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Abstract

Scene flow, which provides the 3D motion field of the
first frame from two consecutive point clouds, is vital for
dynamic scene perception. However, contemporary scene
flow methods face three major challenges. Firstly, they only
consider the context of individual point clouds before flow
embedding, leading to embedded points struggling to per-
ceive the consistent semantic relationship of another frame.
To address this issue, we propose a novel approach called
Dual Cross Attentive (DCA) for the latent fusion and align-
ment between two frames based on semantic contexts. This
is then integrated into Global Fusion Flow Embedding (GF)
to initialize flow embedding based on global correlations
in both contextual and Euclidean spaces. Secondly, defor-
mations exist in non-rigid objects after the warping layer,
which distorts the spatiotemporal relation between the con-
secutive frames. For a more precise estimation of residual
flow at next-level, the Spatial Temporal Re-embedding (STR)
module is devised to update the point sequence features at
current-level. Lastly, poor generalization is often observed
due to the significant domain gap between synthetic and
LiDAR-scanned datasets. We leverage novel domain adap-
tive losses to effectively bridge the gap of motion inference
from synthetic to real-world. Experiments demonstrate that
our approach achieves state-of-the-art (SOTA) performance
across various datasets, with particularly outstanding results
in real-world LiDAR-scanned situations.

1. Introduction
3D scene flow estimation captures the motion information
of objects from two consecutive point clouds and produces
the motion vector for each point in the source frame. It
serves as a foundational component for perceiving dynamic
environments and provides important motion features to
downstream tasks, such as object tracking [42, 45, 46], point
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Figure 1. Visualization of the distribution of the highest level of
point cloud feature pyramid before and after employing DCA. It
is evident that DCA Fusion enhances the semantic alignment of
the two consecutive point clouds, thereby facilitating subsequent
global flow embedding.

cloud label propagation [44] and pose estimation [7]. Early
approaches[1, 14, 31, 37] rely on stereo or RGB-D images
as input. While recent advances in deep learning-based point
cloud processing have paved the way for numerous end-to-
end algorithms specifically designed for scene flow predic-
tion [4, 18, 21, 28, 33, 40]. Among them, FlowNet3D [21]
presents a pioneering approach that integrates deep learn-
ing into the estimation of scene flow. By incorporating the
principles of the PWC (Pyramid, Warp and Cost volume)
optical flow algorithm [30], PointPWC [40] introduces the
coarse-to-fine strategy to scene flow prediction. However,
the PWC frameworks [4, 5, 18, 32, 34, 40] only account
for scene flow regression of the local receptive field within
each level, which neglects global feature matching. Hence,
it is difficult to estimate precise motion for long-distance
displacements and complex situations such as repetition and
occlusion.

FlowStep3D[16] and WM3DSF[33] tackle this issue by
using global flow initialization in the all-to-all manner. How-
ever, they neglect the alignment of semantic space between
the embedded points and the context of another frame, see
Figure 1. This hard approach to global flow embedding
results in ambiguous flows. Hence, inspired by the fusion
and alignment capability of cross-attention[11, 26, 41], we
introduce the Dual Cross Attentive (DCA) Fusion to merge
the semantic contexts of point clouds from two frames in



latent space, which allows for perceiving the semantic con-
text of another frame before embedding. By integrating into
the Global Fusion Flow Embedding (GF) module for global
flow embedding, DCA Fusion aggregates embedded features
in both context and Euclidean spaces, leveraging the global
correlations of two consecutive point clouds.

The second issue is attributed to the warping layer,
which upsamples sparse scene flow from the previous
level and accumulates to the current level. Previous meth-
ods [4, 5, 17, 33, 40, 43] simply employ the information pre-
ceding the warping layer to predict the residual flow for the
subsequent layer. However, the temporal relation between
the consecutive frames changes during warping since the
two frames become closer, and the relative spatial position
of points within the source frame also transforms. Utilizing
the original features could introduce bias in residual flow
estimation after warping layer-by-layer. To overcome this
limitation, we propose a Spatial Temporal Re-embedding
(STR) module to re-embed the temporal features between
the warped source frame and target frame, along with spatial
features within the warped source frame per se.

