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Abstract: Modern imitation learning (IL) utilizes deep neural networks (DNNs) as
function approximators to mimic the policy of the expert demonstrations. However,
DNNs can be easily fooled by subtle noise added to the input, which is even
non-detectable by humans. This makes the learned agent vulnerable to attacks,
especially in IL where agents can struggle to recover from the errors. In such light,
we propose a sound Adversarially Robust Imitation Learning (ARIL) method. In
our setting, an agent and an adversary are trained alternatively. The former with
adversarially attacked input at each timestep mimics the behavior of an online
expert and the latter learns to add perturbations on the states by forcing the learned
agent to fail on choosing the right decisions. We theoretically prove that ARIL
can achieve adversarial robustness and evaluate ARIL on multiple benchmarks
from DM Control Suite. The result reveals that our method (ARIL) achieves better
robustness compare with other imitation learning methods under both sensory
attack and physical attack.
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1 Introduction

Imitation learning is a powerful and practical alternative to reinforcement learning for learning
sequential decision-making policies. Together with the computational advancement brought by deep
learning, imitation learning has shown great success in autonomous driving [1, 2], robot control [3],
game AI [4], and motion capture [5]. Despite achieving human-level performance on many tasks, the
existence of adversarial examples [6] in DNNs and many successful attacks to sequential decision-
making policies [7, 8, 9, 10] motivate us to study robust imitation algorithms.

The observations by the agent unavoidably contain uncertainty that naturally originates from sensor
errors or equipment inaccuracy. A policy not robust to such uncertainty can lead to catastrophic
failures (e.g., a small piece of white scotch tape on a traffic sign could cause an improper left turn,
which will further lead to miles of unnecessary travel and even crush of the vehicle in the worst case).
Therefore, studying the fundamental principles of robust imitation learning is crucial.

One effective approach to induce robustness is domain randomization [11], a method where a
designer with expertise identifies the components of the model that they are uncertain about. A set
of training environments is constructed where the uncertain components are randomized, ensuring
that the agent is robust on average to this set. However, this requires careful parametrization of the
uncertainty set as well as hand-designing of the environments. A more easily automated approach
is to formulate the problem as a zero-sum game and learn an adversary that perturbs the transition
dynamics [12, 13, 14]. If a Nash equilibrium of this problem is found, then that equilibrium provides
a worst-case performance bound under the specified set of perturbations. Specifically, we can search
over adversary policies f and agent policies π, so that minπ∈Π maxf∈F J(π, f), where J(π, f) is
the expected cumulative reward for the attacker policy. Unfortunately, in most imitation learning
settings, quantitative reward from the environment is unavailable.

In this work, we propose a theoretically grounded framework of adversarially robust imitation learning
(ARIL), where we build a surrogate loss to measure the distance between the actions generated from
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π and the actions from the expert. We consider two ways of attack: sensory attack and physical
attack. In the sensory attack setting, the adversary only modifies the inputs to π (e.g., the underlying
true state of the environment is untouched as st), while in the physical attack setting, the adversary
directly modifies the actual physical state, i.e., it changes the underlying state to s′t. We consider
attacking under interactive imitation learning (IL) setting where the expert is available for queries at
any time step [15]. We evaluate our method in DM Control Suite [16], (e.g. HalfCheetah, Swimmer,
Ant), under both sensory attack and physical attack settings. Our method significantly improves the
robustness under adversarial attacks over the baseline methods.

To summarize, this paper makes four contributions: (1) We study the theory and practice of Adversar-
ially Robust Imitation Learning (ARIL). (2) We systematically define sensory attack and physical
attack. (3) We prove that ARIL can achieve the adversarial robustness under realizability assump-
tion, robust expert assumption, and optimal adversary assumption. (4) We show the efficiency of
our method in both attack stage and defense stage on multiple DM Control Suite benchmarks in
comparison with other adversarial attack methods and other robust imitation learning methods.

