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Abstract001

We present a novel evaluation paradigm for AI002
text detectors that prioritizes real-world and eq-003
uitable assessment. Current approaches pre-004
dominantly report conventional metrics like005
AUROC, overlooking that even modest false006
positive rates constitute a critical impediment to007
practical deployment of detection systems. Fur-008
thermore, real-world deployment necessitates009
predetermined threshold configuration, mak-010
ing detector stability (i.e. the maintenance011
of consistent performance across diverse do-012
mains and adversarial scenarios), a critical fac-013
tor. These aspects have been largely ignored014
in previous research and benchmarks. Our015
benchmark, SHIELD, addresses these limita-016
tions by integrating both reliability and stabil-017
ity factors into a unified evaluation metric de-018
signed for practical assessment. Furthermore,019
we develop a post-hoc, model-agnostic human-020
ification framework that modifies AI text to021
more closely resemble human authorship, in-022
corporating a controllable hardness parameter.023
This hardness-aware approach effectively chal-024
lenges current SOTA zero-shot detection meth-025
ods in maintaining both reliability and stability.026
(Data and code will be released on GitHub upon027
acceptance.)028

1 Introduction029

The pervasiveness of large language models030

(LLMs) is largely attributed to their exceptional031

ability to process, comprehend, and generate text032

that closely resembles human composition. Cur-033

rent deployment paradigms exhibit substantial het-034

erogeneity, encompassing interactive dialogue sys-035

tems, content summarization (Wang et al., 2023),036

question answering (Kamalloo et al., 2023), and037

sentiment assessment (Hou et al., 2024). Yet, de-038

spite their beneficial applications, LLMs expose039

new potential avenues for malicious exploitation.040

Such harmful practices include, but are not lim-041

ited to, automated disinformation dissemination042

(Vykopal et al., 2024), academic plagiarism and 043

cheating (Cotton et al., 2024; Wahle et al., 2022), 044

and the fabrication of deceptive reviews (Chiang 045

et al., 2023). Beyond deliberate misuse scenarios, 046

the automated identification and filtration of LLM- 047

generated content from training corpora has be- 048

come imperative for preserving the integrity of con- 049

temporary human-generated information in train- 050

ing datasets (Wu et al., 2025). This process fa- 051

cilitates the development of models with current 052

knowledge and mitigating the risk of cascading 053

hallucinations in LLMs (Rawte et al., 2023). 054

The subtlety of distinguishing recurring patterns 055

in LLM-generated text renders human classifica- 056

tion efforts scarcely better than chance (Uchendu 057

et al., 2021; Clark et al., 2021; Dou et al., 2022). 058

Consequently, research emphasis has shifted to- 059

ward the development of automatic detection tools. 060

Current detectors encounter several critical short- 061

comings that compromise their robustness and re- 062

liability. Most prominently, their inability to gen- 063

eralize to out-of-distribution cases leads to failures 064

when analyzing texts generated by unseen mod- 065

els or characterized by unfamiliar stylistic nuances 066

(Kuznetsov et al., 2024; Lai et al., 2024). Further- 067

more, detector efficacy is significantly diminished 068

through minimal perturbations, text length modifi- 069

cations, or the application of adversarial techniques 070

(Zhou et al., 2024; Huang et al., 2024) including 071

paraphrasing (Hu et al., 2023), stylistic transfor- 072

mation, and intentional insertion of errors (Dugan 073

et al., 2024). 074

In efforts to improve detector robustness, most 075

existing studies predominantly report conventional 076

metrics, such as accuracy (Kuznetsov et al., 2024), 077

F1-score (Guo et al., 2024a), and AUROC (Yu et al., 078

2024b; Su et al., 2023; Mitchell et al., 2023; Bao 079

et al., 2023) when assessing performance under 080

diverse adversarial attacks. However, this evalua- 081

tion paradigm manifests several critical limitations 082

in real-world assessment of detectors. Primarily, 083
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even modest false positive rates (FPR) are fun-084

damentally unacceptable in LLM text detection085

contexts. For instance, in academic integrity ap-086

plications, where the objective is to ensure fairness087

by identifying instances of academic dishonesty,088

misclassification of legitimately authored student089

work introduces significant procedural inequity by090

penalizing students undeservedly. Consequently,091

some researchers have transitioned toward report-092

ing true positive rates (TPR) at fixed FPR (e.g. 1%)093

(Hans et al., 2024; Yang et al., 2023). However, de-094

spite this shift, additional unresolved issues remain.095

When deployed in real-world applications, detec-096

tion systems require configuration with a prede-097

termined threshold, independent of the generative098

provenance of examined text. Within this practical099

framework, quantifying detector stability through100

analysis of threshold dynamics across diverse ad-101

versarial conditions becomes critically important,102

a dimension that previous studies have largely103

overlooked. Consequently, aforementioned met-104

rics provide inadequate characterization of practi-105

cal detector efficacy.106

In this paper, we propose novel evaluation met-107

rics that facilitate more equitable comparative as-108

sessment of detection methods by simultaneously109

accounting for FPR impact on performance and110

detector stability variation across diverse scenar-111

ios. We integrate these multidimensional consider-112

ations into a unified metric that comprehensively113

characterizes both the reliability and stability of114

detection systems under real-world implementa-115

tion conditions. In addition, we present a post-hoc,116

model-agnostic framework designed to steer LLM-117

generated texts toward more human-like word118

distributions across calibrated difficulty gradients.119

This humanification process spans multiple hard-120

ness levels and is implemented through three key121

strategies: a) Random meaning-preserving muta-122

tion, b) AI-flagged word swap, and c) Recursive123

humanization loop. These strategies specifically124

target vulnerabilities in contemporary zero-shot de-125

tection approaches (Mitchell et al., 2023; Bao et al.,126

2023), which predominantly operate by perturb-127

ing texts and measuring token statistical proper-128

ties. By progressively diminishing these detec-129

tion signals while maintaining semantic coherence,130

our framework provides increasingly sophisticated131

evaluation scenarios that advance detector robust-132

ness assessment and illuminate the limitations of133

current detection approaches. In essence, this pa-134

per evaluates state-of-the-art detection systems us-135

ing our hardness-aware benchmark (incorporating 136

both challenging samples and our fairness-oriented 137

metrics), offering a broader and more real-world 138

evaluation framework that pushes detection efforts 139

“beyond easy wins”! The core contributions of this 140

paper are the following: 141

• We formulate a novel evaluation paradigm that 142

integrates both detector performance and sta- 143

bility while specifically penalizing elevated 144

FPRs, thus ensuring fair and rigorous compar- 145

ative assessments. 146

• We develop a model-agnostic generation 147

framework that produces LLM-generated 148

texts with controlled difficulty gradients 149

to systematically evaluate detectors’ perfor- 150

mance. 151

• We compiled the largest dataset to date, con- 152

sisting of both human-written and LLM- 153

generated texts prior to adversarial manipu- 154

lation, see Table 1. 155

2 Related work 156

2.1 LLM-generated text detection 157

Detection of LLM-generated text falls into three 158

principal categories: watermarking (Kirchenbauer 159

et al., 2023; Liu and Bu, 2024; Panaitescu-Liess 160

et al., 2025), supervised techniques (Guo et al., 161

2024a,b; Abassy et al., 2024; Yu et al., 2024a), 162

and zero-shot approaches (Hans et al., 2024; Ma 163

and Wang, 2024; Yang et al., 2023; Bao et al., 164

2023). Watermarking embeds imperceptible sig- 165

nals during text generation. These approaches fail 166

to protect unknowing third-party users and are 167

susceptible to paraphrasing attacks (Pang et al., 168

2024). Supervised techniques train classifiers 169

atop encoder-based backbones like RoBERTa (Liu 170

et al., 2021) using annotated corpora. These ap- 171

proaches manifest considerable performance dete- 172

rioration when applied to out-of-distribution con- 173

texts. Zero-shot methods operate without train- 174

ing requirements, exploiting LM generative mecha- 175

nisms through statistical indicators including log- 176

likelihood (Gehrmann et al., 2019), perplexity 177

(Hans et al., 2024), token rank (Gehrmann et al., 178

2019; Su et al., 2023), and entropy (Lavergne et al., 179

2008). Many approaches require generating alter- 180

native text versions to detect statistical deviations 181

(Mitchell et al., 2023; Yang et al., 2023), a com- 182

putationally intensive process. This issue is mit- 183

igated through reducing required revisions, and 184
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Table 1: Comparative analysis of LLM-generated text
detection benchmarks.

Benchmark
name

Human
samples

LLM
samples

Num of
Styles

Multiple
LLMs

Hardness
Levels?

