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Abstract

Link Prediction (LP) approaches based on Lan-
guage Models (LMs) operate over the labels
and descriptions of entities and relations in
a KG, achieving LP performance competitive
with state-of-the-art. Recent approaches have
shown that incorporating a local graph neigh-
borhood can improve the LP capabilities of
LMs. These approaches usually sample a con-
text from the neighborhood around a query
triple randomly, thereby incorporating noise
that might hinder the model in making correct
predictions.

In this work, we derive an approximately opti-
mal context for a given query under the assump-
tion that we know the correct answer. This
allows us to investigate the characteristics of
such contexts and the impact of a good con-
text on LP, thereby providing an approximate
upper bound on the achievable performance
when using optimal contexts. We provide evi-
dence that the neighborhoods created through
random sampling are often suboptimal and un-
necessarily large. Furthermore, we show that
the potential improvements of using an optimal
context can be significant. We conclude that
research on context selection is an important
step towards developing better LP models.

1 Introduction

Knowledge Graphs (KGs) are used as back-
ground knowledge in various NLP applications,
e.g., in Question Answering (Schneider et al.,
2022), Dialogue Systems (Park et al., 2024), and
Text Generation (Wang et al., 2024). A KG
is a multi-relational graph, defined by a set of
(subject, relation, object) triples. The KG can
be called text-attributed KG when textual labels or
descriptions are available for entities and relations.

KGs are inherently incomplete as the processes
of creating them will always miss relevant facts,
either because i) they are manually created and
curators miss relevant knowledge due to time and
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Figure 1: Example KG with LP query.

effort constraints, ii) they are automatically created
and automatic methods are error-prone and iii) be-
cause they might not have been up-dated regularly
and thus miss new facts (Paulheim, 2017). To ad-
dress this, approaches were developed to infer miss-
ing triples based on the triples already available in
the KG. This task is called Link Prediction (LP).
Given a (subject, relation, ?7) query, an LP model
is trained to predict the missing ? to derive a triple
that is likely in the graph. A small example KG
and an LP query are shown in Fig. 1.

Research on LP with GNNs (Schlichtkrull et al.,
2018; Hamilton et al., 2017) has shown that the
local neighborhood can hold valuable information
for LP. Whereas GNN-based approaches can in-
corporate large graph neighborhoods and reduce
the neighborhood size to optimize training and in-
ference time (Hamilton et al., 2017; Ying et al.,
2018), a Language Model (LM)-based approach to
LP is limited to the context size of the LM. Con-
sequently, most LM-based LP approaches cannot
include full neighborhoods and, thus, often perform
random sampling to select small subgraphs around
a given query. For example, given the KG depicted
in Fig. 1, random sampling might include the facts
about John Hopfield’s gender and birthplace but
miss the information about his research contribu-
tions. As the latter are more relevant for the given
query (John Hopfield, influenced, ?), this might



limit the model in making correct predictions if
those facts are not available in the sampled context.
We hypothesize that randomly sampled sub-
graphs introduce noise, distracting the model and
occupying context space without adding value. To
test this, we analyze which facts in a query’s neigh-
borhood support correct predictions at inference
time. Optimizing the LP context at inference time
is similar to prompt optimization for LLMs, which
creates a prompt that contains the most relevant
information for a given task and reduces noise.
Our key contributions are as follows. First, we
introduce a method to determine the optimal con-
text for a given query, target, and model from the
local graph neighborhood. Second, we demonstrate
that the derived context generalizes across models
and architectures. This shows that the same infor-
mation is relevant to different models and verifies
the effectiveness of our approach. Finally, we show
that optimal contexts are remarkably small and that
common sampling strategies are suboptimal.

2 Background

A Knowledge Graph (KG) G is defined by a set
of triples, where each triple (s,r,0) represents a
relation r between a subject entity s and an object
entity o, where r € R and s,0 € £. We assume
that the KG is text-attributed such that every entity
and relation has a label or description. Then, Link
Prediction (LP) is the task to predict the 7 € £ ina
given query g of the form (s4, r¢,7) or (7,74, 04).
Traditional LP approaches learn patterns of re-
lations but do not take into account the local
graph neighborhood (Yang et al., 2015; Bordes
et al., 2013a). Language Models (LMs) were pro-
posed (Yao et al., 2019; Daza et al., 2021; Qiu
et al., 2024) specifically for LP on text-attributed
KGs. These models use a (pre-trained) LM to ob-
tain a feature representation of entities and relations
from their textual attributes. The entity descrip-
tions enable the model to generalize well to entities
with few or no relations (inductive LP) (Kochsiek
and Gemulla, 2023), in situations where traditional
LP models relying on the graph structure struggle.
Two prominent examples are SImKGC (Wang et al.,
2022) and KGTS5 (Saxena et al., 2022). SimKGC
uses an LM solely for encoding entity and rela-
tion descriptions, and computes triple likelihoods
by combining their representations through vector
multiplication. In contrast, KGTS5 encodes a query
and generates a target entity label instead of scoring

target candidates. Therefore, the model is much
more memory efficient and faster compared to ap-
proaches that are based on traditional architectures
like, e. g., SImMKGC.

