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Abstract

Zero-shot coordination (ZSC) is a new cooperative multi-agent reinforcement learn-
ing (MARL) challenge that aims to train an ego agent to work with diverse, unseen
partners during deployment. The significant difference between the deployment-
time partners’ distribution and the training partners’ distribution determined by the
training algorithm makes ZSC a unique out-of-distribution (OOD) generalization
challenge. The potential distribution gap between evaluation and deployment-
time partners leads to inadequate evaluation, which is exacerbated by the lack
of appropriate evaluation metrics. In this paper, we present ZSC-Eval, the first
evaluation toolkit and benchmark for ZSC algorithms. ZSC-Eval consists of: 1)
Generation of evaluation partner candidates through behavior-preferring rewards
to approximate deployment-time partners’ distribution; 2) Selection of evaluation
partners by Best-Response Diversity (BR-Div); 3) Measurement of generalization
performance with various evaluation partners via the Best-Response Proximity
(BR-Prox) metric. We use ZSC-Eval to benchmark ZSC algorithms in Overcooked
and Google Research Football environments and get novel empirical findings.
We also conduct a human experiment of current ZSC algorithms to verify the
ZSC-Eval’s consistency with human evaluation. ZSC-Eval is now available at
https://github.com/sjtu-marl/ZSC-Eval.

1 Introduction

Building agents that can interact and collaborate with others without prior coordination in various
scenarios is a crucial challenge of cooperative AI [50, 61, 9, 14]. One aspect of this challenge,
known as Zero-shot coordination (ZSC) in cooperative multi-agent reinforcement learning (MARL)
[55, 56, 63] involves developing an agent that learns coordination skills with a limited set of training
partners and generalizes them to unseen partners during deployment [13, 34]. The distribution of
training partners is determined by training algorithms, while deployment-time partners are determined
by deployment requirements [16], making ZSC an out-of-distribution (OOD) generalization problem.
ZSC capability evaluation requires specific methods, such as partners that meet deployment-time
distributions and metrics that focus on generalization performance and not only task performance [25].

Current ZSC evaluation methods still face challenges. The distribution gap between evaluation and
deployment-time partners is crucial. Human proxy agents might not fully mimic human behav-
iors [60], and generating evaluation and training partners using identical methods [51, 27] results in
similar distributions, compromising the reliability of evaluation results. Cross-play evaluations among
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Figure 1: ZSC-Eval. 1) Generation: generating behavior-preferring agents and their best responses;
2) Selection: selecting evaluation partners by maximizing Best Response Diversity; 3) Measurement:
evaluating the ego agent with the evaluation partners and computing Best Response Proximity.

trained ZSC agents [57, 23] risk unfair comparisons due to overlaps between training and evaluation
partners. Some evaluation methods are inconvenient to implement, e.g., human proxy agents require
human data for training. Moreover, using mean episode returns as the ZSC capability metric restricts
evaluation to task performance, ignoring generalization performance like the generalization gap [16].
The mean episode returns also ignore different and unbalanced cooperation capabilities of evaluation
partners [64]. Therefore, the community urgently needs evaluation toolkits with evaluation partners
to meet deployment-time requirements and better metrics for fair and comprehensive comparisons.

In this paper, we introduce ZSC-Eval, a comprehensive and convenient evaluation toolkit and
benchmark, including the generation and selection of evaluation partners and measurement of ZSC
capability with novel metrics. Inspired by reward hypothesis [52, 4], we assume that deployment-
time partners’ requirements can be represented as reward functions. Therefore, we use the widely
adopted event-based reward functions [36, 11, 33] to indicate deployment-time partners’ behavior
preferences, which is practical for humans to designate evaluation partners [60]. To address the
unbalanced distribution of generated partners and consequential unbalanced performance estimation,
we propose Best Response Diversity (BR-Div), the population diversity [40] of partners’ BRs, to
select representative subsets as evaluation partners. For a comprehensive evaluation of generalization
performance, we propose BR-Prox, which measures the performance similarity between ego agents
and approximate BRs to the evaluation partners, illustrating the generalization gap and balancing
evaluation partners with different cooperation capabilities.

We first verify the effectiveness of ZSC-Eval by demonstrating that the generated evaluation partners
exhibit more diverse high-level behaviors than those in current evaluation methods. We then evaluate
current ZSC algorithms using different evaluation methods and humans in the most popular coordina-
tion environment, Overcooked [5, 22] and show that ZSC-Eval can provide consistent results with
human evaluation. We also provide benchmark results of current ZSC algorithms in Overcooked, in
which we develop new testbeds. To verify the scalability of ZSC-Eval, we also provide benchmark
results in Google Research Football (GRF) [20]. Through these experiments, we conclude guidelines
for designing ZSC testbeds and further analyze the failure of current ZSC algorithms to generate
enough diverse expert training partners.

In summary, our contributions are as follows: 1) To the best of our knowledge, we are the first to
investigate the evaluation of ZSC capability and analyze the limitations of current evaluation methods;
2) We propose ZSC-Eval, a comprehensive and convenient evaluation toolkit and benchmark for
ZSC algorithms, including partner candidates generation via behavior-preferring rewards, partners
selection via BR-Div, and ZSC capability measurement via BR-Prox; 3) ZSC-Eval comprises human
evaluation benchmark results from our human study platform, a part of ZSC-Eval, and comprehensive
benchmark results with our generated evaluation partners, providing guidelines for designing ZSC
testbeds and empirical analyses for current ZSC algorithms.

2 Related Work

ZSC Problem and Methods. ZSC algorithms aim to train an ego agent that can be deployed to
coordinate with unseen partners without further training. Self-play (SP) [53, 59, 55] is a common way
to train ego agents but learns conventions between players and generates agents that lack coordination
with unseen partners [5]. Based on SP, representative algorithms involving game structure random-
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Table 1: Comparison of evaluation partners used in recent works. Cost - Implementation efforts and
financial outlay. Extendability - the degree to which they can be expanded in new scenarios. Unseen -
their distributions are not similar to training partners. Diverse - their skills’ style and level are diverse.
Deployment Requirements - they can follow the distribution of deployment-time partners.
Evaluation Partners Reproducible Cost Extendability Unseen Diverse Deployment Requirements

Human Players [5] × High - ✓ ✓ ✓
Human Proxy Agents [5] ✓ Medium Weak ✓ × ×
Trained Self-play Agents [51] ✓ Low Strong × × ×
Trained Adaptable Agents [57] ✓ Low Moderate × × ×
Rule-based Specialist [60] ✓ High Weak ✓ ✓ ✓
Random Agents [51] ✓ Low Strong ✓ × ×

ZSC-Eval (Ours) ! Low Strong ! ! !

ization [13] and diversity-based reward shaping [29] are derived to mitigate convention overfitting.
Besides, Population-based training (PBT) algorithms [15], such as Population Play (PP) [5], train
an ego agent that interacts within a population and encounters multiple partners during training.
Fictitious co-play (FCP) [51] proposes a two-stage Co-Play algorithm involving self-play pre-training
and ego agent training with the pre-trained population. Most co-play algorithms enhance the diversity
of training population by population entropy-shaped reward [65], hidden-utility reward functions that
model human behaviors [60], training incompatible agents [6], and contextual encoding for partner
identification [28, 27]. Moreover, Evolution algorithms train the ego agent with evolving populations,
updating the pool by promoting unique behaviors [30] and open-ended learning [57, 23, 24, 58].