2 Related Work

Adversarial Attack Adversarial attacks can be divided into white-box attacks and black-box
attacks. In white-box attacks, the attack has access to the structure, algorithm, and system parameters
of the target model. In black-box attacks, the attack cannot obtain information from the target model.
Instead, it can only interact with the target model by querying with the input and observing the output.
In our setting, we consider white-box attacks. Szegedy et al.[17] first pointed out the intriguing
property of neural networks and proposed a method called Large-BFGS to find adversarial samples.
Goodfellow et al.[18] proposed a Fast Gradient Sign method (FGSM) to generate small perturbations
to fool the neural networks by calculating the gradient of the loss function concerning the inputs.
Kurakin et al.[19] proposed Targeted FGSM to generate adversarial samples towards a target class
and Iterative FGSM to apply FGSM multiple steps with small step sizes. Tramer et al.[20] proposed a
randomized single-step attack to escape the non-smooth vicinity of the data point. Kurakin et al.[19]
apply adversarial training on large-scale datasets. Huang et al.[7] showed that adversarial examples
generated from FGSM could degrade test-time performance of a well-trained NN policy in RL.
Sun et al.[21] studied the safe sequential decision-making problem under the setting of adversarial
contextual bandits which is a one-step RL problem. Lin et al.[9] considered strategically-timed
attack where the attacker picks specific time steps to attack. Han et al.[22] considered attacking
an RL algorithm during training time. All these previous works mainly focus on applying attacks
developed from the supervised learning literature to RL setting, while in this work, we focus on
learning adversarial attacks in imitation learning.

Robust Imitation Learning Imitation learning aims to learn sequential decision-making policies
from expert demonstrations. However, the agent can be vulnerable to cascading failures when the
trajectory diverges from the demonstrations [23]. Laskey et al.[24] proposes to inject noise into the
supervisor’s demonstration policies, which forces the supervisor to demonstrate how to recover from
errors. Wang et al.[25] utilizes VAEs [26] and GAIL [27] to learn semantic policy embeddings in
imitation learning, which learns robust diverse gaits with limited demonstrations. For robust imitation
learning with different-quality demonstrations, Tangkaratt et al.[28] makes use of a probabilistic
graphical model to estimate the quality of demonstrations. Brown et al.[29] proposes a safe and
robust Bayesian reward learning through preferences over imitating demonstrations. Shin et al.[30]
performs the derivative-free random search optimization method with linear policies. In our work,
we focus on the robust imitation learning against adversary attacks, which can cause catastrophic
failure to DNN-based agents with trivial perturbations.

3 Preliminaries

Before we delve into the details of ARIL, we first outline our terminology. In the rest of the paper, we
focus on finite-horizon Markov Decision Process (MDP), which is defined as (S,A, H, P, r) where
S is the state space, A is the action space, r is a reward function, P is the transition and H ∈ N+ is
the finite horizon. A policy π : S → ∆(A) is a mapping that maps from states to distributions over
action space, i.e., π(a|s) is the probability of picking a given s.
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3.1 Sensory Attack vs Physical Attack

For any pair of policy and attack (π, f), we can treat the composition of them as a policy: π ◦ f :
S → A, i.e., a ∼ (π ◦ f)(s) is equivalent to first generate stochastic adversarial example s′ ∼ f(·|s),
and then sample action accordingly a ∼ π(·|s′). Denote dπ as the average state distribution induced
by policy π. As π ◦ f can be understood as a policy, dπ◦f will be the state distribution induced by
π ◦ f .

We first introduce the sensory attack setting where the adversary can only modify the sen-
sory inputs of the RL agent, but not the underlying physical state. Denote a trajectory as
τ = {s1, s

′
1, a1, ..., sH , s

′
H , aH} generated from the composite policy π ◦ f , the likelihood of

such trajectory is ρπ◦f :

ρπ◦f (τ) =

H∏
t=1

P (st|st−1, at−1)f(s′t|st)π(at|s′t), (1)

where we denote P (s1) = P (s1|s0, a0) as the initial state distribution. Note that here adversary
modifies state st to s′t and then the policy π only sees s′t.

For physical attack setting, the adversary will have the ability to modify the underlying physical states.
Again, we denote a trajectory as τ = {s1, s

′
1, a1, ..., sH , s

′
H , aH} generated from the composite

policy π ◦ f , the likelihood of such trajectory now is:

ρπ◦f (τ) =

H∏
t=1

P (st|s′t−1, at−1)f(s′t|st)π(at|s′t). (2)

Note the difference between Eq. 2 and Eq. 1, where transition probability is conditioned on attacked
state. In physical attack (Eq. 2), the adversary modifies the state s to s′, and then the environment
actually generates the next state based on s′, as the underlying physical state is now s′. The sensory
attack is similar to attacks considered in today’s supervised learning setting, where the physical attack
is similar to the robust control setting (e.g., a min-max formulation of H∞ optimal control [31] under
physical disturbances).