Fair
Metric?

BUST;
(Cornelius et al., 2024)

3.2k 22k 3 ✓ ✗ ✗

DetectRL;
(Wu et al., 2024)

11.2k 11.2k 4 ✓ ✗ ✗

HC3;
(Guo et al., 2023)

59k 27k 1 ✗ ✗ ✗

MAGE ;
(Li et al., 2024)

154k 295k 7 ✓ ✗ ✗

M4GT-Bench;
(Wang et al., 2024)

65k 88k 6 ✓ ✗ ✗

MGTBench;
(He et al., 2024)

3k 18k 3 ✓ ✗ ✗

RAID;
(Dugan et al., 2024)

15k 509k 8 ✓ ✗ ✗

SHIELD;
(Ours) 87.5k 612.5k 7 ✓ ✓ ✓

efficient sampling methods (Bao et al., 2023; Su185

et al., 2023).186

2.2 Benchmarks for LLM text detection187

The literature presents multiple benchmarks for188

evaluating LLM-generated text detection, each189

with varying characteristics in scale, diversity, and190

evaluation methodology (Uchendu et al., 2021; Yu191

et al., 2025; Pudasaini et al., 2025). RAID (Dugan192

et al., 2024) systematically examines robustness193

across multiple decoding strategies. MAGE (Li194

et al., 2024) extends evaluation capabilities across195

a broader spectrum of LLMs. DetectRL (Wu et al.,196

2024) focuses on vulnerability assessment through197

implementation of adversarial attacks and pertur-198

bations. M4GT-Bench (Wang et al., 2024) con-199

tributes a multilingual evaluation framework, and200

HC3 (Guo et al., 2023) compiles one of the largest201

ChatGPT-centric datasets available. Despite these202

significant contributions, current benchmarks com-203

monly lack samples with structured difficulty gra-204

dients and principled metrics that ensure fairness in205

practical comparisons. Our benchmark, SHIELD,206

represents the first benchmark to incorporate hu-207

manified samples with graduated hardness levels.208

Furthermore, SHIELD pioneers a fairness-aware209

evaluation methodology, thus filling critical gaps in210

the current evaluation paradigm. Table 1 provides211

a comparative analysis of our proposed benchmark212

against existing benchmarks in English. The com-213

parison covers critical aspects including pre-attack214

dataset size, diversity of writing styles, utilization215

of multiple LLMs, structured hardness levels, and216

the presence of fairness-oriented evaluation metrics.217

218

3 SHIELD benchmark: data creation, 219

humanification, and metric design 220

This section introduces the methodology underly- 221

ing our benchmark SHIELD (Scalable Hardness- 222

Informed Evaluation of LLM Detectors). 223

3.1 Data creation 224

SHIELD comprises seven diverse writing styles: 225

semi-formal discourse from Medium posts, jour- 226

nalistic reporting from news sources, evalua- 227

tive content from Amazon reviews, question- 228

answering text from Reddit’s ELI5, scientific writ- 229

ing from arXiv abstracts, partisan-persuasion re- 230

porting from pink slime, and expository docu- 231

mentation from Wikipedia. Please refer to Ap- 232

pendix A.1 for additional data characteristics. To 233

obtain the LLM-generated counterparts, we de- 234

ployed seven models: Llama3.2-1b, Llama3.2-3b, 235

Llama3.1-8b (Grattafiori et al., 2024), Mistral-7b 236

(Jiang et al., 2023), Qwen-7b (Bai et al., 2023), 237

Gemma2-2b, and Gemma2-9b (Mesnard et al., 238

2024) for rephrasing of human-written texts. Addi- 239

tional specifications regarding models and prompt- 240

ing are detailed in Appendix A.2. To guarantee hu- 241

man authorship, the dataset comprises exclusively 242

pre-2021 data, predating the emergence of LLMs. 243

The SHIELD dataset contains 87.5k human-written 244

documents and 612.5k LLM-generated samples be- 245

fore the application of adversarial techniques or 246

humanization processes. Complete statistical de- 247

tails are presented in Appendix A.3. 248

3.2 Hardness-aware humanification 249

The core hypothesis of our approach is to replace 250

words that strongly indicate LLM authorship with 251

words indicative of human authorship. Initially, we 252

quantify each word’s impact on authorship infer- 253

ence by the following scoring function: 254

MIi =
∑
x

P (x|wi)log(
P (x|wi)

P (x)
) (1) 255

where x represents authorship, and the mutual in- 256

formation (MI) quantifies the extent to which ob- 257

serving the word wi shifts our probabilistic belief 258

regarding the text’s authorship. This scoring is per- 259

formed by the ranker module illustrated in Figure 260

1(a). Subsequently, we partition the vocabulary 261

into two subsets: AI-associated A, and human- 262

associated H vocabularies based on their usage 263

frequencies fi. This separation reflects whether a 264

word predominantly contributes to the distribution 265
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of AI- or human-written texts. For humanification266

of text, we implement three strategies: a) Ran-267

dom meaning-preserving mutation (RMM), b)268

AI-flagged word swap (AWS), and c) Recursive269

humanization loop (RHL). Please see Appendix270

B for a sample text from each strategy.271

3.2.1 Random meaning-preserving mutation272

This approach simulates scenarios wherein mali-273

cious users substitute random words to circumvent274

detection or when A and H are inaccessible. Figure275

1.b illustrates this process. Let D = {w1, ..., wn}276

be an AI-generated text consisting of a sequence277

of words. We define S ⊂ D as the set of non-stop-278

words, S = {wi ∈ D|wi /∈ StopWords}. Next,279

we randomly sample a subset M ⊂ S such that280

|M| = p.|S|, with p representing the sampling ra-281

tio. Then, we construct a masked version Dmask=282

Mask(D,M) by replacing each word wi ∈ M in283

D with the special token <mask>. Dmask is fed into284

a masking language model fMLM which outputs285

a ranked list of predictions f (i)MLM(Dmask) at each286

masked position i. For each i, the first candidate287

ŵi with minimum rank is selected such that it dif-288

fers from original word in D, ŵi ̸= wi. Finally,289

the edited text Dedit is produced by replacing each290

wi ∈ M with the corresponding ŵi:291

Dedit=Replace(D, {(wi, ŵi)}wi∈M) (2)292

3.2.2 AI-flagged word swap293

The second strategy, depicted in Figure294

1(c), leverages A and H to substitute AI-295

indicative words with human-characteristic296

alternatives. Without loss of generality, let297

S ′=Sort(S,MIA)=[w(1), w(2), ..., w(|S|)] such298

that MIA(w(1))≥MIA(w(2))≥...≥MIA(w(|S|)).299

Here, S ′ is the set S reordered in descending order300

based on MI scores with respect to the A. To301

construct set M, we extract the top p% of words302

from S ′,303

M={w(i) ∈ S ′|1 ≤ i ≤ p.|S|} (3)304

The parameter p acts as a tunable knob that con-305

trols the hardness level of the humanified text. The306

words in M undergo masking in the initial text.307

fMLM then predicts candidate replacements for308

each masked position. For each masked position i,309

we select the word with the highest score in H,310

ŵi = arg max
w∈f (i)MLM(Dmask)

MIH(w) (4)311
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Figure 1: Humanification strategies based on the ranked
vocabularies A and H produced by the Ranker in (a). (b)
Random meaning-preserving mutation (RMM), (c) AI-
flagged word swap (AWS), (d) Recursive humanization
loop (RHL).

