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Abstract001

Link Prediction (LP) approaches based on Lan-002
guage Models (LMs) operate over the labels003
and descriptions of entities and relations in004
a KG, achieving LP performance competitive005
with state-of-the-art. Recent approaches have006
shown that incorporating a local graph neigh-007
borhood can improve the LP capabilities of008
LMs. These approaches usually sample a con-009
text from the neighborhood around a query010
triple randomly, thereby incorporating noise011
that might hinder the model in making correct012
predictions.013

In this work, we derive an approximately opti-014
mal context for a given query under the assump-015
tion that we know the correct answer. This016
allows us to investigate the characteristics of017
such contexts and the impact of a good con-018
text on LP, thereby providing an approximate019
upper bound on the achievable performance020
when using optimal contexts. We provide evi-021
dence that the neighborhoods created through022
random sampling are often suboptimal and un-023
necessarily large. Furthermore, we show that024
the potential improvements of using an optimal025
context can be significant. We conclude that026
research on context selection is an important027
step towards developing better LP models.028

1 Introduction029

Knowledge Graphs (KGs) are used as back-030

ground knowledge in various NLP applications,031

e. g., in Question Answering (Schneider et al.,032

2022), Dialogue Systems (Park et al., 2024), and033

Text Generation (Wang et al., 2024). A KG034

is a multi-relational graph, defined by a set of035

(subject, relation, object) triples. The KG can036

be called text-attributed KG when textual labels or037

descriptions are available for entities and relations.038

KGs are inherently incomplete as the processes039

of creating them will always miss relevant facts,040

either because i) they are manually created and041

curators miss relevant knowledge due to time and042
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Figure 1: Example KG with LP query.

effort constraints, ii) they are automatically created 043

and automatic methods are error-prone and iii) be- 044

cause they might not have been up-dated regularly 045

and thus miss new facts (Paulheim, 2017). To ad- 046

dress this, approaches were developed to infer miss- 047

ing triples based on the triples already available in 048

the KG. This task is called Link Prediction (LP). 049

Given a (subject, relation, ?) query, an LP model 050

is trained to predict the missing ? to derive a triple 051

that is likely in the graph. A small example KG 052

and an LP query are shown in Fig. 1. 053

Research on LP with GNNs (Schlichtkrull et al., 054

2018; Hamilton et al., 2017) has shown that the 055

local neighborhood can hold valuable information 056

for LP. Whereas GNN-based approaches can in- 057

corporate large graph neighborhoods and reduce 058

the neighborhood size to optimize training and in- 059

ference time (Hamilton et al., 2017; Ying et al., 060

2018), a Language Model (LM)-based approach to 061

LP is limited to the context size of the LM. Con- 062

sequently, most LM-based LP approaches cannot 063

include full neighborhoods and, thus, often perform 064

random sampling to select small subgraphs around 065

a given query. For example, given the KG depicted 066

in Fig. 1, random sampling might include the facts 067

about John Hopfield’s gender and birthplace but 068

miss the information about his research contribu- 069

tions. As the latter are more relevant for the given 070

query (John Hopfield, influenced, ?), this might 071
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limit the model in making correct predictions if072