Note that under both settings, the attacks are sequential: the adversary can affect the learner’s decision
via corrupting the state s, which will, in turn, affect the future states. In supervised learning, an attack
on a given sample will not affect the future samples, since samples are i.i.d in supervised learning.

3.2 Expert Robustness

For the expert πe, we have: ∀s ∈ S, f ∈ F , πe(f(s)) = πe(s). (3)
In practice consider the setting where the expert πe is a human driver who will not be affected by
adversarial examples with small perturbations (e.g., human can easily tell a stop sign even with a
sticker on it). We later will relax the notion of expert robustness to include the possibility that the
expert will be affected by adversarial attacks.

We consider interactive imitation learning setting proposed in [32] where the expert πe is always
available during training time. A learner can query the expert at any state s during training to get
feedback πe(s).

4 Adversarially Robust Imitation Learning

The goal of adversarial robust imitation learning (ARIL) is to learn a policy that can achieve good
performance under all possible attacks:

π̂ = arg min
π∈Π

max
f∈F

J(π, f), (4)

where J(π, f) is the expected total cost of executing policy π with examples corrupted by attack f :

J(π, f) = E

[
H∑
h=1

`(ah, π
e(sh))|ah ∼ π(f(sh)), sh+1 ∼ P (·|sh, ah)

]
(sensory attack) (5)

J(π, f) = E

[
H∑
h=1

`(ah, π
e(sh))|ah ∼ π(f(sh)), sh+1 ∼ P (·|f(sh), ah)

]
(physical attack) (6)
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We consider a loss function `(a, a′) that measures the difference between two actions a and a′. For
instance,`(a, a′) could be zero-one loss if A is discrete, or l2 distance between two actions if A is
continuous.

If we can control the long-term prediction error of the learned policy π̂ under the worst possible
adversary,

max
f∈F

Es∼dπ̂◦f
[
Ea∼π̂(·,f(s)) [`(a, πe(s))]

]
≤ δ, (7)

then we can upper bound the performance of π̂ at test time with the existence of an arbitrary adversary
f ∈ F . To see that, let us consider the setting where A is discrete and `(a, a′) is the zero-one loss:

J(π, f)− J(πe) = Es∼dπ◦f ,a∼π(f(s)) [Qπ(f(s), a)−Qe(s, πe(s))] (8)

≤ 2QmaxEs∼dπ◦f ,a∼π(f(s))[1[a 6= πe(s)]] (9)

≤ 2Qmax max
f∈F

Es∼dπ◦f ,a∼π(f(s))[1[a 6= πe(s)]] (10)

= 2Qmax max
f∈F

Es∼dπ◦f
[
Ea∼π(f(s))[`(a, π

e(s))]
]
≤ 2Qmaxδ. (11)

Here, Qe denotes the state-action value of the expert policy and Qmax denotes the upper bound of
Qe. Namely, if δ is small, the learned policy π̂ can achieve similar performance as the expert, even
under an adversarial attack f during the execution of π̂. This justifies the reason for finding π̂ that
minimizes the objective function in Eq. 7.

Let us define the objective as follows:

L(π, f) = Es∼dπ◦f
[
Ea∼π(f(s)) [` (a, πe(s))]

]
(12)

We perform an iteratively alternating update for π and f .

4.1 Update π with fixed f

At iteration t, given the current ft, and πt, we want to update πt to πt+1. We consider the loss
function with respect to π at round t:

`t(π) = Es∼dπt◦ftEa∼π(ft(s)) [`(a, πe(s))] . (13)

which is a classification loss where features are corrupted sampled s ∼ d̃πt◦ft , and labels are
computed from expert query πe(s).

Note that for discrete action space, the above loss function is simply a classification loss of the
classifier π, with features generated from the distribution d̃πt◦ft , and the ground truth label is
generated from πe. We perform no-regret update on `t(π) to generate πt+1.