Research on LP based on Graph Neural Net-
works (GNNs) (Schlichtkrull et al., 2018; Bus-
bridge et al., 2018; Hamilton et al., 2017) has
shown that the neighborhood can hold valuable
information for LP. These approaches iteratively
aggregate information from the direct graph neigh-
borhood, allowing for the theoretical incorporation
of an arbitrary number of neighboring triples per
entity. In order to improve LMs used for LP, recent
approaches have proposed to incorporate neighbor-
hood information. One example is NNKGC by
Li and Yang (2023) that first obtains entity embed-
dings through a BERT (Devlin et al., 2019) encoder
and then uses a GNN to obtain contextualized node
representations by aggregating the graph neighbor-
hood. In contrast, KGT5-context (Kochsiek et al.,
2023) is an extension of KGTS5 that enriches the
KGTS5 input sequence with entities and relations in
the direct neighborhood of the query head.

3 Related Work

Graph learning models that incorporate local graph
neighborhoods face challenges with most existing
KGs due to the exponential growth of the com-
putation graph with increasing hop depth and the
rapid expansion when encountering high-degree
nodes. Consequently, neighborhood selection is an
important research area aiming to reduce the train-
ing and inference time of models applied to large
graphs (Chen et al., 2018; Ying et al., 2018) and to
improve the prediction through selecting valuable
neighbors (Peng et al., 2021).

We are particularly interested in graph sampling
techniques that are applied to KGs. Therefore, in
the following, we outline the related work for sam-
pling KG subgraphs for LP and NLP tasks.

Neighborhood Selection for LP Most LP ap-
proaches sample contexts uniformly. For exam-
ple, Kochsiek et al. (2023) sample n triples that
include the query head. Other works repeat this
sampling to construct multihop subgraphs (Hamil-
ton et al., 2017; Li et al., 2024). This sampling
leads to a stochastic training procedure that relies
on the assumption that sampling-induced noise av-
erages out over successive training iterations, par-
ticularly when entities appear in multiple contexts
and when contexts are dynamically resampled.



There are a number of previous approaches that
rely on heuristics to determine the context. Luo
et al. (2025), for instance, propose to sample triples
with the same relation as the query relation from the
neighborhood and the entire graph, in addition to
randomly selected triples. Bi et al. (2023) have pro-
posed to sample neighbors according to the node
degree. Random Walk with Restart (RWR) scores,
introduced by Pan et al. (2004), are expected to indi-
cate structural or feature-based relevance between
nodes. Consequently, RWR scores are frequently
utilized in neighborhood sampling strategies for
GNNs (Xiong et al., 2024).

We conclude that most subgraph extraction meth-
ods for LP are based on random sampling, and,
despite its importance, the selection of an optimal
subgraph remains insufficiently explored. In LP, no
textual information beyond the query is given that
could indicate any relevance of neighboring triples.
Until now, the triples that are actually relevant to
a prediction and to what extent noise hinders the
models have not been evaluated.

Subgraph selection also plays a crucial role in
explainable AI (XAI) for GNNs. For example, GN-
NExplainer (Ying et al., 2019) aim to identify an
input subgraph that has the highest importance to
the model’s prediction. In contrast, we aim to iden-
tify the subgraph with the highest impact towards
the correct model prediction. Here, the goal is not
to understand the model behavior — as in explain-
able Al — but to understand what context is most
beneficial for the task.

Subgraph Selection for NLP Tasks Subgraph
selection is an important topic in knowledge-
intensive NLP applications, such as QA or graph-
RAG, too. QA approaches often link entities men-
tioned in the question to a KG. Instead, Graph-
RAG (Peng et al., 2024) computes textual similar-
ities of the question with the text passages of the
nodes. The size of the subgraph induced through
this set of identified entities often increases expo-
nentially with the number of entities.

In the literature, we found the following non-
trainable methods to sample a subgraph given a
set of entities: (i) k-hop paths starting at the given
entities (Yasunaga et al., 2021, 2022; Taunk et al.,
2023), (ii) shortest paths between the given entities
(Plenz et al., 2023), or (iii) Steiner Tree between
the given entities (He et al., 2024).

More advanced methods use a trainable retrieval
component. E.g., Zhang et al. (2022) finetune
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Figure 2: Schematic illustration of the greedy search
algorithm for the post hoc selection of the most effective
context for a given triple. With |C| = 3, the algorithm
builds an effective context by iteratively selecting the
neighbor that minimizes the perplexity of o.

