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Abstract: Reinforcement learning (RL) often necessitates a meticulous Markov

Decision Process (MDP) design tailored to each task. This work aims to address

this challenge by proposing a systematic approach to behavior synthesis and con-

trol for multi-contact loco-manipulation tasks, such as navigating spring-loaded

doors and manipulating heavy dishwashers. We define a task-independent MDP

to train RL policies using only a single demonstration per task generated from a

model-based trajectory optimizer. Our approach incorporates an adaptive phase

dynamics formulation to robustly track the demonstrations while accommodating

dynamic uncertainties and external disturbances. We compare our method against

prior motion imitation RL works and show that the learned policies achieve higher

success rates across all considered tasks. These policies learn recovery maneuvers

that are not present in the demonstration, such as re-grasping objects during ex-

ecution or dealing with slippages. Finally, we successfully transfer the policies

to a real robot, demonstrating the practical viability of our approach. For videos,

please check: https://leggedrobotics.github.io/guided-rl-locoma/.
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Figure 1: A framework for learning loco-manipulation tasks, such as traversing a spring-loaded door and ma-
nipulating dishwashers. A single demonstration guides the RL training process to learn multi-contact behaviors
(such as using the feet or the arm for interaction) without task-specific handcrafted rewards.

1 Introduction

Model-based optimal control techniques, such as trajectory optimization (TO) and model-predictive

control (MPC), are valued for their inherent versatility. They can generate a range of easily inter-

pretable behaviors, facilitating intuitive adjustments to the problem formulation [1, 2, 3]. However,

these methods are sensitive to modeling mismatches and violation of assumptions. Conversely, rein-

forcement learning (RL) has demonstrated remarkable success in developing robust control policies

for various contact-rich tasks, such as legged locomotion [4, 5], loco-manipulation [6, 7], and dex-

terous manipulation [8, 9]. Despite this, RL suffers from high sample inefficiency, the emergence of
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unnatural behaviors, and the need for labor-intensive reward design. In this work, we aim to leverage

the complementary strengths of TO and RL to mitigate their weaknesses.

We build upon the versatile TO-based framework from Sleiman et al. [10], which demonstrates the

discovery of long-horizon multi-modal behaviors for poly-articulated systems. This framework can

safely and reliably solve complex loco-manipulation tasks, accounting for the multiple interaction

regions in the object (handle, surfaces) and the robot (individual limbs). These behaviors are chal-

lenging to achieve with pure RL, even with an extensive task-specific design process. However, the

successful execution of TO-based behaviors depends heavily on reasonably accurate environment

models and minimal external disturbances. This reliance is due to the underlying MPC-based con-

troller’s strict adherence to tracking open-loop references without the ability to replan or respond to

significant deviations, such as slippages. This limitation of the MPC controller motivates our work:

using RL to obtain policies for the robust execution of contact-rich interaction plans.

In this paper, we propose a Markov Decision Process (MDP) to efficiently train robust loco-

manipulation policies, particularly for articulated object interaction, with task-agnostic rewards and

hyperparameter tuning. Our approach uses dynamically feasible demonstrations generated from

a TO-based framework [10] to guide the RL agent in learning complex behaviors. By maintaining

consistent MDP parameters and utilizing only one demonstration per task, we present an approach to

train control policies that track the generated demonstrations while handling modeling uncertainties,

external disturbances, and unforeseen events such as handle slippage. We benchmark our approach

against prior motion imitation works on four loco-manipulation tasks: door pushing and pulling and

dishwasher opening and closing. Finally, we deploy the trained policies on a quadrupedal mobile

manipulator, showcasing their robustness to unknown object models and reactivity to slippages.

2 Related Work

Imitation learning has been successfully applied to various manipulation tasks through its algorith-

mic variants such as behavioral cloning (BC) [11], demo-augmented policy gradient [12, 13] (which

bootstraps the RL policy through BC), and more recently, generative models [14, 15]. However,

these approaches often struggle with distributional shifts and require substantial training data, pos-

ing challenges for high-dimensional robotic systems.

An alternate class of methods relies on state-only references to guide an RL agent toward desired

behaviors. This approach commonly involves conditioning a low-level policy on references ob-

tained either offline from a motion library or online by a separate high-level module. For instance,

Bergamin et al. [16] incorporates a motion matcher that selects and blends the best-fitting motion

clip from an extensive MoCap database based on handcrafted features. The works from Kang et al.

[17] and Jenelten et al. [18] update the policy with on-demand “optimal” references that are com-

puted in an MPC-like fashion. While MPC can provide precise guidance, its high computational

demands can significantly slow down the RL training process.

Another common approach is inverse RL, where a reward function is defined through the demon-

strations. Adversarial motion priors (AMP) [19, 20, 21] formulate a style reward that is maximized

when the learned policy yields state transitions similar to those in the dataset. Subsequent vari-

ants [22, 23, 24] propose a hierarchical architecture to address the mode-collapse issue in adversar-

ial learning setups. However, these methods still require task-specific goal-directing rewards and

a large amount of data to learn the style reward. In contrast to AMP-style approaches, motion-

imitation methods guide RL policies to robustly track target trajectories directly [25, 26, 27, 28].