πt+1 = arg min
π∈Π

1

t

t∑
i=1

`i(π). (14)

Note that the above optimization can be understood as a classification task where the features are
sampled from the mixture of distributions {d̃πi◦fi}ti=1 with equal weight 1/t, and the corresponding
labels are generated based on πe ◦ fi for a data point sampled from d̃πi◦fi , ∀i ∈ [t]. In practice,
we need to use samples to replace expectations, which leads us to a Data Aggregation style update
(DAgger [32]) for π.

4.2 Update f with fixed π

At iteration t, given the current ft and πt, we want to update ft to ft+1. We consider the objective
function with respect to f at round t as:

˜̀
t(f) = Es∼dπt◦f [`(πt(f(s)), πe(s))] . (15)

We want to find f that maximize the above objective function, namely, increasing the classification
loss of the current policy πt as much as possible. Note that different from the loss function for
updating π, here the expectation is defined with respect to the fixed πt and f . If πt is a stochastic
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Algorithm 1 Adversarial Robust Imitation Learning (ARIL)

1: Input: MDPM, policy class Π, expert policy π∗, set of adversaries F , a supervised learning
algorithm LEANER

2: Initialize a dataset D = ∅
3: Initialize a policy π0 ∈ Π
4: for t = 0 to N do
5: ft = arg maxf∈F Es∼dπt◦f [`(πt(f(s)), πe(s))] (RL Step)
6: Execute πt ◦ ft to generate a set of non-corrupted states {si}ni=1
7: Query expert during execution to get labels {πe(si)}ni=1
8: Data Aggregation: D = D + {ft(si), πe(si)}ni=1
9: πt+1 = LEARNER(D) (Supervised Learning, e.g., Classification if A is discrete )

10: end for

policy, and f is parameterized as f(s; θ), then one can use policy gradient technique to compute the
∇θ ˜̀

t(f) as follows:

∇θ ˜̀
t(f(·|θ))|θt = ∇θEτ∼ρπt◦f

H∑
h=1

`(ah, π
e(sh)) = Eτ∼ρπt◦fθt

[
∇θ (ln ρπt◦f (τ))

H∑
h=1

`(ah, π
e(sh))

]
(16)

= Eτ∼ρπt◦fθt

[
H∑
h=1

∇s lnπt(ah|s)|f(sh;θt)∇θf(sh; θ)|θt

(
H∑

h′=h

`(ah, π
e(sh))

)]
(17)

=

H∑
h=1

Esh∼dhπt◦ft ,ah∼πt(ft(sh))

[
∇s lnπt(ah|s)|f(sh;θt)∇θf(sh; θ)|θtQπt◦ft(sh, ah)

]
. (18)

where the second step simply uses chain rule, and in the last step we simply treat π ◦ f together as
a policy that maps from states to actions—hence the Q function is defined with respect to πt ◦ ft.
Intuitively, we want to optimize fθ such that it increases the likelihood of generating actions via
πt to increase the total “reward"—the long-term prediction error (with respect to πe) of the policy
πt. Using the above gradient to perform gradient ascent to optimizing fθ is similar to classic policy
gradient methods and in practice, one can use existing techniques developed for PG here as well (e.g.,
natural gradient, actor-critic where the critic is Qπt◦ft ).

4.3 Algorithm

We summarize the algorithm ARIL in Alg. 1, where every round, we update the adversary f and the
policy π. Given a policy πt, we aim to find the adversary ft from F that increases the long-term
prediction error of πt (w/ expert’s prediction) as much as possible. Once we find such adversary
ft, we generate data by executing the composite policy πt ◦ ft on the real system to generate states
{si}ni=1 ∼ dπt◦ft and labels {πe(si)}ni=1 (this procedure requires interactively querying expert, just
as DAgger does [32]). We then corrupt the data by applying the latest adversary ft at every data point
st, and appendix the new dataset {ft(si), πe(si)}ni=1 to the aggregated dataset D. Lastly, we train
the new policy using the black box supervised learner on the aggregated dataset D.

The data aggregation technique (DAgger [32]) is used to ensure stability in the process of updating π
and corresponds to the specific no-regret learner FTL as we explained before. However, any other
no-regret learner can be used here as well, such as Online Gradient Descent [33], with the potential
benefit of no need to maintain an ever-growing dataset D.