ZSC Evaluation and Analysis. Researchers have analyzed ZSC in human-agent and agent-agent
teams. McKee et al. [32] introduce the expected action variation metric for population diversity to
assess agents’ generalization. Knott et al. [17] argue that the average training or validation rewards
do not reflect agent robustness. Some studies discuss the subjective evaluation of human-AI team
performance but do not focus on ZSC capability [48, 31]. In contrast, we focus on evaluating the
ZSC capability using diverse evaluation partners. Our ZSC-Eval aims to solve problems in generating
evaluation partners and comprehensive and fair comparisons. We analyze the current evaluation
methods and demonstrate the superiority of our ZSC-Eval in Table 1. To the best of our knowledge,
ZSC-Eval is the first evaluation toolkit and benchmark for comprehensive ZSC capability evaluation.

3 Background

3.1 Decentralized Markov Decision Process

We formulate the ZSC problem in multi-agent scenarios as a decentralized Markov decision process
(DEC-MDP) [3]. An n-agent DEC-MDP can be formalized as < S, {Ai}i∈N , ρ, T , r, γ >, where
N = {1, . . . , n} is the set of agents, S is the state space, ρ : S 7→ [0, 1] is the distribution of the
initial state s0. Ai is the action space of agent i, and A = A1 × · · · × An is the joint action space.
T : S × A× S 7→ [0, 1] denotes the transition probability. r : S × A 7→ R is the reward function,
and γ ∈ [0, 1) is a reward discount factor. At time step t, each agent i takes action ait from its
policy πi(·|st), simultaneously according to the state st, forming the joint action at = {a1t , . . . , ant }
and the joint policy π(·|st) = π1 × . . . × πn. We denote the expected discounted return as
J (π) = Eτ∼(ρ,π) [

∑
t γ

tr(st,at)]. Note that we concisely use J (π) under permutations of agents
and J (π, π−i) = J (π, . . . , π, π−i) where π repeats n− |π−i| times, without loss of generality. For
convenience, we denote the Best Response (BR) of policy π−i as BR(π−i) = argmaxπ′ J (π′, π−i).
Let Πtest be the set of potential unseen partners, named deployment-time partners in this paper, and
πi be the ego agent’s policy. The optimization objective of the ZSC problem can be represented
as: maxπ EL∼U(P(Πtest))

[
J (π, {πi}i∈L)

]
, where P(P) = {L ∈ Pm|1 ≤ m < n} denotes the

combinations of agents in P with different sizes, and we assume partners are sampled from a uniform
distribution U . As we focus on population-based ZSC algorithms, we further formalize the objective
that considers the construction of the training population:

max
Πtrain,O

EL∼U(P(Πtest))

[
J

(
O(Πtrain), {πi}i∈L

)]
,
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where Πtrain is the population constructed during training and O is an approximate oracle
function that computes the common best response for partners in Πtrain. For instance, the
oracle function can be defined to maximize the objective with U(Πtrain), i.e., O(Πtrain) =
argmaxπ EL∼U(P(Πtrain))

[
J (π, {πi}i∈L)

]
.

3.2 Limitations of Current Evaluation Methods

In MARL, the ZSC problem focuses on zero-shot generalization to unseen cooperative partners,
presenting an OOD generalization challenge due to the difference between training and deployment-
time partners. To evaluate the ZSC capability accurately, evaluation partners must follow deployment-
time partners’ distributions, including human and other agents. Furthermore, the generalization
performance of the ego agent must be measured in addition to task performance metrics like episode
returns [16]. We discuss the gap between reasonable and current evaluation methods as follows.

Are current evaluation partners convenient and following the distributions of deployment-time
partners? Diversity in evaluation partners is not just a desirable feature but a necessary condition
for them to effectively cover the distribution of deployment-time partners. In our analysis, current
evaluation partners in Table 1 (detailed in Appendix A) can be classified into two types: training-based
and non-training-based. As the most commonly used training-based evaluation partners, human proxy
agents trained by behavior cloning human data can not mimic real human behaviors [60]. Trained
self-play partners frequently fail to diverge from the training population since they may not achieve
distinct high-level behaviors [7, 45] though efforts have been made to generate diversity through
low-level behavior optimization [30, 65]. Non-training-based partners like random agents do not
provide diversity while maintaining high performance. The lack of diversity among these partners
makes it difficult to match the distribution of deployment-time partners. Besides, some evaluation
partners suffer from reproducibility problems, high implementation costs, and extendability problems,
and they are similar to training partners, as summarized in Table 1.

Can current evaluation methods and metrics demonstrate the ZSC capability? At present,
evaluation methods in ZSC can be broadly classified into two categories: evaluations with fixed
partners and cross-play evaluations. Cross-play evaluations, i.e., using trained adaptive agents from
ZSC algorithms as evaluation partners and cross-playing the agents to compare the performance
mutually, risk unfair comparisons due to overlaps between evaluation and training partners. Moreover,
eliminating overlapping partners might compromise the control conditions of experiments. As
for evaluation metrics, both approaches use mean episode returns to evaluate the ZSC capability.
However, the current metric needs revision to measure the overall generalization performance of
ZSC. It fails to capture crucial aspects such as the generalization gap [16] and ignores different
cooperation capabilities among evaluation partners, highlighting the need for more comprehensive
evaluation metrics. The potential for unfair comparisons and limitations of current evaluation metrics
significantly undermine their effectiveness in assessing ZSC capabilities.

In summary, there is an urgent need in the ZSC community to develop a comprehensive evaluation
toolkit and benchmark to assess ZSC capability more accurately and drive progress in ZSC.

4 ZSC-Eval

As shown in Figure 1, ZSC-Eval includes evaluation partners generation and selection, and ZSC
capability measurement.

4.1 Generation of Behavior-preferring Agents as Candidates

Based on the reward hypothesis that goals and purposes can be well thought of as maximizing the
expected cumulative sum of the received reward [52, 4], we assume that requirements for deployment-
time partners can be represented as reward functions RDeploy = {r1, . . . , rP }, where P is the number
of partners. Consequently, deployment-time partners can be approximated by optimizing policies
to maximize these reward functions. Specifically, the distribution of deployment-time partners is
tailored to various applications, such as care robots [41, 37] and team sports [12]. Event-based
rewards are widely adopted as a standard reward design method and a practical design principle in
these applications [36, 11, 33, 62, 2, 47]. Therefore, we use event-based rewards, which we named
behavior-preferring rewards, to approximate RDeploy. Behavior-preferring rewards allow conveniently
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Algorithm 1: Evaluation Partners Generation and Selection

Input: Reward Space RBP, Number of Candidates N , Number of Evaluation Partners M .
Output: Evaluation Partners {πwi}i∈S and Best Responses {B̂R({πwi}i∈L)}L∈P(S).

1 for i = 1, . . . , N do
2 Sample a behavior-preferring reward function rwi from RBP.
3 Obtain (πwi , B̂R(πwi)) by performing PPO independently to solve the Markov Game.
4 Evaluate (πwi , B̂R(πwi)) and embed B̂R(πwi)’s high-level behavior features as θwi .

5 Compute the similarity matrix of {B̂R(πwi)}Ni=1 as K.
6 Sample a subset S of size M by Determinantal Point Proces sampling with K.
7 Select checkpoints as C and update S = S ∪ C.
8 Train approximate BRs {B̂R({πwi}i∈L)}L∈P(S).

designating the coverage of evaluation partners to include common and edge cases [17] and entail
high reproducibility, low implementation cost, and strong extendability, as summarized in Table 1.

Specifically, we use a linear function combination to approximate the reward space RDeploy, as
in Ng et al. [36]. The approximate reward space is defined as RBP = {rw|rw(st,at) = r +
ϕ(st,at)

Tw,w ∈ Rm, ∥w∥∞ ≤ Bmax,
∑

i 1(wi ̸= 0) ≤ Cmax}, where w is an m-dimensional
weight vector and rw is the reward function that encourages behaviors indicated by w. ϕ : S ×A 7→
Rm embeds event-based features, e.g., ϕ(st,at)j indicates whether the j-th event has occurred. Bmax
limits the norm of w, while Cmax limits the number of events, eliminating unusual behaviors. The
original game reward r is added to prevent behavior-preferring agents from sabotaging. Under these
constraints, RBP promotes diverse behaviors and still encourages cooperative task completion.