They use reward terms that encourage adherence to the demonstrations while allowing exploration

around the reference motions.

Our work falls into the category of motion-imitation RL without any task-specific objectives. It

closely relates to the work from Fuchioka et al. [26] and Bogdanovic et al. [27], as we aim to

directly track and robustly stabilize offline trajectories generated using a fast trajectory optimizer.

Differently from these works, we introduce domain-specific considerations relevant to multi-contact

loco-manipulation tasks. Moreover, we propose a task-independent MDP formulation based on an
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Figure 2: The loco-manipulation planner [10] generates references in the form of multi-modal plans con-
sisting of continuous trajectories X∗ and manipulation schedules M∗. These are used by the demonstration-
guided controller to select x∗ and m

∗ adaptively based on the task phase φ and track them robustly.The
controller receives full-state feedback and sends joint position commands to the robot.

adaptive phase dynamics model, which is crucial for successful task execution in the presence of

large modeling uncertainties and external disturbances.

3 Approach

Our proposed approach consists of two steps, as illustrated in Fig. 2. First, we employ the plan-

ner from Sleiman et al. [10] to generate whole-body multi-contact behaviors for various loco-

manipulation tasks. Subsequently, we train a neural network using RL to reliably track these behav-

iors while leveraging only one pre-computed trajectory per task as an “expert demonstration”. We

train this policy entirely in simulation with domain randomization to achieve a successful transfer to

the real robot. At deployment, we assume access to the object’s state. While this assumption limits

the applicability in the wild, our primary focus is devising an MDP for learning robust behaviors

across different loco-manipulation scenarios without requiring task-specific handcrafting.

3.1 Problem Formulation

We generate a single demonstration for each task using the multi-contact planner (MCP) from [10].

This planner takes the task specification and a set of user-defined object affordances (e.g. handle

or surfaces) and the robot’s end-effectors (e.g. the tool on the arm or the feet) for interaction as

inputs. It then searches for possible robot-object interactions to provide a physically consistent

demonstration based on a nominal robot and object model.

The demonstrations from the planner consist of the continuous robot and object state references

X∗ = {x∗

t }
Ttask

t=1 and the manipulation schedule M∗ = {m∗

t }
Ttask

t=1 with Ttask being the demonstra-

tion’s duration. In the case of articulated object interaction, the state reference x∗

t includes the

robot’s base pose (Ir
∗

IB ,Φ
∗

IB) in a fixed inertial frame I , the robot’s joint positions q∗

j , and the

object’s joint positions q∗

o . The contact mode m∗

t specifies the interaction type for each end-effector

(none, prehensile, or non-prehensile) and the object contacts involved at that timestep. Since the

demonstrations for each task have varying lengths, we encode the notion of time into the task-phase

φ ∈ [0, 1], where φ = 0 and φ = 1 imply the start and end of the demonstration, respectively [25].

The objective of the learning agent is to track these references while staying robust against variations

in the kinematic and dynamic properties of the object, external disturbances, and unforeseen events

such as slippages. In the naı̈vest way, one could increase the task phase linearly with time and track

the corresponding references [25, 26]. However, as we show later in Sec. 5.1, this approach limits

the success rate during object manipulation. For instance, if the door handle slips away and the door

closes, strictly following the references will cause the robot to get stuck behind the door. Instead,

we want to give the robot the time to recover and, thus, grow the task phase adaptively.

3.2 Adaptive Task Phase Dynamics

Linearly evolving the task phase with time (also referred to in this paper as the “nominal” for-

mulation) can be written as: φ̄t+1 = φ̄t +
1

Ttask
· dt, where φ̄ denotes the nominal phase and dt is

the environment time-step. As motivated earlier, we seek an adaptive mechanism that adjusts the

phase φ depending on the current robot and object states. To this end, we propose the phase dy-
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namics: φt+1 = φt +
v
φ
t

Ttask
· dt, where the task phase rate v

φ
t = v̂

φ
t + σ1 · δv,t is determined by a

state-dependent reference v̂φ := v̂φ(x,x∗,m∗) and a learnable residual term δv (scaled by σ1 > 0).

We opt for a reward-dependent v̂φthat reflects the task-level tracking accuracy:

v̂
φ
t (x,x

∗,m∗) =

L
∏

i=1

min
(

k · exp(−λ · ri,t(x,x
∗,m∗)), 1

)

, (1)

where k > 1 and λ < 0 are fixed constants, and L is the number of task-level rewards ri,t, with

ri,t ≤ 0 at all time-steps. For articulated object interaction, L = 3 with terms corresponding to the

tracking rewards for the robot’s base pose and the object’s joint positions, as specified in Sec. 3.3.