In theory, optimizing ft is challenging as the objective function could potentially be non-convex here.
However, in practice for parameterized adversary f , as we showed in the previous section, we can
compute the gradient of f using classic policy gradient technique, which in turn allows us to leverage
practically effective techniques such as natural gradient, actor-critic, to optimize ft. Note that the
optimization procedure for ft does not require any expert data.
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4.4 Analysis

We consider the following setting. First, for optimization in ft, we assume we can achieve near-
optimality:

˜̀
t(ft) ≥ max

f∈F
˜̀
t(f)− εrl, (19)

with εrl ∈ R+. Namely, we do not assume we can find the global optimal adversary at every round.
The ε here quantifies the performance of the potential RL algorithm in terms of optimizing ˜̀

t(f) with
respect to f .

For simplicity, we consider the realizability setting: there exists a policy π ∈ Π, such that for any
state s ∈ S, Ea∼π(s)[a 6= πe(s)] = 0. Namely there exists at least one policy in policy class Π that
can predict expert’s action at any state s ∈ S. Relaxing the realizability setting to agnostic setting is
straightforward here.
Theorem 4.1. As T →∞, Alg. 1 outputs a policy πi? ∈ {πt}Tt=0 such that:

max
f∈F

Es∼dπi?◦fEa∼πi?◦f(s)[`(a, π
e(s))] ≤ εrl + εe. (20)

The above theorem indicates that (1) under the realizability assumption (i.e., policy class Π is rich
enough to approximate πe well), (2) the assumption that the expert is robust with respect to any
attack (i.e., εe is defined as the error between πe(s) and πe(f(s)), which is negligible), and (3) the
assumption that we can near-optimally solve the RL-like optimization problem maxf∈F ˜̀

t(f) at
every round t (i.e., εrl is small), then Alg. 1 can achieve adversarial robustness. Please refer to
supplementary material for proof.

5 Experiments

We evaluate our proposed adversary and robust imitation algorithm with baseline methods using DM
Control Suite [16]. We compare our method with FGSM [18]. Considering FGSM is commonly
used in supervised learning setting, we apply FGSM to modify state sh such that it hurts the current
one-step prediction of πt, i.e. ffgsm(sh) = sh + εsign(∇sEa∼πt(s)(`(a, πe(sh)))|sh).

Our algorithm achieves better robustness under both sensory attack and physical attack. The details
of the datasets and other experimental settings are described below.

5.1 ARIL with Sensory Attack

In sensory attack, the adversary only modifies the sensory inputs of the agent, but not the underlying
physical state, which can be treated as sensory noise in real scenarios.
Environment Setting We investigate the performance of attacks on three continuous control tasks
from OpenAI gym robotic benchmarks [34]: Ant-v2, HalfCheetah-v2 and Swimmer-v2. For the
convenience of training and testing, we set the horizon H to 1000 in all the benchmark environments.

We only attack the zero-order state in the robotics environments, i.e. the positions and angles other
than velocities (first-order state). The attack is bounded by ±ε (ε is a small positive number), which
varies according to the robustness of each environment. The ε is chosen to have no more than
40% performance drop with FGSM attack and its values for all experimental setups can be found
in supplementary materials. For comparison, all attack methods are bounded to the same ε when
applying to the same robotics environment.
Training Details Our implementation of ARIL is built on top of rllab [35] and uses Trust Region
Policy Optimization (TRPO) [36]. Throughout the experiments, both policy π and adversary fθ are
parameterized with two hidden layers. The output layer of adversary uses tanh as activation function
and then multiples ε to restrict the output in [−ε, ε]. The standard deviation of fθ is initialized to 0.1ε
and the attack to state s is sampled from N (fθ(s), 0.1ε). We also clip the sampled adversarial noise
to [−ε, ε]. Hyperparameters are selected by grid search and the values for all experimental setups can
be found in supplementary materials.
Results We first compare our adversary with the baseline Fast Gradient Sign Method (FGSM) [18]
and Transferable adversarial perturbations (FGSMˆk) [37] In both our method and FGSM, the
perturbation added to each state is bounded to a small value such that it’s imperceptible as shown in
the supplementary material.