those facts are not available in the sampled context.073

We hypothesize that randomly sampled sub-074

graphs introduce noise, distracting the model and075

occupying context space without adding value. To076

test this, we analyze which facts in a query’s neigh-077

borhood support correct predictions at inference078

time. Optimizing the LP context at inference time079

is similar to prompt optimization for LLMs, which080

creates a prompt that contains the most relevant081

information for a given task and reduces noise.082

Our key contributions are as follows. First, we083

introduce a method to determine the optimal con-084

text for a given query, target, and model from the085

local graph neighborhood. Second, we demonstrate086

that the derived context generalizes across models087

and architectures. This shows that the same infor-088

mation is relevant to different models and verifies089

the effectiveness of our approach. Finally, we show090

that optimal contexts are remarkably small and that091

common sampling strategies are suboptimal.092

2 Background093

A Knowledge Graph (KG) G is defined by a set094

of triples, where each triple (s, r, o) represents a095

relation r between a subject entity s and an object096

entity o, where r ∈ R and s, o ∈ E . We assume097

that the KG is text-attributed such that every entity098

and relation has a label or description. Then, Link099

Prediction (LP) is the task to predict the ? ∈ E in a100

given query q of the form (sq, rq, ?) or (?, rq, oq).101

Traditional LP approaches learn patterns of re-102

lations but do not take into account the local103

graph neighborhood (Yang et al., 2015; Bordes104

et al., 2013a). Language Models (LMs) were pro-105

posed (Yao et al., 2019; Daza et al., 2021; Qiu106

et al., 2024) specifically for LP on text-attributed107

KGs. These models use a (pre-trained) LM to ob-108

tain a feature representation of entities and relations109

from their textual attributes. The entity descrip-110

tions enable the model to generalize well to entities111

with few or no relations (inductive LP) (Kochsiek112

and Gemulla, 2023), in situations where traditional113

LP models relying on the graph structure struggle.114

Two prominent examples are SimKGC (Wang et al.,115

2022) and KGT5 (Saxena et al., 2022). SimKGC116

uses an LM solely for encoding entity and rela-117

tion descriptions, and computes triple likelihoods118

by combining their representations through vector119

multiplication. In contrast, KGT5 encodes a query120

and generates a target entity label instead of scoring121

target candidates. Therefore, the model is much 122

more memory efficient and faster compared to ap- 123

proaches that are based on traditional architectures 124

like, e. g., SimKGC. 125

Research on LP based on Graph Neural Net- 126

works (GNNs) (Schlichtkrull et al., 2018; Bus- 127

bridge et al., 2018; Hamilton et al., 2017) has 128

shown that the neighborhood can hold valuable 129

information for LP. These approaches iteratively 130

aggregate information from the direct graph neigh- 131

borhood, allowing for the theoretical incorporation 132

of an arbitrary number of neighboring triples per 133

entity. In order to improve LMs used for LP, recent 134

approaches have proposed to incorporate neighbor- 135

hood information. One example is NNKGC by 136

Li and Yang (2023) that first obtains entity embed- 137

dings through a BERT (Devlin et al., 2019) encoder 138

and then uses a GNN to obtain contextualized node 139

representations by aggregating the graph neighbor- 140

hood. In contrast, KGT5-context (Kochsiek et al., 141

2023) is an extension of KGT5 that enriches the 142

KGT5 input sequence with entities and relations in 143

the direct neighborhood of the query head. 144

3 Related Work 145

Graph learning models that incorporate local graph 146

neighborhoods face challenges with most existing 147

KGs due to the exponential growth of the com- 148

putation graph with increasing hop depth and the 149

rapid expansion when encountering high-degree 150

nodes. Consequently, neighborhood selection is an 151

important research area aiming to reduce the train- 152

ing and inference time of models applied to large 153

graphs (Chen et al., 2018; Ying et al., 2018) and to 154

improve the prediction through selecting valuable 155

neighbors (Peng et al., 2021). 156

We are particularly interested in graph sampling 157

techniques that are applied to KGs. Therefore, in 158

the following, we outline the related work for sam- 159

pling KG subgraphs for LP and NLP tasks. 160

Neighborhood Selection for LP Most LP ap- 161

proaches sample contexts uniformly. For exam- 162

ple, Kochsiek et al. (2023) sample n triples that 163

include the query head. Other works repeat this 164

sampling to construct multihop subgraphs (Hamil- 165

ton et al., 2017; Li et al., 2024). This sampling 166

leads to a stochastic training procedure that relies 167

on the assumption that sampling-induced noise av- 168

erages out over successive training iterations, par- 169

ticularly when entities appear in multiple contexts 170

and when contexts are dynamically resampled. 171
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There are a number of previous approaches that172

rely on heuristics to determine the context. Luo173

et al. (2025), for instance, propose to sample triples174

with the same relation as the query relation from the175

neighborhood and the entire graph, in addition to176

randomly selected triples. Bi et al. (2023) have pro-177

posed to sample neighbors according to the node178

degree. Random Walk with Restart (RWR) scores,179

introduced by Pan et al. (2004), are expected to indi-180

cate structural or feature-based relevance between181

nodes. Consequently, RWR scores are frequently182

utilized in neighborhood sampling strategies for183

GNNs (Xiong et al., 2024).184

We conclude that most subgraph extraction meth-185

ods for LP are based on random sampling, and,186

despite its importance, the selection of an optimal187

subgraph remains insufficiently explored. In LP, no188

textual information beyond the query is given that189

could indicate any relevance of neighboring triples.190

Until now, the triples that are actually relevant to191

a prediction and to what extent noise hinders the192

models have not been evaluated.193

Subgraph selection also plays a crucial role in194

explainable AI (XAI) for GNNs. For example, GN-195

NExplainer (Ying et al., 2019) aim to identify an196

input subgraph that has the highest importance to197

the model’s prediction. In contrast, we aim to iden-198

tify the subgraph with the highest impact towards199

the correct model prediction. Here, the goal is not200

to understand the model behavior – as in explain-201

able AI – but to understand what context is most202

beneficial for the task.203

Subgraph Selection for NLP Tasks Subgraph204

selection is an important topic in knowledge-205

intensive NLP applications, such as QA or graph-206

RAG, too. QA approaches often link entities men-207

tioned in the question to a KG. Instead, Graph-208

RAG (Peng et al., 2024) computes textual similar-209

ities of the question with the text passages of the210

nodes. The size of the subgraph induced through211

this set of identified entities often increases expo-212

nentially with the number of entities.213

In the literature, we found the following non-214

trainable methods to sample a subgraph given a215

set of entities: (i) k-hop paths starting at the given216

entities (Yasunaga et al., 2021, 2022; Taunk et al.,217

2023), (ii) shortest paths between the given entities218

(Plenz et al., 2023), or (iii) Steiner Tree between219

the given entities (He et al., 2024).220

More advanced methods use a trainable retrieval221

component. E. g., Zhang et al. (2022) finetune222
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Figure 2: Schematic illustration of the greedy search
algorithm for the post hoc selection of the most effective
context for a given triple. With |C| = 3, the algorithm
builds an effective context by iteratively selecting the
neighbor that minimizes the perplexity of o.