RoBERTa (Liu et al., 2019), and Mavromatis and
Karypis (2024) train a GNN for subgraph retrieval.

4 Methodology

Given an LP query ¢, a trained model M, and the
neighborhood C' C G, we investigate the potential
benefits of providing an optimal context Cy,y € C
instead of a randomly sampled context Ci.qpdom
C to M at inference time for answering q.

Post Hoc Optimal Context Selection In contrast
to determining the context a priori for a query, as
we are interested in understanding how an optimal
context would look like, we search for a subset
Copt € C that maximizes the model’s likelihood
of predicting the correct target ¢ for a query with a
known answer. Our approach is thus post hoc and
assumes ground truth knowledge and can thus not
be applied to (prospective) inference. Given that
our research goal is to identify the characteristics
of ideal context and not to propose a new state-of-
the-art method, this approach is in line with our
goals and research question.

An optimal context can be found by maximizing
the confidence pjs of M in predicting the correct
target entity. This is equivalent to minimizing the
negative log-likelihood

Copt = arg min —pM(t|sq,rq,C’). (1)
c'ccC

Greedy Search for Optimal Context Selection
An evaluation of Eq. 1 with all possible C’ is not



tractable as C' can have exponentially many sub-
graphs.! Therefore, we approximate C,; with a
local optimal C'~,,; that we derive through a greedy
optimization that requires a manageable number of
forward passes and is easily and generally appli-
cable. Our greedy optimization works as follows:
Given a triple (sq,rq,t), we start with C" = ()
and iteratively extend the set by adding the context
triple ¢ € C that locally minimizes the negative
log-likelihood. We thus iteratively compute the
opticaml context as follows:

2

C,: = arg min _pM(t’S(p Tqs CZ{—]. U C>'
c€C\Cj_,

This yields a series of contexts C' = [C1, ..., C|’C|]
from which we select

3

. !
Cropt = argmin —pys(t|sq, rq, C;).
clec

For neighborhoods beyond the 1-hop, we ensure
that C..,p: forms a connected graph by selecting
only triples connected to entities already in C..

Optimal Context Selection with Generative LMs
For an LP model based on a generative LM, the
negative log-likelihood is equal to the perplexity
of generating ¢’s label. We denote the tokenized
sequence as t = t1, ..., {;.

The perplexity (PPL) of a model M given
(sq,7q,7) generating ¢ is defined as

l
1
PPL(t|sq,7q) = exp <_l Zlongqﬂ«q(tﬂtd)),

i=1
“4)
where M ,.(t;|t<;) denotes probability that the M/
generates ¢;. Following Eq. 1, an optimal context
for a generative LM is

Copt = argmin PPL(t|sq, rq).
Cc'cC

&)

S Experimental Setup

In our experiments,” we aim to demonstrate that the
greedy optimization derives approximately optimal
neighborhoods and show the potential benefits of
leveraging such neighborhoods for LP. Specifically,
we first investigate whether greedy optimization

'E. g., the number of subgraphs for a 1-hop neighborhood
C'is 2/€!, where |C| is the number of triples in C'.

>The source code used for our experiments is publicly
available on GitHub https://anonymous. 4open.science/
r/kgt5-glm-336A/README . md. The computational re-
sources used for our experiments are reported in App. D.

can effectively reduce the model perplexity and
the sizes of the neighborhoods for a given sam-
ple. Second, we assess the quality of the optimized
neighborhoods by investigating: i) whether the op-
timized neighborhoods generalize to new models
— i.e., whether the optimized neighborhoods im-
prove the model if re-trained, ii) their effectiveness
across different architectures — i.e., whether us-
ing the optimized neighborhood yields improved
results across different model architectures, and
iii) how the optimal neighborhoods compare to
heuristic approaches from related work.

Models We evaluate two models:
i) KGT5 (Kochsiek et al., 2023), which shows
good scalability and performance comparable to
state-of-the-art, and ii) Graph Language Model
(GLM) from Plenz and Frank (2024), a general
graph transformer for KGs that we adapt to LP.

The KGT5 model is based on the seq2seq
TS5 (Raffel et al., 2020) architecture, which requires
linearizing the graph-structured input. However,
the linearized input does not adequately reflect the
graph structure, as the distance between entities in
the linearized sequence does not correspond to their
distance in the original graph. Consequently, the
KGTS5 model only incorporates the 1-hop neighbor-
hood around the query subject entity, as complex
graph structures can not be modeled.

The GLM does not linearize the input. Instead,
the GLM modifies the relative positional encoding
of tokens in the TS encoder to reflect the distances
between entities in the graph, thereby capturing
structural information. As a result, the GLM can
incorporate neighborhoods beyond the 1-hop level.
Further details can be found in App. B.

