the initial{ round of INTERNAL-BOOST, when k£ = 0. For
each v’ € [1/m], let g"t1:0v" + X — {0, 1} be a classifier

: +1,0,0
gr+1,v,0,v' (JC) _ 1 if f;x ! (xA) = Ul?
0 else,
_ 1t Round(h;™"% m)(z.4) = v/,
0 else.
As in our base case for the analysis for CROSS-BOOST, we can rewrite f;lﬂ’”’o
as a decision rule p™?*? in terms of g’"’“’o’vl:

Pl ({QT“’”’O’” }v’E[l/m]> (z) = arg max L O (@) = 1] = fiT 0 (@),

Induction step for INTERNAL-BOOST Say that the claim holds at round k of

INTERNAL-BOOST, i.e. that there is a decision rule p"*1¥* such that p"+1:v:F =

T’l’”’k. Letv’,i € [1/m)] and define the following m? binary classifiers

1 if Round(A; 10 R0 (0 0)im) = i,

v i _
gr“’”’kﬂ(x) N {0 else

Then, we can write

r+1,v,k+1(

p prbuk {97410 k41 @ pyenn/m) ()

= Z i l[pr+1’1)7k(x) = U/]]l[g:jlﬁ,v,k+1(x) =1],

(v, i)€[1/m]

= z 1] :‘+1’v’k(9:A) =']- Z i- ]l[Round(hfjl’”’kJrl’v,(:EA);m) =i
v’ €[1/m] i€[1/m]

= > AT (wa) = 0] Round(RTH N (@) m),
v’ €[1/m]

— £+1,v,k+1 (xA)7

which concludes the induction internal to INTERNAL-BOOST.

Following the induction argument in Globus-Harris et al.[[2023], p" 12+ +1 is a
decision rule over a total of m + (k 4+ 1)m? classifiers.

Now, we wish to show that f;ﬁl may be written as a decision rule p"t'. Recall that in

CROSS-BOOST, on each level set of Bob’s prediction, the updated model f™¥ will either be
equivalent to Bob’s predictions or a model output by INTERNAL-BOOST will be evaluated on the
point. Let V3 C [1/m)] be the collection of level sets at round r where Alice’s updated model was

equivalent to f 71 and let V3 be the collection of level sets where her model used Bob’s predictions.
Ie.,

Vi={velt/m]: fi" (wa) = fiT"(za)}
Vo={vel/m]: fi"""(za) = v}

Note that [1/m] = V; U V5 and the two sets are disjoint. For v € V7, let K, be the total number of
rounds that INTERNAL-BOOST ran for, and define

59



T,V

prv e ifv eV,
o’ ifve Vs

Then we can write

pT-‘rl ([)7‘7 {pT’U}ve[l/m]) ({IJ) = Z ]]_[pr(x) _ 1)] ) pT’U({I;)

veE[l/m]

= > 1p (@) = vlp" @) + D 1" =lp"
veV; veVs

=3 1z e ST flaa)+ > Az e ST
veVy veVa

_ per+1

=fu.

In other words, Alice’s model at round r 4+ 1 may be written as a decision rule recursively defined in
terms of her decision rules from INTERNAL-BOOST on the level sets where these models are used
and on Bob’s decision rule p".

‘We now need to give an upper bound for the number of binary predictors which p” is comprised of.
Let K be the maximum number of rounds that INTERNAL-BOOST ever runs for. Note p° is made
up of m classifiers, and say that p” is made up of at most m + r(m + Km?)m classifiers. Note that
for any v € V5 no new classifiers will be invoked. So in the worst case, V1 = [1/m], i.e. for each of
Alice’s level sets on Bob’s predictor, INTERNAL-BOOST is invoked. Each of these runs will add at
most m + Km? classifiers to the decision rule, so in total there will be at most m(m + Km?) new
classifers added to the decision rule. Hence, p"+! will be comprised of at most

{=m+7r(m+ Km?) + (m + Km*)m
=m+ (r+ Dm(m + Km?)
<m+ (r+1)(K +1)m?

classifiers. O

Lemma 1.24 (The VC dimension of Gy, , is bounded by the pseudodimension of H ;). Let Gy, »
be the class of Boolean classifiers induced by Round(h(x); m) for h € H . Le., forany g € Gy, o
there must be some v € [1/m] such that

o) = {1 if Round(h(z);m) = v,

0 else.

Let d’ be the VC dimension of Gy 5.m» and let d be the pseudodimension of H ;. Then d < d.

Proof. Let d’ be the VC dimension of Gy ;,m» and let d be the pseudodimension of H ;. First, consider
the richer hypothesis class of the set of linear thresholds induced by Round(h(z); m). We will call

this class Q%J , e, forany g € Q;J , there must be some v € [1/m] such that

_[1 ifRound(h(x);m) > v,
9() = {0 else.

Note that any function in Q%J ., can be written as an (infinite) disjunction over functions in G, .
Hence, the VC dimension of Qi 5 which we will call d”, must be greater than d’.

We will now show that the pseudodimension of H ;, d, bounds d”. Say for contradiction that it
doesn’t, and that d < d”. Since d” > d, it must be the case that any d + 1 points in X are shattered

by some g € gim. Say that the labels induced by g on these d + 1 points are (b, ..., bq+1). By
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construction of giw, there must be some v € [1/m] such that Round(h(z;); m) — b; = 1. From

the definition of Round, this means there is some ¢ such that h(x;) > i < b, = 1. But this is
the definition of pseudo-shattering, and hence H ; must pseudo-shatter the d + 1 points. Hence by
contradiction d” < d and

d <d' <d.
O

Lemma 1.25 (Bound on Natarajan dimension of F7). Let F be the class of models that are output
by Algorithm[l.21|after r rounds, and let d be the pseudodimension of H ;. Then,

Ndim(F#) < 3(m +m")dlog ((m +m")d)

Proof. Let r be the number of outer rounds that COLLABORATE runs for and let K be an upper
bound on any internal run of INTERNAL-BOOST. We combine the results of Lemmas [[.23]and [[.24}
In Lemma we showed that f* may be written as a collection of decision rules over no more
than £ = m + RKm? predictors in G, ,,. Let d’ = VCdim(G, ). Plugging this in to Lemma
[[22]and using the bound from Lemma[[.24]

Ndim(F®) < 3(m + RKm?)d’ log((2m + RKm?)d')
< 3(m + RKm?)dlog((m + RKm?)d) (By Lemmal|[[.24)
We know from Theoremthat Algorithm will converge after no more than R < m? rounds

and the internal runs of INTERNAL-BOOST will run for no more than m? rounds. Plugging these in
as bounds on K and R, we get

Ndim(F®) < 3(m +m")dlog ((m + m")d) .

We now have all the components to prove our generalization theorem.

Proof of Theorem|[[.16] This follows directly from Theorem [[.2T]and Lemma[[.25]and suppressing the
smaller terms. O

J Proofs of Tightness of Theorem [B.6|from Section

We first give the formal proofs for the necessity of boundedness for weak-learning and the tightness
of quadratic guarantees. Then we show why some assumption on the joint class like the Minowski
sum one we make is necessary to get weak-learnability.

J.1 Proof of Theorem

Proof. Let Xy = Xg = [—1,1]and Fg = {za > wazs : wa € R} and Fp = {zp — wprp :
wp € R}. Note that F4 and Fp are star-shaped since they are linear functions, but unbounded
since we have no bounds on the weights. For any strictly increasing function w, we will construct a
distribution such that the w(-)-weak-learnability condition does not hold for these function classes.

Consider the following joint distribution D, over X4 x Xp x Y for any p > 1:

1
va= LEa wn = wat o2 andy = Ep for &4, Ep i {1, +1).

2p
Observe that the optimal constant predictor ¢* = E[Y] = 0, giving min.cg E[(c — y)?] =
E[¢34] = 1 and the optimal joint predictor is h%(z) = 2pxp — 2pra = vy, yielding

miny, ez, B [(hy(x) — y)?] = 0. This implies that

minE[(c —y)*] - min E[(hs(x) - y)*] = 1.
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We will show that despite this, the improvement over the constant function for the optimal predictor
on either feature alone is much smaller. Observe that the the label y does not depend on x 4, hence the
optimal predictor over X4 is A% (z) = 0 which implies miny, , e3 , E [(ha(za) — y)?] = E[y*] = 1.
This implies,

minE[(c —y)*] = min E[(ha(ra) —y)*] = 0 < w(0) < w(1).

Here the last follows from w(0) € [0, 1] and w being strictly increasing.

The label y does have correlation with x5, and a simple calculation gives us that the optimal linear
predictor over X' has form hl;(zp) = wpxp where

% 4 E[¢3]

wn = ]E[ZCBy] — 2p _ 2p
77 Elz}] ~ EEA FEGL T AT

This gives us

=E
4 2
= Bl Bl =
This in turn implies:
. . 02 1
minE(c —y)*] = min E[(hp(zp) —y)’] =1~ 21 2T
w(-)-weak learnability would require us to have pgﬁ > w(1). However, we can always choose

p large enough to make this not hold. In particular, any p > 4/ 1;7”("1()1) will violate this condition.