The edited text Dedit is derived similarly as Equa- 312

tion 2. 313

3.2.3 Recursive humanization loop 314

Figure 1(d) shows the third strategy which extends 315

second strategy (AWS) through implementation of 316

a recursive refinement. Let D(0) be the original AI 317

text. We define the recursive editing process for R 318

rounds. At each round r ∈ {1, 2, ..., R}, the set of 319

non-stop words are formed, 320

S(r−1) = {wi ∈ D(r−1)|wi /∈ StopWords} (5) 321

Subsequently, words are ordered according to MIA 322

scores, 323

S ′(r−1)
=Sort(S(r−1),MIA) 324

=[w
(r−1)
(1) , w

(r−1)
(2) , ..., w

(r−1)
(|S|) ] (6) 325
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A fixed proportion p=po (set at 10%) of words with326

maximal scores are selected for masking,327

M(r)={w(r−1)
(i) ∈ S ′(r−1)|1 ≤ i ≤ po.|S|} (7)328

fMLM predicts the masked words in Dmask (r),329

which is obtained by Mask(D(r−1),M(r)). For330

each masked position i, we choose the word with331

the highest score in H,332

ŵ
(r)
i = arg max

w∈f (i)MLM(Dmask, (r))

MIH(w) (8)333

Then the edited document for round r is:334

D(r)=Replace(D(r−1), {(wi, ŵ
(r)
i )}wi∈M(r))

(9)335

The final humanified text is Dedit=D(R). The pa-336

rameter R acts as a controllable knob to adjust337

the hardness level of the resulting text, with larger338

values yielding increasingly human-like phrasing.339

3.3 Fairness-oriented evaluation metric340

3.3.1 Reliability and performance metric341

The AUROC metric can be interpreted as the proba-342

bility that a randomly selected positive instance re-343

ceives a higher score than a randomly selected neg-344

ative one. AUROC neglects consideration of prac-345

tical operational threshold regions. It uniformly346

weights the entire ROC curve, including high-FPR347

regions that are impractical for real-world deploy-348

ment of AI-text detection systems. It also fails349

to capture performance instability, that is, signifi-350

cant changes in TPR or FPR due to small threshold351

adjustments. To more precisely evaluate the relia-352

bility of AI-text detection systems, we introduce353

weighted-AUROC (W-AUROC), defined as the ex-354

pectation of TPR over a non-uniform probability355

distribution p(t) across FPR,356

W-AUROC=Et∼p(t)[TPR(t)] (10)357

where the weighting function is given by,358

p(t)= 1
Z exp(−kt), with decay parameter k>0 and359

normalization constant Z=1−exp(−k)
k . To deter-360

mine the decay parameter k, we set the exponential361

weighting function exp(−k.FPR) to decay to 50%362

of its initial value at FPR=0.05. This decision is363

inspired by prior works in AI-text detection that364

routinely report TPR at a fixed FPR of less than 5%365

as a key performance indicator, reflecting its sta-366

tus as a standard deployment-level operating point.367

This constraint yields k=20 ln2.368

3.3.2 Stability under FPR deviation (SFD) 369

To assess stability across different scenarios, we 370

compute the standard deviation of FPR at deci- 371

sion thresholds determined by Youden’s J statistic 372

(Youden, 1950) on ROC curve. Our selection of 373

FPR as the target variable stems from two consid- 374

erations: 1) the threshold determination in each de- 375

tection system is intrinsically dependent on scoring 376

function values with ranges varying between meth- 377

ods, 2) this approach enables direct penalization 378

of significant FPR fluctuations for stability assess- 379

ment, as substantial FPR variability constitutes un- 380

acceptable performance in AI-text detection frame- 381

works. For each detection system and across M 382

evaluation scenarios (e.g., generative model, at- 383

tack types, or writing styles), we extract the thresh- 384

old t∗i that maximizes J(t)=TPR(t) − FPR(t) 385

for each scenario i, and record the corresponding 386

FPR∗
i=FPRi(t

∗
i ), 387

t∗i=arg max
i

[TPRi(t)− FPRi(t)] (11) 388

The standard deviation of these optimal FPRs 389

across all M scenarios is calculated and denoted as 390

σFPR. Finally, we define the stability metric as, 391

SFD=exp(−λ.σFPR) (12) 392

where λ>0 is a tunable hyperparameter control- 393

ling the sensitivity to instability. Lower standard 394

deviation in FPR results in higher stability scores, 395

with perfect stability (σFPR=0) yielding a maxi- 396

mum value of 1. To determine a principled value 397

for the decay parameter λ, we calibrate it so that 398

a moderate but practically noticeable instability in 399

FPRs corresponds to a mid-range stability score. 400

Therefore, we set it such that the stability score 401

reduces to 0.5 when the standard deviation σFPR 402

reaches 0.1. This yields λ=10 ln2. 403

We adopt a multiplicative formulation to com- 404

bine W-AUROC (performance) and SFD (stabil- 405

ity) into a single unified reliability-stability score 406

(URSS), 407

URSS = (
1

M

M∑
i=1

W-AUROCi) .SFD (13) 408

Multiplication enforces a non-compensatory re- 409

lationship: a high W-AUROC cannot mask poor 410

stability, and conversely, robust stability does not 411

necessarily indicate high discrimination capability. 412

This reflects real-world deployment requirements, 413

where even a highly accurate detector is unusable 414

if unstable, and vice versa. 415
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Figure 2: Radar charts of comparing detectors in different writing styles across all generative models.

4 Experiments and discussion416

In this section, we organize our experiments and417

discussion around three core questions: 1) Why418

is AUROC insufficient for evaluating detectors419

in real-world settings? 2) How effective is our420

proposed humanification strategies in degrad-421

ing SOTA zero-shot detectors? and 3) How ro-422

bust are these detectors across different levels423

of humanification hardness? We evaluate six424

SOTA zero-shot detectors, Binoculars (Hans et al.,425

2024), Fast-DetectGPT (Bao et al., 2023), LRR (Su426

et al., 2023), Log-Likelihood, Log-Rank, and Rank427

(Gehrmann et al., 2019), along with a supervised428

model, Radar (Hu et al., 2023), to examine the429

comparative vulnerability of zero-shot methods.430

Further information on the detectors used can be431

found in Appendix C.432

4.1 Why is AUROC NOT enough?433

For each writing style, we compare detectors across434

all generative models using the original LLM-435

generated texts (without humanification). The re-436

sulting radar charts are presented in Figure 2 (437

Please refer to Appendix D for radar charts of dif-438

ferent LLMs across all writing styles). While tradi-439

tional AUROC can exaggerate the superiority of440

a detector, our proposed framework reveals an illu-441

minating truth. AUROC may obscure cases where442

detectors perform equivalently in practice. In con-443

trast, URSS effectively exposes equivalences by444

examining performance parity within operationally445

low FPR regions and assessing stability. For in-446

stance, in the Reddit chart, although Radar exhibits447

a substantially higher AUROC than Rank, both448

achieve identical URSS, highlighting their practi-449

cal equivalence. Conversely, there are cases where450

detectors achieve similar AUROC scores, yet one451

outperforms the other in low-FPR operational re-452

gions while also exhibiting greater threshold sta-453

bility. Such multidimensional superiority is en-454

tirely masked when relying solely on the con-455

ventional AUROC metric. Representative cases456

include Rank vs. Log-Rank and Log-Rank vs. Log-457

Likelihood in the Medium chart, and Binoculars vs. 458

Fast-DetectGPT across News, Wikipedia, Medium, 459

and Review charts. Despite significant disparities 460

in either W-AUROC or SFD, identical AUROC 461

across detectors can cause a misleading impres- 462

sion of equivalence. This potentially results in 463

suboptimal choices for real-world deployment. 464

Such patterns are seen in Fast-DetectGPT vs. Rank 465

and Log-Likelihood vs. Log-Rank on arXiv, Log- 466

Rank vs. Log-Likelihood in Reddit, and Rank vs. 467

Log-Likelihood in Wikipedia. URSS suggests that 468

meaningful performance equivalency between 469

detectors can only be established through com- 470

prehensive evaluation that simultaneously consid- 471

ers both operational region sensitivity and cross- 472

scenario stability. For example, in the Wikipedia 473

chart, URSS observes that Log-Likelihood has 474

slightly lower W-AUROC but higher SFD than Log- 475

Rank, and assigns them equal scores, reflecting fair- 476

ness when each method excels in one dimension 477

and the trade-off is not substantial. 478

A significant observation from our experiments 479

is that methods exhibiting severe deficiencies in 480

any critical performance dimension are heavily pe- 481

nalized, acknowledging that such limitations un- 482

dermine real-world deployment potential. This 483

evaluation principle is exemplified by Binoculars 484

which, while achieving the highest AUROC and 485

second-highest W-AUROC scores, was ultimately 486

positioned last in the Reddit writing style analysis 487

based on URSS metric due to its exceptionally poor 488

stability. 489

4.2 Effectiveness of humanification strategies 490

Table 2 shows the impact of different strategies 491

on detector performance across all writing styles, 492

using the largest LLM model from each family 493

evaluated in this study. Corresponding results for 494

smaller models are available in Appendix D. To 495

enhance readability, all metrics are reported as per- 496

centages. The baseline consists of original LLM- 497

generated texts (specifically paraphrased texts with- 498

out humanification). Zero-shot detectors suffer 499
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Table 2: Performance of detectors under paraphrasing (baseline), RMM, AWS, and RHL strategies.