Intuition behind v̂φ: The term v̂φ effectively pauses the phase evolution for large deviations from

the current reference. As the tracking improves, it gradually approaches the nominal phase rate

(→ 1). Since adhering strictly to the reference may not always be the best strategy to complete

the task, we introduce a clipping in Eq. 1 to encode perfect tracking only within a certain margin

defined by k and λ. This operation is particularly useful when handling discrepancies between the

nominal model used by the planner and the real model employed during training and deployment.

The resulting task phase dynamics with v̂φ induces a curriculum-like effect during training. At the

start of the training, when the tracking is poor, it helps the agent learn to recover to a single reference

state. Eventually, as the agent improves, it learns to follow more of the demonstration.

Intuition behind δv: In some instances, unforeseen slippage or large disturbances could render the

object uncontrollable due to a complete loss of contact, resulting in significant deviations from the

reference pose. In these situations, the term v̂φ → 0, and the robot cannot recover. To enable motion

recovery in such scenarios, we introduce a residual phase δv that allows potentially speeding up,

slowing down, and even decreasing the phase whenever necessary. This residual phase is outputted

from the policy, allowing it to adapt to the task phase dynamics via learnable parameters.

3.3 Rewards

To design task-agnostic reward functions such that loco-manipulation behaviors in the generated

demonstrations can be learned through the same MDP formulation, we split the rewards into three

parts: reference-tracking rewards, task progress rewards, and penalties for smooth motions.

Reference-tracking reward: These are simply defined through the tracking errors between the

current state x and the reference state x∗ from the demonstration:

rtrack = w1 · ||IrIB − Ir
∗

IB ||
2 + w2 · ||ΦIB ⊟Φ

∗

IB ||
2 + w3 · ||qj − q∗

j ||
2 (2)

+ w4 · ✶
∗

object · ||qo − q∗

o ||
2 + w5 · ✶

∗

prehensile · ||IrIE − IrIH ||2,

where wi < 0, H is a non-fixed handle frame that is initialized at I and moves with the object, and

✶
∗

···
:= ✶···(m

∗) denotes indicator functions that depend on the reference manipulation mode m∗.

The indicator functions help avoid incurring irrelevant penalties that do not coincide with the behav-

ior’s mode schedule. The function ✶∗

object is true only when at least one end-effector is either already

in contact or is establishing contact with the object. Essentially, it activates the object tracking er-

ror only when the object’s state is controllable and essential for the task completion. Meanwhile,

✶
∗

prehensile is true when a prehensile interaction is active. This choice helps improve the accuracy of

prehensile contact and is particularly useful when we randomize the object models during training,

as the location of the object frame H varies.

Task progress reward: This reward term encourages the learning agent to progress in the task.

It is defined as: rφ = κ1 ·
[

v̂φ · exp(−κ2 · ||φ− φ̄||2)
]

, where κ1, κ2 > 0, and v̂φ and φ̄ are the

reference task-phase rate and the nominal phase from Sec. 3.2. When the tracking is poor, v̂φ → 0
and the agent gets less reward for the task progress, i.e., rφ → 0. Consequently, the agent gets

encouraged to maximize the reference tracking reward and minimize the tracking deviation.

Penalties: These terms penalize the robot’s joint accelerations and torques, base velocity in unde-

sired directions, and abrupt action changes. Since these are standard penalties used in RL, we skip

detailing them here for space reasons and refer the reader to Appendix C.2 for further details.
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3.4 Observation and Action Spaces

Observations: The observations comprise the tracking errors in the robot and object states, the po-

sitions and velocities of all end-effector frames participating in prehensile interactions, the previous

action, and the task-phase parameters. For a legged mobile manipulator with only one prehensile

end-effector E on the arm, the observations can be denoted as ot = (oe ov op at−1 oφ), with:

oe =









IrIB − Ir
∗

IB

ΦIB ⊟Φ
∗

IB

qj − q∗

j

qo − q∗

o









,ov =









BvIB

BωIB

q̇j
q̇o









,op =

[

IrIE

EvIE

]

,oφ =

[

φ

v̂φ

]

. (3)

The choice of the observation terms oe and ov resemble that of a classical PD control law, where oe

captures the position tracking error and ov is the velocity tracking error with zero velocity targets.

Effectively, the learned policy is a more complex tracking controller around the demonstrations.

Additionally, while including op is not essential, we notice that having it improves the training as it

eliminates the need to learn the mapping from the robot’s state to operational space quantities.

Actions: The actions at = (aqj ,t, δv,t) are interpreted as the residuals over the robot’s reference

joint positions q∗

j,t and the reference phase rate v̂
φ
t from Sec. 3.2. The robot’s actions are sent to its

actuators as joint position commands: qcmd
j,t = q∗

j,t + σ2 · aqj,t , with σ2 > 0. While the planner [10]

also provides reference joint velocities, we observed that including them in feed-forward control

resulted in poorer performance. This finding aligns with that from Fuchioka et al. [26].