Note that since w is strictly increasing, we will be guaranteed that w(1) > w(0) > 0, so such a p
exists. Therefore, for every fixed w, we can always construct a distribution that does not satisfy our
weak-learnability guarantee. O

J.2  Proof of Theorem[B.§|

Proof. Let Xy = Xp = [—1,1]and Fy = {24 — wazs : wa € R Jws| < 1} and Fp = {25 —
wpxp : wp € R, |lwg| < 1}. Note that F4 and Fp are star-shaped since they are linear functions,
and 1-bounded since both the input and weights are bounded by 1. For any strictly increasing function
w, we will construct a distribution such that the w(-)-weak-learnability condition does not hold for
these function classes with respectto H; = {ha + hp : ha € Ha,hp € Hp}.

We will consider the same joint distribution as in the proof of theorem[B.7] We will further assume
that p > 1.

Recall that the optimal joint predictor was hj(z) = 2px 4 — 2px  which required elements from
the base classes to have norm 2p which grows with increasing p. In our bounded class, however,
the optimal predictor is the scaled down version of this predictor to adhere to our norm constraints:
Wj(x) = x4 —xp = 5. This gives us,

E[(h}(z) —y)’] = E [(;p - y) 2] - <1 - 21p)2E[y2] = (22;21)2.

Which in turn implies, that the gain of the joint predictor over the constant function is

. _ 20—1)2  4p—1 31
E[(c —y)?] — E —9)? = 1—( = —,=1.
minE(c —y)°] -, min E[(hs(z) —y)7] 12 17 S |15
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Here the last follows from using the fact that p > 1.

Recall that the optimal predictor over X4 is h% (x 4) = 0 which still belongs to our bounded class,
and its gain over the constant predictor was 0. The optimal predictor over X'z in the unbounded case
ishi(zp) = %x B. Since p? + 1 > 2p for all p, the norm of this predictor is actually bounded by
1. Therefore, for our bounded class, this remains an optimal predictor. The gain of this predictor over
the constant predictor is

1 1 1
3 _ 21 _ 1 — 2 = — = 5
rcnellgRl]E[(c y)7] , nin E[(hp(zB) —y)7] 21 € [sz’ p2]

Here the last follows from using the fact that p > 1.

Therefore, for D,, the gain from the joint predictor over a constant is ©(1/p) and from the best
individual predictor over constant is ©(1/p?) implying that there is no w(y) = w(y?) for this
distribution that satisfies weak-learnability.

Finally, we establish that it is necessary to make some assumption on H ;, such as the Minowski sum
structure we use—multiplicative rather than additive combinations would not work:

Theorem J.1. There exists classes Fa = {fa : Xa = R} and Fg = {fp : Xp — R} that are star-
shaped and 1-bounded over some domain X 5, Xp such that Ha = {fa +ba : fa € Fa,ba € R}
and Hp = {fp+bp : fB € Fp,bp € R} but do not jointly satisfy w(-)-weak learning with respect
toHy;={ha -hp:ha € Ha,hp € Hp} for any strictly increasing w.

Proof. We will consider the function classes as in the proof of Theorem thatis, Xy = Xp =
[1,1] and F4 = {24 = waza : wa € R, |wa| < 1} and Fp = {ap — wpxp : wp €
R, |wp| < 1}. We know that this class is 1-bounded and star shaped.

Now consider the following joint distribution over X4 X Xp X V:
A ~uif {—1,+1}, 25 ~unir {—1,+1} independent of x 4, and y = zaxp

The best constant predictor on this is E[y] = 0. This has loss E[y?] = 1. The best joint predictor for
this distribution is % (x) = z 42 which can be constructed using ha(x4) = x4 and hp(zp) = .
Since this perfectly predicts the label, this has loss 0, therefore its gain over the constant predictor is 1.
However, the optimal predictor on either function alone is h% (x4) = h%;(xp) = 0. This is because
the label is uniformly random given only information of either z 4 or 5. This implies that the gain
of the best predictor over the constant predictor is 0. This violates the weak-learning condition for
any strictly increasing w (w(1) > w(0) > 0). O

K Additional Material from Section [C

K.1 Calibration Preliminaries

In this section we give the basic calibration definitions that we work with in our proofs.

The standard measure of calibration of some sequence of predictions 77 to outcomes 7 in a
sequential prediction setting is expected calibration error, defined as follows.

Definition K.1 (Expected Calibration Error). Given a sequence of predictions §*T and outcomes

yliT, their expected calibration error is,

ECE("",¢" ™) = > D 15" =pl(3" — o)

p€l0,1] 1t=1

Here the outer sum is over the values p that appear in the sequence 7.

We will sometimes measure calibration error of a sequence instead using distance to calibration,
first defined by Blasiok et al.|[2023]] (we here use the definition given by |Qiao and Zheng| [2024]]
in the sequential setting). Distance to calibration measures the ¢; distance between a sequence of
predictions and the closest sequence of perfectly calibrated predictions.
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Definition K.2 (Distance to Calibration). Given a sequence of predictions 4" and outcomes y':T,
the distance to calibration is,

CalDiSt(ﬂl:T,ylzT) _ ~1:T qlzTH1

min
ql:Tec(yl:T) ||y
where C(y'T) = {¢"T : ECE(¢"T, y*T) = 0} is the set of predictions that are perfectly calibrated
against outcomes y*:T.

Calibration has a close relationship to squared error, which we will use as a potential function in
some of our analyses. Below we define the squared error of a sequence of predictions relative to a
sequence of outcomes:

Definition K.3 (Squared Error). Given a sequence of predictions §*T and outcomes y“, the
squared error between them is,

SQE(@l:T,yl:T) — Z (Qt o yt)Q.

te[T)
We will overload this notation for the special case of constant sequences j* = ... = T = p:
SQE(p,y"™) = > (p—¢")*.
te[T]

K.2 Conversation Calibration

Here we formally define the notion of calibration introduced in |Collina et al.[[2025]], called conversa-
tion calibration. This notion is defined over a transcript of days to 1...7T" and varied-length rounds.
An agent is conversation calibrated if for every round k, the sequence of predictions (over days t)
that they make at round k of conversation is calibrated not just marginally, but conditionally on the
value of the prediction that the other agent made at round k£ — 1. We will condition on bucketings of
predictions.

Definition K.4 (Bucketing of the Prediction Space). For bucket coarseness parameter n, let By, (1) =
[%, %1) and Bp(n) = [”771, 1] form a set By, of n buckets of width 1/n that partition the unit
interval.

Definition K.5 (Conversation-Calibrated Predictions). Fix an error function f : {1,..., T} - R
and bucketing function g : {1,...,T} — (0, 1]. Given a prediction transcript m*T resulting from an
interaction in the Collaboration Protocol, Bob is (f, g)-conversation-calibrated if for all even rounds
k and bucketsi € {1,...,1/9(T)}:

CalDist (g5 "~y ™ E10) < (ITalk — 1,0)),
where Ta(k — 1,i) = {t | gji{kfl € Bi(l/g(T))} is the subsequence of days where the predictions
of Alice at the previous round fall in bucket 1.

Symmetrically, Alice is (f,g)-conversation-calibrated if for all odd rounds k and buckets i €
{1,...,1/9(T)}:

CalDist(g 5> * 1)y Te =10y < f(|Tp(k - 1,7)]),
where Tp(k — 1,i) = {t | 3}2’]‘%1 € Bi(l/g(T))} is the subsequence of days where the predictions
of Bob at the previous round fall in bucket 1.

We also introduce a function that checks whether, on a given day ¢ and given even round k, the

prediction §j** is within e of the prediction in the previous round §**~!. Formally, we define

Definition K.6 (Agreement Condition A 1.7 (t, k, ¢) and Disagreement Subsequence D (T%)).

A (k) o= VUG =05 < €] if s odd,
T H[|g)f§k - ggk_l| <€ ifliseven.

Furthermore, let D(T*) be the subset of days t such that A .7 (t, k) = 0.
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We are now ready to discuss the relationship between conversation calibration and conversation swap
regret.

Theorem K.7. If H contains all constant functions, then (f, g, H)-Conversation Swap Regret implies

(f', g)-Conversation Calibration, where f'(T) = /T - f(T).

Proof. Assume that Bob satisfies (f, g, H)-Conversation Swap Regret. Let T4 (k — 1,7) be the
subsequence of days where the predictions of Alice in round k& — 1 fall in bucket 7. As H contains all
constant functions, (f, g, H)-Conversation Swap Regret directly implies that

2 @i—y)?=d min | Y I =vl(h(e’) = y")? | < F(Talk - 1,9))

t€TA(k—1,1) t€TA(k—1,1)
= X G- mn |3 Wih=vle ) | < (Tak - 1)
t€Ta (k—1,) v TS \vera (k1,1

= 2| 2 Wk=ol@ -y min o D0 Tk =l —9") | < J(Talk - 1,0)

v teTy (k—1,1) teTa(k—1,%)

= > | Y =@ -y - D> I =0l —y")? | < F(Tak - 1,4)])

v teTa(k—1,i) teTa(k—1,i)
(Where z¢ is the average on the level set)
= > D Mg =@k —a9)® < f(Talk — 1,4))) (By Lemma [K.12)

teTa(k—1,3) v

Note that, by Cauchy-Schwartz, we have that \/ZtGTA(k—l,i) S HgE = o) (9k — 22)2/|Ta(k — 1,4)] >

D teTa(h—14) 2w I[gt = v]|gt — x2|, and therefore that D teTa(k—1.0) 2o I[gt = v](gL — 2%)% >

= 15 S B =0k —a))? .
LETA 1"71A(k_1 ol d . Thus, we can write

(ZtETA(k—Li) > Mok = v]9r, — z3])?