RoBERTa (Liu et al., 2019), and Mavromatis and 223

Karypis (2024) train a GNN for subgraph retrieval. 224

4 Methodology 225

Given an LP query q, a trained model M , and the 226

neighborhood C ⊆ G, we investigate the potential 227

benefits of providing an optimal context Copt ⊆ C 228

instead of a randomly sampled context Crandom ⊆ 229

C to M at inference time for answering q. 230

Post Hoc Optimal Context Selection In contrast 231

to determining the context a priori for a query, as 232

we are interested in understanding how an optimal 233

context would look like, we search for a subset 234

Copt ⊆ C that maximizes the model’s likelihood 235

of predicting the correct target t for a query with a 236

known answer. Our approach is thus post hoc and 237

assumes ground truth knowledge and can thus not 238

be applied to (prospective) inference. Given that 239

our research goal is to identify the characteristics 240

of ideal context and not to propose a new state-of- 241

the-art method, this approach is in line with our 242

goals and research question. 243

An optimal context can be found by maximizing 244

the confidence pM of M in predicting the correct 245

target entity. This is equivalent to minimizing the 246

negative log-likelihood 247

Copt = argmin
C′⊆C

−pM (t|sq, rq, C ′). (1) 248

Greedy Search for Optimal Context Selection 249

An evaluation of Eq. 1 with all possible C ′ is not 250

3



tractable as C can have exponentially many sub-251

graphs.1 Therefore, we approximate Copt with a252

local optimal C∼opt that we derive through a greedy253

optimization that requires a manageable number of254

forward passes and is easily and generally appli-255

cable. Our greedy optimization works as follows:256

Given a triple (sq, rq, t), we start with C ′ = ∅257

and iteratively extend the set by adding the context258

triple c ∈ C that locally minimizes the negative259

log-likelihood. We thus iteratively compute the260

opticaml context as follows:261

C ′
i = argmin

c∈C\C′
i−1

−pM (t|sq, rq, C ′
i−1 ∪ c). (2)262

This yields a series of contexts C ′ = [C ′
1, ..., C

′
|C|]263

from which we select264

C∼opt = argmin
C′

i∈C′
−pM (t|sq, rq, C ′

i). (3)265

For neighborhoods beyond the 1-hop, we ensure266

that C∼opt forms a connected graph by selecting267

only triples connected to entities already in C ′
i.268

Optimal Context Selection with Generative LMs269

For an LP model based on a generative LM, the270

negative log-likelihood is equal to the perplexity271

of generating t’s label. We denote the tokenized272

sequence as t = t1, ..., tl.273

The perplexity (PPL) of a model M given274

(sq, rq, ?) generating t is defined as275

PPL(t|sq, rq) = exp

(
−1

l

l∑
i=1

logMsq ,rq(ti|t<i)

)
,

(4)276

where Ms,r(ti|t<i) denotes probability that the M277

generates ti. Following Eq. 1, an optimal context278

for a generative LM is279

Copt = argmin
C′⊆C

PPL(t|sq, rq). (5)280

5 Experimental Setup281

In our experiments,2 we aim to demonstrate that the282

greedy optimization derives approximately optimal283

neighborhoods and show the potential benefits of284

leveraging such neighborhoods for LP. Specifically,285

we first investigate whether greedy optimization286

1E. g., the number of subgraphs for a 1-hop neighborhood
C is 2|C|, where |C| is the number of triples in C.

2The source code used for our experiments is publicly
available on GitHub https://anonymous.4open.science/
r/kgt5-glm-336A/README.md. The computational re-
sources used for our experiments are reported in App. D.

