Under review as a conference paper at ICLR 2026

LEVERAGING GENERATIVE TRAJECTORY MISMATCH
FOR CROSS-DOMAIN POLICY ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transferring policies across domains poses a vital challenge in reinforcement
learning, due to the dynamics mismatch between the source and target domains. In
this paper, we consider the setting of online dynamics adaptation, where policies
are trained in the source domain with sufficient data, while only limited interac-
tions with the target domain are allowed. There are a few existing works that ad-
dress the dynamics mismatch by employing domain classifiers, value-guided data
filtering, or representation learning. Instead, we study the domain adaptation prob-
lem from a generative modeling perspective. Specifically, we introduce DADIfT,
a diffusion-based framework that leverages the discrepancy between source and
target domain generative trajectories in the generation process of the next state
to estimate the dynamics mismatch. Both reward modification and data selec-
tion variants are developed to adapt the policy to the target domain. We also
provide a theoretical analysis to show that the performance difference of a given
policy between the two domains is bounded by the generative trajectory devia-
tion. More discussions on the applicability of the variants and the connection
between our theoretical analysis and the prior work are further provided. We
conduct extensive experiments in environments with kinematic and morphology
shifts to validate the effectiveness of our method. The results demonstrate that our
method provides superior performance compared to existing approaches, effec-
tively addressing the dynamics mismatch. We provide the code of our method at
https://anonymous.4open.science/r/DADiff-release—83D5.

1 INTRODUCTION

Reinforcement learning (RL) has shown strong potential in complex decision-making tasks, but
training directly in the real-world environment (farget domain) is often restricted by safety, cost, and
limited interaction budgets. An alternative strategy is to train policies in a surrogate environment
(source domain), such as a simulator, and then transfer them to the target domain. But due to the
dynamics mismatch between the source and target domains, directly transferring the policy often
leads to performance degradation, which is a critical challenge in the sim-to-real problem (Zhao
et al.; 20205 Da et al., [2025). One solution to this transfer problem is known as online dynamics
adaptation (Xu et all 2023} [Lyu et al., 2024b), where policies are trained with abundant source-
domain data and only limited interactions in the target domain. In this setting, the state space, action
space, and reward function remain consistent across domains, while the transition dynamics differ.
Compared with solutions such as domain randomization (Peng et al.}[2018; Mehta et al.,|2020; Curtis
et al., 2025) or simulator calibration (Chebotar et al., [2019), online dynamics adaptation does not
require access to high-fidelity simulators or prior knowledge of target dynamics, and can therefore
be applied in situations where such information is unavailable.

Existing online dynamics adaptation methods, including classifier-based approaches (Eysenbach
et al.| [2021)), value-guided filtering (Xu et al.,2023)), and representation learning (Lyu et al., 2024a),
capture dynamics discrepancy from different perspectives: classifiers provide coarse distinctions
between domains, value-guided methods depend on the modeling of forward predictions, and rep-
resentation learning relies on assumptions of invariant latent structures across domains. When the
domains are complex or stochastic, a key challenge that remains is to develop an approach capable
of capturing dynamics discrepancy in a more fine-grained and distributional manner.

https://anonymous.4open.science/r/DADiff-release-83D5

Under review as a conference paper at ICLR 2026

The generative modeling perspective provides a potential direction. Generative models, such as dif-
fusion models (Sohl-Dickstein et al., 2015; [Ho et al.l [2020; [Song et al., [2021)) and flow matching
methods (Lipman et al., |2022; |Liu et al., 2023), have demonstrated strong capability in represent-
ing complex distributions. When state transitions are viewed as a conditional generative process,
the mismatch between source and target domains can be interpreted as a discrepancy between their
respective generative processes. Specifically, the multi-step sampling procedure in diffusion models
and flow matching methods produces several latent states, which construct a generative trajectory,
serving as structured signals of source—target dynamics deviation. These latent states allow the dis-
crepancy to be captured not only at the next-state level but also along the entire trajectory. Intuitively,
if the source and target domains follow different dynamics, their trajectories will diverge at multiple
steps, a phenomenon we term generative trajectory deviation. This notion provides a fine-grained
view of dynamics discrepancy by revealing how divergence accumulates along the trajectory, rather
than relying solely on local or aggregated comparisons. Our theoretical analysis further connects
trajectory deviation to performance guarantees, providing motivation for algorithmic design.

Building on this perspective, we introduce DADIff, a diffusion-based framework for online dynam-
ics adaptation. DADIff leverages latent states in diffusion models to measure generative trajectory
deviation between source and target domains, and exploits this deviation in two complementary
ways: (i) DADiff-modify, which adjusts source-domain rewards with deviation-based penalties,
and (ii) DADiff-select, which filters source-domain data based on deviation before value function
updates. We further discuss the applicability of these variants to different tasks, highlight the ad-
vantages of our method compared to prior work, and establish a connection between our analysis
and the theoretical guarantee of prior work. Empirical results in environments with kinematic and
morphology shifts show the superior performance of our method compared to existing algorithms.

2 RELATED WORKS

Domain Adaptation in RL. Generalizing RL policies to diverse environments is critical for real-
world deployment, where transition dynamics (Eysenbach et al.,[2021; |Viano et al., 2021; | Xue et al.,
2023} |Da et al., 2024)), state or action spaces (Gamrian & Goldberg, [2019; |Ge et al., 2023} Heng
et al.}2022; |Pan et al., [2025) may be different. To address domain adaptation, prior work falls under
three categories: (i) domain randomization that randomizes transition dynamics to expose agents to
many environment configurations (Slaoui et al.| 2019; Mehta et al., |2020; Vuong et al., [2019; Jiang
et al., |2024)), (ii) meta-learning to few-shot adapt to many environments (Nagabandi et al., 2018;
Arndt et al., [2020; Wu et al. 2022), and (iii) expert demonstrations of target environments through
imitation learning (Raychaudhuri et al.| 2021} [Fickinger et al., 2022). However, these approaches
are either computationally expensive (meta-learning) or require hard-to-obtain demonstrations (im-
itation learning). With only limited target-domain data, some works perform reward modifications
to transition to the target domain by using transition classifiers (Eysenbach et al.l 2021} |Guo et al.,
2024)) or reward augmentations (Van et al., 2024; [Lyu et al., 2024b). Data selection methods (Xu
et al., 2023} [Wen et al., |2024)) have also been used to filter out part of the source-domain transi-
tions and train policies on both source and target domain data. When the domains are complex
or stochastic, a key challenge that remains is to develop an approach capable of capturing the dy-
namics discrepancy. Our method explores this challenge from a generative modeling perspective by
measuring the generative trajectory deviation between the source and target domains.

Diffusion Models in RL Diffusion models (Sohl-Dickstein et al.l 2015} [Ho et al.| 2020} [Song
et al.| 2021) have been extensively used for generating effective decision-making policies in several
domains, such as RL (Kang et al., [2023)), robotics (Chi et al., 2023), and planning (Janner et al.,
2022). Specifically, they are widely leveraged to synthesize data for offline RL (Lu et al. [2023),
facilitate planning and action generation in multi-task scenarios (He et al.,|2023)), and enhance the
representational capacity of learned RL policies (Wang et al., 2024). In addition, diffusion models
have also been extended to the multi-agent settings (Zhu et al., 2024)) and for hierarchical RL (Li
et al.,|2023)). In the field of domain adaptation, they are utilized to augment the target-domain data in
order to boost the performance of offline RL policies (Van et al.l [2025). However, the introduction
of synthesizers may lead to extra computational costs, and the quality of synthesized data is hard to
guarantee. In contrast, we choose to directly estimate the dynamics discrepancy by multiple latent
states from diffusion models instead of generating more synthetic data.

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

Online Dynamics Adaptation We consider two Markov Decision Processes (MDPs), denoted as
Mg = (S, A, Pye,r,7) and Mgy = (S, A, Piar, 7, y) for the source domain and target domain,
respectively. The state space S, action space A, reward function r : § x A — R and discount factor
v € [0,1] are consistent across both domains, while the transition dynamics Py, and Pi,, differ.
The goal of online dynamics adaptation is to learn a policy 7 that achieves high performance in the
target domain My,,, utilizing sufficient data from the source domain and only limited interactions
from the target domain. In addition, we specify a domain M and define the probability that a
policy m encounters a state s at time step ¢ as P}, ,(s). Therefore, the normalized probability that
a policy visits a state-action pair (s,a) in the domain M can be represented as p7,(s,a) =
(1 =) 227207 Py (s)m(als). The expected return of a policy 7 in M is defined as () =
E(s,0)~p7, [r(s,a)]. We assume the reward are bounded by |7(s, a)| < Tmax, Vs € S,a € A.
Diffusion Models Diffusion models (Sohl-Dickstein et al., |2015; Ho et al., 2020; [Song et al.,
2021) are a family of generative models that learn to generate samples from a target distribution. We
mainly focus on the denoising diffusion probabilistic model (DDPM) (Ho et al.,|2020) in this paper.
DDPM consists of a forward process and a reverse process. The forward process is regarded as a
Markov chain that gradually adds noise to data, transforming a clean data point x(into Gaussian
noise, which is formulated as follows,