We train behavior-preferring agents and their best responses using behavior-preferring reward func-
tions. Given a specific reward function rw, one player receives this reward while the others continue
receiving the original game reward r. The procedure of optimizing the players’ objectives can be
formulated as finding a Nash Equilibrium (NE) [38] in a Stochastic Game [54]. We can approximate
an NE by agents independently performing the Proximal Policy Optimization (PPO) algorithm [46]
since rw ∈ RBP still guides the behavior-preferring agent to cooperate for solving the given task [8].
After approximating an NE, we obtain πw that learns the behaviors preferred by w and B̂R(πw),
the approximate BR of πw. Line 1 to Line 3 in Algorithm 1 summarize that ZSC-Eval constructs
evaluation partner candidates which cover a set of diverse behaviors by sampling reward functions
from RBP and approximating NEs.

4.2 Selection of Evaluation Partners by Best Response Diversity
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Figure 2: (a) Different partners may respond to similar BRs.
(b) Population diversity of BRs to partner subsets selected
by two methods with different sizes. A higher vertical axis
value at the same subset size indicates more diverse BRs in
the subset.

The generated candidates may be un-
balancedly distributed in cooperative
conventions and behaviors, which we
further discuss in Section 5.1. To
avoid the unbalanced evaluation of
ZSC agents that coordinate well with
those behaviors with high proportions
in candidates, we need to select a
representative subset of candidates as
evaluation partners.

Typically, the most representative
population subsets can be obtained
by maximizing the population diver-
sity [40]. We first define the popula-
tion diversity of a population {πi}Mi=1 as the determinant of the population’s similarity matrix:
PD({πi}Mi=1) := det(K), where Kij = θi · θj is the similarity matrix of the population, and θi is
the behavior feature of policy πi.3 One can intuitively repeat sampling subsets from candidates and

3For simplicity, we count the occurrences of events during episodes as the policy behavior.
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select the subset with the maximum population diversity as the evaluation partners, which can be
formatted as maximizing the Partner Diversity (P-Div), where P-Div({πi}Mi=1) = PD({πi}Mi=1).

However, based on the fact that an ego agent with strong ZSC capability should emulate any policy
in the set of BRs to evaluation partners [30], the evaluation method should expose the ego agent to
evaluation partners with diverse BRs. Different partners selected by P-Div may respond to similar
BRs [45, 22], as illustrated in Figure 2(a). Therefore, maximizing P-Div may not necessarily produce
partners that require diverse skills to coordinate with [42, 43]. To further verify, we define Best
Response Diversity (BR-Div) as BR-Div({πi}Mi=1) := PD({B̂R(πi)}Mi=1), which is the population
diversity of approximate BRs to selecte candidates. As in Figure 2(b), selections from a pool of
evaluation partner candidates based on BR-Div reach a higher population diversity of BRs than
those based on P-Div, meaning that maximizing BR-Div is more effective in constructing evaluation
partners with diverse BRs. We include details of Figure 2(b) and demonstrate that evaluation partners
selected by BR-Div exhibit more diverse behaviors than those selected by P-Div in Appendix D.

Therefore, we select evaluation partners through maximizing BR-Div, as summarized in Line 4 to
Line 6 in Algorithm 1. In detail, we count occurrences of pre-defined events of B̂R(πwi) alongside
episodes as the high-level behavior feature θwi = E

πwi ,B̂R(πwi )
[
∑T

t=1 ϕ(st,at)] ∈ Rm of B̂R(πwi)

for calculating BR-Div. Then we compute the similarity matrix as K where Kij = θwi · θwj . Since
BR-Div is defined as a determinant function, we apply the Determinantal Point Process (DPP) [19] to
search for the candidate subset of size M with the maximum determinant. DPP samples proportionally
to determinants of candidate subsets: P ({πwi}i∈P) ∝ BR-Div({πwi}i∈P) = det(KP), where
P ⊂ {1, . . . , N} is the subset’s indices and KP denotes the submatrix of K obtained by restricting
rows and columns indexed in P. Because candidate subsets are usually inexhaustible, we repeat
DPP sampling to search for the representative candidate subset and denote the selected subset as
S = argmaxP BR-Div({πwi}i∈P) and |P| = M . Furthermore, as shown in Line 7 of Algorithm 1,
we collect the earlier checkpoints of selected candidates to enhance the diversity of skill levels, which
satisfies J (B̂R(π̇wi), π̇wi) ≈ J (B̂R(πwi), πwi)/2, i ∈ S.

4.3 Measurement of ZSC Capability by Best Response Proximity

Previous evaluation methods measure ZSC capability by mean episode returns, but there are two
limitations to using mean episode returns: 1) Using mean episode returns does not provide a standard
for presenting how well the learned cooperation ability is generalized. For example, when evaluating
agents’ generalization ability, it is recommended to show their generalization gap in auxiliary, i.e.,
the gap between training performance and testing performance [16]. 2) Mean episode returns do not
consider the unbalanced cooperation capabilities among evaluation partners, and results with different
evaluation partners should not be weighted equally. To tackle these limitations, we introduce the Best
Response Proximity (BR-Prox) metric. Formally, we define:

BR-Prox (π, {πwi}i∈P) := Aggr
L∈P(P)

(
J (π, {πwi}i∈L) / J

(
B̂R({πwi}i∈L), {πwi}i∈L

))
,

where Aggr means the aggregator across evaluation partners, such as the most common ‘mean’
and ‘median’ aggregators. We adopt the inter-quartile mean to aggregate the data [1], focusing
on the middle 50% for statistical reliability. BR-Prox evaluates performance similarity between
the ego agent and approximate BRs, presenting the generalization gap and balancing results with
evaluation partners based on their cooperation capability. Since a single score cannot fully capture
the performance variance across evaluation partners [17], we recommend reporting the results with
95% confidence intervals [35] and inter-quartile ranges, e.g., the middle 50% of disaggregated scores.

5 Experiments

In this section, we conduct a series of experiments in popular coordination environments Over-
cooked [5, 22] and Google Research Football (GRF) [20]. We first verify ZSC-Eval’s effectiveness
both in generating diverse evaluation partners and evaluating ZSC capability, compared with current
evaluation methods, including human evaluation. We then benchmark current ZSC algorithms using
ZSC-Eval and show novel empirical findings about how ZSC-Eval helps evaluate ZSC algorithms.
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Figure 3: Visualization of high-level behaviors of human proxy agents, different self-play populations,
our evaluation partner candidates, and evaluation partners in Overcooked layouts.

Environments. We conduct experiments in two environments. We retain four commonly used
layouts in Overcooked, including Asymm. Adv., Coord. Ring, Forced Coord., and Counter Circ.. We
leverage two new layouts, Bothway Coord. and Blocked Corr. and create three more new layouts with
the multi-recipe mechanism to increase the necessity and difficulty of cooperation. Then, we choose
the ‘3 vs 1 with Keeper’ scenario in GRF as a ZSC testbed, letting the ego agent be a team member
and collaborate with the other three players. Environment details can be found in Appendix B.

Experiment Setup. We implement six strong methods, including FCP [51], MEP [65], TrajeDi [30],
HSP [60], COLE [23] and E3T [58], and additionally add self-play (SP) [5] as a baseline. We also
evaluate these ZSC algorithms with humans in Overcooked. More experiment setup details and full
results are in Appendix C.