LLM → Gemma2 9b Llama3.1 8b Mistral 7b Qwen 7b
Detector ↓ Metric (%) → AUC W-A SFD URSS AUC W-A SFD URSS AUC W-A SFD URSS AUC W-A SFD URSS

Paraphrase (baseline)
Binoculars 93.8 69.9 47.0 32.9 95.4 74.0 55.2 40.9 90.6 59.4 46.2 27.4 85.5 35.2 42.5 14.9
Fast-DetectGPT 93.1 74.7 60.7 45.3 94.6 80.3 60.5 48.6 89.2 62.1 62.1 38.6 91.7 76.2 81.2 61.8
Log-Likelihood 77.6 28.7 41.2 11.8 82.2 36.1 41.8 15.1 64.8 16.6 22.8 3.8 66.0 18.0 42.6 7.7
Log-Rank 77.6 30.1 47.3 14.3 82.5 38.6 44.5 17.2 63.3 15.7 20.8 3.3 65.6 18.1 37.6 6.8
LRR 76.2 34.0 58.4 19.9 81.5 45.1 55.5 25.0 58.5 13.5 16.9 2.3 62.5 17.8 27.2 4.8
Radar 76.7 34.2 17.6 6.0 79.8 42.3 14.8 6.3 71.0 25.5 15.9 4.0 83.7 50.7 21.1 10.7
Rank 75.9 35.6 49.3 17.5 76.3 36.8 57.1 21.0 62.0 16.9 16.3 2.8 59.3 18.1 16.0 2.9

Random meaning-preserving mutation (RMM)
Binoculars 77.9 35.4 35.1 12.4 83.6 44.7 43.8 19.6 73.9 28.9 53.0 15.3 77.7 30.4 46.2 14.1
Fast-DetectGPT 77.0 37.8 35.8 13.5 82.2 47.8 46.3 22.1 71.7 27.2 45.8 12.5 83.5 50.4 52.8 26.6
Log-Likelihood 34.4 4.7 5.9 0.3 41.2 8.4 6.2 0.5 26.1 2.2 4.0 0.1 31.3 4.8 8.1 0.4
Log-Rank 36.9 5.4 7.3 0.4 44.2 9.6 6.9 0.7 27.6 2.2 4.5 0.1 32.9 4.8 7.6 0.4
LRR 50.4 9.6 11.8 1.1 58.5 16.4 10.3 1.7 39.4 3.4 8.9 0.3 43.1 5.4 5.7 0.3
Radar 89.0 52.4 34.0 17.8 88.1 52.3 27.8 14.5 83.7 41.9 24.8 10.4 89.4 60.7 29.9 18.2
Rank 48.4 7.0 9.5 0.7 50.1 8.4 9.2 0.8 39.7 2.8 6.7 0.2 38.8 3.3 6.0 0.2

AI-flagged word swap (AWS)
Binoculars 81.6 45.4 54.4 24.7 81.9 46.1 37.2 17.2 78.6 41.2 57.4 23.6 73.2 31.3 42.6 13.3
Fast-DetectGPT 83.1 45.9 31.0 14.2 83.3 49.6 36.3 18.0 79.5 37.7 37.8 14.3 78.5 42.5 43.1 18.3
Log-Likelihood 21.5 2.5 4.3 0.1 25.0 4.7 5.3 0.3 16.1 1.3 3.7 0.0 18.8 2.7 18.4 0.5
Log-Rank 22.7 2.7 4.3 0.1 26.4 5.1 5.3 0.3 16.7 1.2 4.0 0.0 18.8 2.4 13.6 0.3
LRR 32.6 4.0 7.8 0.3 36.1 6.8 4.9 0.3 24.7 1.4 4.3 0.1 22.3 1.7 3.7 0.1
Radar 85.9 47.6 30.0 14.3 82.3 40.3 26.1 10.5 80.4 39.0 19.0 7.4 86.0 52.3 26.5 13.9
Rank 46.1 4.9 10.3 0.5 46.5 5.5 10.5 0.6 39.5 2.4 11.9 0.3 31.3 2.0 5.7 0.1

Recursive humanization loop (RHL)
Binoculars 75.8 32.2 59.3 19.1 78.0 36.2 40.0 14.5 75.0 32.3 63.4 20.5 72.6 26.6 44.9 11.9
Fast-DetectGPT 76.5 30.9 50.2 15.5 78.2 37.3 42.4 15.8 74.8 27.1 50.2 13.6 77.4 36.7 61.0 22.4
Log-Likelihood 17.5 0.6 3.5 0.0 21.6 1.8 3.8 0.1 12.4 0.5 3.3 0.0 17.2 1.9 8.3 0.2
Log-Rank 20.2 0.8 3.7 0.0 24.5 2.4 4.2 0.1 14.4 0.5 3.2 0.0 18.3 1.8 6.7 0.1
LRR 36.4 3.3 11.6 0.4 40.6 6.4 5.8 0.4 29.4 1.1 10.9 0.1 27.6 1.7 3.6 0.1
Radar 85.4 43.9 34.5 15.1 81.8 37.9 27.0 10.2 79.9 33.9 27.1 9.2 86.6 51.2 30.9 15.8
Rank 45.1 4.4 8.8 0.4 45.1 4.5 9.0 0.4 39.0 1.7 7.2 0.1 32.6 1.9 4.5 0.1

marked average URSS degradation of 41%, 62%,500

97%, 96%, 92%, and 95% in RMM; 27%, 66%,501

98%, 98%, 98%, and 95% in AWS; and 38%, 65%,502

99%, 99%, 97%, and 97% in RHL, corresponding503

to Binoculars, Fast-DetectGPT, Log-Likelihood,504

Log-Rank, LRR, and Rank, respectively. This505

demonstrates that without devising robustness en-506

hancements, zero-shot detectors fail to withstand507

word-level humanification, resulting in severe per-508

formance loss. Interestingly, even though AWS and509

RHL introduce more complex humanification than510

RMM, our experiments reveal that multiple detec-511

tors demonstrate similarly compromised URSS per-512

formance under the simpler RMM. For instance,513

Log-Likelihood’s URSS drops to 0.1 under RMM514

for Mistral 7b, nearly equivalent to its 0.0 under515

AWS and RHL. This observation indicates that516

zero-shot detectors depend on fragile token-level517

statistical signatures that collapse under even mod-518

est perturbations. This vulnerability becomes par-519

ticularly concerning considering that RMM more520

closely approximates natural user editing behav-521

iors, rendering these detection systems unreliable522

in practical deployment scenarios. This limitation523

exacerbates the previously documented challenge524

of generative model dependency (Wu et al., 2024),525

as further evidenced in Table 2, which demonstrates526

significant variation in URSS metrics across differ-527

ent LLMs when subjected to identical strategies.528

It is noteworthy that Radar exhibits a reversed 529

trend: across all humanification strategies, word 530

replacements improve its performance in both W- 531

AUROC and SFD, leading to higher URSS. This 532

may be attributed to Radar’s design, which empha- 533

sizes robustness to paraphrasing. We leave further 534

investigation into whether this behavior generalizes 535

to other supervised methods for future work. 536

4.3 Robustness under hardness levels 537

Figure 3 presents the trend of all evaluation metrics 538

for each humanification strategy across their respec- 539

tive control parameters (i.e., p ranging from 10% to 540

100% for RMM and AWS, and R from 5 to 40 for 541

RHL) for zero-shot detectors. Dashed lines indi- 542

cate the baseline, corresponding to paraphrased text 543

without any humanification. Notably, both perfor- 544

mance metric (W-AUROC) and the stability metric 545

(SFD) consistently fall below the baseline across 546

all knob values, confirming the effectiveness of 547

the proposed strategies. RHL achieves significant 548

degradation in both W-AUROC and SFD starting 549

from a low R≈15, maintaining this effect across 550

the full range. AWS follows a similar trend at a 551

moderate p≈60%, while RMM requires a higher 552

p≈80% to reach comparable impact. This can be 553

attributed to the fact that AWS and RHL delib- 554

erately replace high-entropy AI words with high- 555

entropy human words, whereas RMM introduces 556

more random substitutions, resulting in less tar- 557
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Figure 3: The performance of zero-shot detectors in RMM, AWS, and RHL strategies based on their hardness levels
(p%, p%, and R, for RMM, AWS, and RHL, respectively).