6



From Figure 1 (top), we first observe that FGSM attack in imitation learning works well. By forcing
the policy to generate actions that are far away from the expert’s, FGSM attack is effective and
successfully decreases the performance of π. The performance of FGSM and our attacks in all
settings can be found in Table 1 (Adversary). In all tasks, our attack outperforms the FGSM attack.
We experimentally demonstrate that through maximizing the total difference to expert policy, the
adversarial attack could significantly decrease the total reward. We also show that naively applying
adversarial attack techniques developed for supervised learning to a sequential decision-making agent
is not effective since the attack is myopic. This result proves the efficiency of our attacks even without
ever accessing to reward signals.

Figure 1: The first row and second row illustrate the results of sensory attacks and defense on sensory
attacks, respective, in Ant, HalfCheetah and Swimmer environment.
We then compare ARIL with another robust imitation learning method, DART [24]. DART learns to
inject an optimized level of noise into the expert demonstrations in imitation learning, which forces
the expert to demonstrate how to recover from the errors. A noise distribution, p(ξ|πθ∗, ψ), is injected
to the demonstration distribution πθ∗(u|x, ψ), where ψ denotes the sufficient statistics that define the
noise distribution. In our experiments, we set πθ∗(u|x, ψ) as a Gaussian distribution, N (πθ∗(x),Σ).
The optimal parameter ψ̂ is estimated by the anticipated final robot’s error and subsequently scaling
the current simulated error to this level, denoted as Ep(ξ|πθ∗,ψ̂)

∑
t `(ut, ππ∗(xt)). For quantitative

comparison, we train an adversary to attack DART using our proposed attacker (ARIL-A). As shown
in Table 1 (bottom), our method significantly improves the robustness over DAgger [32] (3rd row and
5th row). ARIL also achieves better robustness compared with DART (4th row and 5th row) in all
tasks under the worst possible adversary.

Table 1: Performance of various sensory attack and robust imitation learning methods
Ant-v2 HalfCheetah-v2 Swimmer-v2 Overall (%)

Adversary

DAgger [15] 1,245 3,276 81 0%
FGSM [18] 945 (-24.1%) 2,336 (-28.7%) 66 (-18.5%) -23.7%
FGSMˆk [37] 884 (-28.9%) 1,973 (-39.8%) 57 (-29.6%) -32.7%
ARIL-A 607 (-51.2%) 830 (-74.7%) 38 (-53.1%) -59.7%

Robust IL

GAIL [27] 638 (-48.8%) 1,037 (-68.3%) 42(-48.1%) -55.1%
DR [38] 679(-45.5%) 1,372(-58.1%) 56(-30.9%) -44.8%

DART [24] 779 (-37.4%) 1,832 (-44.1%) 49 (-39.5%) -40.3%
ARIL 965 (-22.5%) 2,974 (-9.2%) 72 (-11.1%) -14.3%

5.2 ARIL with Physical Attack

In physical attack, the attacker can also affect the underlying transition dynamics. Considering the
attacker changes the actual state of in the environment, the transition model can be described as
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st+1 = f(P (·|st, at)). Namely, the actual zero-order states are changed under the attack. We can
treat physical attack as an external perturbation (e.g. a kick on the robot or an unpredicted bump on
the road).
Environment Setting Similar to sensory attack, the attack is bounded by±ε. It’s worth mentioning
that ε is different for sensory attack and physical attack even in the same environment. Since physical
attack with the ability to change underlying dynamics is more effective than sensory attack. The ε
are chosen to have no more than 40% performance drop with FGSM attack and its values for all
experimental setups can be found in supplementary materials.

Figure 2: The first row and second row illustrate the results of physical attacks and defense on
physical attacks, respective, in Ant, HalfCheetah and Swimmer environment.

Results We first compare our adversary with the FGSM baseline. As one might expect, the physical
attack is more effective than the sensor attack. Under the physical attack setting, π is more likely to
fail. Our experiments support this viewpoint in the sense that ε for sensory attack needs to be larger
than the one for the physical attack to achieve similar attack performance. Again, in all tasks, our
attack outperforms the FGSM attack. We also compare ARIL with the DART (Table 2). This result
proves the efficiency of our robust imitation algorithm even the underlying transition dynamics are
changed.