can effectively reduce the model perplexity and 287

the sizes of the neighborhoods for a given sam- 288

ple. Second, we assess the quality of the optimized 289

neighborhoods by investigating: i) whether the op- 290

timized neighborhoods generalize to new models 291

– i. e., whether the optimized neighborhoods im- 292

prove the model if re-trained, ii) their effectiveness 293

across different architectures – i. e., whether us- 294

ing the optimized neighborhood yields improved 295

results across different model architectures, and 296

iii) how the optimal neighborhoods compare to 297

heuristic approaches from related work. 298

Models We evaluate two models: 299

i) KGT5 (Kochsiek et al., 2023), which shows 300

good scalability and performance comparable to 301

state-of-the-art, and ii) Graph Language Model 302

(GLM) from Plenz and Frank (2024), a general 303

graph transformer for KGs that we adapt to LP. 304

The KGT5 model is based on the seq2seq 305

T5 (Raffel et al., 2020) architecture, which requires 306

linearizing the graph-structured input. However, 307

the linearized input does not adequately reflect the 308

graph structure, as the distance between entities in 309

the linearized sequence does not correspond to their 310

distance in the original graph. Consequently, the 311

KGT5 model only incorporates the 1-hop neighbor- 312

hood around the query subject entity, as complex 313

graph structures can not be modeled. 314

The GLM does not linearize the input. Instead, 315

the GLM modifies the relative positional encoding 316

of tokens in the T5 encoder to reflect the distances 317

between entities in the graph, thereby capturing 318

structural information. As a result, the GLM can 319

incorporate neighborhoods beyond the 1-hop level. 320

Further details can be found in App. B. 321

We use pre-trained T5 weights and the same 322

hyperparameters as reported by Saxena et al. (2022) 323

and Kochsiek et al. (2023) for both models. 324

Datasets We conduct our experiments on two 325

publicly available and well-established LP datasets: 326

FB15k-237 and Wikidata5m. Statistics about both 327

datasets can be found in App. C. 328

FB15k-237 is a refined subset of FB15k (Bordes 329

et al., 2013b), which itself is derived from Freebase. 330

Toutanova and Chen (2015) constructed FB15k- 331

237 by filtering out inverse relations. The dataset 332

consists of 310,116 triples, with 14,541 entities and 333

237 distinct relation types. 334

Wikidata5m is a large-scale subset of Wikidata, 335

including only entities with descriptions of more 336

than five words (Wang et al., 2021). The dataset 337
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contains 21 million triples, 5 million entities, and338

822 relation types.339

Evaluation We report the models’ perplexity340

PPL as a measure of their confidence in making341

correct predictions, using it as an indicator of the342

progress of the context optimization process.343

Ranking-based metrics are commonly used to344

evaluate LP models because LP models aim to345

rank the correct answer o ∈ E as highly as pos-346

sible among all candidate entities E . These metrics347

directly reflect how well the model orders these348

candidates. Following Bordes et al. (2013b), we349

evaluate the models’ LP capabilities using filtered350

ranking-based metrics (MRR and Hits@k).351

Baseline Context Given an LP model, we eval-352

uate its performance using contexts constructed353

through different heuristic methods as baselines.354

More details can be found in App. E.355

Random sampling (Crandom): 100 triples are356

uniformly selected from the neighborhood around357

the query subject sq.358

Node degree (Cdegree): We select the 10 neigh-359

boring entities with the highest node degree. We360

pass all triples connecting sq with these neighbors.361

Random walk with restart scores (Crwr): We362

compute the random walk with restart (RWR)363

scores and use these to sort the neighbors. We then364

select the 10 triples associated with the neighboring365

entities with the highest RWR scores. We conduct366

our experiments with Crwr only on FB15k-237 due367

to the high computational demands.368

Entity linking (Clink): We run entity linking on369

the entity descriptions and restrict the context to370

triples involving those entities.371

Cdegree, Crwr, and Clink are expected to reflect372

the importance of entities in the graph and, thus,373

contain less noise than Crandom. We limit the con-374

text size to at most 10 neighboring entities in order375

to ensure comparability to C∼opt.376

Context Optimization For each dataset, we train377

a KGT5 model with Crandom, following Kochsiek378

et al. (2023). Then, we optimize a neighborhood379

C∼opt up to a size of 30 for the KGT5 model on380

each dataset and each query.3 We stop the optimiza-381

tion process at 30 triples, as most approximately382

3We optimize the context based on 100 randomly sam-
pled triples around the query subject instead of the entire
graph neighborhood to improve the runtime. For 0.66% of
test instances on FB15k-237 and 0.62% on Wikidata5m, the
100 sampled triples fully capture the corresponding entity’s
neighborhood.

Dataset Crandom C∗
∼opt rel diff. ↑

FB15k-237 3.361 1.732 48.5%
FB15k-237 w/ desc. 3.364 2.581 23.2%
Wikidata5m 4.466 3.485 21.9%
Wikidata5m w/ desc. 3.423 2.737 20.0%

Table 1: Comparision: Median perplexity of KGT5 on
FB15k-237 and Wikidata5m for random sampling and
optimized context.

optimal contexts contain only around 3-5 triples. 383

We use these C∼opt throughout all experiments 384

and do not optimize any further contexts. To indi- 385

cate that a context was derived specifically for a 386

given model, we mark it with “∗” – e. g., KGT5- 387

C∗
∼opt denotes that the KGT5 model uses a context 388

explicitly optimized for itself. 389

Optimization of 2-hop Contexts GLMs allow 390

contexts beyond a 1-hop. Thus, we investigate 391

the impact of a 2-hop C∼opt for GLMs. First, we 392

train a GLM model given a 2-hop Crandom. For 393

the 2-hop random sampling, we sample 10 direct 394

neighboring triples in the first hop, and 10 for each 395

of those in the second hop, leading to up to 110 396

sampled neighborhood triples. Then, we optimize 397

C∼opt up to a size of 30 per sample for each dataset 398

and each model. 399

6 Results 400

Our baseline is the standard KGT5 model trained 401

with random sampling. 402

6.1 Context Optimization 403

First, we validate our greedy context optimization 404

by comparing the perplexities between the sam- 405

pled and optimized contexts. As shown in Tab. 1, 406

our approach decreases the median perplexity4 of 407

KGT5 models by 20.0% to 48.5%, depending on 408

the dataset. As expected, the perplexity decreases 409

more for datasets without descriptions, as models 410

have to rely solely on the context here, which, thus, 411

has a larger impact. 412

Tab. 2 shows the average size of different con- 413

texts. On average, |C∼opt| is considerably smaller 414

than the original |C| and |Crandom|. We note that 415

|C∼opt| is, on average, larger for FB15k-237 than 416

for Wikidata5m, and larger for datasets with de- 417

scriptions than for datasets without descriptions. 418

Further investigating the effect of different datasets 419

on optimal context sizes is left for future work. 420

4We use median instead of mean, as the mean was domi-
nated by a few outliers for some models.