3.5 Training Setup

Initial Distribution: At environment resets, we apply the reference state initialization (RSI) strat-

egy from imitation-based RL setups [25, 26]. In RSI, we randomly sample the initial phase

φinit ∈ [0, 1] and spawn the robot and object at their corresponding reference states. However,

differently from RSI, we randomize the robot configuration uniformly around the reference state

when φinit = 0. This alleviates the need to always start the robot at the initial reference state at

deployment and lets the agent learn the necessary recovery actions to stay near the demonstration.

The learning task is then to complete the remainder of the task from these varying initial states. This

approach exposes the policy to regions of the state space that are relevant to the reference behavior

and are hard to reach independently. Additionally, it removes the need for the episode length to be

at least as long as the demonstration Ttask.

Domain Randomization (DR): Unlike [10], where the MPC-based tracking controller’s success

relies on a reasonable knowledge of the environment, we aim to make the learned policy robust to

modeling uncertainties and disturbances through DR. This involves varying the properties of the

robot (such as friction and base mass), the kinematic and dynamic models of the object (such as

the door dimensions and spring loading parameters), and adding regular external disturbances to the

system. For further details, please refer to Appendix C.4

Curriculum: We introduce a curriculum that incrementally increases the external disturbances,

observation noise, reward penalties, and initialization offsets. The curriculum level lrand ∈ [0, 1] is

updated according to the following rule:

lk+1

rand =

{

lkrand + 0.25 if pφ > 0.95

lkrand − 0.25 if pφ < 0.75
, with pφ =

φ− φinit

φ̄− φinit

. (4)

The term pφ represents the progress of the task phase relative to the nominal one. As the agent

becomes proficient in tracking the demonstrations, it progresses to a higher difficulty level with

larger DR and penalties. Conversely, if its performance is poor, it moves to a lower level.

4 Experimental Setup

We validate our framework on a legged mobile manipulator consisting of the quadruped ANYmal-D

[29] with a 6-DoF robotic arm [30]. We consider four tasks: Door Push/Pull: traversing a spring-

loaded push or pull door, and Dishwasher Open/Close: opening or closing a heavy dishwasher.
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Figure 3: Manipulation schedules in the generated loco-manipulation demonstrations. For the quadrupedal
mobile manipulator, ALMA, the end-effectors are: ARM: tool attached to a 6-DoF robotic arm, LF: left front
foot, RF: right front foot, LH: left hind foot, and RH: right hind foot.

Demonstration generation: Fig. 3 illustrates the manipulation schedules M∗ of the generated

demonstrations using [10]. Simpler tasks like door pushing are solvable with a single contact mode,

while more complex tasks, such as door pulling, require sequencing multiple robot-object interaction

modes. Navigating through a spring-loaded pull door stands out as the most complex task, both in

terms of behavior discovery and execution time. For additional details, please check Appendix B.

Large-scale RL training: We simulate the training environment in NVIDIA Isaac Gym [31]. The

simulator runs at 200Hz, and we decimate the policy to run at 50Hz. All policies are trained using

the Proximal Policy Optimization (PPO) [32] algorithm. Training converges within 6 hours per task

on a single NVIDIA RTX 4090Ti. Notably, we apply the same MDP formulation across all tasks

with identical environment and agent hyperparameters. These are specified in Appendix C.

Baselines: Behavior cloning (BC) requires labeled actions and a large training dataset. Given that

we operate with a few demonstrations that also lack action labels, we do not compare our method

against BC. Instead, we evaluate our method against other motion-imitation RL formulations:

• Nominal phase: This formulation is based on existing works in motion-imitation RL [25,

26]. It uses the task phase dynamics with vφ = 1 and no learned residual phase rate.

• Nearest Neighbor Search (NNS): An alternative phase update mechanism inspired by

the time-independent training stage of [27]. It aims to minimize the distance between the

current system state and the closest reference in the demonstration dataset.

5 Results and Analysis

5.1 Simulation Experiments

Comparisons: We evaluate each learned policy in 4096 environments with randomized robot and

object properties and random pushes. We report the success rates across the four tasks in Table 1.

We observe that our proposed method performs significantly better than other motion-imitation RL

setups, even without including the residual phase action δv . This result highlights the significance

of integrating the reward-driven adaptive phase dynamics. The nominal phase update can reliably

accomplish the relatively straightforward task of navigating through push doors. However, it strug-

gles with more complex tasks, achieving notably lower success rates for door pulling. Meanwhile,

the NNS strategy fails across all the tasks. While experimenting with various training setups to in-

corporate NNS, we consistently found the phase stuck at certain points along the reference path. We

hypothesize this occurs because the policy exploits the NNS update mechanism to achieve a state

where the phase remains unchanged, thereby maximizing the reference tracking reward.