< f(ITa(k = 1,4)])

|TA(1€_172)|
) I nto— v ~t — @
N ZteTA(kq,z)Zv [0, . 195 ol < VI(Tale=1,9))
|TA(k_177’)|

(Taking the square root of both sides)
= Y > gk =0llgk — 2%l < VF(Talk = L,4)]) - [Tak — 1,4)]
te€Ta(k—1,4) v
— BCE(j "1 g™ 0710) < F(Ta(k = 1,4)]) - [Ta(k — 1,3)]
(As the LHS is exactly ECE)

— CalDist(§* " yTat=10y < \/F(Ta(k — 1,4)]) - [Talk — 1,9)]
(As ECE upper bounds CalDist)

As  Conversation Swap Regret holds true for all rounds, this  implies
VITa(k —1,9)] - f(]Ta(k — 1,7)|)-conversation calibration. The proof holds symmetrically
for Alice. O

Theorem K.8. If a sequence i has (f, g, H)-Conversation Swap Regret, then

Z(ZQZ - yt)Q _ min <Z H[Z?Itg — U](h(xt) _ yt)2> < w

t=1 v



Proof.
T T
20—yt =D i (Zﬂwz = o](h(a") W) =
t=1 v t=1

ooy G-y -  min, o> g =ol(hh) —y')’

i tGTA(kfl,i) % tGTA(k? 11)

<> > @Gh-y)?-) ) wmin > TGk =l(hah) —y")?
i teTa(k—1,0) i B \teTu(k—1,)
(As by moving the sum over ¢ out of the min we are only strengthening the benchmark)

=21 X @-y)?-d min |30 I =v)(h(") —y")?

i \t€Ta(k—1,) v t€Ta (k—1,0)
= Z (ITa(k —1,0)])) (By the Conversation Swap Regret Condition)
T
< M (By the assumption that f is concave)

g(T)
O

K.3 Additional Online Preliminaries

Definition K.9 (Z—valued Tree). A Z—valued tree z of depth n is a rooted complete binary tree
with nodes labeled by elements of Z. We identify the tree z with the sequence (z1, . . ., 7,) of labeling
functions z; : {1}~ — Z which provide the labels for each node. Here, z; € Z is the root of the
tree, while z;,7 > 1 is the label of the node obtained by following the path of length i — 1 from the
root, with +1 indicating ‘right’ and —1 indicating ‘left.’

Definition K.10. A Z—valued tree z of depth d is shattered by a function class F C {£1}Z if
Vee{£1}, I fe FsrVteld, f(z(e)) = e

Definition K.11 (Sequential Fat Shattering Dimension [Rakhlin et al.,[2014]]). A Z—valued binary
tree z of depth d is av—shattered by a function class F C R* if there exists an R—valued tree s of
depth d such that

Vee{+1}, I fec FsrVte[d], ei(f(z(e)) —si(e)) > a/2.

The sequential fat shattering dimension FAT,(F,Z) at scale « is the maximal d such that F
a—shatters a Z—valued tree of depth d.

K.4 Proof of Theorem|[C.1]

Lemma K.12 (Lemma A.1 from|Collina et al.|[2025]]). If m = % Zle y*, then for any constant z,

T
SQE(z,y"") — SQE(m => (z— (1)

t=1

Lemma K.13 (Lemma A.2 from (Collina et al.{[2025]). Let T;""* = {t : 4" = pj, and 5" €
B; (g(T )} be the subsequence of days such that the predicts py, in round k and the model predicts in

bucket B; (g( )) in round k — 1. If the human is (-, gn(T'))-conversation calibrated, then

S Gy Y el ) = —gulD) [T @

teTy P teT)"h

66



Lemma K.14 (Lemma A.3 from Collina et al.[[2025]]). Consider any sequence of predictions and
labels p**T | yT and some other sequence of predictions -7 such that ||p*T — ¢V*T|| < . Then,

T

T
Y =y => 0 -y <3y

t=1 t=1

Lemma K.15. [f Bob is (0, g (T))-conversation-calibrated, then for any even k,

SQE(E"y"") < SQE(IL" ",y ) — (e — gn(T)?ID(T*)| + g5(T)T
And if Alice is (0, g4 (T))-conversation-calibrated, for any odd k,

SQE(L ",y ™) < SQE(5" " y¥T) — (e — ga(D))*|D(T™)| + ga(T)T

Proof. Let TP = {t : t € TZF and 34 = pp, and 35" € By( (1T))} be the subsequence of
days such that Bob predicts pj, in round k and Alice predicts in bucket B;( (T)) inround k — 1. Let
> i,Pp, y*

teT, . . .
m k’p b= ‘Tfip,‘ be the true mean on this subsequence. The difference in squared errors over
k

this subsequence can be written as:

bk ok
S@T =y = > @ -’
teTyPh teTy?h

k-1 ; Ltk i
= | D0 @ =)= D0 =y = DD @ -y Y Pt —yh)?
_teT;"’h teTyPh teTyPh teTyPh

(Adding and subtracting ZteT,i'ph (my?" — y)?)

v

ST i gs(T) )~ T gn(T) = 3 (mp —y?| -

teTyPh teT)Ph

oo -y Yoy (By Lemma[R.T3)
teT)Ph teT

=1 > G-gp(M) —mp")? =T - gu(T)| — | > @5 —v')>— D (mi ')
_tET,i'ph _tET;’ph teT;‘ph'

(By Lemma [K:12)

= | 2 GgpM=m) I gn(T)| = D =)= D (™ =y’
_tGT;’Ph _teT;’ph teT}iwh
(As by definition of T} ", 7% £ o)

> D (igs(T) —m™ ) =T - gp(T) | — | Y (on—my™)?
| teT, ™" ] | teT, ™"
(By Lemma [K:12)
> —[Tp?"| - gp(T) + > (i-gs(T) - pn)’

teT, P
(As Bob is (0, g5 (T'))-conversation calibrated, p;, = m;”*")
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. . . . . . . Tk
Using this analysis, we can write the difference in squared errors over the entire sequence 4" and

gﬁ =1 as follows, where the first term comes from summing the above expression over all 7, pp:

SQE(—T]C 17 lT) SQE(iTk, IT)

=S D @ == DD G5 -y’

Vi,pp teT’zaPh, teT,i’ph
= Z —|T,i’p*‘| -g5(T) + Z (i-g(T) —ppn)? (by the analysis above)
Vi,ph teT)Ph

—gg(M)T+ > > (i-gs(T) - pn)?

Vi,pn teT’:',Ph

(As gp(T') is independent of 7 and pp,, and 3y, TP

.tk .
—gp(MT+ Y 3" 1li g5(T) — 95| = € — g5(T))(i - g5(T) — p1)?
Vi.pn yeriPh

> —gp(D)T+ (e —gp(D))* > > 1fli-gs(T — 95| > €~ gp(T)]

Vi.ph e, h

=T7)

v

Note that, for all days in the subsequence 7}’ “P1 inround k— 1 Alice predicted in bucket B; ( (T) ) =
i - gp(T), and therefore in each of these days, by the definition of our bucketing, sz '>(@6-1).

gs(T )and;&ilc <i-gg(T). Socons1deranyr0undteT”’h If|”‘k th | > e, then we
have:
95— 55 < G~ i g (T)| i g (T) — 95
= 95" —i-gp(T)|+i-gu(T)— 45"
Atk - .
<|o5" —i-gp(T)|+i-gn(T) - (1—1) 5(T)

= \@ték —i-g5(T)| + g5(T),
= 195" —i-g5(T)| > 95" — 95" — 9B(T) > € — gp(T).