5



Dataset |C| |Crandom| |Cdegree| |Crwr| |Clink| |C∼opt|

FB15k-237 386.7 60.0 11.8 66.2 77.4 8.9
FB15k-237 w/ desc. 386.7 60.0 11.8 66.2 77.4 13.0
Wikidata5m 2443.8 45.5 8.2 - 262.3 4.6
Wikidata5m w/ desc. 2443.8 45.5 8.1 - 262.3 6.1

Table 2: Comparison: average context sizes per test
query.
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Figure 3: Perplexity across different context sizes during
the C∗

∼opt creation. KGT5 w/o desc. on FB15k-237 and
Wikidata5M.

The size of C∼opt follows a long-tailed distribution,421

peaking around the average C∼opt size, with only a422

few samples reaching the optimization limit of 30423

neighbors (c. f. Fig. 7 in App. F).424

Fig. 3 shows the model perplexity throughout the425

iterative context optimization.5 We observe that the426

first few neighbors added to the context contribute427

the most to reducing the model perplexity, while428

adding additional neighbors results in either a mi-429

nor decrease or even an increase. Furthermore, the430

PPL of the Wikidata5m models decreases earlier431

than that of the FB15k-237 model and, after reach-432

ing its minimum, rises more sharply.433

6.2 Evaluating the Quality of Optimized434

Contexts435

We investigate whether optimized contexts can im-436

prove a model’s LP capabilities.437

The results are shown in Tab. 3. Optimizing a438

context for a specific model and then evaluating the439

same model with this context leads to great perfor-440

mance increases – e. g., the MRR for KGT5 w/o441

desc. improves from 0.278 (for Crandom) to 0.616.442

However, the extent of these improvements varies443

depending on the model and dataset, with notably444

smaller improvements observed for Wikidata5m.445

5These results are aggregated over the entire test set, where
the perplexity optimization curve for each sample was normal-
ized to a range between 0 and 1 before the mean and variance
were computed. This normalization ensures a reasonable vari-
ance in the perplexity values. We provide the perplexity curve
for multiple individual samples as case studies in App. G.

Generalization Across Models So far, we inves- 446

tigated C∗
∼opt, i. e., the optimized context applied 447

to the model for which it was optimized. Thus, the 448

context may be overfitted to that specific model. 449

To assess the generalizability of the optimized con- 450

text, we apply C∼opt to separately finetuned KGT5 451

models. From Tab. 3, we observe that although the 452

MRR score decreases from 0.616 to 0.362 (FB15k- 453

237 w/o desc.) when applied to a new model, this 454

score remains higher than that of Crandom, which 455

is around 0.278. This trend holds across all in- 456

vestigated model configurations and datasets. We 457

conclude that C∼opt generalizes to new models, 458

though a large gap remains to the model it was 459

originally optimized for. 460

Generalization Across Model Architectures In 461

the next step, we investigated whether C∼opt also 462

generalizes to models of different architectures. As 463

shown in Tab. 3, models incorporating C∼opt out- 464

perform those using Crandom, although the gain is 465

smaller than for KGT5. 466

Comparison to Heuristic Approaches If a 467

model is trained using Crandom but evaluated with 468

Cdegree, Crwr, or Clink, its performance decreases 469

compared to when it is evaluated with Crandom. It 470

is important to note that we constructed Cdegree, 471

Crwr, and Clink to contain a reasonable number of 472

triples (see Tab. 2) to obtain a similar size as the 473

optimized contexts and, thereby, ensure compara- 474

bility. 475

6.3 Ablation Study: Model Sensitivity to the 476

Sequential Order in Optimized Contexts 477

In an ablation study, we examine whether KGT5 478

models are sensitive to the order induced by the 479

iterative context optimization strategy. We eval- 480

uate one model using the context in its original 481

order, as determined during optimization (KGT5- 482

C∼opt), and another with a shuffled context (KGT5- 483

C∼opt shuf.). Interestingly, the LP scores remain 484

similar, suggesting that KGT5 models learn to be 485

order-invariant during training. As GLMs are order- 486

invariant by design, we omit input shuffling. 487

6.4 Ablation Study: Small Context Models 488

So far, all our models were trained with a randomly 489

sampled context of up to 100 triples (60 on aver- 490

age). However, our optimized contexts have only 491

4.6 to 13.0 triples on average, depending on the 492

dataset. Thus, the optimized contexts may be even 493

more beneficial for models trained with smaller 494
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Model FB15k-237 Wikidata5m
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

w
/d

es
c.