Ablations: To evaluate the need for demonstrations as whole-body trajectories, we omit the robot’s

joint-level references, relying on partial task-level references that pertain solely to the floating base
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Table 1: Comparison and ablation study of different MDP formulations to train RL policies for the four loco-
manipulation tasks. The average success rate is reported over 4096 episodes, with success defined as the
successful execution of more than 95% of the demonstration.

Category Door Push Dishwasher
Open

Dishwasher
Close

Door Pull

NNS-based φ 00.00% 00.00% 00.00% 00.00%
Nominal φ 76.83% 53.44% 70.68% 15.38%
Adaptive φ w/ Residual δv (Ours) 98.36% 98.60% 96.46% 96.33%

Ours w/o Joint References 97.17% 00.00% 00.00% 00.00%
Ours w/o Curriculum 97.69% 95.25% 97.38% 95.46%
Ours w/o Residual δv 96.80% 97.22% 97.68% 95.21%
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Figure 4: Trajectories for the door-pulling task involving a
loss of contact (indicated by shaded regions). The top and
bottom rows show the door and task phase trajectories.
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Figure 5: Effect of randomization for the door
pulling task. Grey: The DR region used dur-
ing training. Red: The nominal parameter.

and the object trajectories. As shown in Table 1, only the door pushing remains solvable under

this scheme. The reliance on the robot’s foot contacts for manipulation necessitates whole-body

guidance to solve the other tasks. Moreover, we see that the curriculum from Sec. 3.5 helps improve

the agent’s performance across most tasks. During training, we observe that the curriculum also

enables faster convergence and smoother policies. Adding the residual phase rate only improves the

performance slightly in these comparisons. However, as shown in Fig. 4 for the door-pulling task,

relying solely on the reference v̂φ for the phase dynamics brings the task progression to a halt during

an inadvertent loss of contact. In contrast, the learned residual action decreases the phase, allowing

the robot to re-establish contact with the handle and successfully complete the task.

Robustness Evaluation: While the generated loco-manipulation plan is done for nominal param-

eters of the object, we train the RL policies with various randomizations, as mentioned in Sec. 3.5.

To assess the robustness of the learned policies, we investigate their performance on different door

parameters for the door-pulling task. We remove all DRs during these evaluations to ensure a con-

trolled setting. For comparison, we train an RL policy with no DR as an alternative to the MPC-

based controller in [10]. Based on Fig. 5, the policy trained only with nominal door properties fails

quickly when the variations become too large. In contrast, the policy trained with random doors

supports a wider range of door parameters. When the handle offset is significant, the policy trained

with random doors displays a “search” behavior to find and grasp the handle. Meanwhile, the policy

with a nominal door only works reliably well around the handle length. This analysis demonstrates

that although the generated demonstrations are not for the simulated door models, the RL policy

discovers behaviors around them that help it generalize to a large set of doors.
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Figure 6: Hardware deployment for traversing spring-loaded (a) pull and (b) push doors and manipulating a
heavy dishwasher to (c) open and (d) close it. For videos, please check the website.

Multi-task Learning from Demonstrations We experiment with a multi-task training setup where

a single policy jointly learns all four tasks. It takes a one-hot vector to indicate the desired demon-

stration to execute. We train the policy with the same hyperparameters and number of environments

from before and obtain a reduced average success rate (84% instead of 97%). By simply doubling

the number of environments during training (i.e., collecting twice the number of samples), we ob-

serve that it achieves the performance of individual task-specific policies.

5.2 Real-World Deployment

We demonstrate the proposed approach on all four tasks on hardware. A motion capture system

provides the handle location at the start and the joint angle for the door and the dishwasher. For the

robot, we rely on its onboard state estimation. For each task, we perform six continuous runs, where

we manually reset the object, place the robot randomly in front of the object, and execute the policy.

As shown in Fig. 6, the deployed policies exhibit smooth motions and preserve the multi-contact

behavior from the demonstration. They complete all the tasks six times in a row. Additionally, the

policies yield different motions every time, which is particularly noticeable during traversing a pull

door. They are able to handle random base placement, recover from slippages, and re-grasp the

handle when it misses it. Please refer to the supplementary video to observe these behaviors.

5.3 Limitations

On hardware deployment, we notice that if the robot starts too far away or too close to the object, it

aggressively tries to adjust its configuration. This, at times, led to the robot falling down. However,

in practice, a navigation planner can appropriately place the robot in front of the object, so only local

adjustments are needed, which the learned policies can handle. Additionally, while the policies can

handle large intra-object category variations, they may still fail on certain object instances. For

instance, if the door is too small, the policy fails to traverse through it as it collides with the door. In

such cases, we need to use more demonstrations for the training. Lastly, a natural extension of this

work is to devise perceptive loco-manipulation policies that rely on onboard sensing [5, 7].