T = mwk—l + \//Bik@ e~ N(0,1), M

where x; is the noisy data at diffusion timestep &, (% is the noise schedule, and € is Gaussian noise.
To simplify the forward process, we can directly sample the noisy data at diffusion timestep k as

follows,
xp = Vagwo + V1 — age, €~ N(0,1), (2)

where ap, = 1 — B, and &y, = Hle a;. The reverse process learns to denoise the noisy data step
by step, which is formulated as follows,
1—ak

('Tk’v k)) + 7&1667 €~ N(O7I)7 3)

1—ay

T _ ! (z B €
-1 = ; — =

k o k T—ar 0
where €p(z, k) is a noise model that estimates the noise from the noisy data point 2. The noisy

data points {xk}szo form a generative trajectory from the initial noisy data x to the clean data z.
The training objective of the noise model is formulated as follows,

Laigg = Bag,er [|l€ — €o(vVarzo + V1 — e, k)||2} . 4

4 METHODOLOGY

In this section, we first introduce a theoretical analysis to demonstrate the connection between the
dynamics mismatch and the generative trajectory mismatch. Then, we present our diffusion-based
method, DADIff, which measures the generative trajectory deviation from the perspective of dif-
fusion models and adapts the learned policy to the target domain. The overview of our method is
shown in Figure[I]

4.1 THEORETICAL ANALYSIS

Before introducing the theoretical analysis, we first provide the definition of a generative trajectory,
which is crucial for the analysis. For clarity, we denote the next state s’ as s;,.

Definition 4.1 (Generative trajectory.) Specify a domain M with transition dynamics
Pr(shls,a). There is a generative trajectory for the next state s{, consisting of K auxiliary
variables {s} }< | referred to as latent states. These latent states form a Markov chain from the
initial latent state s’ to the next state s(, conditioned on the state—action pair (s, a).

Remark. The Markov-chain definition enables the transition dynamics to be decomposed into mul-
tiple conditional probabilities, i.e., Pr(sg|s, a) = [Py(skls, a)]_[,CKZ1 P (s)_q18%, 8, a)ds! . k.

Under review as a conference paper at ICLR 2026

O Souree R O Target AR . : Soumee :I r(s,a,5') — Xd(s,a,s')

R¢ d .)
51) ewar > Reward Modified ;
O O Penalty :| Modification Reward |

g O/s’l\‘ ---
(@) L Gy oy 80 d(s,a,s') < d
a0 u -— 0. < dox
51{71_/_’ d
. ,) — | Data Selection |—>
ds,a,8) =3 =Pl el (Vars' + VI are 5,0, K)|
(s,0,') ; 201 —ay 1)0tA»HE (V8 R (3:a7 sl)
4 ¥ der

Figure 1: Illustration of DADiff. The left part visualizes the generative trajectories in the source
and target domains. The deviation d(s, a, s") is measured by the discrepancy dy, of each latent state
s}, in the source and target domain generative trajectories. The right part shows two ways to utilize
the deviation d(s, a, s") to adapt the policy to the target domain, i.e., penalizing the source domain
rewards (top right) or filtering source domain transitions (bottom right). The downstream SAC
algorithm is then updated with both source and target domain data.

In this way, the next state sj, can be viewed as being generated step by step with latent states, form-
ing a generative trajectory. The discrepancy of such generative trajectories across domains provides
a natural estimation of the dynamics discrepancy.

We construct generative trajectories in both source and target domains, starting from the same initial
latent state s, and derive Theorem[4.2]to establish the connection between the dynamics mismatch
and the generative trajectory mismatch. The detailed proof is provided in Appendix [B.2]

Theorem 4.2 (Performance bound controlled by generative trajectory discrepancy.) Denote
Mere and My, as the source and target domains with different dynamics, respectively. The
performance difference of any policy evaluated in Mg, and My, can be bounded as below,

M) = a0 () < S BB [DrtPacSilss) [R0

(a): initial latent state deviation

N % &)

,yrmax

+ =2 Epz. |\ EPuc lz Dk (Porc(s),_1 (8% 8, a)|| Prar (s}, 1]}, 5, a))]
k=1

(b): latent state transition mismatch

Remark. This bound indicates that the performance difference of a policy 7 between the source
and target domains is controlled by the initial latent state deviation term (a) and the latent state
transition mismatch term (b). Since the generative trajectories in both the source and target domains
share the same initial latent state s/, term (a) vanishes, leaving term (b) as the sole determinant of
the performance difference. In other words, as long as the generative trajectories are similar in the
source and target domains, the performance difference is small, and vice versa. We note that PAR
(Lyu et al.l[20244a) can be considered as a special case of Theorem[@] when K = 1. A discussion on
the connection between our analysis and the theoretical guarantee of PAR is provided in Section 6}

4.2 DOMAIN ADAPTATION WITH DIFFUSION

Theorem [4.2] provides a theoretical guarantee linking the performance difference of a policy 7 to
the generative trajectory, thereby motivating a careful design of latent states in the trajectory. Since
latent states are auxiliary constructs for capturing dynamics mismatch, the distribution of latent
state transitions is not fixed and can be defined in different ways. In this section, we adopt the
formulation of DDPM as an example to better characterize the dynamics discrepancy. In addition,

Under review as a conference paper at ICLR 2026

another implementation based on flow matching (Lipman et al., 2022} [Liu et al.,|2023) is provided
in Appendix

We first redeclare the reverse process of DDPM in a reparameterized form to describe the latent state
transition in domain M as follows,

/ _ 1 I Bk ’ / 1—ag
Skfl - \/@(Sk meM(Sk? S, a, k)) + 1— C_Vk ,Bké, € N(O7I)7 (6)

where € (s, s, a, k) is the noise from the latent state s}, in domain M. It indicates that the latent
state transition follows a Gaussian distribution, i.e.,

! I 1 / Bk:
PM(Sk71|Sk78ﬂa) N(\/@(sk MEM
According to Theorem 4.2} the performance difference of a policy 7 across domains is determined
by the latent state transition mismatch term (b). Therefore, we can estimate the generative trajectory
deviation d(s, a, s") with the defined distribution of latent state transition in Equation[7|as follows,

(82757(17]{))7_7—)16/6[)- (7)

K
d(s,a, S/) = Z DKL(PSIC(S%—”S;w S, a)||PtaI'(S;f—1|S;w 5, CL))
k=1
- ; ®)
k ’ ’ 2
= Z Y ||€src(skvsva7k) - etar(skvsva7k)H .
el 2(1 — ak_l)ozk

We derive this equation by applying Lemma[B.2]to compute the KL divergence between two Gaus-
sian distributions. Notably, as the state transition tuple (s,a, s’) comes from the source domain,
the noise Gsrc(S;, s,a, k) estimated in the reverse process must be consistent with the noise used
in the forward process to generate the latent state s), which indicates egc(s},s,a,k) = € with
€ ~ N(0,I). Besides, we introduce a noise model €/, (s}, s, a, k), trained with target-domain data,
to estimate the noise in the target domain. The training objective is formulated as follows,

Enoise - E(s,a,s’)NDtm,e,k’ [HE - 6€ar(@56 + v 1-— dk@ S, a, k)||2:| . (9)

This objective mirrors the standard DDPM training loss, but conditions on (s, a) to capture dynamics
in the target domain. For the latent state s}, in Equation 8] there are two ways to obtain it: (i) by
iteratively applying the reverse process in Equation[6] and (ii) by sampling directly from the forward
process of DDPM, i.e., s}, = /ags, + /1 — age with e ~ N(0,I). Specifically, the first way
requires sequential sampling across all steps to generate the entire generative trajectory, which is
computationally expensive. In contrast, the second way can produce all latent states in parallel,
yielding a much more efficient implementation. Therefore, we choose to obtain the latent state s/,
via the forward process in our method. We provide a visualization to compare these two ways for
better understanding in Figure Appendix Finally, the deviation d(s, a, s’) can be practically
estimated as follows,
K 3)
d(s,a,s") = Z 2_—’“ lle = elur(Varsh + VI —are,s,a,k)||”, €~N(0,I). (10)
=201 — ap-1)on

We further introduce two ways to utilize the deviation d(s, a, "), including reward modification and
data selection, since we find that baselines adopting these two techniques exhibit complementary
advantages in different tasks, which is shown in Section[5.2] We analyze the possible reason for this
phenomenon from the reward distribution aspect in Section [6] The details of DADIff variants are
provided as follows.

Reward modification. We refer to this variant as DADiff-modify. It adopts the deviation
d(s,a,s’) as a reward penalty to modify the reward function in the source domain, i.e.,
Tmod(8,a,8) =1(s,a,s’) — \d(s,a,s’), (11)

where A is a penalty coefficient to balance the original reward and the penalty. The objective function
for training the value function gives,

£critic =]E(s,a,rm‘,d,s’)N'DSTCUDMr [(Qti) - TQ¢)] 5 (12)
where Dy,, and Dy, are the datasets from the target and source domains, respectively, (4 is the
value function, and 7 is the Bellman operator.