KGT5-∅ 0.184 0.135 0.199 0.287 0.144 0.116 0.157 0.199
KGT5-Cdegree 0.278 0.212 0.307 0.419 0.403 0.384 0.417 0.435
KGT5-Clink 0.273 0.211 0.300 0.402 0.378 0.357 0.393 0.416
KGT5-Crwr 0.278 0.212 0.305 0.416 - - - -
KGT5-Crandom 0.285 0.216 0.313 0.430 0.430 0.409 0.444 0.463
GLM-Crandom 0.284 0.215 0.316 0.429 0.424 0.405 0.438 0.457

KGT5-C∗
∼opt 0.402 0.322 0.443 0.561 0.455 0.436 0.467 0.487

KGT5-C∼opt 0.328 0.252 0.364 0.483 0.441 0.421 0.453 0.475
KGT5-C∼opt shuf. 0.323 0.247 0.358 0.478 0.441 0.421 0.453 0.475
GLM-C∼opt 0.294 0.224 0.327 0.437 0.434 0.416 0.448 0.466

w
/o

de
sc

.

KGT5-∅ 0.135 0.098 0.148 0.211 0.197 0.162 0.217 0.263
KGT5-Cdegree 0.244 0.185 0.268 0.368 0.354 0.328 0.370 0.402
KGT5-Clink 0.219 0.167 0.240 0.329 0.306 0.277 0.324 0.361
KGT5-Crwr 0.240 0.181 0.266 0.364 - - - -
KGT5-Crandom 0.278 0.208 0.306 0.423 0.381 0.355 0.398 0.429
GLM-Crandom 0.284 0.211 0.315 0.436 0.377 0.353 0.391 0.423

KGT5-C∗
∼opt 0.616 0.534 0.664 0.776 0.416 0.392 0.430 0.459

KGT5-C∼opt 0.362 0.286 0.400 0.514 0.396 0.370 0.411 0.443
KGT5-C∼opt shuf. 0.361 0.286 0.398 0.512 0.396 0.371 0.410 0.443
GLM-C∼opt 0.324 0.253 0.359 0.467 0.394 0.371 0.407 0.439

Table 3: Comparison of ranking-based LP scores on FB15k-237 and Wikidata5m.

0 5 10 15 20 25 30
Max. Context Size

0.28

0.30

0.32

0.34

M
RR

KGT5 - Crandom

KGT5 - C opt

GLM - Crandom

GLM - C opt

Figure 4: MRR scores of models, trained with different
context sizes, when provided with an optimized context
(C∼opt) vs. with random context (Crandom).

contexts. Therefore, we train multiple models with495

Crandom of varying sizes, ranging from 0 to 30.496

During the evaluation, we provide the optimized497

contexts (optimized for our baseline model) up to498

the context size with which the model was trained.499

Fig. 4 shows the results. We observe that the500

MRR increases only gradually as the sampled con-501

text size grows. However, when evaluated with502

C∼opt, the MRR shows a fast improvement with503

increased context sizes. Interestingly, a small op-504

timized context (around 5-10 triples) already out-505

performs larger random contexts of 30 triples. Ad-506

ditionally, we find that the GLM model performs507

better with smaller contexts, whereas the KGT5508

model shows superior results with larger contexts.509

Around 15 neighbors, both models achieve similar510

performance with optimized contexts.511

0 5 10 15 20 25 30
Max. Context Size

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

. P
PL

Perplexity History 

±

Figure 5: Perplexity across different context sizes during
the C∗

∼opt creation for 2-hops. GLM w/o desc. on
FB15k-237.

6.5 Optimization for 2-hop Contexts 512

So far, we optimized the 1-hop contexts based on 513

KGT5. Using GLMs, we can extend our exper- 514

iments to larger contexts. Due to computational 515

costs, we restrict ourselves to 2-hop contexts and 516

FB15k-237. The optimization reduces the median 517

PPL from 3.308 to 2.770, as visualized in Fig. 5. 518

Thus, the PPL follows a similar trend to the one 519

observed in previous experiments with the 1-hops. 520

We observe that triples from the second hop are 521

incorporated into the optimized context quite early, 522

indicating that 2-hop triples provide valuable infor- 523

mation for LP. As shown in Fig. 6, more than 80% 524

of the triples at the fifth position in the optimized 525

context are from the second hop. 526

Tab. 4 shows that context optimization can im- 527

prove the model’s LP scores. However, we observe 528

that the contexts generalize worse from one model 529
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Figure 6: Ratio of 2-hop triples at different positions
of C∼opt. The histogram indicates the frequency of the
respective C∼opt sizes.

Model MRR Hits@1 Hits@3 Hits@10

GLM-Crandom 0.278 0.203 0.309 0.435
GLM-C∗

∼opt 0.364 0.286 0.402 0.523
GLM-C∼opt 0.306 0.231 0.338 0.461

Table 4: Comparision of ranking-based LP scores on
FB15k-237 with 2-hop contexts: Crandom vs. C∼opt.
Models w/o desc.