6 Conclusion

Our work integrates model-based TO and model-free RL to develop robust tracking policies for

multi-contact loco-manipulation tasks. Central to our approach is a task-agnostic MDP formulation

that utilizes loco-manipulation demonstrations generated by a precise trajectory planner. Unlike pre-

vious imitation-based RL methods that depend on time-based nominal phase updates, we showed

that our state-dependent adaptive phase dynamics facilitate successful task execution despite model-

ing inaccuracies and significant external disturbances. We validated our framework on a quadrupedal

mobile manipulator performing four complex long-horizon tasks, such as navigating spring-loaded

doors and manipulating heavy dishwashers. Additionally, we demonstrated that the learned policies

transfer to hardware successfully and can effectively recover from slippages and missed handles,

overcoming the limitations of the MPC-based tracking controller from [10].
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A Notations / Symbols

Table 2: Definition of Symbols

Symbol Description

g∗ Value of the quantity g from the demonstration
ḡ Value of the quantity g from the nominal phase formulation

ArAB ∈ R
3 Position of frame B from frame A in frame A

ΦAB ∈ SO(3) Orientation of frame B in frame A

AvAB ∈ R
3 Linear velocity of frame B from frame A in frame A

AωAB ∈ R
3 Angular velocity of frame B from frame A in frame A

⊟ : SO(3)× SO(3) → R
3 Difference between two orientations as a rotation error vector [33]

B Frame attached to the base of the robot
E Frame attached to the arm’s end-effector of the robot
H Frame attached to the handle’s center on the object
I Inertial frame (fixed to the initial frame H on execution)

hcom Centroidal momentum of the robot
qb = (IrIB ,ΦIB) Base pose of the robot
qj Joint positions of the robot
qo Joint positions of the object
q̇j Joint velocities of the robot
q̇o Joint velocities of the object
q̈j Joint acceleration of the robot
τj Joint torques applied to the robot

m Manipulation contact mode between robot and the object
xr = (hcom,I rIB ,ΦIB , qj) Kinematic state of the robot
xo = (qo, q̇o) Kinematic state of the object
x = (xr,xo) Kinematic state of the robot and the object

M = {mt}
Ttask

t=1 Manipulation schedule (Sequence of manipulation contact modes)

X = {xt}
Ttask

t=1 Kinematic state trajectory (Sequence of kinematic states)
Ttask Duration (in s) of the trajectory for the task
✶object := ✶object (m) True iff at least one end-effector is either already in contact with or

is establishing contact with the object
✶prehensile := ✶prehensile (m) True iff a prehensile interaction is active

φ ∈ [0, 1] Phase signal that helps index the reference trajectory (X∗,M∗)

v
φ
t Task phase rate (first order-dynamics model for φ)

v̂
φ
t Task phase rate based on reward-dependent functions

φ̄ Nominal phase signal computed using vφ = 1

Ttask

δv Residual phase rate (output from the policy)

dt Step-size (in s) of the environment
ot Observation from the environment at time-step t
at Action applied to the environment at time-step t
rt Reward from the environment at time-step t

B Demonstrations from the Loco-Manipulation Planner

The loco-manipulation planner from Sleiman et al. [10] efficiently generates physically con-

sistent demonstrations for our proposed framework. The planner relies on a high-fidelity

model that integrates the robot’s full centroidal dynamics and first-order kinematics with the

object’s full dynamics [34]. This helps ensure that the discovered behaviors are dynami-

cally feasible. The planner outputs the following the continuous states and system inputs:

x := (xr xo) = (hcom qb qj qo q̇o) and u = (we q̇j), where the robot state xr includes the

centroidal momentum hcom, base pose qb, and joint positions qj , whereas the object state xo con-

sists of its generalized coordinates qo and velocities q̇o. The control input u is composed of the

robot’s joint velocities q̇j and the contact wrenches we acting at the robot’s end-effectors.
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Figure 7: Illustration of the loco-manipulation tasks: i) traversal of a large articulated object, and ii) dishwasher
manipulation. The user-defined robot end-effector contacts and object affordances are highlighted.

Moreover, from a set of user-defined object affordances and the robot’s end-effectors for interac-

tion, a discrete variable mk represents the manipulation contact mode. A contact mode is a state-

action pair, where the contact state encodes possible robot-object interaction combinations, and a

contact-switching action indicates whether a contact is established, broken, or maintained. By ex-

ploiting loco-manipulation-specific pruning rules, the planning algorithm in [10] efficiently solves

for a multi-modal sequence via a sampling-based bi-level search over manipulation modes mk and

continuous state-input trajectories ⟨xk(t),uk(t)⟩, aiming to connect the start and goal states. It

then refines the resulting plan through a single long-horizon TO while fixing the discovered contact

sequence. We refer the reader to [10] for further details on the multi-contact planner.

While the references generated from the planner contain the control inputs uk(t), these signals are

usually tracked on hardware through a whole-body quadratic programming (QP) controller. This

controller computes the necessary joint torques to achieve the desired motions. However, the QP

controller’s robustness is limited because of its several assumptions, such as no slippages and pre-

cise command tracking. We use only the reference states X∗ and contact modes M∗ to address

these limitations and guide the RL training process. This approach allows the NN policy to learn

the underlying actuator dynamics during training and adapt better to the inherent uncertainties and

variations encountered during real-world operations.