Table 2: Performance of various physical attack and robust imitation learning methods
Ant-v2 HalfCheetah-v2 Swimmer-v2 Overall (%)

Adversary
DAgger [15] 1,245 3,276 81 0%
FGSM [18] 885 (-28.9%) 2,100 (-35.9%) 61 (-24.7%) -29.8%
ARIL-A 158 (-87.3%) 249 (-92.5%) 16 (-80.2%) -86.7%

Robust IL DART [24] 581 (-53.3%) 1,078 (-67.1%) 27 (-66.7%) -62.4%
ARIL 903 (-27.5%) 2,183 (-33.4%) 56 (-30.1%) -30.3%

6 Conclusion

In conclusion, we propose an adversarially robust imitation learning algorithm. We theoretically prove
that under realizability assumption, robust expert assumption, and optimal adversary assumption,
ARIL achieves adversarial robustness. We evaluate our method on a set of continuous control tasks
from OpenAI Gym and show that our method achieve better robustness under both sensory attack and
physical attack compare with baselines. We hope that our works can inspire more studies in robust
imitation learning methods when the quantitative reward from the environment is unavailable.
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A Proof of Theorem 4.1

Proof. Since Alg. 1 runs no-regret online learner to update π on the sequence of loss functions
{`t(π)}, we must have:

T∑
t=0

`t(πt)−min
π∈Π

T∑
t=0

`t(π) ≤ o(T ). (21)

Add and subtract
∑T
t=0 `t(π

e) on the left hand side of the above inequality, we have:

T∑
t=0

`t(πt)−
T∑
t=0

`t(π
e) ≤ o(T ) +

(
min
π∈Π

T∑
t=0

`t(π)−
T∑
t=0

`t(π
e)

)
(22)

Since we operate under the realizability setting, the term inside the parenthesis on the RHS of the
above inequality is guaranteed to be less than or equal to zero. Hence, the above inequality simplifies
to:

T∑
t=0

`t(πt) ≤
T∑
t=0

`t(π
e) + o(T ). (23)

For `t(πe), using the definition of `t, we see:

`t(π
e) = Es∼dπt◦ft

[
Ea∼πe(ft(s))[`(a, π

e(s))]
]

= Es∼dπt◦ft [`(πe(ft(s)), π
e(s))] = 0, (24)

where we use the expert robustness definition above (i.e., πe(f(s)) = πe(s) for all s and f ). Hence,
we have:

T∑
t=0

`t(πt) ≤ Tεe + o(T ). (25)

Now we need to lower bound `t(π). Using the definition of `t again, we have:

max
f
L(πi? , f) ≤ L(πi? , fi?) + εrl ≤

1

T

∑
t

L(πt, ft) + εrl =
1

T

∑
t

`t(πt) + εrl, (26)

where the first inequality comes from the assumption that the RL solver returns a εrl near-optimal
solution.

Combine all the results above together, we get:

max
f
L(πi? , f) ≤ εrl + εe + o(T )/T. (27)

Hence as T approaches to∞, we have that the long-term prediction loss of the learned policy πi?
under the worst possible adversarial attack from F is upper bounded by εrl—the error introduced
from optimizing ft.

Under agnostic setting, it is not guaranteed that there exists a = πe(s), where a ∼ π(s) and π ∈ Π
for ∀s ∈ S. However, it can be assumed that the error between a and πe(s) is bounded by a small
number εa, namely Ea∼π(s)[a 6= πe(s)] ≤ εa. Hence Equation 4 is modified as:

`t(π
e) = Es∼dπt◦ft

[
Ea∼πe(ft(s))[`(a, π

e(s))]
]
≤ εa. (28)

Plugging this to Equation 3, we have:
T∑
t=0

`t(πt) ≤ T (εe + εa) + o(T ). (29)

Combining the results with Equation 6, we get

max
f
L(πi? , f) ≤ εrl + εe + εa + o(T )/T. (30)

Similarly to the realizability setting, as T approaches to ∞, the long-term prediction loss of the
learned policy πi? under the worst possible adversarial attack from F is still upper bounded.
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A.1 Training Details

Both attacker and student are trained using Adam optimizer at learning rate of 0.001.

At the start of ARIL algorithm, we initialized the buffer for DAgger algorithm with size 5M timesteps.
In each attack stage, it takes 1e6 timesteps for the attacker to collect the trajectories each time. Then
at each defense stage, we collected 40 trajectories of student under attack and labeled them with
expert actions into the DAgger buffer.

Table 3: Hyperparameters for training attacker
entropy loss coefficient 0.01

value loss coefficient 0.5

clip range 0.2
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