to another compared to the 1-hop contexts. In gen-530

eral, the 2-hop results are slightly worse than the531

1-hop results. For the 2-hop model, we did not eval-532

uate the context selection heuristics, as we have533

already shown that they do not provide a valuable534

context for the 1-hop models.535

7 Discussion536

We optimize contexts for LP inference to show the537

potential improvements of using a good context.538

Our results show that the greedy post hoc context539

optimization reduces the models’ median perplex-540

ity and improves ranking-based LP metrics while541

yielding an optimized context C∼opt that is smaller542

than a quarter of the randomly sampled Crandom.543

The characteristics of a good context may vary544

depending on whether it is used during training or545

inference. E. g., during training, a context should546

contain some noise to make the model robust,547

whereas, during inference, the context should con-548

tain as little noise as possible. Nonetheless, a con-549

text optimized for inference may serve as a valuable550

starting point for training contexts.551

Due to the post hoc optimization, the context is552

optimized towards a specific target, i. e., we cannot553

optimize the context for a given query and target,554

and then reuse it for predicting new targets. We555

confirm this empirically in App. H. Thus, our ap-556

proach can not be directly applied to predict new557

targets. However, it offers insights to enhance con-558

text selection and thereby improve LP.559

Although models with entity descriptions typi- 560

cally achieve better LP scores, our optimized con- 561

text experiments on FB15-237 show the opposite, 562

that is, the model without descriptions outperforms 563

the model provided with descriptions. We conclude 564

that i) descriptions can be misleading or distracting 565

when high-quality neighbors are available – or lead 566

to truncations of good contexts; ii) descriptions, 567

on average, offer more valuable information than 568

randomly sampled contexts. 569

KGT5’s graph linearization only applies to 1- 570

hop contexts, so that we evaluated 2-hop contexts 571

only for the GLMs. In general, the 2-hop results are 572

slightly worse than the 1-hop results for randomly 573

sampled contexts. We hypothesize that this is be- 574

cause, on average, 1-hop neighbors contain more 575

relevant information than more distant neighbors. 576

When we randomly select neighbors that are up to 2 577

hops away, then fewer 1-hop neighbors are selected 578

with the result that LP performance decreases. 579

Although we consider 1-hop triples to be more 580

informative than 2-hop triples, we observe a sur- 581

prising, yet recurring pattern in the context opti- 582

mization: often, one direct neighbor (1-hop) is 583

added first, followed by all of its neighbors (2-hop) 584

before additional direct neighbors of the query sub- 585

ject are included. This pattern is reflected in Fig. 6, 586

where the ratio of 2-hop triples drops at context 587

positions 12 and 23. This behavior is also visible in 588

the perplexity optimization, as shown in Fig. 5. We 589

believe that this pattern arises because the greedy 590

algorithm gets stuck in a local optimum. However, 591

despite this behavior, our results show that greedy 592

context optimization can be effective for LP. 593

8 Conclusion & Future Work 594

In this work, we introduce a method to deter- 595

mine an approximately optimal context for a given 596

query, target, and model that effectively improves 597

a model’s likelihood of predicting the correct tar- 598

get by reducing the perplexity by 20.0% to 48.5%. 599

Second, we demonstrate that the same information 600

is relevant to different models. Finally, we show 601

that optimal contexts are smaller than a quarter of 602

the randomly sampled contexts and that common 603

sampling strategies are suboptimal. 604

Based on our results, future work can optimize 605

the context sampling for LP training, e. g., by min- 606

ing frequent patterns in the contexts or training a 607

model to predict contexts. 608
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Limitations609

We are aware of three limitations of our approach:610

611

i) Our context optimization uses a greedy strat-612

egy, which can get stuck in local optima. For ex-613

ample, suppose we have three possible triples x,614

y, and z. Adding x might reduce the negative log-615

likelihood more than adding y in the current step.616

However, if z is added next, the combination {y, z}617

might lead to a better overall result than {x, z}.618

This shows that greedy optimization can, in theory,619

miss better combinations of triples. However, if620

getting stuck in local optima were a serious prob-621

lem, we would expect a significant drop in negative622

log-likelihood when triples are added later in the623

optimization process. However, our case studies624

in Fig. 8 show a stable and consistent decrease in625

negative log-likelihood over time, without sudden626

jumps that would suggest escaping a local optimum.627

Therefore, we believe that our greedy optimization628

is not strongly affected by local optima.629

ii) The context optimization is performed post630

hoc, i. e., it requires the correct query answer to631

determine the optimal context for a given query.632

As a result, our algorithm cannot be directly used633

to generate optimal context to enhance existing link634

prediction methods. Nonetheless, we believe that635

our insights into the potential improvements and636

characteristics of optimal contexts offer a valuable637

contribution to the community and can support the638

development of more advanced context selection639

strategies.640

iii) We also use random sampling as a starting641

point due to computational constraints. However,642

we consider large subgraphs for random sampling,643

so the impact should not be too large for our exper-644

iments.645

Ethics646

Our work builds on established datasets and meth-647

ods and does not introduce any new risks related to648

bias or harmful content. Instead, our findings can649

support the development of more effective and com-650

putationally efficient link prediction approaches.651
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Dataset FB15k-237 Wikidata5m

Number of triples (training set) 272115 20614279
Number of triples (validation set) 17535 5163
Number of triples (test set) 20466 5133
Number of entities 14541 4594485
Number of distinct subject entities 13781 4573330
Number of distinct object entities 13379 1068854
Number of distinct relations 237 822
Relation occurrences (least frequent) 37 1
Relation occurrences (most frequent) 15989 3839805
Mean node degree 37.520 8.974
Maximum node degree 7614 1519673
Graph density (directed) 1.29e-03 9.77e-07

Table 5: LP dataset statistics.