Thus, if |55 — §%7| > €, then |i - gp(T) — 34 g5(T), ¥t € T{P". Therefore the set of
days for Wthh the former condition holds is a subset of the latter condition, and we can write

—g5(T)T + (e — g5(T))* Y 1lJi- g5(T) — pu| > ¢ — g5(T)] - )Tg,ph
Vi, pn

> —gp(DT +(e—gp(T)* > > Lds —95" 1>

Vi,ph tGT,: "Ph

= —g5(T)T + (e — g5(T))*| D(T")|
(As on every day and round where there is not agreement, Bob and Alice disagreed by at least €)

As Bob and Alice are perfectly symmetrical, we also obtain the symmetrical result for Alice. O

Theorem K.16. If Bob is (f5(-), g5(-))-conversation-calibrated, then after engaging in the collabo-
ration protocol for T days:

SQEGF,y*T) < SQE@EF, y*T) (e — gu(T))2 D(TH)| + gu(T)T + 332192 1)
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And if Alice is (fa(+), ga(:))-conversation-calibrated, then after engaging in the collaboration
protocol for T' days:

falga(T)-T)

SQE(§4",y"") < SQE(@5" ", y") = (¢ — ga(M)PIDTM)] + 9a ()T + 3722

Proof. Let T, (k,i) = {t At e B (—))} be the subsequence of days in which Alices

predicts in bucket B;(—— ) at round k—1.

gB(T) )

Note that Bob has distance to calibration of f5(|T;,(k,7)|) on every such subsequence defined this
way. Therefore, for predictions p};T’k from Bob at round k:

>k >k
CalDist(p} ’k, LTy — min T=5k o
(P, y ) JUTEC(y1eT) [F2 q "

9B (T)
< 1T
- ; QU1 Tm (6. | €C'Tm (k,0) (51T 1"~ 1h
1
9B (T)
< fe(Tm(k,9)]) (By the calibration distance of Bob)
i=1
T) - T>k
< 15(95(T) | D (By the assumption that fp is concave)
95(T)
_ f5lgn(T) - T)
N 95(T)
Let ¢" be the set of perfectly calibrated predictions that are f5(|T),(k,)|)-close to p,lb TF Then, we
have that
SQErr(pZ’ ,yt T — SQErr(phh=1t 41T
k Th-1 17y, oJBGB(T)-T)
< SQErr(¢", y"") — SQErr(p, ", y* ) + 3 ) (By Lemma [K:T4)
9B
T -T
< (e = gu(T))*|D(T*)| + go(1)T + 3((@)))- (By Lemma[K.T3)
As Bob and Alice are symmetric, we also obtain the symmetric result for Alice. O

Proof of Theorem[C.I} By composing the two results in Theorem [K:16] we see that

SQErr (75", yT) — SQEr(", ")
falga(T)-T)

> (e — ga(T))*|D(T*)| + (e = ga(T))*|D(T* )| — ga(T)T - 3 oy 9T =370
> (e~ gn(T)IDTH)| + (¢ - ga (D)D) = (ga(D) + (D)7 — 3 (POACLT) [olan 1))

Now we can apply the above expression recursively for k rounds in order to bound the total number
of days of disagreement:
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SQEm (55", yHT)
k k
<SQErr(j5° y"T) = (e—ga(D)* | Y. IDAM|]| = (e—gs(M)* | > [DT")

k=1,k odd k=1,k even
k
Floall)yon(rtes (fA(ggi(?) s fB(ggi(é)) . T)> S
k=1,k even

ZID(T’“H)

< SQEr (9%, 5" ") = (e = 9a(1)* + (¢ — gn(T))?) (
k=1

falga(T)-T) n fB(gBET) : T)> k

- (ga(T) + gu(T)T+3 (

< SQEr(d",y"") - 26" (Z |D(T") |> +3K(ga(T) + g5(T))T + 3k (fA(ggi(T)

= SQEr(j5,%, ") — 26 (Z D) ) +3KTB(T, fa, f5)
Finally we can compose this expression with one more instantiation of Theorem [K16}
SQE(.47) £ SQBEE' 1) ~ (e~ gn() DT + ga(r)T + 372020 T)
<SQE@Gy ", y" ") = E|D(TY)| + TA(T, fa, f5)

and get a final expression of:

SQEr (5", y"7) < SQE(IY !,y T) — 262 (DD (T%)] >+3kT6<T7fA,fB>

Note also that SQE(QQ Loyt Ty < T and SQE(QK oyt T > 0. Therefore, we have that

k
0<T —2€ (Z |D(T’“)|> +rTB(T, fa, fB)
k=1

k

= > ID(T")| <

k=1

T+TTB(T5 fA7fB)
2¢2

Thus, the round between 1 and k£ with the smallest number of disagreements has no more than

w disagreements. Let k be the index of this round. As there are 7" predictions total in
round k the fraction of predictions in the round that are disagreements is

T""f’TB(T,anfB) - 1 5(TafA7fB)

2rTe?  2re2 262
O
K.5 Proof of Theorem|[C.2]
Lemma K.17. If the sequence of real-valued predictions a*' is (e, §)-close to the sequence b*T,

and a, b,y are all bounded above by 1, then

T T
Za—y Z )2 <40+ 6)T
=1

t=1

70

(T)-T1) + fe(gp(T)-T)



Proof.

MH
M’i

afy

-
Il

I
="

t=1

T
Uflat = 0] > ¢ (0! — )2 = (' = y")2) + D 1fla’ — 1] < ] ((a* — ") = (' —y")?)

~+~
Il
—

] =

Lja" —b'| > € (Ja" = 6] - Ja" + | +2|y"| - |a" — b'])

~+
Il
—

I
M=

1[|a* — '] < ¢] (\at — b |a’ + b + 2yt - |at — bt|)

~
I
—

T
Lfla® =] > ¢ (la" + 6" +2ly']) + D lla’ = 0| <] (e |a’ +b°] + 2|y - ¢)

t=1

[M]=

~
Il
—

T

< Z 1[|a® —b"| > €] (4) + Z Ifla® = b"| < €] (4-¢) (By the upper bounds on the values)
=1

< 40T+ 4e(1 = 6T <4T(5+¢)

Proof of Theorem|C.2] By Theorem Alice is (f’y, ga)-conversation calibrated and Bob is

(f5,98)- conversation calibrated, where f/ (z) = v/« - fa(z), and symmetrically for f{. Thus, by
Theorem [C.1] after the collaboration protocol is run for K rounds, there is at least one round k+1 > 1

where the fraction of predictions that are e-far from the previous round is at most 5 K > + (Tgf p ) ,

where B(T', fiy, f5) = 3 (gA(T) +95(T) + f“(g‘(‘(? Lo qu(z’fr}))T ) Consider the round be-
fore round k + 1, round k.

First consider the case where k is an even round. Then, by definition, the predictions g,i, e g,{ in
this round have (f5, g5, Hp)-conversation swap regret. We will now define a sequence of predictions
y which is gpT-far in L; distance from 93, ..., 9}, and show that 7 has low swap regret to H 4 UH .
This sequence is generated by combining level sets of 77, ..., g){ such that each level set is mapped
to the closest value in { ﬁ, ..., 1}. We will first compute the swap regret of § with respect to Hp:
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=1 . t=1 .
< @ -y - min > g = v)(h=") - yt)2>

v t
(As ¥ has strictly coarser level sets than gy, here we are only strengthening the benchmark)

T T T
= -y - hrgg; (Z 1[ at) — yt)2> + (Z(ﬂt )’ =D G- yt)2>

< fB(ggB (i gy’ - t_i@i — yt)2> (By Theorem[K8)
- Lln D i (@) — (3 + 20" (o — 1)

< W+é(lyt — Gkl 15"+ il + 20 - vk — 7'1)

_ fB(;]f((TT))T) +é (gAéT) g+ L]+ 21yt - 91“2(11)) (By construction of 7)
BT (3, ) )1 por

Next, we will compute the swap regret of 4 with respect to H 4. Here, we crucially use the fact that
the sequence gy has high agreement with ¢, and furthermore that 5, has low swap regret to

‘H 4 exactly on the level sets of . Let Tz (k, 7) be the subsequence of days on which Bob predicts in
bucket ¢ in round k.
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t=1 t=1
T T T T
= (Z(yf ) Z(yltcﬂ > + Z Uhi1 — hmin (Z 1[7" = v](h(z") — yt>2>
EHa
t=1 t=1 t=1 t=1
T
1 5(T fA? fB : —t t t\2
=4 1l7t = _
(e +9a(T) + e + T+Z Jhir = B8, g [ = v](h(=") =)
(By , and the fact that 41 is (e + ga(T), 7= + AT 26/A2’f3 )-close to %)
T
1 B(T, f . f5) . _
= 4e+9a(T) + ez + ( STy D @i~y =) min (Z 1y" = v)(h(z") — yt)2>
i teTgr(r) v t=1

1 B(T, i, fp) . ¢ 2
=detgaD)+ ooz + ez T+ > D k- i > | (h(z") —y")
© teTr(rz) ) teTp(r,i)

(As 7 attains a particular value exactly when t € T (r, ); that is, when Bob predicts in bucket ¢ in round &.)

1 B(T, fi, )
2K€2+( 5 z) T+ > (e~

i te€TE(r)

S i (D 1l = o)) — o)
- €EHa )
i v teTp(r,i)
(As we are only making the benchmark more powerful)

< A(e+ ga(T) + —— + BTS2 o)y p

<4(e+ga(T) +

* 2Ke2 262
| D2 G —y)? =D min [ gk =0)(h") — )
i teTp(r,i) v 4 teTp(r,i)
1 B(T, f4, f5) ,
<At ga(T) + gy + DI TN L S™ (1T 0)))

(By the conversation swap regret of Alice)

=d(e+ga(T) + 2;62 B(Tva;;, fB)) + fA(gg,:((i;))- T) (By the concavity of f4)

Thus, i simultaneously has (4(e + g (T) + 37 + BT, fA /5) )T + 12 (;“g))'T) , " a)-Swap Regret
and (BQA(T)

+ fB(QB((T) ) , Hp)-Swap Regret. Thus, it has at most

(s 0a(0) gy + S Lip Ty Lo0ADT)  S0aD) T JolanlD)T) gy, )

-Swap Regret.