Table 3 summarizes the single demonstrations generated for each task. In less than a minute, all

demonstrations are discovered on an Intel Core i7-10750H CPU@2.6GHz hexacore processor. Nav-

igating through a spring-loaded pull door stands out as the most complex task. This can be attributed

to the long time horizon, the requirement for a stable prehensile interaction, and the multiple con-

tact transitions involved. Discovering these modes using standard RL would necessitate carefully

designing handcrafted rewards, which we want to alleviate through our formulation.

Table 3: Computation time and trajectory duration for demonstrations generated using the planner [10].

Task Computation Time (s) Trajectory Duration (s) Trajectory Length

Door Push 6.8 16.8 1195
Dishwasher Open 25.0 11.2 814
Dishwasher Close 23.1 12.6 902
Door Pull 44.2 23.8 1725

C MDP Formulation and PPO Training

This section summarizes the terms that formulate the proposed MDP and the learning algorithm.
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C.1 Observation Terms

Table 4 specifies the observation terms and the noise added to them during training. The critic ob-

tains the same observations as the actor but without any noise applied. Importantly, for the adaptive-

phase dynamics formulation, the previous action at−1 comprises both the robot commands āt−1

and the residual phase δv .

Table 4: Observation Terms Summary. We do not perform any scaling or clipping on individual observation
terms. All noise models are additive in nature.

Term Name Definition Noise

Robot Base Position Difference IrIB − Ir
∗

IB U(−0.05, 0.05)
Robot Base Orientation Difference ΦIB ⊟Φ

∗

IB U(−0.1, 0.1)
Robot Base Linear Velocity BvIB U(−0.1, 0.1)
Robot Base Angular Velocity BωIB U(−0.2, 0.2)
Robot Joint Position Difference qj − q∗

j U(−0.01, 0.01)
Robot Joint Velocity q̇j U(−1.5, 1.5)
Robot Arm End-effector Position IrIE U(−0.05, 0.05)

Object Joint Position Difference qo − q∗

o U(−0.05, 0.05)

Nominal Task Phase φ̄ -
Adaptive Task Phase φ U(−0.005, 0.005)
Adaptive Task Phase Speed v̂φ U(−0.005, 0.005)

Previous Action at−1 -

C.2 Reward Terms

To design a task-agnostic reward function, we split the reward function into generic reference-

tracking terms that stabilize the open-loop trajectories and standard penalty terms that ensure smooth

motions: r̄total = rtrack + lrand · r
regularize. For the adaptive phase formulation, the reward also

includes the task progress: rtotal = r̄total + rφ. The individual terms are:

rtrack = w1 · ||IrIB − Ir
∗

IB ||
2 + w2 · ||ΦIB ⊟Φ

∗

IB ||
2 + w3 · ||qj − q∗

j ||
2

+ w4 · ✶
∗

object · ||qo − q∗

o ||
2 + w5 · ✶

∗

prehensile · ||IrIE − IrIH ||2,

rφ = κ1 ·
[

v̂φ · exp(−κ2 · ||φ− φ̄||2)
]

,

rregularize = β1 · ||τ ||
2 + β2 · ||v̇j ||

2 + β3 · ||vj ||
2 + β4 · ||Bv

z
IB ||

2 + β5 · ||Bω
xy
IB ||

2

+ β6 · ||at − at−1||
2,

where symbols have their meanings from Table 2. The corresponding weights are in Table 5.

C.3 Initial-State Distribution

We apply additive offsets to the robot’s reference configuration at φinit = 0 so that the policy is

robust to varying initial locations of the robot in front of the door. Ideally, we would like to apply

this at any randomly sampled φ; doing so is non-trivial due to the difficulty in filtering invalid

collision configurations.

C.4 Domain Randomization

Domain randomization helps mitigate overfitting to specific models and addresses inherent unmod-

elled effects by introducing variability during training. In our setup, it takes the following form:

• Object’s kinematics: These include object dimensions (e.g. door width and height), posi-

tioning of object affordances (e.g. handle location on the panel), and handle types (cylinder

or box). For every object category, we load 128 different kinematic variations.

• Object’s dynamics: These include friction and restitution, spring-damping coefficients for

the hinge joint, and constant force/torque offset on the hinge joint.
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Table 5: Reward Terms Summary. The environment scales the reward weights with the time-step dt [35]. For
brevity, we drop the time-step t from individual quantities unless necessary. We use the same reward weights
for all the loco-manipulation tasks.