A Details about Models897

B Graph Language Model898

Normal Language Models (LMs) operate on texts,899

where one token comes after the other. So-called900

positional encodings inform the language model901

about the sequential ordering of input texts. Graph902

Language Models (GLMs; Plenz and Frank, 2024)903

extend the positional encoding of langauge mod-904

els in order to encode graphs instead of sequences.905

This allows GLMs to encode graphs efficiently, as906

they are a type of graph transformer. As only the907

positional encoding has to be adjusted, the pre-908

trained LM paramters from LMs can be used for909

GLMs. This enables GLMs to process text as a LM910

would, while also being able to process graphs.911

We use the global GLM (gGLM) from Plenz and912

Frank (2024), which is based on the T5 encoder.913

For text generation, we pass the graph encoding to914

the T5 decoder without any modifications.915

C Link Prediction Datasets916

The characteristics of the two investigated LP917

benchmark datasets are shown in Tab. 5.918

D Computational Resources919

All experiments were conducted on our GPU clus-920

ter equipped with A40 GPUs. The runtime for a921

single run was as follows: i) training required ap-922

proximately 24 hours on FB15k-237 and 100 hours923

on Wikidata5m, ii) context optimization took 24924

hours (FB15k-237) and 2 hours (Wikidata5m), and925

iii) evaluation lasted 7 hours (FB15k-237) and 1926

hour (Wikidata5m). Since we repeated these exper-927

iments multiple times for multiple configurations,928

the total compute amounted to approximately 1500929

GPU hours.930

Dataset Node Degree

FB15k-237 36.2
Wikidata5m 29.8

Table 6: Average node degree of entities in the test set.

E Context Selection Baselines 931

E.1 Node Degree 932

We compute the undirected node degree. The aver- 933

age node degree is shown in Tab. 6. 934

E.2 Random Walk with Restarts 935

We compute the random walk with restart scores 936

with a start probability of 0.15. 937

E.3 Entity Linking 938

We run entity linking on the entity descriptions 939

and restrict the context to triples involving those 940

entities. We use a Wikidata entity linking tool 941

based on SpaCy.6 If no entities can be linked, we 942

randomly sample a neighborhood of a maximum 943

size of 100 around the query source without any 944

restrictions. 945

For the FB15k-237 dataset, we mapped the Wiki- 946

data IDs back to Freebase. 82% of the entity de- 947

scriptions in the FB15k-237 test set have at least 948

one link. In the Wikidata5m test set, 66% of the 949

entities have at least one link. 950

F Neighborhood Optimization Details 951

Copt is not necessarily unique, as different contexts 952

can result in the same prediction confidence of M . 953

If we find multiple equally valuable cotexts, we are 954

interested in the smallest Copt possible. 955

Fig. 7 shows histograms of the sizes of the opti- 956

mized contexts. 957

G Case Study: Context Optimization 958

Fig. 8 shows how the greedy algorithm optimizes 959

the perplexity for 6 random test samples from the 960

FB15k-237 dataset. 961

H Generalization of Neighborhoods from 962

Train to Test 963

The greedy optimization derives an effective post 964

hoc context; therefore, the context depends on the 965

triple, i. e., the query and the correct target entity. 966

6See https://github.com/egerber/
spaCy-entity-linker.
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Figure 7: Overview of the frequency of optimal context
sizes. KG-T5 w/o context.

However, some relations can connect one entity 967

with multiple entities; these are called 1-n relations. 968

Consequently, one query can have multiple correct 969

answers. 970

This raises the question: Are the effective con- 971

texts triple-specific, or do they generalize and are 972

query-specific? 973

We investigate whether the context of a given 974

query derived for one target generalizes to other 975

targets. The queries of the train and test set of 976

LP datasets usually have a significant overlap, i. e., 977

many test queries are already contained in the train- 978

ing set. This is caused by the random splitting of 979

triples with 1-n relations into train and test sets. 980

E. g., 68.5% of the FB15k-237 test queries are 981

present in the train set, see Tab. 7 for details. 982

In order to investigate whether the optimized 983

neighborhoods generalize from train to test, we 984

optimize test samples associated with queries in 985

the test set. During inference, we either use these 986

neighborhoods optimized on the training queries if 987

available, or we stay with random sampling. 988

We run this experiment with a KGT5 model on 989

FB15k-237 and observe that the MRR score is sig- 990

nificantly worse (0.226) compared to when random 991

sampling is conducted (0.278). We conclude that 992

the neighborhood is highly target-dependent and 993

does not generalize to new triples with the same 994

query aiming for a different target. 995

Dataset Train Queries Test Queries Intersection

FB15k-237 243,061 36,587 25,058 (68.5%)
Wikidata5m 36,518,652 13,235 4,897 (37.0%)

Table 7: Overlap of queries contained in the train and
test set.
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Figure 8: PPL throughout the greedy neighborhood optimization for KGT5 (w/o desc.) for six random samples in
the FB15k-237 dataset.
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