We use pre-trained TS5 weights and the same
hyperparameters as reported by Saxena et al. (2022)
and Kochsiek et al. (2023) for both models.

Datasets We conduct our experiments on two
publicly available and well-established LP datasets:
FB15k-237 and Wikidata5Sm. Statistics about both
datasets can be found in App. C.

FB15k-237 is a refined subset of FB15k (Bordes
et al., 2013b), which itself is derived from Freebase.
Toutanova and Chen (2015) constructed FB15k-
237 by filtering out inverse relations. The dataset
consists of 310,116 triples, with 14,541 entities and
237 distinct relation types.

Wikidata5m is a large-scale subset of Wikidata,
including only entities with descriptions of more
than five words (Wang et al., 2021). The dataset


https://anonymous.4open.science/r/kgt5-glm-336A/README.md
https://anonymous.4open.science/r/kgt5-glm-336A/README.md

contains 21 million triples, 5 million entities, and
822 relation types.

Evaluation We report the models’ perplexity
PPL as a measure of their confidence in making
correct predictions, using it as an indicator of the
progress of the context optimization process.
Ranking-based metrics are commonly used to
evaluate LP models because LP models aim to
rank the correct answer o € £ as highly as pos-
sible among all candidate entities £. These metrics
directly reflect how well the model orders these
candidates. Following Bordes et al. (2013b), we
evaluate the models’ LP capabilities using filtered
ranking-based metrics (MRR and Hits@k).

Baseline Context Given an LP model, we eval-
uate its performance using contexts constructed
through different heuristic methods as baselines.
More details can be found in App. E.

Random sampling (Crandom): 100 triples are
uniformly selected from the neighborhood around
the query subject s,,.

Node degree (Cegree): We select the 10 neigh-
boring entities with the highest node degree. We
pass all triples connecting s, with these neighbors.

Random walk with restart scores (Cpryr): We
compute the random walk with restart (RWR)
scores and use these to sort the neighbors. We then
select the 10 triples associated with the neighboring
entities with the highest RWR scores. We conduct
our experiments with C'.,,- only on FB15k-237 due
to the high computational demands.

Entity linking (Cinr): We run entity linking on
the entity descriptions and restrict the context to
triples involving those entities.

Caegrees Crwr, and Cliyy, are expected to reflect
the importance of entities in the graph and, thus,
contain less noise than C,.4pd0m.- We limit the con-
text size to at most 10 neighboring entities in order
to ensure comparability to Copi.

Context Optimization For each dataset, we train
a KGTS5 model with C,.4p,40m, following Kochsiek
et al. (2023). Then, we optimize a neighborhood
Cropt up to a size of 30 for the KGT5 model on
each dataset and each query.® We stop the optimiza-
tion process at 30 triples, as most approximately

3We optimize the context based on 100 randomly sam-
pled triples around the query subject instead of the entire
graph neighborhood to improve the runtime. For 0.66% of
test instances on FB15k-237 and 0.62% on Wikidata5Sm, the
100 sampled triples fully capture the corresponding entity’s
neighborhood.

Dataset Crandom C:opt rel diff. 1
FB15k-237 3361  1.732 48.5%
FB15k-237 w/ desc. 3.364  2.581 23.2%
Wikidata5m 4466  3.4385 21.9%
WikidataSm w/ desc. 3423 2737 20.0%

Table 1: Comparision: Median perplexity of KGTS on
FB15k-237 and WikidataSm for random sampling and
optimized context.

optimal contexts contain only around 3-5 triples.

We use these U throughout all experiments
and do not optimize any further contexts. To indi-
cate that a context was derived specifically for a
given model, we mark it with “*” —e. g., KGT5-
CZopt denotes that the KGTS5 model uses a context
explicitly optimized for itself.

Optimization of 2-hop Contexts GLMs allow
contexts beyond a 1-hop. Thus, we investigate
the impact of a 2-hop C.,; for GLMs. First, we
train a GLM model given a 2-hop C\.andom- For
the 2-hop random sampling, we sample 10 direct
neighboring triples in the first hop, and 10 for each
of those in the second hop, leading to up to 110
sampled neighborhood triples. Then, we optimize
C~opt up to a size of 30 per sample for each dataset
and each model.

6 Results

Our baseline is the standard KGT5 model trained
with random sampling.

6.1 Context Optimization

First, we validate our greedy context optimization
by comparing the perplexities between the sam-
pled and optimized contexts. As shown in Tab. 1,
our approach decreases the median perplexity* of
KGTS5 models by 20.0% to 48.5%, depending on
the dataset. As expected, the perplexity decreases
more for datasets without descriptions, as models
have to rely solely on the context here, which, thus,
has a larger impact.