5.1 Effectiveness of ZSC-Eval

ZSC-Eval’s Evaluation Partners Exhibit the Most Diverse Behaviors. We demonstrate the
population diversity of our generated evaluation partners and evaluation partners used in current
evaluation methods in Figure 3. Our generated evaluation partners exhibit the most diverse behaviors.
More results shown in Appendices D.2 and D.3 further illustrate that our generated evaluation partners
exhibit more diversity in high-level behaviors and episode return distributions obtained with ZSC
agents. The diversity of evaluation partners means that ZSC-Eval has a strong ability to approximate
deployment-time partners.

Table 2: Ranks of ZSC algorithms under different
evaluation partners in various Overcooked layouts.
rs measures the correlation between ranks under
human evaluation and ranks under others.

Layouts Eval Partners ZSC Algorithms
rs

HSP MEP FCP COLE SP
Human 3 1 2 4 5 -
ZSC-Eval (Ours) 2 1 3 4 5 0.90
Human Proxy 2 1 3 4 5 0.90

Coord. Ring

Trained SP Agents 4 1 3 2 5 0.70
Human 1 3 2 4 5 -
ZSC-Eval (Ours) 1 3 2 4 5 1.00
Human Proxy 3 1 2 4 5 0.60

Counter Circ.

Trained SP Agents 4 3 2 1 5 0.10

Highly Similarity between Evaluations by
ZSC-Eval and Human. To demonstrate the
effectiveness of ZSC-Eval for evaluating ZSC al-
gorithms, we compare human evaluation results
with evaluation results using different evaluation
partners. The results shown in Table 2 verify
that ZSC-Eval’s results are the closest to human
evaluations and that the Spearman’s rank corre-
lation coefficient (rs) [49] between ZSC-Eval
and human evaluation reaches the highest, mean-
ing that ZSC-Eval effectively obtains evaluation
results similar to those with humans. We also
collect human subjective rankings and compare
them with objective score rankings. The human
subjective perceptions are generally consistent
with the objective episode returns. Detailed re-
sults are provided in the Appendix D.7.

5.2 Benchmark Results and Empirical Findings in Overcooked

We present abundant benchmark results with 9 Overcooked layouts in Figures 4 to 6, in which we
implement each population-based algorithm with three different population sizes. We observe that
co-play algorithms outperform other algorithms in most layouts, and population-based algorithms
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Figure 4: BR-Prox performance with 95% confidence intervals of ZSC algorithms with different
population sizes in Overcooked. ‘12\25’, ‘24\50’ and ‘36\75’ mean that co-play methods (FCP,
MEP, TrajeDi and HSP) are trained with populations of 12, 24 and 36 and that the evolution method
(COLE) is trained with populations of 25, 50 and 75. Note that SP and E3T are not population-based.
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Figure 5: BR-Prox performance of ZSC algorithms in Overcooked with multiple recipes.

generally perform better as the population size increases. Full results can be found in Appendix D.
We summarize two empirical findings below.

Guidelines for Increasing Complexity in Designing ZSC testbeds. Results in Figure 4 indicate
the commonly used layouts, Forced Coord. and Asymm. Adv. fail to differentiate algorithms’
performance. We have also noticed that SP performs well in these layouts, indicating that it can
easily learn most of the skills for interacting with unseen partners. These results suggest that some
layouts’ simplistic design limits the showcase of agents’ ZSC capabilities due to insufficient required
cooperative strategies. We improve layouts by increasing their complexity, including the complexity
of agent coordination (coordination complexity) and overall team tasks (task complexity).

Coordination Complexity. We observe the connection between whether layouts differentiate algo-
rithms’ performance and degrees of resource-sharing in four old layouts and then classify the layouts
as ‘Limited Resource-sharing’ and ‘Full Resource-sharing’ in Figure 4. As a case of coordination
complexity, the resource-sharing mechanism increases the need for cooperative strategies and helps
measure ZSC capability, demonstrating the importance of increasing coordination complexity. To
investigate further, we increase the coordination complexity by letting the layouts require more
frequent interaction among agents. The Bothway Coord. and Blocked Coor. layouts we leverage
include passing cooking ingredients bidirectionally and scheduling spare counters and a corridor. In
these new layouts, ZSC algorithms exhibit a more significant performance difference, demonstrating
the effectiveness of increasing coordination complexity.

Task Complexity. We leverage the multi-recipe mechanism in three old layouts to increase the
task complexity and then present benchmark results in these new layouts. As shown in Figure 5,
the performance difference between ZSC algorithms has significantly increased after using the
multi-recipe mechanism, indicating the effectiveness of increasing task complexity. While the
increased population size could improve policy diversity within the population [32], the performance
improvement as the population size grows is only apparent in experiments where we leverage the
multi-recipe mechanism. Such a phenomenon indicates that the increased task complexity enables
layouts to demonstrate the effect of varying population sizes since more cooperative strategies are
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Figure 6: We compare the aggregated BR-Prox performance obtained with evaluation partners at
different skill levels.

required, which is desired for ZSC evaluation. Therefore, when developing ZSC testbeds, we suggest
prioritizing task complexity.

Performance Degradation with Expert Evaluation Partners. ZSC-Eval highlights the performance
variation of ZSC algorithms with evaluation partners of varying skill levels. We investigate how
ZSC algorithms perform when faced with unseen partners at different skill levels by considering the
evaluation partners with self-play performance less than the median, i.e., {πP |πP ∈ S,J (πP ) ≤
MedianπP ′∈S J (πP ′)}, as moderate evaluation partners, and the left ones as expert evaluation
partners. Owing to BR-Prox that measures generalization capability rather than episode returns,
ZSC-Eval reveals that current ZSC algorithms perform worse with expert evaluation partners, as
shown in Figure 6. Furthermore, increasing population size has a lower impact on performance when
dealing with expert evaluation partners than moderate evaluation partners. Such results may result
from current ZSC algorithms failing to generate enough diverse expert agents even with increasing
population sizes, which can be diagnosed using our proposed BR-Div, as elaborated in Appendix D.4.

5.3 Evaluating Zero-shot Coordination Capability in Google Research Football

Table 3: BR-Prox performance with 95%
confidence intervals of ZSC algorithms
in GRF.

Method BR-Prox (95% CI)
SP 0.20 (0.14, 0.24)
E3T 0.66 (0.59, 0.74)
FCP 0.78 (0.72, 0.85)
MEP 0.78 (0.71, 0.85)
TrajeDi 0.81 (0.75, 0.89)
COLE 0.75 (0.69, 0.84)
HSP 0.80 (0.72, 0.88)

We further evaluate current ZSC algorithms by ZSC-Eval
in the GRF academy ‘3 vs 1 with Keeper’ scenario, a
complex cooperative environment with a large state-action
space and strong built-in bots as opponents, to investigate
ZSC-Eval’s scalability. Table 3 shows the performance
of each method playing the three-player football game
with our evaluation partners, in which the ZSC algorithms’
ranks are similar to those in Overcooked. In Appendix D.2,
we further illustrate diverse high-level behaviors of ZSC-
Eval generated evaluation partners in GRF. These results
verify that ZSC-Eval can conveniently scale to more com-
plex scenarios with more than two players.