Note that we can select the agreement parameter € here however we like in order to minimize the swap

regret. In particular, we would like to pick € to minimize the expression € + 5 I%EQ 4+ B (T’Qf é‘;’f B) —
e+ —ﬂ(T’fAéig)H/K. By setting € = (—B(T :S4: fB)H/K)

3, we get that
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BT o fi) + 1/ _

€t 2¢2

(5(T» fafp) + 1/K) n BT, fa, fp) +1/K
2 NEEAALYIE

BT, fa, [5) +1/K
2

ol

)5

Plugging this back into the swap regret expression, we get that, if &k is an even round, g has at most

=9

BT, fa, [p) +1/K
2

E fA(gA(T)T) +fB(gB(T)T)

e P g Taa) + S gu(r) AT

-swap regret.

In the case where & is an odd round, by a symmetric argument in which we define 3, by combining
level sets of g, to map to the closest value in g5 (T), g has

BT, fh, fp) +1/K
2

falga(T)-T)

(8T 95(7) 9a(T)

)%4_7

) HA ) HB)
-swap regret.

Thus, in all cases, the swap regret of g with respect to H 4 U H p is at most

sr( A J;’/B) VLS %TQB<T) + %TQA(T) + fB(i]’BB((?))'T) 1 f“‘(gg‘:((?)' T)
= 8T(B(T’ f’/“’J;é) + I/K)% + %Tﬁ(T, fa, fB)

Note that ¢, is close in L, distance to 7, as we have only modified each entry by either at most QAT(T)

or at most QBT(T), depending if it was an even or odd round. Therefore, g5 has at most

(3 oa(r) + g (), s Ta TR ey P g gy w0 o)

-distance to swap regret.

K.6 Proof of Theorem[C.3|

Proof of Theorem|[C.3] By Theorem if Alice has (fa,ga,H a)-conversation swap regret and
Bob has (fg, g5, Hp)-conversation swap regret, there exists a round k of the protocol that has

(Z(ga(T)+g5(T)), 8T(W)% + B TB(T, fa, fB), HaUHp)-distance to swap regret,

where B(T), fa, fB) = nggﬁl((?)'T) + fB;ggi(gp))'T) +94(T) + gB(T), fia(x) = /x - fa(x) and

fp(x) = /x - fe(x). Then by the fact that H 4 and H g jointly satisfy the w(-)-weak learning

condition with respect to H ; and via Theorem instantiating f° = 8T(W)% +

LTB(T, fa, f5) and fP = L(ga(T) + gp(T)), we have that for the predictions §** in round k:
T T

> @ =y = min > (hy(a') —y')?

hyeH
t=1 JEMI T

T f4 . fp)+1/K\1
< 9w <8T(B(fAJ;B)/)3 4 %TB(T, fA,fB)>

135 (gu(T) + g5(T))

T 2

B(T, anJ;fs) FUK ) U5, £, fB)) +37(94(T) +g5(T))

=2Tw™! (8(
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By Theorem [K.T6 we can upper bound the increase in squared error from round ¢ to round ¢ + 2 by
3TB(T, f4, fi). The maximum number of rounds between k and K is K. Therefore, we have that

T
Z(yAK,t _ yt)2 <

t=1 t

(9" —y")? + 3TKB(T, [}, [5)

T
=1

Combining the above results, we have that

T T
N t\2 . t 2
;(y —y)? — min 2 (hy(z') —y")? <
v (s 2ELATEEE 4 SL5(r, s )) + 35 0a(T) 4 0 (T) + BTRO(T £ 1)

K.7 Proof of Theorem|[C.6

Proof of Theorem Let o' = w. Let M be the algorithm given by the reduction in Theorem
C.5| given an online algorithm M| that achieves external regret with respect to # bounded by r(7)
for any 7 € [T]. In particular, Theorem guarantees that with probability 1 — p’, M achieves
(f, H)-swap regret for:

f(T)§m~r(l)—i—%—km—kmaX(SB,Q\/E)-m-CH- 7'10g<

2mK
m

g(T)p

By construction, on every odd round k, a separate copy Mj, ; is run for every subsequence on which
the previous prediction falls into bucket . By a union bound, the probability that any one of the
copies fails is % . ﬁ - p' = p. Then, since conversation swap regret measures the swap regret
conditioned on subsequences on which the previous prediction falls into bucket i (as parameterized

by g), with probability 1 — p, Algorithmalso satisfies (f, g, H)-conversation swap regret.
O

K.8 Proof of Theorem|[C.7]

Lemma K.18. If w is continuous and strictly convex, w(0) = 0 and limy_,o s(T") = 0, then
limr 0o w™1(s(T)) = 0.

Proof. Note that as w is strictly monotone, w ™" is defined everywhere in the range of (0, ¢), where

¢ = lim, o inf(w(z)) and ¢ > 0. As w(0) = 0, it must be the case that w~1(0) = 0. Furthermore,

as w is continuous, w ™! must be continuous. Now, we can proceed to reason about w1l

lim v (2(T)) =w™" lim (x(7T)) (By the continuity of w~!)
T— 00 T—o0

= f(0) (By the fact that limp_, o s(T") = 0)

=0 (By the fact that w—1(0) = 0)

O

Proof of Theorem|C.7} Let p’ = p/2. We set our parameters to be sublinear in T'. Specifically, set
m=TY*and 1/ga(T) = 1/gp(T) = T for some constant o, € (0,1). By Theorem there
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is an algorithm that achieves, with probability 1 — p’, (f4, ga, H 4 )-conversation swap regret for, for
any 7 € [T]:

fa(r) <m-ra (%) + % +m+max(8B,2\/§) -m-Cy - \/Tlog (2mK/)

9a(T)p
(by Theorem [C.6)
<m-ry T +£+m+max(8B,2\/§)-m«CHo Tlog AmEK
m) m 9a(T)p

~ . 4KT1/4+ag
<TY4.O((T?*)24) + 37%/* + TY* 4 max(8B,2VB) - Cy - T3/4\/1og (>
P

<0 (T log (f))

for oy = max{1/4 +3/4-aa,3/4} € (0,1). Since Bob’s expression is symmetric, Theorem
similarly implies that there is an algorithm that achieves, with probability 1 — o', (f5, 95, HB)-

conversation swap regret for:
~ K
fo(r) <0 (:m log ())
P

for g = max{1/4+3/4-ap,3/4} € (0, 1). Thus, by a union bound, with probability 1-2p" = 1—p,
Alice has (fa,g4,H)-conversation swap regret and Bob has (fp, g5, Hp)-conversation swap
regret.

Now, by Theorem [C.3] the transcript on the last round has regret bounded by:

T T

S =y = min Y (h(ah) —y')?

t=1 hoets i

< 9T (g (ATl RN L fA,fB>> +35(9a(T) + g5 (T)) + BTKA(T, f4. 1)

where for 7 < T

Fa(r) = /T fa(r) <4|T-O

)

o) ()
) <0 (T<1+a2>/2 log!/4 <fp< >)

fe(r) =T falr) <\|T-O

and thus:

BT S ) = PAAID) | Tl BT o (1) 4 gu(r)

- K
S O ((TalJra_ql _|_Toz2+a_q71) log <) _|_T04g> ,
P

_ faloa(DT) | Thlon(DT)
Tga(T) Tgp(T)

S O ((T(¥1/2+ag—1/2 +Ta2/2+ag—1/2) 1Og1/4 (K> +T_a9)
p

Suppose oy < min{1/2 — a1/2,1/2 — ap/2}. Then:

B(T, [, [B) +9a(T) + g5(T)

Toz1+agfl’Tocngagfl,Ta1/2+agfl/2’Ta2/2+a971/2 S T
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for some constant o € (0, 1). Hence, plugging in to the expression above, we have that:
T T

S =y = min Y (h(a') - yh)?

hyeH
=1 e

1/3
- K 1 ~ K
<2Tw ' | O | T7%/log (> +T7% + — +0 (T */log () + T~
p K p

+O(T' %) +T-0 (T_O“Klogl/4 (f) + KT—%)

~ K 1 ~ K
<2Tw™! <O (T_”‘/S logl/6 (p) + T~ /3 4 K1/3) +0 (T“ﬂ [log (p) + T_“9>>

+O(T' %) +T-0 (T_aKlog1/4 (f) + KT—%)

(by concavity of the cube root function)

- K 1 - K
< 2Tw™! <0 (Ta/B log (p) + T/ 4 K1/3>> +O(T %)+ O <KT1a log!/* (p) + KTl%)

~ , K 1 ~ " K
—1 —« l1—ay jEe 1/4
<2Tw <O (T 1/log (p) +1/3>> +O(T )+O(KT log (p))

where o/ = min{«/3,a,/3} € (0,1) and o = min{a, a,} € (0, 1). This proves the first part of
the theorem.