Under review as a conference paper at ICLR 2026

Data selection. We refer to this variant as DADiff-select. We select fixed percentage data with the
lowest deviation d(s, a, s’) from a batch of source domain data. The selected data is then used to
update the value function. We formulate the objective function of the value function as follows,

ACcritic = E(s,a,r,s’)mer [(Qqﬁ - TQ¢)] + H-Q:(s,a,r,s’)strc [UJ(S, a, S/)(Qqﬁ - TQdJ)}) (13)

where w(s, a,s") = 1(d(s,a,s’) < dey), 1 is the indicator function, and dcy, denotes the lowest
&-quantile deviation in the batch.

For both variants, the objective function of the policy 7 is formulated as:

Eactor = E(s,a,r,s’)N’DsmthM - ZIE%HQ Q(b, (87 (Z) +7 10g7T((l|S)) (14)

where 7 is the entropy temperature coefficient, and ¢ denotes the value function index. We provide
the pseudocode of DADIff in Algorithm[I} Appendix [D}

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance of our proposed method on
environments with kinematic and morphology shifts. We first introduce the experimental setup,
including the environments and baselines. Then, we present the adaptation performance of our
method compared to the baselines. A parameter study is also conducted to analyze the impact of
different parameters on the performance of our method.

5.1 EXPERIMENTAL SETUP

We conduct experiments in four environments (ant, hopper, halfcheetah, walker) from Gym Mu-
JoCo (Todorov et al., 2012; |Brockman et al., 2016). The source domain is set as the original en-
vironment, while the target domain is set as the environment with kinematic or morphology shifts.
The kinematic shift is achieved by limiting the rotation range of the joints, while the morphology
shift is achieved by clipping the size of some limbs. We provide the setting details in Appendix

We compare our method with the following baselines: DARC (Eysenbach et al., 2021)), which
trains domain classifiers to estimate the dynamics discrepancy and modifies the reward function in
the source domain; VGDF (Xu et al., [2023), which uses a value-guided data filtering method to
select data from the source domain; PAR (Lyu et al.| [2024a)), which trains encoders to estimate the
representation discrepancy and modifies the reward function in the source domain; SAC-IW, which
estimates the dynamics discrepancy as an importance sampling term for value function; SAC-tune,
which fine-tunes the policy in the target domain for 10° environmental steps; SAC-tar (Haarnoja
et al., |2018)), which is the vanilla SAC trained in the target domain with 105 environmental steps.
We implement all algorithms based on the official code of ODRL (Lyu et al.,2024c) and follow the
hyperparameters in the original paper. We allow all algorithms to interact with the source domain for
1M environmental steps and the target domain for 10° environmental steps, i.e., the target domain
interaction frequency F' = 10. All algorithms are trained with five random seeds. Implementation
details are provided in Appendix[E.2]

5.2 ADAPTATION PERFORMANCE EVALUATION

We conduct experiments on eight tasks with kinematic and morphology shifts to evaluate the adap-
tation performance of DADIff and baselines. The results are presented in Figure [2] Notably, our
proposed method demonstrates superior or highly competitive performance against all baselines in
the majority of tasks. We further discuss the performance of two variants of DADiff, DADiff-modify
and DAD:iff-select, respectively.

Reward modification variant. The reward modification variant of our method, DADiff-modify,
consistently outperforms other reward modification baselines across all tasks and remains competi-
tive with oracle methods. As illustrated in Figure 2] DADiff-modify shows particularly strong and
consistent performance. It outperforms other reward modification methods, including PAR, DARC,
and SAC-IW, across all eight tasks. When compared to oracle methods, DADiff-modify consistently
surpasses SAC-tune and SAC-tar as well. To further explore the performance of DADiff-modify in
stochastic environments, we provide an experiment in Section [6}

Under review as a conference paper at ICLR 2026

—— DADiIff-modify DADiff-select —— PAR —— VGDF —— DARC —— SAC-IW SAC-tar SAC-tune

ant (broken hips) halfcheetah (broken back thigh) hopper (broken joints) walker (broken right foot)
4000

4000 6000 3000

: W 3000 g
< 4000 — 2000 |
52000 M/\/f/ 2000
< S 2000
. 1000 52 % 1000 e A
0 S aV w) / & ~

0 0
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
Environment Steps 1le5 Environment Steps le5 Environment Steps le5 Environment Steps 1le5

ant (short feet) halfcheetah (no thighs) hopper (big head) walker (no right thigh)

4000
4000 A 3000
- 3000
5 4000 / 2000
£ 2000 /) 2000
o W =]
" 2000 Pt 1000 1000

/ /d —
0 o -

. ‘.J’-Y-‘:l:\:i

0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps le5 Environment Steps 1le5 Environment Steps le5 Environment Steps le5

Figure 2: Adaptation performance on kinematic (top) and morphology (bottom) shifts. The solid
curves and the shaded regions denote the mean and standard deviation over five random seeds,
respectively. DADiff demonstrates superior or highly competitive performance against all baselines
in the majority of tasks.

Data selection variant. The data selection variant,
DAD:iff-select, proves to be a highly effective alterna-
tive by achieving competitive performance against top
baselines, especially in tasks where reward modifica-
tion methods falter. Specifically, in the halfcheetah (no - - -
thighs) and hopper (big head) tasks, reward modifica- ® ADiftmofy DADifEselect PAR DARC VGDF
tion methods exhibit poor performance. In contrast,
DAD:iff-select achieves results that are highly competi-
tive with the top-performing baseline, VGDEF. This sug-
gests that in certain tasks, directly filtering for transi-
tions with low dynamics mismatch is a more effective
strategy than modifying rewards. Additionally, while
the VGDF demonstrates top-tier performance in certain
challenging tasks, specifically hopper (big head) and halfcheetah (no thighs), its approach carries
significant trade-offs. Since VGDF is a model-based approach, it takes significantly longer to train
by more than 3%, as shown in Figure@ On the other hand, DADiff-select is able to match or exceed
the performance of VGDF on such environments while maintaining comparable efficiency to similar
model-free baselines. We further provide additional computational cost analysis in Appendix [F.1]

-
o

-
o

Runtime (h)

o

Figure 3: Runtime comparison on the
halfcheetah (broken back thigh) task.
VGDF requires 3x more training time
than other methods due to its model-based
approach.

5.3 PARAMETER STUDY

The performance of DADIff is influenced by several key hyperparameters. To better understand
their roles, we conducted a series of experiments across different tasks. The results on halfcheetah
(broken back thigh) and walker (no right thigh) are presented in Figure d] More experimental results
are provided in Appendix [F.2]

Penalty Coefficient \.) controls the scale of reward penalty in DADiff-modify. As shown in Fig-
ure fa)and Figure[9] Appendix [F.2] we evaluate the performance of DADIff-modify across multiple
values of A. We find that a worse performance is often shown in the setting A = 0, where no penalty
is adopted for rewards. It demonstrates the necessity of reward modification. Meanwhile, the results
also indicate that the optimal value of X is task-dependent, and there could be multiple values that
yield good performance for a specific task. For instance, in the halfcheetah (broken back thigh)
task, both A = 0.5 and A = 5.0 achieve the best performance. A poorly chosen A can significantly
degrade performance, highlighting the importance of tuning this coefficient.

Data Selection Ratio £%. &% controls the percentage of source domain data to retain in DADiff-
select. As shown in Figure[dbland Figure[I0] Appendix[F.2] we evaluate the performance of DADiff-
select across multiple values of £€%. Similar to the penalty coefficient, the optimal value of {%
is task-dependent. We also find that both too much (£% = 100%) and too little (% = 0%))

Under review as a conference paper at ICLR 2026

— A=0 —— A=0.01 —— A=0.05 A=0.1 £%=0% £%=10% §%=25%
A=0.5 —— A=1.0 — A=2.0 —— A=5.0 £%=50% £%=75% £%=100%
halfcheetah (broken back thigh) walker (no right thigh) halfcheetah (broken back thigh) walker (no right thigh)
4000
6000 4000 6000
3000 3000
€ 4000 : £ 4000
E s
3 2000 @AY g 2000
= 2000
2000 1000 1000
0 0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1le5 Environment Steps le5 Environment Steps le5 Environment Steps 1le5
(a) Penalty coefficient . (b) Data ratio £%.
— F=2 F=5 —— F=10 —— F=20 — K=10 K=50 —— K=100 —— K=200
halfcheetah (broken back thigh) walker (no right thigh) halfcheetah (broken back thigh) walker (no right thigh)
6000 4000 2000
3000
< 4000 3000
E
g 2000 2000
2000
1000 1000
0 0 s i AR 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1le5 Environment Steps le5 Environment Steps le5 Environment Steps 1le5

(c) Target domain interaction frequency F'. (d) Diffusion timesteps K.

Figure 4: Parameter study. The solid curves and the shaded regions denote the mean and standard
deviation over five random seeds, respectively.

source data can lead to suboptimal performance. As retaining too much source data may introduce
transitions with significant dynamics mismatch, while retaining too little may result in insufficient
data for effective learning.