6 Conclusion

In this paper, we first analyze problems of current ZSC evaluation methods, particularly mismatched
distributions between evaluation and deployment-time partners and inadequacy metrics for measuring
ZSC capability. We present ZSC-Eval, a toolkit and benchmark for evaluating ZSC algorithms, which
includes: 1) evaluation partner candidates generation via behavior-preferring rewards, 2) evaluation
partners selection via BR-Div, and 3) ZSC capabilities measurement via BR-Prox. ZSC-Eval includes
Overcooked and GRF as testbeds and implements commonly used ZSC algorithms. Although ZSC-
Eval has limitations in fully representing deployment-time partners, we demonstrate its effectiveness
by verifying the diversity of generated evaluation partners and the consistency between ZSC-Eval ’s
evaluation results and human evaluation results. Another limitation mainly lies in the fact that the
design of event-based rewards needs careful handcraft and that event-based rewards may not fully
represent deployment-time partners. The events represent various situations during the deployment
time, which requires the designer to have a comprehensive understanding of the environments and
tasks, and is hard to exhaust. The limitation results from the challenge of reward design, which is
an inherent challenge in reinforcement learning [26]. To alleviate these limitations, a promising
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further direction is to leverage some automatic reward design techniques, e.g., leveraging the large
language models for reward generation [21]. We create new ZSC testbeds, propose guidelines for
designing ZSC testbeds, and provide detailed analyses about the failure of current ZSC algorithms
in coordinating with expert evaluation partners. We believe that ZSC-Eval could be a convenient
scaffold for developing future ZSC algorithms.
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A Comparisons among Evaluation Methods

We categorize the partner agents involved in the evaluation of ZSC algorithms in Table 4, and offer a
comprehensive analysis of the limitations associated with these partners.

Table 4: Evaluation partners used in recent works under the Overcooked environment.

Evaluation Methods Utilized by

Human Players
Overcook-AI [5]; MEP [65]; FCP [51]; HSP [60];
PECAN [28]; HiPT [27]; COLE [24]; E3T [58]

Human Proxy Agents
Overcook-AI [5]; MAZE [57]; FCP [51]; MEP [65];
HSP [60]; PECAN [28]; COLE [23]; HiPT [27]; E3T [58]

Trained Self-play Agents FCP [51], MAZE [57], LIPO [6], HiPT [27]
Trained Adaptable Agents MAZE [57], COLE [23], E3T [58]
Rule-based Specialist HSP [60], LIPO [6]
Random Agents FCP [51], MAZE [57]

Human Players. The human player in ZSC problem is a type of ‘perfect’ evaluation partners, because
humans are strictly qualify as unseen partners and represent the deployment-time requirements. Many
works present a human evaluation as a main contribution [5, 51, 65, 60, 24, 28, 27]. The most
challenge is that during the training process, a long-cycle human evaluation is not repeatable and
cannot be replicated in large numbers to advance algorithm iterations. And the cost of human
evaluation is also cannot be ignored. We need a more efficient evaluation method as a supplement for
human evaluation.

Human Proxy Agents. The most widely used evaluation partners is human proxy agents proposed
by [5]. The human proxy agents were trained by imitation learning method with a human datasets,
which aims to represent human behaviors and human diversity [5]. And [51] used a similar way to
construct a human proxy agents pool for evaluation. The availability and cost of human data are
constrained, which are similar to the human evaluation. Yu et al. [60] highlighted that these human
proxy agents in overcooked environment do not account for human behaviors, which shows that
using human proxy agents does not represent the diversity from humans and does not validate the
ZSC capabilities of the algorithm and fully compare various methods.

Trained Self-play Agents. The trained self-play agents are also a widely used partners for ZSC
capability evaluation [51, 57, 6, 27]. However, through our experiment that comparing the similarities
between two SP agents pools using different seeds (refer to Figure 14), we find that the diverse SP
pool for evaluation which constructed using same algorithm in pre-training stage is similar to the
pre-trained population in co-play methods. This flaw makes it difficult for these trained self-play
agents to meet unseen requirements.

Trained Adapted Agents. The evaluation via cross-play with other trained adapted agents is
inevitable to have a part of evaluation that is tested on algorithm’s own training set (even including
their own ego) [6, 57, 23]. The own training set even including own ego may leads to a higher
performance and they are not unseen partners. Therefore, the performance of cross-play does not
completely reflect the capabilities of ZSC, and may cause the performance to be falsely improved.
And if excluding the performance from own training population to avoid the seen partners, the
cross-play evaluation leads to a potential unfairness.

Rule-based Specialist. As a controllable method, using rule-based agents to evaluate the ZSC
capability is also been used by some studies [60, 6]. The most problem is that compared to other
methods, ruled-based agents evaluation is not extendable. Manually building expert rules is difficult
to implement in complex environments and may not meet diversity requirements.

Random Agents. Another choice is using random initial agents as evaluation partners [51, 57].
However, the diversity of the random initialization cannot be ensure. And evaluate agent diversity
is not only presenting in low level behaviors but also need a high level performance [7]. Random
initialization lacks of a high level performance to ensure the evaluation pool is diverse enough.
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The lack of diversity in random evaluation partners makes it difficult to represent deployment-time
requirements, failing to comprehensively demonstrate ZSC capabilities.

ZSC-Eval. We remark that designing rewards to encourage desired behaviors requires much less
implementation efforts and exhibits stronger extendability than implementing rule-based specialists
since the former does not implement policies directly, although both of them requires human efforts.

B Experiment Environment

B.1 Overcooked Environment

We re-evaluate in the Overcooked environment [5]. Overcooked is a simulation environment for
reinforcement learning derived from the Overcooked! video game and popular for coordination
problems [22]. The Overcooked environment features a two-player collaborative game structure
with shared rewards, where each player assumes the role of a chef in a kitchen, working together to
prepare and serve soup for a team reward. We retained 4 layouts including Asymmetric Advantages
(Asymm. Adv.), Coordination Ring (Coord. Ring), Forced Coordination (Forced Coord.), and
Counter Circuit (Counter Circ.) and added 3 new layouts: Bothway Coordination (Bothway Coord.),
Blocked Corridor (Blocked Corr.) and Asymmetric Coordination (Asymm. Coord.). The figure of
these layouts can be found in Figure 7. We further implement the multi-recipe mechanism in Forced
Coordination (Forced Coord.), Coordination Ring (Coord. Ring) and Counter Circuit (Counter Circ.)
layouts. As shown in Figure 8, the multi-recipe mechanism has onion (O) and tomatoes (T) as
ingredients, which expands the range of recipes from just onion soup (3O) to five types of soups,
including mix soup (1O1T), less onion soup (2O), tomato-onion soup (2T1O), onion-tomato soup
(2O1T), and onion soup (3O).

Belows are the details and main challenges for each layout:

Forced Coordination. The Forced Coordination environment is designed to necessitate cooperation
between the two players, as they are situated in separate, non-overlapping sections of the kitchen.
Furthermore, the available equipment is distributed between these two areas, with ingredients and
plates located in the left section and pots and the serving area in the right section. Consequently,
the players must work together and coordinate their actions to complete a recipe and earn rewards
successfully.

Counter Circuit. The Counter Circuit layout features a ring-shaped kitchen with a central, elongated
table and a circular path between the table and the operational area. In this configuration, pots, onions,
plates, and serving spots are positioned in four distinct directions within the operational area. Players
may find themselves obstructed by narrow aisles, prompting the need for coordination to maximize
rewards. One example of an advanced technique players can learn is to place onions in the middle
area for quick and efficient passing, thereby enhancing overall performance.

Asymmetric Advantages. In the Asymmetric Advantages layout, players are divided into two
separate areas, but each player can independently complete the cooking process in their respective
areas without cooperation. However, the asymmetrical arrangement of the left and right sides
encourages collaboration to achieve higher rewards. Specifically, two pots are placed in the central
area, accessible to both players. The areas for serving and ingredients, however, are completely
distinct. The serving pot is placed near the middle on the left side and far from the middle on the
right side, with the ingredients area arranged oppositely. Players can minimize their walking time
and improve overall efficiency by learning how to collaborate effectively.