To argue the second part, suppose K = w(1) and K = O(T®" ~¢) for ¢ > 0. Then:
T T

ot K 2 : t 2
E ’ min hy(x
; 1(1/ y') hoeH, - 1( 7(@") —y")

< 9Tw™! (O (T@*'\/@+ Ki/?))) +O(T'" )+ O (KT“"” log'/* (f))
=2Tw™! (O (T“/ log (i)) + 0(1)> TO(T) +0 <T16 log™* (i))

Now, observe that any function 10) (TO‘/, [log (f)) +0(1) - 0as T — oco. Thus, by Lemma
o

wt (O <Ta' /log (% > + (1)) — 0 asT' — oo. In particular, this implies that
—1 2 —a’ T
Tw ol|lT log | — ) +0(1) =o(T)
P

i.e. is sublinear in T'. Notice that since w is strictly increasing, w ™! exists for sufficiently large T'
(larger than a constant). Therefore, for sufficiently large 7', the regret is bounded by:
T T

S @ —y")? = min Y (hy(ah) —y")? <o(T) + O(T' ) + O (Tle log"/* <::>>

hseH
t=1 Tt

which completes the proof.

K.1

[e:s)

K.9 Proof of Theorem [C.10]
Theorem K.19. [Rakhlin et al., 2015] Let X = {z € RY : ||z|ls < 1} and H = {z — (0, 2) :

18ll2 < C} be the set of all linear functions with bounded norm. H has finite sequential fat-shattering
dimension.
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Corollary K.20. Let X = {x € R? : ||z||2 < 1} and H = {x — (0, ) : ||0]|2 < C} be the set of all

linear functions with bounded norm. Fix any bucketing function g. There exists an online algorithm
that, with probability 1 — p, achieves (O (rnaX(C'27 C)dlog ( ) T3/4) , H)-conversation
swap regret.

(T)p

Proof. We have that (0, z)2 < ||0]2]|z||2 < C2. Therefore, by setting o = T'3 and instantiating
Theorem [C.6| with the external regret algorithm of Theorem [C.9] we have that, with probability 1 — p,
Algorithm |C.1|achieves ( f, g, H)-conversation swap regret for:

(T (k = 1),9)])

4

<Thr <|T(kT—11aZ)|> L 31Tk - : Lol + max(8C2,2C)TCy | |T(k — 1,4)| log (

(by Theorem [C.6]and our setting of m)
1 — 1,1
<Ti <2dln ('T(le LI 1) +02> 4 3TE=LO1 g
4

4

1 2KTx
+ max(8C?,20)T3Cy | |T(k — 1,4)|log ( (T)p) (by Theorem [C.9)
<O (max(02 C)dlog (K> T3/4>
N ’ 9(T)p

5 (max(cz, C)dlog <g(KT)p> T3/4>

Proof of Theorem Let p’ = p/2. By Corollary[K.20] for any bucketing function g4, there is an
algorithm that achieves, with probability 1 — p',(f4, ga, H 4 )-conversation swap regret for:

Fa(To(k —1,3))) <O (max(CZ, C)dlog <9A€(T)p> T3/4>

Likewise, for any bucketing function gg, there is an algorithm that achieves, with probability 1 — p’,
(fB, 98, Hp)-conversation swap regret for:

Fe(|Talk—1,9)) < O (maX(C’2,C)dlog (ng )p) T3/4)

Thus by a union bound, with probability 1 — 2p" = 1 — p, Alice has (fa,ga, H A) conversation swap
regret and Bob has (f5, g5, H g)-conversation swap regret. Let g4 = gg =T~ 5.

Now, by Theorem |B.6} H 4 and H 5 jointly satisfy the w(-)-weak learning cond1t10n with respect to
H s for w(7) = 2=z In particular, we have that w=!(v) = 4C~'/2 for v < k5. Therefore, by
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Theorem [C.3] we have that the transcript 7% at the last round satisfies:

T T
St K N2 : ty _ t)\2
2@ =y~ min ;(hj(x )— ")

t=1
<oyt (s(PLa IR o DA fa, ) ) + 35 0a(T) + 90(T) + STRB(T, £ )

O (T(B(T, £, f15) +1/K)} + BT fa. f))* +T(ga(T) + 95(T)) + TKB(T. f4. )
(By Theorem [B.6)
T(B(T, 4, f) + 1/K)S + TBH(T, ) + Tga(T) + Tgp(T) + TKA(T, 4, f3))

(T BY(T, )+ TK ™4+ TBH(T, f) + Tga(T) + Tgp(T) + TKA(T, f4. f5))

Il
(@)}

1

TSI, ) + TK=4 + T33 (I, f) + TF 4 TKA(T. f}. £5))
(Instantiating g4 and gp)

@

Here, B(T, fa, ) = Y2057 + L2000 & g.(T) + g (T), and f'(z) = /2 - f(2).
Plugging in f4 and fp, we have that:

_ [ dlog AL dlog BL
BT, fa. ) §O< gA((Tg)TﬂT};J + 93(%;3:) +gA<T>+gB<T>)

Moveover:

(AT DT o)

flga(T)-T) f(g5(T)-T)
\/ TAQA(T) +\/ TBgB(T) +9A(T)+QB(T)>

max(C2, C)dlog (gA{g—‘)P) T3/4 . max(C2, C)dlog (%{%p) T3/4
Tga(T)

B(T, fi4, f5) <O

Ton(T) +9a(T) + gB(T))

-0 (TégAé(T)\/maX(C’ O)dlog <

f()p>

T
_1 -1 K

+T73gp* (T)/max(C?,C dlog( )+gA ) +95(T)
95(T)

- 1 1/8
=0 <T‘8T1/16\/max(02,6’)dlog (KT ) +T 1/8>
p
- 1/8
=0 <T1/16\/max(C2,C)dlog (KT ))
p
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Plugging these expressions into the regret bound of the final round, we get that:

O (TBY(T, fhs f5) + TK~4 + TBY(T, fa, f) + TF + TKB(T, 4, f5))

~ 1/8 1 8
= O(T(Tl/s\/max(m, C)dlog <KT>)1/6 + TK™% 4 T(max(C?, C)dlog <KT> T—1/16y1/2
p p

KT1/8
+T% + KT* \/maX(CQ, C)dlog ( )

- 1/8 ) 1
= O(T*"/*¥(max(C?, C)dlog <KT))1/12 + TK™% + T%/32(max(C?, C)dlog (KTS> )/2
p p

7 7 KT1/8
+T8+KT8\/maX(C2,C)d10g( 5 ))

~ KT1/8 1 7 KT1/8
:O<T47/48\/max(0270)d10g< p )+TK6+KT8\/maX(C'2,C)d10g( 5 ))

L Proofs of Lower Bounds from Appendix

Proof of Theorem|D.1I] We adapt the construction from the proof of Theorem [B.7] Define a joint
distribution D over Xy x X'p x Y where X4, Xp C R as follows:

ra=8a,2p=2a+Ep=8a+Ep, andy =Ep =1p — T4,
where £ 4, ¢ are independent random variables uniformly distributed in {—1, +1}.
We consider Hg = Hp = {z — wx +b: |jw] <1,b| <1} and H; = {(za,2B) — waza +

wprp +b:|wa|l < 1,|wp| < 1,[b] < 1} to be the classes of bounded linear functions. Then we
have the following:

Optimal Linear Predictor for Alice (h*): Since y = {p is independent of x4 = {4, and E[y] =
E[¢g] = 0, the optimal linear predictor is the constant predictor 1% (z4) = E[y] = 0. Its expected
squared error is E[(0 — y)?] = E[¢2] = 1.

Optimal Linear Predictor for Bob (h};): We seek hi;(zp) = wpxp + cp. Since E[y] = 0 and

Elzg] = E[z4 + &) = E[za] + E[¢g] = 0, ¢cg = 0. The optimal wp = Iﬂf’éﬁ]. We have,

E[zpy] = E[(a + £8)¢8] = Eléaép) + E[(3] = 1.
Elrp] = El(€a +€8)*] = E[G3 + 26l + €3] = 2.
Thus, wp = § and hiy(zp) = /2. Its expected squared error is E[(h; (z5) — y)?] = E[(zp/2 —
y)’] =El[(§5/2)*] = 1/4.
Optimal Linear Predictor for Joint Features (k' ): The conditional expectation Ely|x 4, z 5] is the

optimal predictor overall. Here, y = ég = xp — x 4. Since this relationship is linear, the optimal
linear predictor is h% (z) = x5 —x 4. Its expected squared erroris E[(h% (z) —y)?] = E[(y—y)?] = 0.

We have b (z4) = 0 and hi;(zp) = xp/2. Any predictor f(h*(z4),h}(zp)) can only depend
on zp since h¥ (z4) = 0 is constant. The best predictor for y that is a function of 2 is in this case
exactly the optimal linear predictor h’;(zp) = zp/2, which achieves an error of 1/4. Thus, the
minimum error achievable using only h* and h}; by any function f is:

Ep[(f(ha(za), hp(ep)) — y)*] = Ep[(hp(z5) — y)*] 2 1/4 > 0 = Ep|(h}(z) - y)?].
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Proof of Theorem|D.2} Consider a triple (H 4, Hp, M) that fails the w(-)-weak learning condition
for any strictly increasing w. This implies there exists a distribution D such that for some v > 0:

inEp[(c —y)?] — min E —y)? >
minEp[(c —y)°] - min Ep[(hs(z) —)"] 2,
but forallhy € H4 and hp € Hp:
min Ep[(c — y)?] = Ep[(ha(za) —9)*] < w(v)

min Ep|(c — y)?] — Epl(hu(ws) -~ 4)?] < w(y).