Target Domain Interaction Frequency F'. F' controls how often policies interact with the target
domain in both DADiff-modify and DADiff-select. Only 10° interactions with the target domain
are permitted and the interactions with the source domain are changed to adapt to different F'. We
provide the results of DADiff-modify in Figure We find that the frequency F' is best set to 10.
This value provides the best performance, while collecting too much source domain data between
target interactions (£’ = 20) can be detrimental, possibly causing the policy to diverge. Additional
results of DADiff-select are provided in Figure[TTal Appendix [F.2]

Diffusion Timesteps K. K controls the number of diffusion timesteps used to measure the dis-
crepancy in both DADiff-modify and DADiff-select. We provide the results of DADiff-modify in
Figure [4d] The results shows that performance improves up to K = 100. Increasing K further to
200 causes a decline, likely due to the limited capacity of the noise model, which may struggle to ac-
curately estimate noise across too many timesteps. Additional results of DADiff-select are provided

in Figure[TTb] Appendix [F2]
6 DISCUSSIONS

Connection between DADIff and PAR. We explore the connection between PAR and our method
from a theoretical perspective. The performance bound of our method is controlled by the generative
trajectory discrepancy in Theorem[.2] We consider a special case, where the number of latent states
in the trajectory is K = 1. Instead of considering latent states in the generative trajectory, we take s}
as a latent representation and introduce the one-to-one representation mapping assumption in PAR
(Lyu et al.l 2024a)), which assumes that there exists a one-to-one mapping for each state-action pair
(s,a) and its latent representation s}. In this setting, the state-action pair (s, a) in Equation[5|can be
all replaced by the corresponding latent representation s;. Therefore, the performance bound can be
rewritten as follows,

\/E'Yrmax
(1=9)?
We further introduce a conclusion proven in PAR (Lyu et al.,|20244a), which is formulated as follows,

DKL(PsrC(Sll|5{))||Ptar(3/1|3/0)) = DKL(PsrC(3/0|5/1)||Ptar(3€)|5/1)) + H(S/src) - H(Sgar)' (16)

15)

MMare (T) = Ny () < Epr. {\/ Ep,.. [DkL(Pore(sp]51)[| Prar (s551))]

Under review as a conference paper at ICLR 2026

Table 1: We report the adaptation performance with stochastic dynamics controlled by the standard
deviation parameter ¢. The average return and standard deviation over five random seeds are re-
ported. The best results are highlighted in bold. The relative performance change compared to the
deterministic setting (¢ = 0.0) is reported in parentheses. For both environments, DADiff-modify
shows a smaller decrease in performance than PAR.

(a) hopper (broken joints) (b) walker (broken right foot)
s DADiff-modify PAR s DADiff-modify PAR
0.00 2582.14+251.6 2623.1+105.2 0.00 3390.4+464.4 2943.34+546.7

0.01 | 2591.0+159.2 (1 0.34%) 2398.3+297.8 (] 8.57%) 0.01 | 2879.3+688.9 (] 15.08%) 2373.8+1072.4 (| 19.35%)
0.02 | 2515.9+101.8 (2.57%) 2328.7+£302.9 (} 11.22%) 0.02 | 2812.5+934.6 (] 17.05%) 2825.8+466.6 (I 3.99%)
0.03 | 2574.2+280.6 (1 0.31%) 2406.1+455.7 (] 8.27%) 0.03 | 3176.8+796.4 (|l 6.30%) 1613.9+878.7 (| 45.17%)

Therefore, the performance bound can be rewritten as follows,

\/§’yrmax
Mt () = st () € T B IDr (Pl 55 P55

297
+ m(EP:m |:\/]Epsrc [H(Sérc) - H(Séar)]} .
This performance bound is consistent with the performance bound of PAR, which indicates that
PAR can be considered as a special case of our method. However, the one-to-one representation
mapping assumption may not hold in practice, especially in stochastic environments, which limits
the application of PAR. In contrast, our method does not rely on this assumption and can handle more
general scenarios. We validate this point in environments with stochastic dynamics. Noises with
different standard deviation ¢ are introduced to the actions to simulate stochastic dynamics, and two
tasks with kinematic shifts, hopper (broken joints) and walker (broken right foot), are considered.
We evaluate the performance of DADiff-modify and PAR, which is presented in Table 1] Notably,
our method maintains robust performance even as the standard deviation ¢ increases, while PAR’s
performance degrades significantly. We believe the decrease in PAR’s performance is due to its
reliance on one-to-one representation assumptions, which may not hold in stochastic settings. We
provide more results on stochastic dynamics in Appendix [F.3]

a7

Reward distribution analysis. We further exam- W Original EEE Processed
. . . halfcheetah (no thighs) hopper (big head)
ine the reasons behind the superior performance o ’ prere

of DADiff-select, in contrast to the severe failure _ .. r L k k

of DADiff-modify on halfcheetah (no thighs) and
hopper (big head) tasks, as illustrated in Figure [2]

Specifically, we analyze the reward distributions of DADIFmodity DADIffselect DADIfmodty DADIffselect
source-domain data after modification or selection.

The results are presented in Figure 5} We find that Figure 5: Reward distribution comparison
DADiff-select generates a higher distribution in the between the source-domain rewards before
low-reward region compared to DADiff-modify on processing (Original) and after modification
both tasks. This suggests that the low-reward data or selection (Processed).

may play a crucial role in these tasks, which can ef-

fectively guide the policy to avoid undesirable states and actions. More results on reward distribution
are provided in Appendix [F:4]

6

Reward
~
n
Reward
IR

7 CONCLUSION

This work explores the problem of online dynamics adaptation in reinforcement learning from a
generative modeling perspective. We first theoretically analyze the performance bound of a policy
in the source and target domains, which is controlled by the generative trajectory discrepancy. Based
on this analysis, we propose a novel method, DADiff, which utilizes diffusion models to measure
the dynamics discrepancy and performs either reward modification or data selection to adapt to the
target domain. Extensive experiments demonstrate that our method outperforms existing baselines
in various tasks with kinematic and morphology shifts. We also conduct a parameter study and
multiple discussions to further explore the properties of our method.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research focuses on an online dynamics adaptation problem in reinforcement learning, which
is a fundamental problem in the field of sim-to-real transfer. We believe that our work can contribute
to the development of more robust and adaptable reinforcement learning algorithms, which can be
beneficial for various applications. However, we also acknowledge that the deployment of reinforce-
ment learning algorithms in real-world environments may raise ethical concerns, such as safety and
fairness. We encourage researchers and practitioners to consider these ethical implications when
applying our method in practice.

REPRODUCIBILITY STATEMENT

Our code, data, and instructions needed to reproduce the main experimental results are included
in the supplementary material. We provide detailed descriptions of the algorithms, experimental
setup, and hyperparameters in the main text and appendix. Proofs of the theoretical results are also
provided in the appendix to ensure the reproducibility of our work.

REFERENCES

Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning for
sim-to-real domain adaptation. In 2020 IEEE international conference on robotics and automa-
tion (ICRA), pp. 2725-2731. IEEE, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff,
and Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8973—
8979. IEEE, 2019.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric A. Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. ArXiv, abs/2303.04137,
2023. URL https://api.semanticscholar.org/CorpusID:257378658.

Imre Csiszar and Janos Korner. Information theory: coding theorems for discrete memoryless sys-
tems. Cambridge University Press, 2011.

Aidan Curtis, Eric Li, Michael Noseworthy, Nishad Gothoskar, Sachin Chitta, Hui Li, Leslie Pack
Kaelbling, and Nicole E Carey. Flow-based domain randomization for learning and sequenc-
ing robotic skills. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=9J0XuyzdGL.

Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. Prompt to transfer: Sim-to-real transfer for
traffic signal control with prompt learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 82-90, 2024.

Longchao Da, Justin Turnau, Thirulogasankar Pranav Kutralingam, Alvaro Velasquez, Paulo
Shakarian, and Hua Wei. A survey of sim-to-real methods in rl: Progress, prospects and chal-
lenges with foundation models. arXiv preprint arXiv:2502.13187, 2025.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhut-
dinov. Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=eqBwg3AcIAK.

Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos. Cross-domain imitation

learning via optimal transport. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=xP3cPgq2hQC.

10

https://api.semanticscholar.org/CorpusID:257378658
https://openreview.net/forum?id=9JQXuyzdGL
https://openreview.net/forum?id=eqBwg3AcIAK
https://openreview.net/forum?id=eqBwg3AcIAK
https://openreview.net/forum?id=xP3cPq2hQC

Under review as a conference paper at ICLR 2026

Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement learning tasks via
image-to-image translation. In International conference on machine learning, pp. 2063-2072.
PMLR, 2019.

Yuying Ge, Annabella Macaluso, Li Erran Li, Ping Luo, and Xiaolong Wang. Policy adaptation
from foundation model feedback. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19059-19069, 2023.

Yihong Guo, Yixuan Wang, Yuanyuan Shi, Pan Xu, and Anqi Liu. Off-dynamics reinforcement
learning via domain adaptation and reward augmented imitation. Advances in Neural Information
Processing Systems, 37:136326-136360, 2024.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. Advances in neural information processing systems, 36:64896-64917, 2023.