Coordination Ring. The Coordination Ring layout is another ring-shaped kitchen, similar to the
Counter Circuit. However, this layout is considerably smaller than Counter Circuit, with a close
arrangement that makes it easier for players to complete soups. The ingredients, serving area, and
plates are all in the bottom left corner, while the two pots are in the top right. As a result, this layout
allows more easily achieving high rewards.

Bothway Coordination. Compared to the Forced Coordination, Bothway Coordination enables
both left and right agents to have access to onions and pots, giving them more policy space and
cooperation forms, which decreases the long waiting time in Forced Coordination and enriches their
policy diversity. Meanwhile, the plates and the serving spot are still placed to one side, thus the two
players still need to cooperate to finish an order.
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Blocked Corridor. In the Block Corridor layout, the most challenging part is the corridor which
is the only connection between the left and right parts with the small throughput of one person in
the middle. Both onions and plates are placed at the upper edge of U-Shape corridor, while pot and
serving spot are placed at two bottom corner. If there is no cooperation at all, the onion need to be
carried from upper left to lower right while the teammate needs to stay at the spare place at right side
to avoid conflict. If we want to implement cooperation, there are a lot of options of spare counter,
which provides many alternatives for how to cooperate. The agent needs to show its diversity and be
able to response well to all possible behaviors of the player. Additionally, conflicting positions within
small corridors is a challenge that needs to be addressed. Definitely, it is the most challenging layout
of our setup.

Asymmetric Coordination. Modified from Asymmetric Advantage, this layout expands the map
and changes the plates to be asymmetric. The first change expand the trajectory space. The second
change is that we make the right player have a shorter distance to pick a plate while the left player
have a shorter to serve the soup, yielding a new cooperation form where right player pass the plate to
left through the center counter.

Forced Coordination with Multi-recipe. Multi-recipe Forced Coordination is modified from Forced
Coordination with the addition of tomatoes (another ingredient) on a shared counter between two
players. In this and the following layouts, we’ve added multiple recipes with different rewind times
and rewards. Two players need to complete a variety of orders within the rewind time, and cooperation
is required in the process.

Coordination Ring with Multi-recipe. Similar with Forced Coordination with Multi-recipe, Coordi-
nation Ring with Multi-recipe adds tomatoes at the bottom-left locations near the serving area, which
is a more complex version of Coordination Ring and increases the importance of cooperation.

Counter Circuit with Multi-recipe. Counter Circuit with Multi-recipe has the same layout as the
Counter Circuit mentioned above. But it adds the multi-recipe settings as well. Due to the difficulty
of the layout, we chose to keep onions as the only ingredient and try recipes with different amounts
of onions to enrich the environment.
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(f) Asymmetric Advantages
unident_s

(b) Bothway Coordination
random0_medium

(c) Coordination Ring
random1

(d) Counter Circuit
random3

(a) Forced Coordination
random0

(e) Blocked Corridor
small_corridor

(g) Asymmetric Coordination
unident_s_hard

Figure 7: Used layouts in Overcooked.

(a) Forced Coord. with Multi-recipe (b) Coord. Ring with Multi-recipe (c) Counter Circuit with Multi-recipe (d) Recipes

Figure 8: Multi-recipe Mechanism in Overcooked.

B.2 Google Research Football

Google Research Football (GRF) [20] is a simulation environment for reinforcement learning based
on the popular football video game. The GRF environment offers a multi-agent game setting with
competitive or cooperative rewards, where each agent controls a football player in a realistic 3D
stadium, trying to score goals and prevent the opponent from scoring. It features a continuous viewing
space, comes in a variety of candidate formats including raw pixels, super mini maps, and floating
vectors, and offers 19 discrete actions for each individual player. We choose the Football Academy 3
vs. 1 with Keeper scenario and implement it as a ZSC challenge.

Google Research Football Academy 3 vs. 1 with Keeper scenario. In this environment, three
of our players try to score from the edge of the box, one on each side, and the other at the center.
Initially, the player at the center has the ball, and is facing the defender. The defender side has a goal
keeper. The offensive players need to cooperate by passing, dribbling or moving to score a goal.
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Figure 9: Google Research Football Academy 3 vs. 1 with Keeper scenario.

C Experiments Details

C.1 Evaluation Process

We implement six ZSC algorithms including FCP [51], MEP [65], TrajeDi [30] , COLE [23], HSP
[60] and E3T [58]. And we also implement self-play [5] as a baseline for comparison.

For Overcooked environment, we evaluate the ZSC capability by the BR-Prox metric across five
random seeds. For each seed, we evaluate the ego agent with 30 evaluation partners for the Asymm.
Adv. and Asymm. Coord. layouts and 20 evaluation partners for other layouts, and for 50 episodes
each partner.

For GRF environment, we evaluate the ZSC capability by the BR-Prox metric across three random
seeds due to the computational resource limitation. For each seed, we evaluate the ego agent with six
evaluation partners with 168 combinations of partners. Each combination of partners has 10 episodes,
and a total of 1680 episodes for each partner.

C.2 ZSC algorithms Introduction

Self-play. Self-play (SP) [53] is a general approach in reinforcement learning, where agents only
learn through playing against themselves. While it can yield high returns during training, agents
trained using this method often struggle to coordinate with diverse policies. We training 10, 000, 000
steps for SP agents.

FCP. Fictitious Co-Play (FCP) [51] is a two-stage training framework. In the first stage, it creates a
diverse partner population through self-play agents pre-trained with different seeds and their previous
checkpoints. In the second stage, it iteratively trains an FCP agent by having it play against sampled
partners from the population. For the co-play methods including FCP, MEP and TrajeDi, we train
5e7, 8e7, 1e8 steps for population sizes of 12, 24, 36 respectively.

MEP. Maximum Entropy Population-based training (MEP) [65] is a variant of FCP. It adopts the
maximum entropy as a population diversity bonus added to the task reward, which is used as the
objective to train a maximum entropy population in the first stage. In the second stage, it trains an
robust agent by prioritized sample agents from the population. We observe that β for prioritized
sampling should be small when the population size is large. Thus we use β = 0.5 in our experiments.

TrajeDi. Trajectory Diversity PBT (TrajeDi) [30] aims to improve the policy diversity by adding
a diversity measure to PBT losses. In details, it introduces the Jensen-Shannon divergence to the
loss when training the population. We implement TrajeDi as a two-stage algorithm. We first train a
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population with the Jensen-Shannon divergence to encourage diversity and then train the ego agent
with uniformly sampling the population. Due to the time consumption problem, we calculate the JSD
by sampling the population instead of traversing the population.

HSP. Hidden-utility Self-Play (HSP) [60] constructs the training population is analogously to how
we construct evaluation. HSP constructs a pool of behavior-preferring agents using event-based
rewards and select half of them by greedy-selection. The population is then used to train the ego agent
with a mixture of behavior-preferring and MEP-trained partners. The main difference in population
construction is that we use BR-Div to select evaluation companions and restrict the event-based
reward space in order to promote reseaonable behavior.

E3T. Efficient End-to-End Training (E3T) [58] employs a mixture of ego policy and random policy
to construct the partner policy and trains the ego agent without the need of a pre-trained population.
We implement E3T without the partner modeling module for a fair comparison. We select the balance
parameter ϵ as 0.5 and the decaying factor of neural network parameters α as 0.1.

COLE. Cooperative Open-ended Learning (COLE) [23, 24] constructs open-ended objectives in
two-player cooperative games from the perspective of graph theory. With the objective functions
calculated using the cooperative incompatibility distribution, it approximates the local best-preferred
strategy to expand the population, which overcomes the cooperative incompatibility problem disclosed
by other approaches. We implement the mete-solver using a reward-based ranking instead of the
Shapley Value due to the time consumption. We train 50, 100 and 150 generations for population size
of 25, 50 and 75 respectively and train 1,000,000 steps for a generation.