Term Name Definition Weight

Robot Base Position Tracking ||IrIB − Ir
∗

IB ||
2 −0.2

Robot Base Orientation Tracking ||ΦIB ⊟Φ
∗

IB ||
2 −0.2

Robot Joint Position Tracking ||qj − q∗

j ||
2 −0.2

Object Joint Position Tracking ✶
∗

object · ||qo − q∗

o ||
2 −0.2

Robot Arm End-effector Position Tracking ✶
∗

prehensile · ||IrIE − IrIH ||2 −10.0

Action Rate ||at − at−1||
2 −0.05

Robot Base Linear Velocity (along z) ||Bv
z
IB ||

2 −0.5
Robot Base Angular Velocity (along xy) ||Bω

xy
IB ||

2 −0.05
Robot Joint Velocity ||q̇j ||

2 −1.0× 10−5

Robot Joint Acceleration ||q̈j ||
2 −1.0× 10−5

Robot Applied Joint Torque ||τj ||
2 −2.5× 10−5

Task Progress (only with adaptive phase) v̂φ · exp(−10.0 · ||φ− φ̄||2) 25.0

• Robot’s dynamics: Similar to object dynamics, we vary the friction and restitution within

[0.4, 1.0]. Additionally, the mass of the robot’s base is randomized within ± 10% of its

nominal values.

• External disturbances: At randomly sampled episode intervals, external pushes are ap-

plied to both the robot and the object. For the robot, this implies adding random velocity

(pushes) to the robot’s base. For the door, this is done by applying a randomly sampled

external force on the door panel.

C.5 Termination Term

We trigger episode termination when the robotic system loses balance or episode length times out.

Typically, we infer a fall from a significant force acting on the robot’s base, indicating ground con-

tact. However, distinguishing the source of this force becomes challenging during loco-manipulation

tasks, as contact between the robot’s base and an object is both expected and sometimes permissible.

Thus, we rely on the base to not drop below 0.3m to correctly detect falls.

C.6 Adaptive-Phase Hyperparameters

This section lists the hyperparameters for the remainder of the MDP formulation. These include

parameters for scaling the input actions and those for the adaptive-phase formulation in Eq. 1.

Table 6: MDP Hyperparameters.

Hyperparameter Value

Episode length 15 s
Simulation time-step 0.005 s
Control decimation 4

Residual phase action scale: σ1 0.01
Robot action scale: σ2 0.5

Adaptive phase (1): w1 -0.2
Adaptive phase (1): w2 -0.2
Adaptive phase (1): w4 -0.2
Adaptive phase (1): λ -50.0
Adaptive phase (1): k 10.0

C.7 Learning Algorithm

For each task, we train the policy using the on-policy RL algorithm, Proximal Policy Optimization

(PPO) [32]. The actor and critic networks are designed as a Multi-Layer Perceptron (MLP) with
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a [256 × 128 × 64] hidden-layer structure and an ELU activation function. A complete list of

hyperparameters and their values is specified in Table 7.

Table 7: PPO Hyperparameters

Hyperparameter Value

Empirical Normalization True
Learning Rate (start of training) 1e-3
Learning Rate Schedule “adaptive” (based on KL-divergence [35])
Discount Factor 0.99
GAE Discount Factor 0.95
Desired KL-divergence 0.01
Clip Range 0.2
Entropy Coefficient 0.0
Value Function Loss Coefficient 1.0
Batch Size 245,760 (4096× 60)
Mini-Batch Size 61,440 (4096× 15)
Number of Epochs 5
Number of iterations 10,000

D Supplementary Discussions

D.1 Object Locking Mechanism

Our policy is trained on doors where handles are treated as fixed object-attached links. However, a

typical door can only be opened after being unlocked using its handle. By adapting our environment

to incorporate a door-locking mechanism, our current setup results in behaviors involving the robot

pushing the handle downwards, but with low success rates. A possible way to resolve this issue is

using an asymmetric actor-critic structure, where the critic obtains the handle angle.

D.2 Unknown Object Type

In real-world scenarios, we expect the robot to autonomously traverse diverse doors without speci-

fying the type of door (i.e., push or pull door). One way to achieve this objective would be to first

train a multi-task policy that can execute both door-traversal behaviors and then separately train a

door-type estimator that outputs the appropriate task command to the policy.

D.3 Unknown Object State

In the current hardware experiments, we rely on explicit sensors such as door encoders to obtain

the joint position of the panel. However, in more realistic scenarios, this information needs to be

extracted from the robot’s onboard sensors. One mechanism to achieve this goal is by leveraging

teacher-student training and treating the current policy as the teacher policy [5].

D.4 Applicability to Other Scenarios

In this work, we demonstrated the approach to multi-contact tasks that primarily involved articulated

object manipulation. However, there is an open question on the generalization of the approach to

other tasks and robots. For tasks where a single demonstration is sufficient to solve the task, we be-

lieve our method should work in these scenarios. However, for tasks where a complete re-planning

is necessary (for instance, the rearrangement of objects), training an online replanner becomes nec-

essary to provide new references for the policy to track. We leave this as part of our future work.
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