geted degradation. A surprising observation is that558

some detectors exhibit increased stability as the559

hardness knob surpasses a certain threshold. This560

phenomenon is particularly pronounced in Binocu-561

lars and Fast-DetectGPT. A possible explanation is562

that as the text becomes more human-like, the dis-563

criminative signal diminishes (evidenced by lower564

W-AUROC), leading to more homogeneity across565

LLMs and writing styles. Consequently, detec-566

tors struggle to differentiate content and converge567

to consistent decision thresholds, resulting in re-568

duced σFPR. While these systems exhibit improved569

consistency under intense adversarial conditions,570

their substantially degraded discriminative perfor-571

mance ultimately results in significantly penalized572

overall URSS scores.573

An additional noteworthy observation derived574

from Figure 3 is the pronounced convergence of575

baseline trajectories in AUROC plots, which subse-576

quently differentiates into distinctly separated lines577

across W-AUROC, SFD, and URSS plots. This578

transformation from convergent to divergent pat-579

terns across different evaluation metrics provides580

further empirical validation for the conclusions pre-581

sented in Section 4.1, why AUROC is not enough,582

and illustrates how AUROC may offer mislead-583

ingly “easy wins” to certain detectors that may fail584

in real-world applications.585

5 Conclusion 586

In this work, we presented SHIELD, a comprehen- 587

sive benchmark designed to advance the fair evalua- 588

tion of AI text detectors under realistic deployment 589

scenarios. Our results showed that conventional 590

metrics like AUROC, despite their ubiquity, can 591

significantly overestimate detector efficacy by ne- 592

glecting critical operational constraints: the neces- 593

sity of maintaining low FPR in practical AI text 594

detection applications and the stability of detectors 595

across varying threshold under deployment condi- 596

tions where both writing style and generative model 597

characteristics are typically unknown. SHIELD 598

addresses these limitations through the introduction 599

of USRR, a metric that integrates both performance 600

measurement in low FPR regions and stability as- 601

sessment. Complementarily, SHIELD introduces a 602

scalable humanification framework for generating 603

humanified texts across graded difficulty levels, fa- 604

cilitating robust stress-testing of detection systems. 605

Our experimental findings reveal significant vul- 606

nerabilities in zero-shot detection methodologies, 607

which exhibit performance degradation of approx- 608

imately 80% on average when subjected to even 609

the most rudimentary word manipulation scenarios 610

evaluated in this study, perturbations that closely 611

approximate natural user editing behaviors without 612

requiring specialized knowledge of AI- or human- 613

authored text characteristics. 614

8



Limitations615

Several constraints merit acknowledgment within616

our experimental framework. Primarily, our in-617

vestigation was confined to monolingual English618

text analysis, precluding examination of multilin-619

gual detection scenarios that represent increasingly620

important deployment contexts given the global621

nature of AI text generation. This linguistic lim-622

itation potentially restricts the generalizability of623

our findings to diverse language environments. Ad-624

ditionally, the inherently dynamic nature of LLM625

development presents a significant temporal con-626

straint; as generative architectures evolve through627

version updates and architectural innovations, their628

statistical signatures undergo corresponding trans-629

formations, necessitating periodic collection of rep-630

resentative text samples to maintain benchmark cur-631

rency and relevance. Furthermore, budgetary con-632

straints confined our experimental protocol to open-633

source models, resulting in the exclusion of closed-634

source systems including ChatGPT and Claude.635

The inclusion of these commercial platforms would636

enhance the comprehensiveness of our evaluation637

framework, particularly considering their extensive638

deployment and potentially distinctive generative639

characteristics that may present unique challenges640

to detection methodologies.641

Ethical considerations642

This investigation aims to evaluate the robustness643

of contemporary AI-text detection methods against644

adversarial manipulations. The proliferation of645

LLM-generated content and its potential for ma-646

licious applications necessitates robust detection647

mechanisms to serve as effective countermeasures648

against synthetic text deception. Vulnerabilities in649

these detection frameworks could precipitate signif-650

icant complications in computational forensics and651

information verification processes. Consequently,652

this research endeavors to provide detection system653

engineers with rigorous adversarial testing frame-654

works for comprehensive validation of their algo-655

rithmic approaches against sophisticated evasion656

techniques. We explicitly stipulate that the method-657

ologies and results documented in this study are658

intended exclusively for detection system improve-659

ment and validation, and not for circumvention of660

existing detection systems.661
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A Dataset1016

A.1 Data domains1017

Medium: We utilized the Medium Articles dataset1018

curated by Fabio Chiusano, hosted on Hugging1019

Face 1. This dataset consists of more than 190k1020

English-language articles from Medium.com, each1021

containing textual and metadata fields, including1022

title, body, URL, authorship, timestamp, and tags.1023

We randomly selected a subset of 12.5k articles1024

with word counts between 400 and 2000 that were1025

published before 2021.1026

News: We curated a collection of 200k news arti-1027

cles from reputable news agency websites, includ-1028

ing ABC News, Al Jazeera, American Press, Asso-1029

ciated Press News, CBS News, CNN, NBC News,1030

Reuters, and The Guardian. From this corpus, we1031

randomly sampled 12.5k articles with lengths rang-1032

ing from 250 to 2000 words. The selected articles1033

span diverse topical domains such as politics, sci-1034

ence, social issues, religion, technology, sports,1035

and culture. All articles were published prior to the1036

advent of modern LLMs.1037

Reviews: We utilized the Amazon Reviews dataset1038

collected by (Ni et al., 2019), which comprises1039

over 233 million customer reviews spanning from1040

1996 to October 2018. This large-scale dataset1041

includes rich metadata, such as review text, star1042

ratings, helpfulness scores, and product attributes1043

(e.g., category, brand, price, and image features).1044

For our benchmark, we randomly sampled 12.5k1045

reviews from various product categories, retaining1046

only those with 30 or more words.1047

Reddit: To build the Reddit component of our1048

dataset, we extracted question–answer pairs from1049

the ELI5 subreddit, following a collection strat-1050

egy similar to (Fan et al., 2019). We restricted the1051

dataset to answers with lengths between 400 and1052

2000 words, all posted before 2021. A final sam-1053

ple of 12.5k answers was randomly selected for1054

inclusion in our benchmark.1055

arXiv: We utilized the arXiv dataset introduced by1056

(Clement et al., 2019), which contains over 1.5 mil-1057

lion preprint articles spanning disciplines such as1058

physics, mathematics, and computer science. Each1059

article includes metadata such as title, abstract, au-1060

thors, categories, and citation data. To construct1061

our dataset, we randomly sampled 12.5k abstracts1062

with word counts ranging from 150 to 500, limited1063

to publications before 2021.1064

1https://huggingface.co/datasets/fabiochiu/
medium-articles

Pink slime: We employed the NELA-PS dataset 1065

introduced by (Horne and Gruppi, 2024), which 1066

encompasses 7.9 million articles from 1093 local 1067

news sources, commonly referred to as “pink slime” 1068

journalism, spanning from March 2021 to January 1069

2024. These outlets generate content that mimics 1070

legitimate local journalism in structure and pre- 1071

sentation while frequently advancing partisan nar- 1072

ratives. From this corpus, we sampled 12.5k ar- 1073

ticles published in 2021, with document lengths 1074

constrained to 250-2000 words. 1075

Wikipedia We utilized the Plain Text Wikipedia 1076

2020-11 dataset accessible through Kaggle 2. This 1077

corpus comprises a comprehensive Wikipedia 1078

dump of 23 GB, containing articles spanning di- 1079

verse topics and domains. From this dataset, we 1080

randomly sampled 12.5k articles, each with a word 1081

count between 400 and 2000, for inclusion in our 1082

benchmark. 1083

A.2 Utilized LLMs and input prompts 1084

A.2.1 Models 1085

We employed seven distinct open-source large 1086

language models and their instruction-tuned vari- 1087

ants sourced from the Hugging Face reposi- 1088

tory: Llama3.2-1b, Llama3.2-3b, Llama3.1- 1089

8b, Mistral-7b, Qwen-7b, Gemma2-2b, and 1090

Gemma2-9b. 1091

Llama3.1-8b: The Llama 3.1-8b-Instruct model 1092

is an instruction-tuned variant of Meta’s 8B- 1093

parameter LLM from the Llama 3.1 series, op- 1094

timized for dialogue and assistant-like tasks. It 1095

is fine-tuned using supervised fine-tuning (SFT) 1096

and reinforcement learning with human feedback 1097

(RLHF), enhancing its ability to align with hu- 1098

man preferences and generate helpful, and safe 1099

responses. The model supports up to 128k token 1100

context lengths and employs Grouped-Query Atten- 1101

tion (GQA), rotary positional embeddings (RoPE), 1102

and SwiGLU activations to improve scalability and 1103

inference efficiency. Trained on over 15T tokens 1104

of publicly available data, it supports multilingual 1105

capabilities across several major languages and 1106

demonstrates strong performance in reasoning, text, 1107

and code generation tasks. 1108

Llama3.2-1b and Llama3.2-3b: The Llama 3.2- 1109

1b-Instruct and Llama 3.2-3b-Instruct models are 1110

instruction-tuned variants of Meta’s Llama 3.2 se- 1111

ries, comprising 1.23 billion and 3.21 billion pa- 1112

2https://www.kaggle.com/datasets/ltcmdrdata/
plain-text-wikipedia-202011
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rameters respectively. Both models are optimized1113