C.3 Important Implementation Details

We implement the main body of ZSC-Eval based on HSP’s implementation 4 [60], the cooking
simulation environment from Overcooked-AI5[5], the football simulation environment from Google
Research Football [20].6 All our experiments were run on Linux servers including two types of
nodes: 1) 1-GPU node with NVIDIA GeForce 3090Ti 24G as GPU and AMD EPYC 7H12 64-Core
Processor as CPU, 2) 2-GPU node with two GeForce RTX 3090 24G as GPUs and AMD Ryzen
Threadripper 3970X 32-Core Processor as CPU.

Parallel Partner Sampling. When training the PPO algorithm, we sampling the episodes in which
the ego agent plays with different partners in a batch, which makes the training framework more
scalable.

Centralized Critic. Recent works have verified that a centralized critic function benefits the
performance in fully cooperative games [59, 55, 44].

Truncated Infinite Game. As emphasized in Gymnasium7, Kostrikov and Raayai Ardakani [18] and
Pardo et al. [39], wrong calculation of the truncated returns leads may break the MDP properties of
the environments. We choose to discard the value function iteration from the truncated states.

Available Actions. We implement basic available action indications in the Overcooked and GRF
environments, such as avoiding keeping hitting the counter and null interaction, to accelerate the
exploration.

Entropy Coefficients Decay. To encourage discovering more high-performing coordination conven-
tions, we choose to use large entropy coefficients and decay the entropy coefficients during training.
The linear entropy coefficients decay mechanism is summaried in Tables 5 and 6.

Population Size. In Overcooked, we choose the population size as 12, 24 and 36 for the co-play
methods to demonstrate the effects of population size. While choose the population size as 25, 50,
75 for COLE since the evolution methods generate the ego agent end-to-end without pre-trained
populations and thus require large populations to achieve better performance. In GRF, we choose
the population size as 9 for the co-play methods and 15 for COLE due to the limit of computation
resources.

4https://github.com/samjia2000/HSP, with with MIT License.
5https://github.com/HumanCompatibleAI/overcooked_ai, with MIT license.
6https://github.com/google-research/football, with MIT license.
7https://gymnasium.farama.org/tutorials/gymnasium_basics/handling_time_limits.
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Table 5: Entropy coefficient schedulers in Overcooked.
Method Population Size Entropy Coefficient Schedules Entropy Coefficient Milestones

Co-play
12 0.2 0.05 0.01 0 2.5e7 5e7
24 0.2 0.05 0.01 0 4e7 8e7
36 0.2 0.05 0.01 0 5e7 10e7

Evolution
25 0.2 0.05 0.01 0 2.5e7 5e7
50 0.2 0.05 0.01 0 5e7 10e7
75 0.2 0.05 0.01 0 7.5e7 1.5e8

Table 6: Entropy coefficient schedulers in GRF.
Method Population Size Entropy Coefficient Schedules Entropy Coefficient Milestones
Co-play 9 0.2 0.01 0.01 0 1.5e7 3e7

Evolution 15 0.02 0.01 0.01 0 1.8e7 3.6e7

Important Hyperparameters. We use mostly the same hyperparamters as in Yu et al. [60], except
for the mentioned details such as the entropy coefficients.

Event-based Reward Space Design and Policy Behavior Feature. We design a set of events and
their corresponding range of weights, as summarized in Tables 7 and 8. Using Bmax = 20 and
Cmax = 3, we generate up to 194 candidates and select up to 30 evaluation partners. The generated
candidates are excluded if they cannot complete a delivery when cooperating with their BRs. The
behavior feature of a policy is embedded as the occurrence of these events during the episodes.

Table 7: Designed events and weights used in Overcooked.
Events Weights
Put an onion or a dish or a soup onto the counter 0
Pickup an onion or a dish or a soup from the counter 0
Pickup an onion from the onion dispenser -20,0,10
Pickup a dish from the dish dispenser -20,0,10
Pickup a soup -20,0,5,10
Place an ingredient into the pot -20,0,3,10
Deliver a soup -20,0
Stay -0.1,0,0.1
Movement 0
Order Reward 0.1,1
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Table 8: Designed events and weights used in GRF.
Events Weights
Pass -5,0,1
Catch -5,0,1
Shot -5,0,1
Assist 0
Possession 0
Goal Reward 1,5

C.4 Human Experiment Details

C.4.1 Experiment Setup

We recruited participants (N = 152) using an internal university platform, and we verified 145
valid data points. These participants were aged between 18 and 35, with a gender distribution of
90 for males and 55 for females. 70 participants have experience in playing the real Overcooked!
game. Using a within-subjects experimental design, each participant engaged in experiments with
7 different agents across 2 different layouts, resulting in a total of 14 rounds. To mitigate learning
effects among the subjects, both the order of the layouts and the agents were randomized. Each
game round lasted for 400 time steps (approximately one minute). Each participant earns RMB 58.79
Yuan for the experiment. The names of the algorithms used by the agents were not visible during the
experiments; instead, colors were used for differentiation. Participants were asked to rank the agents
on the same layout after each round. We also recorded the scores and trajectories of each round. All
data collection was conducted with the consent of the participants. After data collection, the data
were de-identified, removing all personally identifiable information.

C.4.2 Experiment Platform

We implement our human experiment platform based on the COLE-Platform [24].8 The experimental
platform is shown in Figures 10 to 13.

8https://github.com/liyang619/COLE-Platform, with MIT License.
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Figure 10: Statement
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Figure 11: Experiment Instruction

Figure 12: Main Experiment
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Figure 13: Human Subjective Perception Ranking

D Additional Results

D.1 Details of Figure 2(b)

We trained 176 evaluation partner candidates in Overcooked Coord. Ring layout, then select subsets
according to BR-Div and P-Div, with subset size ranging from 2 to 15. We remark that only the
comparisons with the same subset sizes are meaningful. We guess that the population diversity of the
two methods first increases and then decreases because possibly correlated partners are included and
that 0 values mean that linearly correlated partners are included.

D.2 Visualization of high-level behaviors

In Figure 14, we visualize the statistic data of the high-level events (Section 4.1) collected in
Overcooked through principal components analysis [10]. As is shown in the visualization result:

• Populations trained using the MEP [65] method differ in random initialization seeds, hyper-
parameters and network architectures but learn similar behaviors.

• Evaluation partners selected by maximizing BR-Div exhibit the most diverse behaviors,
while maximizing P-Div leads to inferior behavior discovering.

Figures 17, 18 and 19 show the heatmap of the evaluation partners’ high-level behaviors in Coordina-
tion Ring, Asymmetric Coordination and GRF.

D.3 Diversity of Evaluation Partners in Episode Returns

We illustrate that our evaluation partners are more comprehensive for ZSC capability evaluation
than the evaluation partners generated by previous evaluation methods in Overcooked Asymmetric
Advantages layout, as shown in Figure 15.

D.4 Analyzing Training Population with BR-Div

The proposed BR-Div can also be an analysis tool for the effectiveness of ZSC algorithms generating
training population. According to Figures 4 and 6, performance can be enhanced by increasing
population size, provided that the population also increases in diversity, i.e., the population diversity
is effectively enlarged by ZSC algorithms. Some ZSC algorithms lack an explicit mechanism to
promote the population diversity, including FCP and COLE. Thus the performance of FCP and COLE
is not benefited from increasing the population size from 24 to 36.

D.5 Overcooked

Figures 22 and 23 show the performance of ZSC algorithms in all the 7 layouts. The black line
marked on each bar is the interquartile mean of the data.
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Table 9: Percentage of Ranks.