Tab. 2 shows the average size of different con-
texts. On average, |C.pt| is considerably smaller
than the original |C| and |C}.4ndom |- We note that
|Cwopt| is, on average, larger for FB15k-237 than
for Wikidata5m, and larger for datasets with de-
scriptions than for datasets without descriptions.
Further investigating the effect of different datasets
on optimal context sizes is left for future work.

“We use median instead of mean, as the mean was domi-
nated by a few outliers for some models.



Dataset [C|  |Crandom| [Cdegreel [Crwr| [Ciink| [Cropt
FB15k-237 386.7 60.0 11.8 66.2 77.4 8.9
FB15k-237 w/ desc. 386.7 60.0 11.8 66.2 714 13.0
‘WikidataSm 24438 455 8.2 - 262.3 4.6
‘WikidataSm w/ desc. 2443.8 455 8.1 - 262.3 6.1

Table 2: Comparison: average context sizes per test
query.
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Figure 3: Perplexity across different context sizes during
the CZ,,,, creation. KGT5 w/o desc. on FB15k-237 and
WikidataSM.

The size of C,p¢ follows a long-tailed distribution,
peaking around the average C.p¢ size, with only a
few samples reaching the optimization limit of 30
neighbors (c. f. Fig. 7 in App. F).

Fig. 3 shows the model perplexity throughout the
iterative context optimization.> We observe that the
first few neighbors added to the context contribute
the most to reducing the model perplexity, while
adding additional neighbors results in either a mi-
nor decrease or even an increase. Furthermore, the
PPL of the WikidataSm models decreases earlier
than that of the FB15k-237 model and, after reach-
ing its minimum, rises more sharply.

6.2 Evaluating the Quality of Optimized
Contexts

We investigate whether optimized contexts can im-
prove a model’s LP capabilities.

The results are shown in Tab. 3. Optimizing a
context for a specific model and then evaluating the
same model with this context leads to great perfor-
mance increases — €. g., the MRR for KGT5 w/o
desc. improves from 0.278 (for Ci.qpdom) to 0.616.
However, the extent of these improvements varies
depending on the model and dataset, with notably
smaller improvements observed for WikidataSm.

SThese results are aggregated over the entire test set, where
the perplexity optimization curve for each sample was normal-
ized to a range between 0 and 1 before the mean and variance
were computed. This normalization ensures a reasonable vari-
ance in the perplexity values. We provide the perplexity curve
for multiple individual samples as case studies in App. G.

Generalization Across Models So far, we inves-
tigated CZ,,, 1. €., the optimized context applied
to the model for which it was optimized. Thus, the
context may be overfitted to that specific model.
To assess the generalizability of the optimized con-
text, we apply Cop¢ to separately finetuned KGTS
models. From Tab. 3, we observe that although the
MRR score decreases from 0.616 to 0.362 (FB15k-
237 wlo desc.) when applied to a new model, this
score remains higher than that of C}.4,,40m, Which
is around 0.278. This trend holds across all in-
vestigated model configurations and datasets. We
conclude that C.,,; generalizes to new models,
though a large gap remains to the model it was
originally optimized for.

Generalization Across Model Architectures In
the next step, we investigated whether C',; also
generalizes to models of different architectures. As
shown in Tab. 3, models incorporating C'.; out-
perform those using C..4pndom» although the gain is
smaller than for KGTS.

Comparison to Heuristic Approaches If a
model is trained using C..pdom but evaluated with
Cldegrees Crwr, 0r Cling, its performance decreases
compared to when it is evaluated with C,.qpd0m- It
is important to note that we constructed Cyegree,
Cwr, and Cp;p to contain a reasonable number of
triples (see Tab. 2) to obtain a similar size as the
optimized contexts and, thereby, ensure compara-
bility.

6.3 Ablation Study: Model Sensitivity to the
Sequential Order in Optimized Contexts

In an ablation study, we examine whether KGT5
models are sensitive to the order induced by the
iterative context optimization strategy. We eval-
uate one model using the context in its original
order, as determined during optimization (KGT5-
C~opt), and another with a shuffled context (KGTS5-
C~opt shuf.). Interestingly, the LP scores remain
similar, suggesting that KGT5 models learn to be
order-invariant during training. As GLMs are order-
invariant by design, we omit input shuffling.