for multilingual dialogue applications, including1114

tasks like agentic retrieval and summarization, and1115

have demonstrated superior performance compared1116

to many open-source and proprietary chat mod-1117

els on standard industry benchmarks. They em-1118

ploy an auto-regressive transformer architecture1119

enhanced with GQA for improved inference scala-1120

bility and support a context length of up to 128k to-1121

kens. Trained on up to 9 trillion tokens of publicly1122

available online data, these models support mul-1123

tiple languages such as English, German, French,1124

Italian, Portuguese, Hindi, Spanish, and Thai.1125

Mistral-7b: We utilized Mistral-7b-Instruct-v0.31126

model, that is an instruction-tuned variant of Mis-1127

tral AI’s 7.25b-parameter language model, de-1128

signed to excel in a wide range of natural lan-1129

guage processing tasks. This version introduces1130

several enhancements over its predecessors, includ-1131

ing an expanded vocabulary of 32,768 tokens and1132

support for the v3 tokenizer, which improves its1133

ability to handle complex text inputs. The v0.31134

instruction-tuned variant has been specifically opti-1135

mized through reinforcement learning from RLHF1136

techniques to better follow user instructions and1137

generate more helpful responses. Despite its rela-1138

tively compact size compared to models with hun-1139

dreds of billions of parameters, Mistral-7b-Instruct-1140

v0.3 demonstrates competitive performance across1141

various benchmarks, including reasoning, coding,1142

and language understanding tasks.1143

Qwen-7b: The DeepSeek-R1-Distill-Qwen-7b1144

model is a 7.62b-parameter instruction-tuned lan-1145

guage model developed by DeepSeek AI, based1146

on the Qwen2.5 architecture. It was fine-tuned1147

using reinforcement learning and SFT techniques,1148

leveraging reasoning data generated by the larger1149

DeepSeek-R1 model. This training approach en-1150

hances the model’s capabilities in reasoning, math-1151

ematics, and coding tasks. The model supports a1152

context length of up to 128k tokens, enabling it to1153

handle extensive inputs effectively.1154

Gemma2-2b and Gemma2-9b: The Gemma fam-1155

ily, developed by Google, includes the Gemma2-2b-1156

instruct and Gemma2-9b-instruct models, which1157

are instruction-tuned variants of the base Gemma1158

models. These models are part of Google’s effort to1159

provide lightweight, high-performing open models,1160

drawing from the same research and technology1161

used to create the Gemini models. Both models are1162

decoder-only large language models, available in1163

English, and are designed to be versatile for various1164

applications, including text generation, conversa- 1165

tional AI, and summarization. 1166

A.2.2 Prompts 1167

We employed LLMs in their chat-based configura- 1168

tions to generate AI texts across multiple writing 1169

styles. Each data domain received tailored prompts 1170

to elicit appropriate responses. For the “pink slime” 1171

data, we supplemented prompts with definitional 1172

context to ensure semantic alignment. To preserve 1173

comparability in length, the LLMs were instructed 1174

to produce outputs approximately equal in word 1175

count to the corresponding human-written text (de- 1176

noted as <N>). Moreover, in the Amazon Reviews, 1177

Reddit, Pink slime, and Wikipedia datasets, we 1178

incorporated the respective titles, product name, 1179

post title, news headline, or document title, into 1180

the input prompt to enhance coherence and topical 1181

relevance. Below, we detail the specific prompts 1182

used to condition LLM outputs across the various 1183

writing styles examined in this work. 1184

Medium: 1185

[{‘role’: ‘system’, ‘content’: ‘You
are a blog writer in Medium website.
You paraphrase the Medium article I
give you in about <N> words as if you
are the original author, maintaining
the same ideas and tone while using
your own words.’},
{‘role’: ‘user’, ‘content’: ‘The
article is <HUMAN TEXT>’},]

1186

News: 1187

[{‘role’: ‘system’, ‘content’: ‘You
are a journalist working for a
reputable news agency. You paraphrase
the news article I give you in about
<N> words as if you are the original
writer, maintaining the same ideas and
tone while using your own words.’},
{‘role’: ‘user’, ‘content’: ‘The
article is <HUMAN TEXT>”},]

1188

Amazon reviews: 1189

14



[{‘role’: ‘system’, ‘content’: ‘You
are an Amazon customer. You paraphrase
the review I give you about a product
with title <TITLE> in about <N> words as
if you are the original review writer,
maintaining the same ideas and tone
while using your own words.’},
{‘role’: ‘user’, ‘content’: ‘The
article is <HUMAN TEXT>”},]

1190

Reddit:1191

[{‘role’: ‘system’, ‘content’: ‘You
are a Reddit user. You paraphrase
the Reddit post with title <TITLE> I
give you in about <N> words as if you
are the original Reddit post writer,
maintaining the same ideas and tone
while using your own words.’},
{‘role’: ‘user’, ‘content’: ‘The
article is <HUMAN TEXT>”},]

1192

arXiv:1193

[{‘role’: ‘system’, ‘content’: ‘You
are a scientific paper writer. You
paraphrase the abstract of a scientific
paper I give you in about <N> words
as if you are the original author,
maintaining the same ideas and tone
while using your own words.’},
{‘role’: ‘user’, ‘content’: ‘The
article is <HUMAN TEXT>”},]

1194

Pink slime:1195

[{‘role’: ‘system’, ‘content’: ‘Pink
slime journalism is a practice in
which American news outlets, or fake
partisan operations masquerading as
such, publish poor-quality news reports
which appear to be local news. You are
a pink slime journalist. You paraphrase
the pink slime article I give you about
a subject with title <TITLE> in about
<N> words as if you are the original
article writer, maintaining the same
ideas and tone while using your own
words.’},
{‘role’: ‘user’, ‘content’: ‘The
article is <HUMAN TEXT>”},]

1196

Wikipedia:1197

[{‘role’: ‘system’, ‘content’: ‘You
are a Wikipedia writer. You paraphrase
the article I give you about a subject
with title <TITLE> in about <N> words as
if you are the original article writer,
maintaining the same ideas and tone
while using your own words.’},
{‘role’: ‘user’, ‘content’: ‘The
article is <HUMAN TEXT>”},]

1198

A.3 Dataset statistics 1199

Table 3 reports the number of text samples included 1200

in our benchmark for each LLM evaluated. The 1201

“Human” column denotes the number of collected 1202

human-written texts. The “Paraphrased” column 1203

corresponds to the original LLM-generated outputs 1204

without humanification. The “Humanified” column 1205

indicates the number of paraphrased samples that 1206

were modified using the humanification strategies 1207

specified in the corresponding rows. Additionally, 1208

Figure 4 illustrates the word count distributions 1209

of human-written texts and LLM-generated para- 1210

phrased outputs for each writing style, aggregated 1211

across all LLMs used in this study. 1212

B Text samples 1213

For masked word prediction within our MLM 1214

framework, we employed the Longformer-base- 1215

4096 architecture developed by the Allen Institute 1216

for AI (Beltagy et al., 2020). In this section, we 1217

provide exemplar texts demonstrating the three hu- 1218

manification strategies employed in our method- 1219

ology. The words enclosed in brackets and high- 1220

lighted in red represent words predicted by the 1221

MLM architecture, which subsequently replaced 1222

their corresponding precedent words in the para- 1223

phrased text. Text highlighted in blue represents 1224

the baseline AI-paraphrased content prior to hu- 1225

manification processing. 1226

B.1 Sample humanified text from RMM 1227

strategy 1228

The White House is escalating its efforts to per- 1229

suade Congress to approve limited [military] strikes 1230

[action] against Syria, as President Obama faces a 1231

formidable challenge in convincing lawmakers to 1232

back a new military campaign in the Middle East. 1233

The president has been personally engaging with 1234

skeptical lawmakers over the weekend, delivering 1235

[making] a tailored pitch to Democrats and Repub- 1236

licans who remain undecided or open [close] to 1237
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Table 3: Data statistics for each LLM utilized.