Algo

% Rank
1 2 3 4 5 6 7

SP 0.0 0.0 3.7 7.41 3.7 3.7 81.48
E3T 3.7 14.81 0.0 11.11 37.04 33.33 0.0
FCP 3.7 7.41 44.44 11.11 14.81 14.81 3.7
MEP 29.63 37.04 11.11 11.11 3.7 7.41 0.0

TrajDi 7.41 11.11 18.52 37.04 11.11 3.7 11.11
COLE 7.41 7.41 11.11 7.41 25.93 37.04 3.7
HSP 48.15 22.22 11.11 14.81 3.7 0.0 0.0

Table 9 and Figures 20 and 21 summarize the performance rank under BR-Prox with 3 different
population sizes.

Figure 24 shows the methods’ performance with different skill level evaluation partners in three
‘coordination with conflicts’ layouts and three Multi-recipe layouts.

D.6 Google Research Football

We show the performance in episode returns (goal scores) in Table 3.

Table 10: Return performance with 95% confidence intervals of ZSC algorithms in Google Research
Football.

Method Goal (95% CI)
SP 0.09 (0.07, 0.12)
E3T 0.31 (0.29, 0.37)
FCP 0.38 (0.35, 0.43)
MEP 0.38 (0.36, 0.42)
TrajeDi 0.40 (0.37, 0.45)
COLE 0.36 (0.33, 0.42)
HSP 0.40 (0.36, 0.44)

As shown in Table 11, we conduct a ablation study of E3T [58] in the GRF environment.

Table 11: Ablation study of E3T: Balance Parameter.
0.05 0.1 0.25 0.5

Goal(95% CI) 0.28 (0.26,0.32) 0.30 (0.26,0.34) 0.29 (0.25,0.32) 0.32 (0.29,0.37)
BR-Prox (95% CI) 0.60 (0.53,0.66) 0.60 (0.53,0.67) 0.58 (0.51,0.65) 0.66 (0.59,0.73)

D.7 Human Experiment

We illustrate the objective ranks and subjective ranks on different ZSC algorithms in Figures 25
and 26, which are consistent.
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Figure 14: Visualization of the high-level behaviors of different self-play populations and our
evaluation partner candidates. The evaluation partners selections are sampled according to partner
diversity and BR-Div respectively. ToP: Counter Circuit. Bottom: Asymmetric Advantages.
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Figure 15: Distributions of episode returns computed by evaluating FCP and MEP ZSC agents with
the our evaluation partners and trained self-play agents.

2 3 4 5 6 7 8 9 101112131415
Agent Subset Size

0

2

4

6

P
op

u
la

ti
on

D
iv

er
si

ty

×101 Counter Circ.

2 3 4 5 6 7 8 9 101112131415
Agent Subset Size

0.0

0.5

1.0

P
op

u
la

ti
on

D
iv

er
si

ty

×101 Forced Coord.

FCP MEP TrajeDi Pop. Size 5 Pop. Size 10 Pop. Size 15

Figure 16: Effect of the population size on the population diversity. Near 0 values mean that linearly
correlated evaluation partners are included.

27



put_onion_on_X_by_agent0

put_onion_on_X_by_agent1

put_dish_on_X_by_agent0

put_dish_on_X_by_agent1

put_soup_on_X_by_agent0

put_soup_on_X_by_agent1

pickup_onion_from_X_by_agent0

pickup_onion_from_X_by_agent1

pickup_onion_from_O_by_agent0

pickup_onion_from_O_by_agent1

pickup_dish_from_X_by_agent0

pickup_dish_from_X_by_agent1

pickup_dish_from_D_by_agent0

pickup_dish_from_D_by_agent1

pickup_soup_from_X_by_agent0

pickup_soup_from_X_by_agent1

USEFUL_DISH_PICKUP_by_agent0

USEFUL_DISH_PICKUP_by_agent1

SOUP_PICKUP_by_agent0

SOUP_PICKUP_by_agent1

PLACEMENT_IN_POT_by_agent0

PLACEMENT_IN_POT_by_agent1

delivery_by_agent0

delivery_by_agent1

STAY_by_agent0

STAY_by_agent1

sparse_r_by_agent0

sparse_r_by_agent1

partner1

partner2

partner3

partner4

partner5

partner6

partner7

partner8

partner9

partner10

Partners Diversity

0.0

0.2

0.4

0.6

0.8

Norm
alized Event Count

put_onion_on_X_by_agent0

put_onion_on_X_by_agent1

put_dish_on_X_by_agent0

put_dish_on_X_by_agent1

put_soup_on_X_by_agent0

put_soup_on_X_by_agent1

pickup_onion_from_X_by_agent0

pickup_onion_from_X_by_agent1

pickup_onion_from_O_by_agent0

pickup_onion_from_O_by_agent1

pickup_dish_from_X_by_agent0

pickup_dish_from_X_by_agent1

pickup_dish_from_D_by_agent0

pickup_dish_from_D_by_agent1

pickup_soup_from_X_by_agent0

pickup_soup_from_X_by_agent1

USEFUL_DISH_PICKUP_by_agent0

USEFUL_DISH_PICKUP_by_agent1

SOUP_PICKUP_by_agent0

SOUP_PICKUP_by_agent1

PLACEMENT_IN_POT_by_agent0

PLACEMENT_IN_POT_by_agent1

delivery_by_agent0

delivery_by_agent1

STAY_by_agent0

STAY_by_agent1

sparse_r_by_agent0

sparse_r_by_agent1

partner1

partner2

partner3

partner4

partner5

partner6

partner7

partner8

partner9

partner10

Best Responses Diversity

0.0

0.2

0.4

0.6

0.8

Norm
alized Event Count

Figure 17: Heatmap of the evaluation partners’ high-level behaviors of the Coord. Ring scenario in
the Overcooked Environment. The BR-based Diversity maximization produces evaluation partners
that use the counter more frequently.
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Figure 18: Heatmap of the high-level behaviors of the Asymm. Coord. scenario in the Overcooked
Environment. The BR-based Diversity maximization produces evaluation partners that use the counter
more frequently and deliver the soup in both sides.
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Figure 19: Heatmap of the high-level behaviors of the Academy 3 vs. 1 with keeper scenario in the
Google Research Football environment. Our evaluation workflow generates partners with diverse
results in both partners’ behaviors and BRs’ behaviors.
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Figure 20: Rank of different ZSC algorithms.
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Figure 21: BR-Prox performance of differ-
ent ZSC algorithms in all ‘coordination with
conflicts’ layouts and layouts with multiple
recipes.
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Figure 22: Episode return performance with 95% confidence intervals of ZSC algorithms with
different population sizes in the Overcooked environment.
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Figure 23: BR-Prox performance with 95% confidence intervals of ZSC algorithms with different
population sizes in the Overcooked environment.
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(a) Forced Coordination
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(b) Bothway Coordination
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(c) Coordination Ring
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(d) Counter Circuit
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(e) Blocked Corridor
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(f) Asymmetric Advantages
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(g) Asymmetric Coordination
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(h) Forced Coordination with Multi-recipe
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(i) Coordination Ring with Multi-recipe
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(j) Counter Circuit with Multi-recipe

Figure 24: BR-Prox performance with 95% confidence intervals obtained with evaluation partners at
different skill levels.
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Figure 25: Human subjective feelings ranks
on different ZSC algorithms.

1 2 3 4 5 6 7
Rank

0

20

40

60

80

100
F

ra
ct

io
n

(%
)

Rank Distribution

SP

E3T

FCP

MEP

TrajeDi

COLE

HSP

Figure 26: Episode returns ranks on different
ZSC algorithms.
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