6.4 Ablation Study: Small Context Models

So far, all our models were trained with a randomly
sampled context of up to 100 triples (60 on aver-
age). However, our optimized contexts have only
4.6 to 13.0 triples on average, depending on the
dataset. Thus, the optimized contexts may be even
more beneficial for models trained with smaller



Model FB15k-237 WikidataSm
MRR Hits@l Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10

KGT5-0 0.184  0.135  0.199 0287 | 0.144  0.116  0.157 0.199
KGT5-Clegree 0278 0212 0307 0419 | 0403 0384 0417 0.435
KGT5-Cling 0273 0211 0300 0402 | 0378 0357  0.393 0.416

. KGT5-Cyr 0278 0212 0305 0.416 - - - -
2 KGT5-Crandom 0285 0216 0313 0430 | 0430 0409  0.444 0.463
g GLM-C'random 0284 0215 0316 0429 | 0424 0405 0438 0.457
KGT5-C% o 0402 0322 0.443 0.561 | 0455 0436 0467 0.487
KGT5-Croopt 0328 0252 0364 0483 | 0441 0421 0453 0.475
KGT5-Crpe shuf. 0323 0247 0358 0478 | 0441 0421 0453 0.475
GLM-Croopt 0294 0224 0327 0437 | 0434 0416 0448 0.466
KGT5-0 0.135  0.098  0.148 0211|0197 0162 0217 0.263
KGT5-Cuegree 0244 0185  0.268 0368 | 0354 0328  0.370 0.402
KGT5-Clink 0219  0.167 0240 0329 | 0306 0277  0.324 0.361

s KGT5-Cryy 0240  0.181  0.266 0.364 - - - -
£ KGT5-Crandom 0278 0208 0306 0423 | 0381 0355  0.398 0.429
& GLM-Chrandom 0284 0211 0315 0436 | 0377 0353 0391 0.423
g KGT5-C% o 0616 0534  0.664 0.776 | 0416 0392  0.430 0.459
KGT5-Croopt 0362 0286  0.400 0514 | 0396 0370 0411 0.443
KGT5-Cope shuf. 0361 0286 0.398 0512 | 0396 0371 0410 0.443
GLM-C.pt 0324 0253  0.359 0467 | 0394 0371  0.407 0.439

Table 3: Comparison of ranking-based LP scores on FB15k-237 and Wikidata5Sm.

KGTS5 - Crandom
0.34 —8— KGT5 - Copt
GLM - Crandom
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0.32
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o
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Figure 4: MRR scores of models, trained with different
context sizes, when provided with an optimized context
(Copt) vs. with random context (Crandom,)-

contexts. Therefore, we train multiple models with
Crandom Of varying sizes, ranging from 0 to 30.
During the evaluation, we provide the optimized
contexts (optimized for our baseline model) up to
the context size with which the model was trained.

Fig. 4 shows the results. We observe that the
MRR increases only gradually as the sampled con-
text size grows. However, when evaluated with
C~opt, the MRR shows a fast improvement with
increased context sizes. Interestingly, a small op-
timized context (around 5-10 triples) already out-
performs larger random contexts of 30 triples. Ad-
ditionally, we find that the GLM model performs
better with smaller contexts, whereas the KGT5
model shows superior results with larger contexts.
Around 15 neighbors, both models achieve similar
performance with optimized contexts.
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Figure 5: Perplexity across different context sizes during
the C%,,,, creation for 2-hops. GLM w/o desc. on

~op

FB15k-237.

6.5 Optimization for 2-hop Contexts

So far, we optimized the 1-hop contexts based on
KGT5. Using GLMs, we can extend our exper-
iments to larger contexts. Due to computational
costs, we restrict ourselves to 2-hop contexts and
FB15k-237. The optimization reduces the median
PPL from 3.308 to 2.770, as visualized in Fig. 5.
Thus, the PP L follows a similar trend to the one
observed in previous experiments with the 1-hops.

We observe that triples from the second hop are
incorporated into the optimized context quite early,
indicating that 2-hop triples provide valuable infor-
mation for LP. As shown in Fig. 6, more than 80%
of the triples at the fifth position in the optimized
context are from the second hop.

Tab. 4 shows that context optimization can im-
prove the model’s LP scores. However, we observe
that the contexts generalize worse from one model
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Figure 6: Ratio of 2-hop triples at different positions
of Cwopt. The histogram indicates the frequency of the
respective Cqpt Sizes.

Model MRR Hits@l Hits@3 Hits@10
GLM-Crandorm 0278 0203 0.309 0.435
GLM-CZ,,, 0364 0286 0402 0.523
GLM-C., 0306 0231 0338 0.461

Table 4: Comparision of ranking-based LP scores on
FB15k-237 with 2-hop contexts: Crandom VS. Cropt-
Models w/o desc.

to another compared to the 1-hop contexts. In gen-
eral, the 2-hop results are slightly worse than the
1-hop results. For the 2-hop model, we did not eval-
uate the context selection heuristics, as we have
already shown that they do not provide a valuable
context for the 1-hop models.