You Heng, Tianpei Yang, YAN ZHENG, Jianye HAO, and Matthew E. Taylor. Cross-domain adap-
tive transfer reinforcement learning based on state-action correspondence. In The 38th Conference
on Uncertainty in Artificial Intelligence, 2022. URL https://openreview.net/forum?
1d=ShN3hPUsceb5.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840-6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5Sbcfec8584af0d967f1labl0179cad4b—-Paper.pdfl

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Yuankun Jiang, Chenglin Li, Wenrui Dai, Junni Zou, and Hongkai Xiong. Variance reduced domain
randomization for reinforcement learning with policy gradient. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(2):1031-1048, 2024. doi: 10.1109/TPAMI.2023.3330332.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36:67195—
67212, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline deci-
sion making. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 20035-20064.
PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/11i23ad.
htmll

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and giang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=XViTT1lnw5z.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 46323-46344. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
f11le/911fc798523e7d4c2e9587129fcf88fc—-Paper—-Conference.pdf.

11

https://openreview.net/forum?id=ShN3hPUsce5
https://openreview.net/forum?id=ShN3hPUsce5
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.mlr.press/v202/li23ad.html
https://proceedings.mlr.press/v202/li23ad.html
https://openreview.net/forum?id=XVjTT1nw5z
https://proceedings.neurips.cc/paper_files/paper/2023/file/911fc798523e7d4c2e9587129fcf88fc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/911fc798523e7d4c2e9587129fcf88fc-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=BJelE2R5KX.

Jiafei Lyu, Chenjia Bai, Jing-Wen Yang, Zongqing Lu, and Xiu Li. Cross-domain policy adapta-
tion by capturing representation mismatch. In Forty-first International Conference on Machine
Learning, 2024a. URL https://openreview.net/forum?id=3uPSQmjXzd.

Jiafei Lyu, Chenjia Bai, Jingwen Yang, Zongqing Lu, and Xiu Li. Cross-domain policy adaptation
by capturing representation mismatch. arXiv preprint arXiv:2405.15369, 2024b.

Jiafei Lyu, Kang Xu, Jiacheng Xu, Jing-Wen Yang, Zongzhang Zhang, Chenjia Bai, Zongqing Lu,
Xiu Li, et al. Odrl: A benchmark for off-dynamics reinforcement learning. Advances in Neural
Information Processing Systems, 37:59859-59911, 2024c.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain
randomization. In Conference on Robot Learning, pp. 1162-1176. PMLR, 2020.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814,
2010.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162-8171. PMLR, 2021.

Kuan-Chen Pan, MingHong Chen, You-De Huang, Xi Liu, and Ping-Chun Hsieh. Cross-domain
reinforcement learning under distinct state-action spaces via hybrid q functions, 2025. URL
https://openreview.net/forum?id=oVATjYtVufl

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3803-3810, 2018. doi: 10.1109/ICRA.2018.8460528.

Dripta S. Raychaudhuri, Sujoy Paul, Jeroen Vanbaar, and Amit K. Roy-Chowdhury. Cross-domain
imitation from observations. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 8902-8912. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.
press/v139/raychaudhuri2la.html.

Reda Bahi Slaoui, William R Clements, Jakob N Foerster, and Sébastien Toth. Robust visual domain
randomization for reinforcement learning. arXiv preprint arXiv:1910.10537, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-

ing, pp. 2256-2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Linh Le Pham Van, Hung The Tran, and Sunil Gupta. Policy learning for off-dynamics rl with
deficient support. arXiv preprint arXiv:2402.10765, 2024.

12

https://openreview.net/forum?id=BJe1E2R5KX
https://openreview.net/forum?id=BJe1E2R5KX
https://openreview.net/forum?id=3uPSQmjXzd
https://openreview.net/forum?id=oVATjYtVuf
https://proceedings.mlr.press/v139/raychaudhuri21a.html
https://proceedings.mlr.press/v139/raychaudhuri21a.html
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

Under review as a conference paper at ICLR 2026

Linh Le Pham Van, Minh Hoang Nguyen, Duc Kieu, Hung Le, Hung The Tran, and Sunil Gupta.
Dmc: Nearest neighbor guidance diffusion model for offline cross-domain reinforcement learn-
ing. arXiv preprint arXiv:2507.20499, 2025.

Luca Viano, Yu-Ting Huang, Parameswaran Kamalaruban, Adrian Weller, and Volkan Cevher. Ro-
bust inverse reinforcement learning under transition dynamics mismatch. Advances in Neural
Information Processing Systems, 34:25917-25931, 2021.

Quan Vuong, Sharad Vikram, Hao Su, Sicun Gao, and Henrik I Christensen. How to pick the do-
main randomization parameters for sim-to-real transfer of reinforcement learning policies? arXiv
preprint arXiv:1903.11774, 2019.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183-54204, 2024.

Xiaoyu Wen, Chenjia Bai, Kang Xu, Xudong Yu, Yang Zhang, Xuelong Li, and Zhen Wang. Con-
trastive representation for data filtering in cross-domain offline reinforcement learning. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=rReWhol66R.

Zheng Wu, Yichen Xie, Wenzhao Lian, Changhao Wang, Yanjiang Guo, Jianyu Chen, Stefan Schaal,
and Masayoshi Tomizuka. Zero-shot policy transfer with disentangled task representation of
meta-reinforcement learning. arXiv preprint arXiv:2210.00350, 2022.

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li.
Cross-domain policy adaptation via value-guided data filtering. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
1d=gqdM260dXsal

Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, and Bo An. State
regularized policy optimization on data with dynamics shift. Advances in neural information
processing systems, 36:32926-32937, 2023.

Wenshuai Zhao, Jorge Peia Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737-744. IEEE, 2020.

Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
and Weinan Zhang. MADiff: Offline multi-agent learning with diffusion models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=PvoxbjcRPT.

13

https://openreview.net/forum?id=rReWhol66R
https://openreview.net/forum?id=rReWhol66R
https://openreview.net/forum?id=qdM260dXsa
https://openreview.net/forum?id=qdM260dXsa
https://openreview.net/forum?id=PvoxbjcRPT
https://openreview.net/forum?id=PvoxbjcRPT

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized in the preparation of this manuscript. Specifically,
LLMs were employed to assist in refining the clarity and coherence of the text, ensuring that complex
ideas were communicated effectively. The use of LLMs was limited to language editing and did
not influence the scientific content or conclusions of the work. All technical details, experimental
results, and theoretical analyses were developed independently by the authors. We acknowledge the
assistance of LLMs in enhancing the readability of the manuscript while maintaining the integrity
of the research presented.

B PROOFS OF THE PERFORMANCE GUARANTEES

In this section, we provide detailed proofs of the performance guarantees stated in the main text. For
readability, we restate theorems and provide some lemmas that are used in the proofs.

B.1 USEFUL LEMMAS

Lemma B.1 (Telescoping lemma.) Denote M; = (S, A, Py, r,7y) and My = (S, A, Pa,r,7) as
two MDPs with the same state and action spaces but different transition dynamics P; and P». The
performance difference of a policy 7 evaluated in M, and M can be expressed as:

v . Tr
My () = Np, () = EE%JM) [Esrnp, Vi, ()] = Egnp, [Vig, (5]

Proof. Please see Lemma 4.3 in SLBO (Luo et al.,|2019) for a detailed proof.

Lemma B.2 (KL divergence of Gaussian distributions.) Specify two normal distributions P, =
N (q,X) and P, = N (pp,), which have different means p,, and pp, but share the same covariance
matrix ¥ = 2] with o2 being a predefined scalar. The KL divergence between P, and P, can be
written as below,

1
DxL(Pal|Py) = @HM — wll3-

Proof. According to the definition of KL divergence between two multivariate Gaussian distribu-
tions, we have

1 by
Dt (PlIBy) = & (1og 20l a1y + 0051 50) + (s —) TS5 m)

2 ¥,
1/1
— 5 (ko i)
1
= ﬁ”ﬂa - Hb\|§~

B.2 PROOF OF THEOREM [4.2]

Theorem B.3 (Performance bound controlled by generative trajectory discrepancy.) Denote
Mre and My as the source and target domains with different dynamics, respectively. The
performance difference of any policy w evaluated in Mg, and M,y can be bounded as below,

S \/ﬁryrma;
(1=7)

Mt (7) = Tt () B | Br 1D (Pl 5.) Pl)

(@): initial latent state deviation

V2V max

(1 — ’Y)Q PTc Epsrc

K
Z DKL(PSI‘C(S;C_l |S;c’ S, a)”Ptar(S;g_l |S;g7 S, a))]
k=1

(b): latent state transition mismatch

14

Under review as a conference paper at ICLR 2026

Proof. As the value function V{7, (s) estimates the expected return of a policy 7 starting from state

s in domain M, and the rewards are bounded, we have |V (s)| < rmax/(1

Lemmal[B.1] we have:

v),Vs. By using

B, [Ep,.[r(s.a)] — Ep,,[r(s,a)]

[Palsils. Vi) - | Pmr<sg|s,a>v;;r<sa>dsa]