Since this must hold for any strictly increasing w (and w(0) = 0), it must be that the improvement
over the constant predictor for both # 4 and H g is zero. That is, miny, , ey, Ep[(ha(z4) — v)?] =
ming , e, Ep[(hp(zg) — y)?] = min.er Ep[(c — y)?]. Let ¢* = argmin g Ep[(c — y)?] be th
optimal constant predictor.
Now consider the sequence of examples (24, x%, y*)]_, be drawn i.i.d. from the distribution D and
the constant prediction sequence §* = c¢* forall t = 1,...,T. Since §* = c¢* for all ¢, the only
relevant level set is v = c¢*, swap regret with respect to H 4 reduces to:

1 — 1 —

=30 -y - min =3 (hateh) — )2,
t=1 t=1

ha€Ha T —

As T — o0, by the law of large numbers, this reduces to
Ep[(c¢* —y)?] — min Ep[(h —y)?=0.
pl(c" —y)7] Hmin pl(ha(za) —y)7]

By the same argument, we get that the swap regret with respect to H p is also 0. However, the external
regret (as T — oo) with respect to H 7,

Ep[(c* —y)?] — ,min Ep[(hy(x) - y)?] >~ > 0.

Here the inequality follows from our assumption. This implies that the external regret with respect to
‘H ; is positive, while swap regret with respect to both H 4 and H  is 0. O

Proof of Theorem In order to prove that H 4 and H p satisfy weak-learnability, let us assume
that for some distribution D and «y € [0, 1]

minEl(c —y)*] - min E[(hs(2) - y)’] = 7

Now we will show that, either
. N2 . — N2>
minE{(c —y)°] - min El(ha(za) —9)7 27/2,
or

minEl(c ~y)?) - min El(hn(oz) - 9)°) > /2

Since H 4 and H p satisfy information substitutes with respect to H ;, from the statement in Theo-
rem[D.3} we have
in E[(h —y)? in E[(h —9)%] < minE[(c — y)? in E[(h;(z) —y)?].
Juin El(ha(za) =97+ min El(hp(zp) —y)°] <minE[(c —y)" + min Ef(hs(z) - y)7]
Substituting the assumption on the joint feature improving over the constant function, we get
2minE[(y — ¢)*] — min E[(h —y)%] — min E[(h —y)% > 7.
minE[(y — )] — min E[(ha(wa) —y)7] - min E(hs(zp) —y)°] 27
This implies that either min.cg E[(y — ¢)?] —miny, , ez, E[(ha(z4) —y)?] or mineegr E[(y —¢)?] —
miny e, E[(hp(zp)—y)?] mustbe > /2. This gives us the desired weak-learning condition. [

Proof of Theorem|D.3] Consider the class of bounded linear function over X4 = Xp = [—1,1]
as defined in the proof of Theorem Suppose these classes satify the information substitutes
condition, then by Theorem [D.4] we know that they must satisfy w(-)-weak learnability for w(y) =
~/2. However, from Theorem [B.8| we know that these function classes can not satisfy w(-)-weak
learnability for w(y) = /2 giving us a contradiction. Therefore, these classes could not have
satisfied the information substitutes condition. O
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Proof of Theorem[D.6] Consider the joint distribution D over X4 x Xp x ) to be as follows:
z4 ~iid {0,1}, 75 ~iia {0, 1}, y = va7p.
Let the class of functions be bounded linear functions which satisfy our weak-learning condition.

Observe that the the best linear predictor in H 4 is h% (x.4) = E[y|z 4] = z.4/2 and the best linear
predictor in Hp is h;(zp) = E[y|zp] = x5 /2. Observe that,

E[(hiy(za) = y)’] = E[(wa/2 — zazp)’] = 1/8 = E[(zp/2 — vazp)?] = E[(hj(zp) — y)?].

Now consider the sequence of examples (z%, 2%, y*)T_; be drawn i.i.d. from the distribution D and
the prediction sequence §* = x!y /2 forall t = 1,...,T. Observe that the external regret with respect
toH4asT — ocois

Epl(wa/2 = y)*) = min Ep[(ha(a) —y)*] = Ep[(za/2 = y)’] - Ep(xa/2 - y)*] = 0.

Similarly the external regret with respectto Hp as T — oo is

Epl(a/2 —y)’] - min Eol(hn(es) —v)%) = 5 ~ El(Ws(n) — 1)’ = 5 — 5 =0.

Therefore the sequence of predictions has no external regret with respect to H 4 and H p.

However, the best linear predictor defined on both X4 and X'g is b’ (x) = (x4 +2p)/2 — 1/4. This
has expected error over D, Ep[(h%(z) —y)?] = 1/16. Thus, as ¢ — oo, the predictions have external
regret,

=—>0.

Ep((z4/2 - y)*] - E[(h}(x) — 9)*) = % 16

| —

M Proofs from Section [E]

Lemma M.1. Let H be a class of real-valued functions h : X — R. Lety : X — Y be a fixed
labeling function, and fix a label v € Y. Let H% be defined such that for each h € Ha, the
corresponding function h* € H% is given by:

h*(x) = h(z) - 1y(z) = v].
Then,
C%Z <C4,
In other words, for any scale €, the fat-shattering dimension of H’, is at most the fat-shattering
dimension of H 4.

Proof. Let S = {x1,...,2,} C X be a set of size n that is e-shattered by H*. That is, there exists
a witness vector ¥ = (71, ...,7,) € R™ such that for every binary vector b € {0,1}", there exists a
function h* € H? satisfying:

Vi € [n], P*(ws) >rite ifbi =1,
h*(l'z) <r;—e ifb; =0.

But for any h* € H*, we have h*(z) = h(x)-1[y(z) = v] for some h € H 4. Therefore, h*(x;) = 0
whenever y(x;) # v. In particular, if x; has y(z;) # v, then the above inequalities cannot hold for
any r; with nonzero margin e.

Hence, only points x; with y(z;) = v can be involved in the e-shattering. Let S, = {z; € S :
y(x;) = v}. Then the shattering must occur over .S, and the effective shattering occurs only over
this subset.

Note that by construction, for each h* € H%, there is an h € H 4 such that h*(z;) = h(x;) for all
x; € Sy. So the class H, restricted to S,,, can realize the same shattering. Therefore:

Ciy, < Caais, < Cha
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M.1 Proof of Lemma

Proof of Lemma Consider a modified interaction under Protocol [E| where, at each day in round
7 (if the conversation reaches round j), the outcome is resampled according to the information seen

by Alice so far: y' ~ D, |a!y, 7'~ C!_ |, p%’j . Let #7 be the transcript from this interaction.

First, we will show that Pp[rr] = Pp[#7], where 7 is the transcript under the unmodified Protocol

Let 7% denote the transcript of this interaction up to day ¢. Note that this is distinct from 7%/,
which denotes the transcript of an interaction only on day ¢ where the resampling only occurs in
round j. We will proceed via induction over days.

* Base Case: Pp[r!l] = Pp[al1].

Proof: On day t = 1, we have Pp[r'] = Pp[7"7], by Lemma Note that 717 = 7117 =
717 and therefore Pp[rtt] = P[al17].

* Inductive Step: If Pp[r!?] = Pp[7l?7], then Pp[rlt+l] = Pp[alit+1d],

Proof: Observe that the state of the model algorithm in any round ¢ 4 1 is a function only of
the algorithm M and the transcript until that round: 7' or 7!, By the Inductive Hypothesis,
Pp[rtt] = Pp[al7] — and consequently, since the model algorithm M is the fixed between
both interactions, therefore, Pp [ﬂt“’q =Pp [ﬁt“’q. By Lemma this is equal to Pp[r!T1].
As Pp[rliti] = Pp[rl?] and Pp[att1J] = Pp[r!T1], we have that Pp[rl Tl = Pp[alit1li],

Now, all that remains to show is that Alice’s sequence of predictions in 7 () has low expected regret
with respect to k. Recall that Alice is a Bayesian Learner (Definition [E.I)), which means that her
prediction in round k is deterministic after round k£ — 1, and is the posterior mean of the distribution
conditioned on the transcript up to day ¢t — 1, their features on day ¢, and the conversation of day
t through round & — 1. Since squared error is a proper scoring rule, it follows that predicting the
mean of the sampling distribution, as Alice does, has lower squared error than predicting any other
post-processing of the information available to her, and in particular, the function h € H 4, which is
defined only on Alice’s features x 4, a subset of the information she has conditioned on. Therefore, it
follows that a perfect Bayesian will have O regret with respect to the swap function over her [%] level
sets defined by the m fixed functions in # 4, notated as {hy, h% yeeoshat

Ep[(§ - 9)°] <Ep | > 1[§ = v)(hu(z) — y)°

However, since Alice and Bob are not perfect Bayesians in Protocol [E] but instead round their
prediction to the nearest multiple of %, their expected regret with respect to h will depend on this
discretization.