7 Discussion

We optimize contexts for LP inference to show the
potential improvements of using a good context.
Our results show that the greedy post hoc context
optimization reduces the models’ median perplex-
ity and improves ranking-based LP metrics while
yielding an optimized context C'op that is smaller
than a quarter of the randomly sampled C'4dom.

The characteristics of a good context may vary
depending on whether it is used during training or
inference. E. g., during training, a context should
contain some noise to make the model robust,
whereas, during inference, the context should con-
tain as little noise as possible. Nonetheless, a con-
text optimized for inference may serve as a valuable
starting point for training contexts.

Due to the post hoc optimization, the context is
optimized towards a specific target, i. e., we cannot
optimize the context for a given query and target,
and then reuse it for predicting new targets. We
confirm this empirically in App. H. Thus, our ap-
proach can not be directly applied to predict new
targets. However, it offers insights to enhance con-
text selection and thereby improve LP.

Although models with entity descriptions typi-
cally achieve better LP scores, our optimized con-
text experiments on FB15-237 show the opposite,
that is, the model without descriptions outperforms
the model provided with descriptions. We conclude
that i) descriptions can be misleading or distracting
when high-quality neighbors are available — or lead
to truncations of good contexts; ii) descriptions,
on average, offer more valuable information than
randomly sampled contexts.

KGTS5’s graph linearization only applies to 1-
hop contexts, so that we evaluated 2-hop contexts
only for the GLMs. In general, the 2-hop results are
slightly worse than the 1-hop results for randomly
sampled contexts. We hypothesize that this is be-
cause, on average, 1-hop neighbors contain more
relevant information than more distant neighbors.
When we randomly select neighbors that are up to 2
hops away, then fewer 1-hop neighbors are selected
with the result that LP performance decreases.

Although we consider 1-hop triples to be more
informative than 2-hop triples, we observe a sur-
prising, yet recurring pattern in the context opti-
mization: often, one direct neighbor (1-hop) is
added first, followed by all of its neighbors (2-hop)
before additional direct neighbors of the query sub-
ject are included. This pattern is reflected in Fig. 6,
where the ratio of 2-hop triples drops at context
positions 12 and 23. This behavior is also visible in
the perplexity optimization, as shown in Fig. 5. We
believe that this pattern arises because the greedy
algorithm gets stuck in a local optimum. However,
despite this behavior, our results show that greedy
context optimization can be effective for LP.

8 Conclusion & Future Work

In this work, we introduce a method to deter-
mine an approximately optimal context for a given
query, target, and model that effectively improves
a model’s likelihood of predicting the correct tar-
get by reducing the perplexity by 20.0% to 48.5%.
Second, we demonstrate that the same information
is relevant to different models. Finally, we show
that optimal contexts are smaller than a quarter of
the randomly sampled contexts and that common
sampling strategies are suboptimal.

Based on our results, future work can optimize
the context sampling for LP training, e. g., by min-
ing frequent patterns in the contexts or training a
model to predict contexts.



Limitations

We are aware of three limitations of our approach:

i) Our context optimization uses a greedy strat-
egy, which can get stuck in local optima. For ex-
ample, suppose we have three possible triples x,
Yy, and z. Adding x might reduce the negative log-
likelihood more than adding y in the current step.
However, if z is added next, the combination {y, z }
might lead to a better overall result than {z, z}.
This shows that greedy optimization can, in theory,
miss better combinations of triples. However, if
getting stuck in local optima were a serious prob-
lem, we would expect a significant drop in negative
log-likelihood when triples are added later in the
optimization process. However, our case studies
in Fig. 8 show a stable and consistent decrease in
negative log-likelihood over time, without sudden
jumps that would suggest escaping a local optimum.
Therefore, we believe that our greedy optimization
is not strongly affected by local optima.

ii) The context optimization is performed post
hoc, i.e., it requires the correct query answer to
determine the optimal context for a given query.
As a result, our algorithm cannot be directly used
to generate optimal context to enhance existing link
prediction methods. Nonetheless, we believe that
our insights into the potential improvements and
characteristics of optimal contexts offer a valuable
contribution to the community and can support the
development of more advanced context selection
strategies.

iii) We also use random sampling as a starting
point due to computational constraints. However,
we consider large subgraphs for random sampling,
so the impact should not be too large for our exper-
iments.

Ethics

Our work builds on established datasets and meth-
ods and does not introduce any new risks related to
bias or harmful content. Instead, our findings can
support the development of more effective and com-
putationally efficient link prediction approaches.
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Dataset FB15k-237 WikidataSm

Number of triples (training set) 272115 20614279
Number of triples (validation set) 17535 5163
Number of triples (test set) 20466 5133
Number of entities 14541 4594485
Number of distinct subject entities 13781 4573330
Number of distinct object entities 13379 1068854
Number of distinct relations 237 822
Relation occurrences (least frequent) 37 1
Relation occurrences (most frequent) 15989 3839805
Mean node degree 37.520 8.974
Maximum node degree 7614 1519673
Graph density (directed) 1.29e-03 9.77e-07

Table 5: LP dataset statistics.