Dataset → Medium News Amazon reviews Reddit
Strategy ↓ Human Paraphrased Humanified Human Paraphrased Humanified Human Paraphrased Humanified Human Paraphrased Humanified
Paraphrasing 3000 3000 — 3000 3000 — 3000 3000 — 3000 3000 —

RMM @ p=10% 500 500 500 500 500 500 500 500 500 500 500 500
RMM @ p=20% 500 500 500 500 500 500 500 500 500 500 500 500
RMM @ p=40% 500 500 500 500 500 500 500 500 500 500 500 500
RMM @ p=60% 500 500 500 500 500 500 500 500 500 500 500 500
RMM @ p=80% 500 500 500 500 500 500 500 500 500 500 500 500
RMM @ p=100% 500 500 500 500 500 500 500 500 500 500 500 500

AWS @ p=10% 500 500 500 500 500 500 500 500 500 500 500 500
AWS @ p=20% 500 500 500 500 500 500 500 500 500 500 500 500
AWS @ p=40% 500 500 500 500 500 500 500 500 500 500 500 500
AWS @ p=60% 500 500 500 500 500 500 500 500 500 500 500 500
AWS @ p=80% 500 500 500 500 500 500 500 500 500 500 500 500
AWS @ p=100% 500 500 500 500 500 500 500 500 500 500 500 500

RHL @ R=5% 500 500 500 500 500 500 500 500 500 500 500 500
RHL @ R=15% 500 500 500 500 500 500 500 500 500 500 500 500
RHL @ R=20% 500 500 500 500 500 500 500 500 500 500 500 500
RHL @ R=25% 500 500 500 500 500 500 500 500 500 500 500 500
RHL @ R=30% 500 500 500 500 500 500 500 500 500 500 500 500
RHL @ R=35% 500 500 500 500 500 500 500 500 500 500 500 500
RHL @ R=40% 500 500 500 500 500 500 500 500 500 500 500 500

Dataset → arXiv Pink slime Wikipedia
Strategy ↓ Human Paraphrased Humanified Human Paraphrased Humanified Human Paraphrased Humanified
Paraphrasing 3000 3000 — 3000 3000 — 3000 3000 —

RMM @ p=10% 500 500 500 500 500 500 500 500 50
RMM @ p=20% 500 500 500 500 500 500 500 500 500
RMM @ p=40% 500 500 500 500 500 500 500 500 500
RMM @ p=60% 500 500 500 500 500 500 500 500 500
RMM @ p=80% 500 500 500 500 500 500 500 500 500
RMM @ p=100% 500 500 500 500 500 500 500 500 50

AWS @ p=10% 500 500 500 500 500 500 500 500 50
AWS @ p=20% 500 500 500 500 500 500 500 500 500
AWS @ p=40% 500 500 500 500 500 500 500 500 500
AWS @ p=60% 500 500 500 500 500 500 500 500 500
AWS @ p=80% 500 500 500 500 500 500 500 500 500
AWS @ p=100% 500 500 500 500 500 500 500 500 50

RHL @ R=5% 500 500 500 500 500 500 500 500 500
RHL @ R=15% 500 500 500 500 500 500 500 500 500
RHL @ R=20% 500 500 500 500 500 500 500 500 500
RHL @ R=25% 500 500 500 500 500 500 500 500 500
RHL @ R=30% 500 500 500 500 500 500 500 500 500
RHL @ R=35% 500 500 500 500 500 500 500 500 500
RHL @ R=40% 500 500 500 500 500 500 500 500 500

reconsidering their opposition to military action.1238

According to White House officials, Obama’s1239

argument [case] centers on the dual imperative of1240

both moral responsibility and national security in-1241

terest. The president believes that the United States1242

has a critical obligation to respond to the devas-1243

tating chemical weapons attack [attacks] in Syria,1244

which has left countless civilians, including chil-1245

dren, dead or injured. This perspective is under-1246

scored by a series of disturbing videos, obtained by1247

ABC News, which were shown to lawmakers in a1248

classified briefing [session] last week.1249

These graphic images, which depict the harrow-1250

ing aftermath of the chemical attack [attacks], are1251

being used by the administration to make a power-1252

ful [compelling] case to Congress and the Amer-1253

ican public. Secretary of State John Kerry, who1254

has been leading the charge to build international1255

support [consensus] for military action, referenced1256

the videos in a speech in Paris on Saturday, em-1257

phasizing the atrocities committed by the Syrian1258

[Assad] regime against its own people [citizens]. 1259

Kerry’s impassioned plea, which highlighted the 1260

tragic fate of innocent civilians, including chil- 1261

dren, is a stark reminder [illustration] of the human 1262

cost of inaction. As he noted, the use of chemical 1263

weapons in the middle of the night, when people 1264

[children] should have been sleeping safely in their 1265

beds, is an unconscionable act that demands [war- 1266

rants] a response from the international community 1267

[body]. 1268

The administration is aware that it faces a tough 1269

sell in convincing Congress to approve military ac- 1270

tion, with a recent ABC News survey indicating 1271

deep opposition among lawmakers. However, offi- 1272

cials remain hopeful that they can build a coalition 1273

of 60 [enough] Democrats and Republicans to over- 1274

come the threat of a filibuster and secure approval 1275

for the military strike. 1276

In a bid to build support [consensus], Vice Presi- 1277

dent Biden is hosting a dinner for over a dozen Re- 1278

publican senators on Sunday night, with the guest 1279
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list including several key lawmakers who have ex-1280

pressed reservations about military action. The1281

administration is also counting on the support [en-1282

dorsement] of retired General David Petraeus, a1283

respected figure in military circles, who has pub-1284

licly urged lawmakers to back the military strike.1285

As the vote on the military strike looms in the1286

Senate as early as Wednesday, the White House1287

is stepping [speeding] up its efforts to persuade1288

lawmakers to support [back] the president’s plan.1289

Obama will make his case to the American public1290

in a series of interviews with network television1291

anchors [stations] on Monday, followed by a tele-1292

vised address on Tuesday. The outcome of this1293

high-stakes debate will have far-reaching [wide-1294

reaching] implications for the United States and its1295

role in the Middle East, and the White House is1296

leaving [left] no stone unturned in its bid to secure1297

approval for military action.1298

B.2 Sample humanified text from AWS1299

strategy1300

Pleased with the affordable [good] price and1301

adorable [good] design[ [look], I’ve been using1302

this cardigan for work over the past few months.1303

However [but], I’ve noticed minor [some] issues1304

[things] where my arms have caused small fabric1305

balls to form, which can be a bit bothersome but1306

not entirely unexpected [bad] for a budget-friendly1307

[work-type] item. Sizing has been an issue [prob-1308

lem] for me, as I often [have] find [that] cardigans1309

in my size still gape open. If you’re larger-chested1310

[big-chested] like me, I’d suggest sizing up for a1311

better fit. Despite [Besides] these concerns [things],1312

I might [have] still purchase [get] more due [be-1313

cause] to the low cost, but a higher-quality [higher-1314

cut] garment might [do] offer [get] better longevity1315

[looks].1316

B.3 Sample humanified text from RHL1317

strategy1318

I’m feeling [really] so hurt [upset] and confused1319

after our last conversation. I said I was sorry and1320

wanted to make amends [up], but he’s now acting1321

like I’m the one who’s done him wrong. I don’t1322

see how I deserve [want] to be treated [loved] this1323

way, especially [just] when I’ve been trying [able]1324

to be understanding [kind] and accommodating1325

[loving]. Our relationship was pretty [so] intense1326

[good] from the start, and we were monogamous1327

pretty [very] quickly. However [unfortunately], he1328

refused [wanted] to acknowledge [believe] that we1329

were in a real relationship for a few months, which 1330

was confusing and frustrating [annoying]. He had 1331

high expectations [opinion] of me, and I felt like 1332

I had to constantly prove [explain] myself to him. 1333

I’ve never [only] cheated on anyone before, and 1334

I thought I was able to handle [explain] myself 1335

around [in] people with good intentions [reason]. 1336

One of the things that really bothered me was how 1337

he would belittle [tell] me about my male friends. 1338

He would get [be] upset if I spent time with them 1339

or made plans with them, and he would even get 1340

[be] angry if I didn’t include them in everything. 1341

I felt like he was conditioning me into isolation, 1342

and it was suffocating [annoying]. There were a lot 1343

[couple] of fights in our relationship, and many of 1344

them were petty [stupid]. Like the time he thought 1345

I smelled [was] of cologne [stupid] and swore [that] 1346

I had just slept with someone [her]. Or the time he 1347

came over and claimed [said] there were tire marks 1348

[nuts] in his parking [sweet] spot, even though [if] 1349

it was just a dirt [back] road. It was like he was 1350

looking for any excuse to get [be] upset. I also [re- 1351

ally] felt like he was playing games with me. Like 1352

the time I told him I was lazy [sick] and didn’t want 1353

to drive [go] to my friends’ house, and he got upset 1354

because I didn’t spend the night [time] with him. 1355

Or the time he broke up with me and then said we 1356

weren’t in a relationship, even though [if] we had 1357

been hanging out and talking. It was like he was 1358

trying [able] to manipulate [trick] me into feeling 1359

[being] guilty [stupid] or responsible [sorry] for 1360

his own emotions [faults]. But the thing that really 1361

hurt [upset] me was when he introduced me to his 1362

ex-girlfriend [girl-friends] as his friend, and then 1363

acted like I was the one who had done him wrong. 1364

He said I was "fucking with his heart and emotions 1365

[mind]," and that I needed to earn [lose] his trust. 1366

It was like he was trying [out] to make me feel 1367

[look] like I was the problem [one], even though 1368

[if] I had done nothing wrong. I feel [felt] like 1369

I’m losing [wasting] my mind, to be honest [fair]. 1370

I’m trying [attempting] to be understanding [kind] 1371

and accommodating [sweet], but it feels [was] like 1372

he’s not giving me any space or trust. I’m starting 1373

[beginning] to wonder [think] if I’m just not good 1374

enough for him, or if he’s just not willing [able] 1375

to work through our issues [shit] together. Do I 1376

deserve [have] to be treated [left] this way? 1377
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C Detectors1378