Ep[(7—9)2] =Ep[(§ —y + 75— )%
=Epl(§—v)*+@—9)7+20—v) (7 —v)

Since | — y| < & and Ep[2(j — y) (7 — y)] = 0, we have

_ N 1
Ep[(7 — )% <Ep[(§—1)*) + —.
We have shown the claim for an arbitrary set of m functions in H4 : {ho,h1,...,h1}, and can thus
conclude that it holds for any swap function with respect to H 4. O

Theorem M.2 (Azuma’s Inequality). Let {Xg, X1, ...} be a martingale sequence such that | X; 1 —
X;| < cforalli, then,

2
P[X, — Xo > €] <exp (— 20271)'

An immediate corollary of Theorem|M.2]follows from appropriately setting parameters.
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Corollary M.3. Letting X = 0, = cy/2n1n }, then we have for any § € (0,1), with probability

1-9,
/ 1
X, <c 2nlng.

Lemma M.4. Let E : II — [0, 1] represent any conditioning event. Consider the random process
{Z} adapted to the sequence of random variables m* for t > 1 and let

Zt — Zt—l +E(7r1:t—1) . (yt(ﬂ_lzt—l) _EyND[mﬂ'l:t_l])

ZE 1:t— 1 ( 1:t71)—EyND[y‘7T1:t71]) <2 QTIH%,

t=1
with probability 1 — § over the randomness of D and 't

Then,

-1

Proof. First, observe that the above sequence is a martingale as Ep[E(r'*~1) - (y' (71 1) —

EyND[y‘ﬂ_lztfl]] — E(,].rlztfl) . E’D[(yt (,R_Ltfl) _ Ewa [y|7r1:t71]] _ O smce E(7r1 it— ) is a
constant at the start day ¢ as it does not depend on the outcome yt. Thus, Ep [Z t“] Zt. Next,
observe that since the outcomes y € [—1, 1], we have the bounded difference condition: |Z!—Z!~1| <
2 for all t. We can then instantiate Azuma’s Inequality with n = T  and ¢ = 2 to get the claim. [

M.2 Proof of LemmalE.3|

Proof of LemmalE.5] Fix bucket i € {1,..., g%(ﬂ} of Bob’s prediction in round & — 1. Since
Alice’s prediction is deterministic of round & is deterministic after round k — 1, we can instantiate
Lemma.wﬂh the event E(7"T) = [y} =1 ¢ 4] and have, that with probability 1 — 6,

/ 1
<24/2TIn —.
= n5

Definition M.5. Let H be a set of functions mapping from a domain X to R and suppose that
S =A{z1,...,xm} C X. Fixy > 0. Then S is y—shattered by H if there are real numbers
T1,. .., m, such that for each b € {0,1}"™ there is a function h in H satisfying, for all i € [m],

S B )G - ) — Byl — P

O

h(l‘l) Z’I‘l-i-’}/lfbl =1
and

h(z;) <7y — v ifb; = 0.
We say that v = (11, ..., 7y, ) witnesses the shattering.
Definition M.6 (Fat Shattering Dimension [Anthony and Bartlett, |1999]). Suppose that H is a set of
Sfunctions from a domain X to R and that v > 0. Then ‘H has v—dimension d if d is the maximum
cardinality of subset S of X that is y—shattered by H. If no such maximum exists, we say that
‘H has infinite y—dimension. The y—dimension of H is denoted ¥ATy (7). This defines a function
FATy : RT™ — NU {0, 00}, which we call the fat shattering dimension of H. We say that H has finite
fat shattering dimension whenever it is the case that for all v > 0, FATy(7) is finite.
Theorem M.7 (Anthony and Bartlett [[1999]). Let H be a hypothesis space of real-valued functions
with finite fat-shattering dimension then

sup Z ~Ep[(h(z") —y')’]| <e.

heH

for

5P (L) + In(d)
M(576) :O( ? é‘; : )’

where M (g,0) is the number of samples needed to reach € uniform convergence with probability

1-46.
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M.3 Proof of LemmalE.G

Proof of Lemma([EZ6] Note that in a Bayesian setting, each (z*, y*) are sampled i.i.d. from D every
day, which means that for a fixed round k, Bayesian predictions (and consequently the choice of
the benchmark function and thus value h(z!)) are independent across days. Secondly, note that by
Lemma , we have that for any scale € > 0, C§ . < C’%A where 1 is the function class defined

as H = {h(z) - Lly(z) =v]: Vv eV, he Ha}.
Thus, we can directly apply Theorem

T
2 | D)) ~ Eoltha) o) | <

This means, that on the subsequence Tz (k — 1,14), for some level set v of Alice’s prediction, we have:

1 _tk t 2 . 2| 1:t—1
sup | ——— I[ys" =vl(h(z") — y)” — Ep[l[ya = v](h(z) —y)* [ ]| <e.
heHa |TB(k - 1vl)| tETB%c:l,i) A
L]
M.4 Proof of Theorem[E.2|
Proof of Theorem|E.2} With probability 1 — &, we have that
“tkt\2 : —tk _ £ 12
> (@ =y Juin ) gt = l(h(a') - o)
tGTB(k‘—l,’L) v tGTB(k—l,’L)
. 1
< Y B[ -y’ 422 g - ) min > I = l(h(a!) - y')?
tETB(k—l,l) v tGTB(k?—l,l)
1
< E —t.k _ t\2), _1:t—1 2 /9T In =
< Z (5" — ") + 24 /2T In
teTs (k—1,4)
_ : _tk _ £y t\2) 1it—1
Somin Y Eplllg = el(h(e!) — g T
v teTp(k—1,1)

/ 1 T
<24/2T'In - + — 4+ mTe,
o m?

where the first inequality comes from Lemma[E.3] the second from applying Lemma [E-6|to each
level set v of Alice’s prediction, and the third from Lemma@ The final statement comes from
taking a union bound over all buckets g5 (7") and rounds K. O

M.5 Proof of Theorem [E.7|

Lemma M.8. Let H; be a hypothesis class over the joint feature space X. Let Ha = {ha :
Xa — Y}yand Hp = {hp : Xp — Y} be hypothesis classes over X4 and Xp. Consider instance
(QUA?:TBJ/) ~D. If

* Alice and Bob are both Bayesian learners, with discretization m = T, for a € [0, i]

* Ha and Hp jointly satisfy the w(-)-weak learning condition with respect to H j for any
continuous w(-) such that w(y) > 0 fory > 0,

then under Protocol [E.2)the prediction in round K will have low expected error with respect to H

on day 1, with probability 1 — §:
O(Tmax(%l—ag) /In %)
T

E[(§—y)’] - Jain E[(fi(z) —y)’] <
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Proof of Lemma[M.8] By Theorem[E.2] we have that after 7" rounds, with probability 1 — 4, Alice

will have (24/27 In % + L+ my/32TIn W,gA(T),’HA) conversation swap regret
(symmetrically for Bob). We can instantiate this with parameters that are sublinear in 7, specifically

m = T and ga(T) = T~ for some constant o, € (0,1). Then, we know that Alice, with
probability 1 — &', satisty (fa, g4, H.a)—conversation swap regret, for:

/ K T 19 (TK
fa(T) <2 2T1ng’4(6,)+m2+m\/32TlngA((sl) (by Theorem [E.2))
) —a
§2y/2T1nT§7IQK+\/T—|—T%\/32ln4T67/gK
<O<Ti ln(?))

Since guarantees for Bob are symmetric, the same expression holds for him. Thus, by a union bound,
with probability §' = §/2, with probability 1 — §, Alice and Bob simultaneously have (f4, g4, H 4)-
conversation swap regret and ( /g, g, H g )-conversation swap regret, respectively. Protocol is
simply a special case of Protocol |A] in which (z 4, 2, y) are drawn from fixed distribution each day.
Therefore, the guarantees from Theorem|[C.3|hold, and we have that the predictions in round K have
low expected error with respect to H ;:

T T
;(p% —y)?— min 2 (hy(a') —y")? <
v (s(PLe TV 4 Lo(r, o ) ) + 35 (0a(T) +4n(D) + SKTST. 13, Tp),
where
fAT) = fp(T) = /T fa(T)=,|T-0O (Té In ?) =0 (Ti In# ([5())
and thus:

<0 <(T%—i) In ([5() +T—%> ,

_ Jalga(D)T) | fp(gs(T)T)
Tga(T) Tgp(T)

_|_
. L 1K
<0 <T4 Ini <+ T%) .

+9a(T) + gB(T)

1 « , 1 o )
th:;(pl{ y')? = 7 min 2 (hy(z") = y")
<out (s LAV YR S 4 L5t 4, ) + 33 0(T) + 98(T) + 3BT, 15, T5)

oy 4 )8} 4 (et K
+T +K)>+O(T )1n<5>
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Proof of Theorem|[E.7] By Lemmawe have established that the cumulative regret grows as o(7).
The claim we want to show is about the expected regret only on a single day, which pertains K rounds
of conversation about our instance of interest. In the Bayesian setting, since instances are drawn
i.i.d. and Bayesian agents make predictions independently across days, only as a function of the draw
from the prior at the beginning of that day - conversations are also identically and independently
distributed. Therefore, to argue about the expected error on the instance on any single day, it suffices
to reason about the average of the cumulative regret over all 7' days. We can consider what would
happen to the average expected regret in the limit as 7' — oo,

W (O(T A mF K400 4 L)4) £ 0T 4)/in (§) + KO(T W™ (5) + 7

I ’
Tgr;o T
1.1
-1 1
= O — )3 ).
w(0(2)F)
Thus, we have the claim. O
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