NMare (T) = N, () = T
_
—1_ y Pirc o o
< ﬁ Pl /SB(Psrc(Sélsva) — Prar(sp]s, a)) ‘QZI(SB)Id%]
Yrmax

<
- (1 _)2 phxc

/ Pyc(sgls,a) — Prar(sy]s, a)dSO]

YT max
(1 o d)QEP:rc [/ PSTC(S/O:K|S’ a) - Ptar(sé):Kls’ a)dS:JK‘|
0 80. 1
2lyrmax
= 1- ,Y)QEP;ZC [DTV(PsrC(56:K|sva)HPtar(sé):KBv a))l
\/§’yrmax [
< (1 _ 7)2 Ep;rrc \/DKL(PSYC(Sé:K|57 a)||Ptar(56:K|57 a))] (a)
2 max [Psr ‘. s
= 7\[%6 5 Epr Ep,. {log 7€(8?'K|3 a)}
(1 77) e L Ptar(SO:K|57a)
\/5'77' a P. S ‘S (Z Py Sk 1|Sk,8 a)
= o Bog, || B [log 55t (b)
(1=)2 Phe Pac |08 5010 Prax (5|5, a) kz Prax (s, |5}, 5, a)
\/§’yrmax [
< B |V D (Pl o) [P s)]
\/ﬁ'yrm x o
+ (1 _,y)az]Ep;rrc Ep,,. ZDKL(PSW(S;@71|S;@7Sva)HPtar(S;gfﬂS;g;Saa)) (©
k=1

where D1y (P||Q) is the total variation distance between two distributions P and @, the step (a)
holds by Pinsker’s inequality (Csiszar & Korner} [2011), the step (b) holds by the Markov property,
and the step (c) holds by the subadditivity of the square root function. The proof shows that the per-
formance difference can be controlled by the distributional divergence of latent states in generative

trajectories.

C EXTENDED IMPLEMENTATION WITH FLOW MATCHING

We further extend Theorem [4.2) to continuous-time gen-
erative models, i.e., flow matching (Lipman et al.| 2022}
Liu et al., 2023), and provide the implementation details
in this section. To better clarification, we redefine the
timestep k£ € [0, 1] in flow matching, which is different
from the discrete timestep k& € {0,1,2,..., K} in diffu-
sion models. Flow matching model learns a vector field
to transform a standard Gaussian distribution to a com-
plex distribution. Specifically, given a data point z(, flow
matching constructs a continuous-time flow from a stan-
dard Gaussian distribution to the data point xg, which is
defined as follows,

Th—ak = Tp + Ak - vg(xp, k),

15

—— DAFlow-modify —— DADiff-modify —— DADiff-select
PAR —— VGDF SAC-tune
halfcheetah (broken back thigh) walker (no right thigh)
5000 4000

3000
2 2000
]
< 2000 Wi
1000
0
4

0.0 02 0.4 0.6 0.8 1.0
vironment Steps 15

Figure 6: Adaptation performance of
DAFlow-modify. The solid curves and
the shaded regions denote the mean
and standard deviation over five random
seeds, respectively.

Under review as a conference paper at ICLR 2026

where Ak is a small step size, x = (1 — k)zg + k1, 1 ~ N(0,1), and vg(xg, k) is the vector
field that is estimated by a neural network and indicates the direction of the flow at point x;. The
flow matching model is trained to minimize the following objective,

‘Cﬂow = Ea:g,k,e [H(xl - .’L'()) - 'U()({I?k,k)HQ} .

We follow the same procedure in Section to measure the dynamics discrepancy based on the
trained flow matching model. Specifically, the vector field in the source domain is denoted as
Usre (S}, k), which is constructed by the source domain data, i.e., vsrc (5}, k) = E[s] — sp|s}.], where
s(is the next state in the source domain, and s ~ N(0, I). Meanwhile, the vector field in the target
domain is estimated by a neural network vfar(s;, k), which is trained on the target domain data. The
generative trajectory deviation d(s, a, ") is formulated as follows,

d(s,a,s") = Eg > AR?(|(s] — 55) — viar (1 = k)sg + ks, k)17 | -
ke{Ak2AK,...,1}

Similarly, the deviation d(s, a, ") can be used for reward modification and data selection in the same
way as in Section[4.2] We provide the domain adaptation performance of the reward modification
variant based on flow matching (DAFlow-modify) in Figure [6] The results show that DAFlow-
modify achieves better performance compared to the baseline methods, which demonstrates the
generality of our theoretical findings. In addition, DAFlow-modify has slightly inferior performance
compared to DADiff-modify, showing that diffusion models may be more effective in measuring the
dynamics discrepancy for domain adaptation in reinforcement learning.

D PSEUDOCODES

In this section, we provide the pseudocode of our proposed method in Algorithm|[I] including both
reward modification and data selection variants.

Algorithm 1 Domain Adaptation with Diffusion (DADiff)

Input: Source domain My, target domain My,,, and target domain interaction frequency F
Initialization: Policy , value function {Qg, };=1,2, target value function {Q¢; }i=1,2, noise model
e, replay buffers { Dg;c, Diar }» data selection ratio &, batch size N

1: fori =1,2,... do

2: Collect (Ssre, Asres Tsres Sipe) from the source domain My, and store in Dgye

3 if ; mod F' = 0 then
4: Collect (Star, Gtar, T'tar; Stay) from the target domain My,, and store in Dy,y
5: end if
6.
7
8

Sample N transitions from Dy, to train the noise model €/, via Equation@]
Sample N transitions from Dg,. to obtain the deviation d(Sgyc, Gsre, Shye) Via Equation

src

: if using reward modification then > reward modification
9: Modify source domain rewards via Equation [T1]
10: Update value functions @), by minimizing Equation
11: else > data selection
12: Select the ¢-quantile data from the source domain based on d(Ssre, @sres Skye)
13: Update value functions @4, by minimizing Equation
14: end if

15: Update actor 7 by minimizing Equation [I4]
16: Update target value functions
17: end for

E EXPERIMENTAL DETAILS

In this section, we provide detailed experimental settings, including environment settings, imple-
mentation details, and hyperparameter settings.

16

Under review as a conference paper at ICLR 2026

E.1 ENVIRONMENT SETTING

Four environments from OpenAl Gym (Brockman et al., [2016) are considered in our experiments,
including ant-v3, halfcheetah-v2, hopper-v2 and walker2d-v2, which are simulated by the MuJoCo
physics engine (Todorov et al., 2012). These environments are also widely used in previous works
on domain adaptation in reinforcement learning (Xu et al.| 2023} |Lyu et al., [2024a). To evaluate
the effectiveness of our proposed method under different dynamics shifts, we adopt the original
environments as the source domain, and both kinematic shifts and morphology shifts are considered
to construct the target domain. Specifically, the kinematic shifts are introduced by modifying the
joint rotation angles of the robots, while the morphology shifts are introduced by changing the sizes
of some body parts. The details of the target domain settings are summarized as follows:

o ant (broken hips): We modify the joint rotation angles of the hips on two legs from [—30, 30] to
[—0.3,0.3].

o halfcheetah (broken back thigh): We modify the joint rotation angle of the back thigh from
[—0.52,1.05] to [—0.0052, 0.0105].

e hopper (broken joints): We modify the joint rotation angles of the head and foot from
[—150, 0], [—45,45] to [-0.15, 0], [—18, 18], respectively.

o walker (broken right foot): We modify the joint rotation angle of the foot on the right leg from
[—45, 45] to [—0.45,0.45].

o ant (short feet): We modify the sizes of the feet on the front two legs of the robot, which are shown
below:

<l-- leg 1 ——>

<geom fromto="0.0 0.0 0.0 0.1 0.1 0.0" name="left_ankle_geom" size="0.08"
type="capsule"/>

<!-—— leg 2 ——>

<geom fromto="0.0 0.0 0.0 -0.1 0.1 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>

o halfcheetah (no thighs): We modify the sizes of the back thigh and the forward thigh of the robot,
which are shown below:

<!-- back thigh --—>

<geom fromto="0 0 0 -0.0001 0O -0.0001" name="bthigh" size="0.046" type="
capsule"/>

<body name="bshin" pos="-0.0001 0 -0.0001">

<!-- forward thigh -->

<geom fromto="0 0 0O 0.0001 O 0.0001" name="fthigh" size="0.046" type="
capsule"/>

<body name="fshin" pos="0.0001 0 0.0001">

® hopper (big head): We modify the size of the head of the robot, which is shown below:

<!-- head size -—>
<geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="torso_geom" size="
0.125" type="capsule"/>

o walker (no right foot): We modify the size of the thigh on the right leg of the robot, which is
shown below:

<!-—— right leg ——>
<body name="thigh" pos="0 0 1.05">
<joint axis="0 -1 0" name="thigh_ joint" pos="0 0 1.05" range="-150 0"
type="hinge"/>
<geom friction="0.9" fromto="0 0 1.05 0 0 1.045" name="thigh_geom" size=
"0.05" type="capsule"/>
<body name="leg" pos="0 0 0.35">
<joint axis="0 -1 0" name="leg_joint" pos="0 0 1.045" range="-150 0"
type="hinge"/>

17

Under review as a conference paper at ICLR 2026

<geom friction="0.9" fromto="0 0 1.045 0 0 0.3" name="leg_geom" size="
0.04" type="capsule"/>
<body name="foot" pos="0.2 0 0">
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.3" range="-45 45"
type="hinge"/>
<geom friction="0.9" fromto="-0.0 0 0.3 0.2 0 0.3" name="foot_geom"
size="0.06" type="capsule"/>
</body>
</body>
</body>

Detailed modifications of the xm1 files for the target domains are provided in the supplementary
material.