Binoculars is a zero-shot, model-agnostic method1379

for detecting machine-generated text that requires1380

no training data. It operates by comparing the per-1381

plexity of a text as evaluated by two language mod-1382

els: an “observer” model and a “performer” model.1383

The observer computes the perplexity of the text1384

directly, while the performer generates next-token1385

predictions, which are then evaluated by the ob-1386

server to compute cross-perplexity. The ratio of1387

perplexity to cross-perplexity serves as a strong1388

indicator of whether the text is human- or machine-1389

generated.1390

Fast-DetectGPT is a zero-shot method, building1391

upon the principles of DetectGPT. It introduces1392

the concept of conditional probability curvature to1393

distinguish between human- and AI-authored con-1394

tent. The method operates by sampling alternative1395

word choices for a given text and evaluating the1396

conditional probabilities using a language model.1397

By analyzing the curvature of these probabilities,1398

Fast-DetectGPT identifies AI text.1399

LRR (Log-Likelihood Log-Rank Ratio) is a zero-1400

shot approach. It combines two statistical mea-1401

sures: the log-likelihood, which assesses the abso-1402

lute confidence of a language model in predicting1403

a sequence, and the log-rank, which evaluates the1404

relative ranking of the predicted tokens. By com-1405

puting the ratio of these two measures, LRR cap-1406

tures nuanced differences between human-written1407

and LLM-generated text.1408

Log-Likelihood calculates the log-probability of1409

each token in a text sequence using a language1410

model, assessing how predictable each word is1411

within its context. In this framework, human-1412

written text typically exhibits a mix of high- and1413

low-probability tokens, reflecting natural linguistic1414

variability. In contrast, LLM-generated text often1415

contains a higher proportion of high-probability1416

tokens, indicating more predictable word choices.1417

Rank evaluates the predictability of each token1418

in a text by determining its rank within the lan-1419

guage model’s probability distribution. Tokens that1420

consistently appear among the top-ranked predic-1421

tions indicate higher predictability, a characteristic1422

often associated with LLM-generated text. Ana-1423

lyzing the distribution of these token ranks assists1424

in distinguishing between human-authored and AI-1425

generated content.1426

Log-Rank enhances the performance of Rank1427

method by applying a logarithmic transformation1428

to the rank of each token within a language model’s 1429

predicted probability distribution. 1430

RADAR is a framework designed to enhance the 1431

detection of AI-generated text, particularly against 1432

paraphrased content that often evades traditional 1433

detectors. It employs an adversarial training ap- 1434

proach involving two components: a paraphraser 1435

and a detector. The paraphraser aims to rewrite AI- 1436

generated text to resemble human-authored content, 1437

thereby challenging the detector’s ability to identify 1438

machine-generated text. Conversely, the detector is 1439

trained to distinguish between human-written and 1440

AI-generated texts. 1441

D Additional results 1442

Figure 5 shows the radar charts of comparing detec- 1443

tors for each LLM across all writing styles. Table 4 1444

shows the impact of different strategies on detector 1445

performance across all writing styles for smaller 1446

models from each family evaluated in this study. 1447
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Figure 4: Word count distribution of human-written and LLM-generated texts aggregated across all LLMs. “All”
represents all samples across both writing styles and LLMs.
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Figure 5: Radar charts of comparing detectors in different generative models across all writing styles.

Table 4: Performance of detectors under paraphrasing (baseline), RMM, AWS, and RHL strategies.

LLM → Gemma2 2b Llama3.2 1b Llama3.2 3b
Detector ↓ Metric (%) → AUC W-A SFD URSS AUC W-A SFD URSS AUC W-A SFD URSS

Paraphrase (baseline)

Binoculars 97.3 84.0 57.6 48.4 85.8 33.1 47.3 15.7 93.6 63.4 64.0 40.6
Fast-DetectGPT 96.8 87.6 60.6 53.0 86.4 64.7 58.2 37.7 93.3 75.4 56.2 42.4
Log-Likelihood 86.6 40.1 45.2 18.1 75.9 33.9 51.8 17.6 78.5 30.8 42.4 13.0
Log-Rank 88.1 46.1 63.0 29.0 76.7 36.9 58.9 21.7 79.1 33.3 41.3 13.7
LRR 89.5 61.7 54.3 33.5 77.0 42.9 58.2 24.9 79.1 41.0 54.7 22.5
Radar 83.1 49.6 16.1 8.0 74.2 36.6 14.7 5.4 78.7 38.9 17.3 6.7
Rank 79.4 42.7 58.8 25.1 69.1 29.2 62.8 18.3 73.6 32.7 56.8 18.6

Random meaning-preserving mutation (RMM)

Binoculars 89.6 58.6 40.3 23.6 80.2 29.2 50.9 14.8 82.8 39.8 50.1 19.9
Fast-DetectGPT 88.9 63.2 50.8 32.1 80.1 46.9 57.8 27.1 81.8 45.8 49.2 22.5
Log-Likelihood 48.0 10.5 8.5 0.9 42.5 11.7 11.8 1.4 38.2 6.8 6.0 0.4
Log-Rank 52.2 12.9 9.3 1.2 45.7 13.3 18.4 2.5 41.0 7.8 7.6 0.6
LRR 67.6 25.5 14.5 3.7 59.6 20.0 13.2 2.6 55.3 13.8 10.7 1.5
Radar 91.7 63.1 49.3 31.1 86.2 50.9 28.9 14.7 88.8 53.1 30.9 16.4
Rank 55.7 11.5 13.2 1.5 50.2 8.5 9.6 0.8 48.7 7.4 9.7 0.7

AI-flagged word swap (AWS)

Binoculars 88.4 59.5 49.7 29.6 76.0 28.1 32.2 9.1 81.7 43.5 36.5 15.9
Fast-DetectGPT 89.0 62.3 45.8 28.5 78.2 43.2 49.7 21.4 83.1 47.9 43.0 20.6
Log-Likelihood 29.5 5.9 6.0 0.3 25.7 7.0 13.1 0.9 22.2 3.4 4.8 0.2
Log-Rank 31.9 6.6 5.5 0.4 26.9 7.3 16.2 1.2 23.5 3.6 4.2 0.2
LRR 45.1 10.9 7.2 0.8 34.5 7.9 5.2 0.4 33.5 5.2 4.1 0.2
Radar 89.0 56.6 35.5 20.1 79.8 38.1 24.4 9.3 83.5 43.1 25.7 11.1
Rank 50.5 7.0 12.5 0.9 42.4 4.9 7.0 0.3 44.6 4.6 10.3 0.5

Recursive humanization loop (RHL)

Binoculars 86.8 51.1 52.5 26.8 73.2 23.5 51.9 12.2 78.3 35.1 40.9 14.4
Fast-DetectGPT 86.8 55.1 50.6 27.9 75.0 34.3 53.5 18.4 78.9 37.7 45.2 17.0
Log-Likelihood 28.3 3.5 4.3 0.2 22.9 4.6 12.5 0.6 20.0 1.7 3.3 0.1
Log-Rank 31.9 4.4 4.7 0.2 25.3 5.1 12.5 0.6 22.7 2.1 3.5 0.1
LRR 49.8 10.1 11.4 1.2 38.9 7.2 6.8 0.5 38.4 5.1 6.9 0.3
Radar 89.0 54.3 41.5 22.5 80.4 37.5 27.2 10.2 83.1 40.5 26.3 10.7
Rank 50.4 6.7 13.8 0.9 41.4 3.8 6.6 0.2 43.8 4.0 7.7 0.3
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