A Details about Models
B Graph Language Model

Normal Language Models (LMs) operate on texts,
where one token comes after the other. So-called
positional encodings inform the language model
about the sequential ordering of input texts. Graph
Language Models (GLMs; Plenz and Frank, 2024)
extend the positional encoding of langauge mod-
els in order to encode graphs instead of sequences.
This allows GLMs to encode graphs efficiently, as
they are a type of graph transformer. As only the
positional encoding has to be adjusted, the pre-
trained LM paramters from LMs can be used for
GLMs. This enables GLMs to process text as a LM
would, while also being able to process graphs.

We use the global GLM (¢GLM) from Plenz and
Frank (2024), which is based on the T5 encoder.
For text generation, we pass the graph encoding to
the T5 decoder without any modifications.

C Link Prediction Datasets

The characteristics of the two investigated LP
benchmark datasets are shown in Tab. 5.

D Computational Resources

All experiments were conducted on our GPU clus-
ter equipped with A40 GPUs. The runtime for a
single run was as follows: i) training required ap-
proximately 24 hours on FB15k-237 and 100 hours
on WikidataSm, ii) context optimization took 24
hours (FB15k-237) and 2 hours (WikidataSm), and
ii1) evaluation lasted 7 hours (FB15k-237) and 1
hour (WikidataSm). Since we repeated these exper-
iments multiple times for multiple configurations,
the total compute amounted to approximately 1500
GPU hours.
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Dataset Node Degree
FB15k-237 36.2
Wikidata5Sm 29.8

Table 6: Average node degree of entities in the test set.

E Context Selection Baselines

E.1 Node Degree

We compute the undirected node degree. The aver-
age node degree is shown in Tab. 6.

E.2 Random Walk with Restarts

We compute the random walk with restart scores
with a start probability of 0.15.

E.3 Entity Linking

We run entity linking on the entity descriptions
and restrict the context to triples involving those
entities. We use a Wikidata entity linking tool
based on SpaCy.°® If no entities can be linked, we
randomly sample a neighborhood of a maximum
size of 100 around the query source without any
restrictions.

For the FB15k-237 dataset, we mapped the Wiki-
data IDs back to Freebase. 82% of the entity de-
scriptions in the FB15k-237 test set have at least
one link. In the WikidataSm test set, 66% of the
entities have at least one link.

F Neighborhood Optimization Details

Copt 1s not necessarily unique, as different contexts
can result in the same prediction confidence of M.
If we find multiple equally valuable cotexts, we are
interested in the smallest C,,; possible.

Fig. 7 shows histograms of the sizes of the opti-
mized contexts.

G Case Study: Context Optimization

Fig. 8 shows how the greedy algorithm optimizes
the perplexity for 6 random test samples from the
FB15k-237 dataset.

H Generalization of Neighborhoods from
Train to Test

The greedy optimization derives an effective post
hoc context; therefore, the context depends on the
triple, i. e., the query and the correct target entity.

fSee
spaCy-entity-linker.

https://github.com/egerber/


https://github.com/egerber/spaCy-entity-linker
https://github.com/egerber/spaCy-entity-linker
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However, some relations can connect one entity
with multiple entities; these are called 1-n relations.
Consequently, one query can have multiple correct
answers.

This raises the question: Are the effective con-
texts triple-specific, or do they generalize and are
query-specific?

We investigate whether the context of a given
query derived for one target generalizes to other
targets. The queries of the train and test set of
LP datasets usually have a significant overlap, i.e.,
many test queries are already contained in the train-
ing set. This is caused by the random splitting of
triples with 1-n relations into train and test sets.
E.g., 68.5% of the FB15k-237 test queries are
present in the train set, see Tab. 7 for details.

In order to investigate whether the optimized
neighborhoods generalize from train to test, we
optimize test samples associated with queries in
the test set. During inference, we either use these
neighborhoods optimized on the training queries if
available, or we stay with random sampling.

We run this experiment with a KGT5 model on
FB15k-237 and observe that the MRR score is sig-
nificantly worse (0.226) compared to when random
sampling is conducted (0.278). We conclude that
the neighborhood is highly target-dependent and
does not generalize to new triples with the same
query aiming for a different target.

Dataset Train Queries Test Queries Intersection
FB15k-237 243,061 36,587 25,058 (68.5%)
WikidataSm 36,518,652 13,235 4,897 (37.0%)

Table 7: Overlap of queries contained in the train and
test set.
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