E.2 IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our proposed method and baselines. All
methods are implemented based on the Soft Actor-Critic (SAC) algorithm (Haarnoja et al.| [2018),
which is a widely used off-policy reinforcement learning algorithm. The details are summarized as
follows:

e PAR: PAR is constructed based on the theoretical analysis that the performance difference between
source and target domains can be bounded by the representation discrepancy, i.e.,

V29T max
(1—79)?
\/E’YTmaX

Mt (1) = Tt () < Eys. [VER D (Pl IPEI)]

L B | VI T HGL)|
where 2’ is the latent representation of the state-action pair, s, and s{,, are the next states in source
and target domains, respectively, and Hi(-) is the entropy. PAR learns a shared state encoder fy4 and
a state-action encoder gy to obtain the latent representations of states and state-action pairs, respec-
tively. The encoders are trained to minimize the representation discrepancy in the target domain.
The source domain rewards are modified by adopting a reward penalty via:
2

rmOd(s3 a, S;rc) - 7’(5, a, Sgrc) —A- [f¢(g€ (Sérc)ﬂ aSFC) - gQ(Sfcar)])
where) is a hyperparameter to balance the original reward and the penalty. We use the official code
of ODRL (Lyu et al.,|2024c) to implement PAR, and we follow the default hyperparameter settings
provided in PAR.

e VGDF: VGDF is constructed based on the theoretical analysis that the performance difference
between source and target domains can be bounded by the value discrepancy, i.e.,

~
NMeare (T) = MMy (T) < ﬁEpgm [EPp... [Vae(s)] — Ep,. Vi (s)]]
VGDF learns an ensemble of probabilistic dynamics models to predict the next state in the target
domain, which is used to estimate the value discrepancy, and selects source domain data with small
value discrepancy to train the critic via:

‘Ccritic = E(s,a,r,s/)thar [(Q¢ - TQ¢)] + E(s,a,r,s’)NDsrc [w(sv a, S/)(Qti) - TQ¢)])

where w(s, a,s’) = 1(A(s,a,s’) < Agy) is the data selection function, A(s, a, s") is the value dis-
crepancy estimated by the learned dynamics models, % is the data selection ratio, 7 is the Bellman
operator, and D;,, and Dy, are the replay buffers of target and source domains, respectively. We
use the official code of ODRL (Lyu et al., 2024c) to implement VGDF, and we follow the default
hyperparameter settings provided in VGDF to set the data selection ratio as 25%.

e DARC: DARC estimates the reward correction term via two domain classifiers gp,, (-], a) and
Qosas (-], @, s"), which are trained to distinguish the source and target domain data. These two
classifiers are trained via:

Lsa = —E(s,0)~Dy., (108 qos, (target|s, a)] — E(s o)~p.,. [l0g qos, (sourcels, a)],

Lsas = _E(S7a75/)~Dtar [IOg d0sas (target‘sv a, 5/)] -]E(S,CL,S’)NDSK-C [IOg 4osas (source\s, a, 5/)} .

18

Under review as a conference paper at ICLR 2026

—(O~> Source R —O> Target A

\
O, 6 _—> e 80 (@] 6 ey sh
5(’&_}' 2 s/K\} = \‘O‘
! !
SK-1 SK 1_/_>
(a) Iterative Generation (b) Parallel Generation

Figure 7: Generation forms of diffusion models to estimate the dynamics discrepancy. (a) Iterative
generation form. The target-domain latent states are generated iteratively from s to s, leading to
more computational cost. (b) Parallel generation form. The target-domain latent states are generated
in parallel based on the previous source-domain latent states, which is more efficient.

The source domain rewards are modified by adopting a reward correction via:

Qos , (source|s, a)qog, « (targetls, a, s’)

m s Uy "= s Wy - A-l .

Tmod(8, 0, 8') = 7(5,0,5') g Qos, (target|s, a)qoq . (SOUTCels, a, s')

We use the official code of ODRL (Lyu et al.|2024c)) to implement DARC, and we follow the default
hyperparameter settings provided in PAR.

o SAC-IW: Different from DARC, SAC-IW estimates the importance weights via two domain clas-
sifiers gpq, (|8, @) and gpq .« (¢| 8, @, 8'), which are trained to distinguish the source and target domain
data. These two classifiers are trained via the same loss functions as DARC. The importance weights
are estimated via:

w(s,a,) = Qos 5 (source|s, a)qog . (targetls, a, s’)

Qo , (target|s, a)qos . (sOUrcels, a, s’)’

The importance weights are used to reweight the error in the critic update via:
£Critic = E(s,a,r,s’)r\/DsrC [(.U(S, a, Sl)(Q¢ - TQ¢)] :

To ensure the stablity of training, we clip the weights to the range [le~*,10]. We use the official
code of ODRL (Lyu et al.,|2024c)) to implement SAC-IW, and we follow the default hyperparameter
settings provided in ODRL.

e SAC-tar: SAC-tar directly applies the SAC algorithm to interact with the target domain for 10°
environmental steps, without using any source domain data.

o SAC-tune: SAC-tune first pretrains the policy using the SAC algorithm in the source domain for
IM environmental steps, and then fine-tunes the pretrained policy in the target domain for another
10° environmental steps.

o DADiff-modify: Instead of measuring the performance difference between the source and target
domains via the representation discrepancy or value discrepancy, DADiff-modify measures it via
the generative trajectory discrepancy in Equation[5] The noisy data points generated by the noise
model are regarded as the latent states in our implementation. The noise model is trained to fit the
target domain data via Equation [9] The source domain rewards are then modified by adopting a
reward penalty via Equation[T1] The value function is updated via Equation|[I2] We believe that the
penalty coefficient X in Equation[I1]is an important hyperparameter, and it is task-independent. We
conduct a hyperparameter search for A in {0.01,0.05,0.1, 0.5, 1.0, 2.0, 5.0} for each task and report
the adopted) in Table

o DADiff-select: DADiff-select measures the performance difference between the source and target
domains in the same way as DADiff-modify. The source domain data are selected based on the
deviation and then used to train the value function, which is shown in Equation @ As our method
is more efficient in selecting source domain data, we conduct a hyperparameter search for the data
selection ratio £% in {25%, 50%, 75%} for each task and report the adopted £% in Table

19

Under review as a conference paper at ICLR 2026

Table 2: Key hyperparameters of DADiff.

Task Name DADiff-select (£%) DADiff-modify (\) PAR(\) DARC ()
ant (broken hips) 75% 0.01 0.05 1.0
ant (short feet) 75% 2.0 0.05 0.1
halfcheetah (broken back thigh) 75% 0.5 5.0 2.0
halfcheetah (no thighs) 25% 0.1 5.0 0.5
hopper (broken joints) 75% 0.5 0.1 2.0
hopper (big head) 10% 0.5 0.1 1.0
walker (broken right foot) 75% 2.0 0.1 1.0
walker (no right thigh) 75% 5.0 0.1 1.0

Table 3: Hyperparameter settings.

Hyperparameter Value
Shared
Actor network (256, 256)
Critic network (256, 256)
Batch size 256
Learning rate 3x 1074
Optimizer Adam (Kingma, [2014)
Discount factor 0.99
Replay buffer size 108
Warmup steps 0 for DADIff and PAR, 10° for others
Activation function ReLU (Nair & Hinton, |[2010)
Target update rate 5x 1073
Temperature coefficient 0.2
Target domain interaction frequency 10
DARC, SAC-IW
Classifier network (256, 256)
PAR
Encoder network (256, 256)
Latent dimension 256
VGDF
Dynamics model (256, 256)
Ensemble size 7
Data selection ratio 25%
DAD:ff
Noise model (256, 256)
Diffusion timesteps 100
Beta scheduler Cosine scheduler (Nichol & Dhariwal, |[2021)

E.3 HYPERPARAMETER SETTINGS

The hyperparameter settings of our proposed method are summarized in Table[3] The hyperparam-
eters of the baseline methods are set according to their original papers. For a fair comparison, we
use the same hyperparameters for the SAC algorithm across all methods. In addition, we provide
the adopted key hyperparameters for both reward modification and data selection variants of our
proposed method in Table

20

Under review as a conference paper at ICLR 2026

o)
Ezoo g
2150 e
g g 150
3 100 5}
= = 100
o]
a 50 o
5 & s0

DAlef modify DADiff-select VGDF K=10 K=100 K=200

=}

(a) Comparison across different methods. (b) Comparison across different diffusion timesteps K.

Figure 8: GPU memory cost comparison on halfcheetah (broken back thigh) task. (a) The GPU
memory cost of our method and VGDF is slightly higher than other baselines. (b) With the increase
of diffusion timesteps K, the GPU memory cost increases slightly.

— A=0 —— A=05 —— A=0.01 —— A=1.0 —— A=0.05 —— A=2.0 A=0.1 —— A=5.0
ant (broken hips) halfcheetah (broken back thigh) hopper (broken joints) walker (broken right foot)
3000 4000
4000 6000
= 3000
c 2000
= 4000
2 s 2000
2 2000 1000
2000 1000
o 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps le5 Environment Steps le5 Environment Steps le5 Environment Steps le5
ant (short feet) halfcheetah (no thighs) hopper (big head) walker (no right thigh)
800 4000
4000
~ 4000 P - 600 3000
S v
] 2000 ﬁ 400 2 _ 2000
2000 = ==
> 200 1000
0 o
0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps le5 Environment Steps le5 Environment Steps le5 Environment Steps 1le5

Figure 9: Extended parameter study of DADiff-modify on penalty coefficient A. The solid curves
and the shaded regions denote the mean and standard deviation over five random seeds, respectively.

F EXTENDED EXPERIMENTAL RESULTS

In this section, we provide more experimental results, including extended computational cost anal-
ysis, extended results on stochastic environments, extended parameter studies, and extended reward
distribution.

F.1 EXTENDED COMPUTATIONAL COST ANALYSIS

In this section, we further analyze the computational cost of our proposed method. We conduct
experiments on halfcheetah (broken back thigh) task and report the GPU memory cost of our method
and baselines in Figure[8al The results demonstrate that our method and VGDF incur slightly higher
GPU memory consumption than other baselines. Compared to PAR and DARC, the additional GPU
memory cost of our method mainly comes from the process of generating latent states. Since, unlike
a full reverse diffusion process that sequentially generates target-domain next states, our method
measures the discrepancy between source and target domains by evaluating multiple latent states in
parallel, which leads to a slight increase in GPU memory cost. Meanwhile, the overall training time
remains comparable to baseline methods, as shown in Figure 3] Section[5.2]

In addition, as the latent states in the generative trajectory are estimated in parallel, additional GPU
memory cost would be related to the diffusion timesteps K. We conduct experiments on halfcheetah
(broken back thigh) task with different diffusion timesteps K and report the GPU memory cost in
Figure[8b] We find that the GPU memory cost increases with K.

F.2 EXTENDED PARAMETER STUDIES

We provide additional results on the parameter studies of penalty coefficient A and data selection
ratio ¢ in Figure[9]and Figure[I0] respectively. We raise the same conclusions as in Section[5.3] i.e.,

21

Under review as a conference paper at ICLR 2026

— &%=0% £%=10% £%=25% —— &%=50% £%=75% £%=100%
ant (broken hips) halfcheetah (broken back thigh) hopper (broken joints) walker (broken right foot)
4000 6000 3000
3000
< 3000 2000 2000
3 2000
g 2000 1000
2000
1000 1000
0 0 0 0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
Environment Steps 1le5 Environment Steps 1le5 Environment Steps le5 Environment Steps 1le5
ant (short feet) halfcheetah (no thighs) hopper (big head) walker (no right thigh)
4000
4000 6000 3000
7 3000
g3000 000 2000
© 2000 2000
< 2000
1000 1000
1000
0
0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps le5 Environment Steps 1le5 Environment Steps le5 Environment Steps le5

Figure 10: Extended parameter study of DADiff-select on penalty coefficient £%. The solid curves
and the shaded regions denote the mean and standard deviation over five random seeds, respectively.

— F=2 F=5 —— F=10 —— F=20 — k=10 K=50 —— K=100 —— K=200
halfcheetah (broken back thigh) walker (no right thigh) halfcheetah (broken back thigh) walker (no right thigh)
4000 4000
6000 6000
3000 3000 S
c c
£ 4000 £ 4000 —————
2 2000 2 2000
-4 <
2000 1000 2000 1000
A Sl e ol
0 0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps le5 Environment Steps le5 Environment Steps le5 Environment Steps le5
(a) Target domain interaction frequency F'. (b) Diffusion timesteps K.

Figure 11: Extended parameter study of DADiff-select on target domain interaction frequency F
and diffusion timesteps K. The solid curves and the shaded regions denote the mean and standard
deviation over five random seeds, respectively.

the optimal value of penalty coefficient A and data selection ratio £ is task-dependent, and proper
choices of these two hyperparameters can lead to better adaptation performance. In addition, we
must acknowledge that it shows a comparable performance in some tasks when reward modification
or data selection is not applied, but it does not undermine the effectiveness of our method, as the
performance can be further improved with appropriate hyperparameter settings.

We also provide additional results of DADiff-select on the parameter studies of target domain inter-
action frequency F and diffusion timesteps K in Figure [ITa) and Figure [TTD] respectively. We find
a different conclusion from DADiff-modify, i.e., the adaptation performance of DADiff-select does
not reach a plateau with the increase of target domain interaction frequency F or diffusion timesteps
K in some tasks. But for the uniformity of our method, we set F' = 10 and K = 100 in all tasks.

F.3 EXTENDED RESULTS ON STOCHASTIC ENVIRONMENTS

We first provide the details of the stochastic environments used in our
experiments. Specifically, we define a Gaussian mixture model, which
consists of two Gaussian components, to introduce stochasticity into the

environment dynamics. The two components are N ~ (—0.1,¢?) with

weight 0.7, and N ~ (0.1,¢2) with weight 0.3. An example with ¢ =

0.01 is illustrated in Figure T3] Based on this Gaussian mixture model,

we add the sampled noise to the action a at each timestep during the -02 01 00 01 02
interaction with the target environment. We provide more experimental

results on hopper (broken joints) and walker (broken right foot) tasks Figure 13: An exgmple
in Figure [I2] The results demonstrate that DADiff-modify performs the of the Gaussian mixture
best among all methods on walker (broken right foot) task and the second model with ¢ = 0.01.
best on hopper (broken joints) task.

22

Under review as a conference paper at ICLR 2026

—— DADiff-modify ~—— DADiff-selecc =~ —— PAR —— VGDF —— DARC —— SACIIW —— SAC-tar SAC-tune
0=0.00 0=0.01 0=0.02 0=0.03
3000 3000

3000 /f\/NWM
2000 2000

2000 W—WL b
1000 1000 %‘ ; E ; 1000

0 o 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps le5 Environment Steps le5 Environment Steps 1e5 Environment Steps 1e5

3000

2000

Return

1000

(a) hopper (broken joints)

—— DADiff-modify —— DADiff-select =~ —— PAR —— VGDF —— DARC —— SAC-IW —— SAC-tar SAC-tune
0=0.00 0=0.01 0=0.02 0=0.03
4000 4000 4000
3000
3000 aE Ny 3000 /\/\—~
c Mw
= 2000 2000 2000 2000
g
1000 1000 1000 1000
0 0 o o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e5 Environment Steps les Environment Steps 1e5 Environment Steps les

(b) walker (broken right foot)

Figure 12: Adaptation performance with stochastic dynamics. The solid curves and the shaded
regions denote the mean and standard deviation over five random seeds, respectively.

I Original [Processed

ant (broken hips) halfcheetah (broken back thigh) hopper (broken joints) walker (broken right foot)
7.5 6 5
5
= >0 4
E 25 §
- 0
&o 2
0.0
-25 0 =5
DADiff-modify DADiff-select DADiff-modify DADiff-select DADiff-modify DADiff-select DADiff-modify DADiff-select
ant (short feet) 10 halfcheetah (no thighs) hopper (big head) 75 walker (no right thigh)
5 6 5.0
°
2 5 4 25
=
&o 2 0.0
0
0 -2.5
DADiff-modify DADiff-select DADiff-modify DADiff-select DADiff-modify DADiff-select DADiff-modify DADiff-select

Figure 14: Extended reward distribution of DADiff-modify and DADiff-select. ”Original” denotes
the source-domain reward distribution prior to processing, whereas “Processed” denotes it after
modification or selection.

F.4 EXTENDED REWARD DISTRIBUTION

We provide additional results on the reward distribution of DADiff-modify and DADiff-select in
Figure[T4 We find that DADiff-modify only slightly modifies the source domain reward distribution
in most tasks, as the reward penalty is small in most cases. On the contrary, DADiff-select tends to
change the source domain reward distribution more significantly. In most tasks, more low-reward
data helps polices to avoid learning from harmful transitions in the source domain and thus improves
the adaptation performance.

23

	Introduction
	Related Works
	Preliminaries
	Methodology
	Theoretical Analysis
	Domain Adaptation with Diffusion

	Experiments
	Experimental Setup
	Adaptation Performance Evaluation
	Parameter Study

	Discussions
	Conclusion
	The Use of Large Language Models
	Proofs of the Performance Guarantees
	Useful Lemmas
	Proof of Theorem 4.2

	Extended Implementation with Flow Matching
	Pseudocodes
	Experimental Details
	Environment Setting
	Implementation Details
	Hyperparameter Settings

	Extended Experimental Results
	Extended Computational Cost Analysis
	Extended Parameter Studies
	Extended Results on Stochastic Environments
	Extended Reward Distribution