Furthermore, as a point-level task, obtaining the ground
truth (GT) of scene flow from real-world point clouds is
difficult[24, 25], and previous methods resort to synthetic
datasets[23] for training. However, they suffer from domain
gaps when applied to real-world LiDAR-scanned scenes.
To address this issue, we propose novel Domain Adaptive
Losses (DA Losses) based on the intrinsic properties of point
cloud motion, including local rigidity of dynamic objects and
the cross-frame feature similarity after motion, suggesting
promising results when generalized to real-world datasets.

Overall, our contributions are as follows:
• Our GF module leverages the dual cross-attentive mech-

anism to fuse and align the semantic context from both
frames and further matches the all-to-all point-pairs glob-
ally from both latent context space and Euclidean space,
enabling accurate flow initialization for subsequent resid-
ual scene flow prediction.

• We elaborate the STR module to tackle the problems
caused by distortion in surface spatiotemporal sequence
features of two consecutive frames after warping.

• We propose novel DA Losses that address the synthetic-
to-real challenge of the scene flow task by considering the
local rigidity and cross-frame feature similarity.

• Experiments demonstrate that our model achieves SOTA
performance on datasets of various patterns and ex-
hibits strong generalization on real-world LiDAR-scanned
datasets.

2. Related Works
FlowNet3D [21] pioneers in leveraging deep learning net-
work PointNet++[29] for scene flow embedding based on
raw point clouds, which surpasses traditional methods by

a large margin. Afterward, HPLFlowNet[13] proposed
novel DownBCL, UpBCL, and CorrBCL operations in-
spired by Bilateral Convolutional layers to abstract and
fuse structural information from consecutive point clouds.
FlowNet3D++ [36] enhances FlowNet3D by incorporating
geometric constraints based on point-to-plane distance and
angular alignment. FESTA [35] expands on FlowNet3D by
utilizing a trainable aggregate pooling to stably down-sample
points instead of Farthest Point Sampling (FPS). These above
methods employ the SetConv[21], composed of PointNet++,
to conduct local flow embedding from two frames. However,
this local embedding approach lacks global representation
and fails to multi-scale processing.

Inspired by [30] in optical flow, PointPWC [40] incor-
porates the Pyramid, Warp, and Cost volume (PWC) to
scene flow estimation. PointPWC utilizes semantic fea-
tures from point cloud pyramids at different levels to gen-
erate the cost volume, which is then used to compute
patch-to-patch local flow embedding. HALF [32] intro-
duces a novel double attentive flow embedding in cost vol-
ume. RMS-FLowNet [2] integrates random sampling to effi-
ciently process large-scale scenes instead of FPS. Inspired
by BERT [6], Bi-PointFlow [4] applies bidirectional flow
embedding to produce cost volume using the sequence infor-
mation. Res3DSF [34] presents a novel context-aware set
convolution layer to enhance the detection of recurrent pat-
terns in 3D space. Nonetheless, these coarse-to-fine methods
focus on local flow regression layer-by-layer which lacks
global information. To address this issue, Some methods
adopt an all-to-all approach. FLOT[28] redefines scene flow
prediction as an optimal transmission problem, gauging the
transmission cost by evaluating the global cosine similar-
ity of semantic features. FlowStep3D [16] aims to directly
compute the initial scene flow by leveraging an unlearnable
feature similarity matrix in the global unit. WM3DSF [33]
proposes an all-to-all point mixture module with backward
reliability validation. Additionally, PT-Flow [9] and PV-
RAFT equip the point-voxel branches to the flow embedding
to enlarge the receptive field.

However, these methods solely consider the individual
point cloud semantic to make a hard flow embedding, which
lacks fusion of the global semantic context of another embed-
ded frame. We propose the GF module to fuse the semantic
features of two frames and perceive the global correlation in
each other’s context, which is essentially in the global flow
estimation of long-range and complex geometric situations
such as occluded[15] and repetitive[34] pattern.

3. Methodology

3.1. Problem Definition

The scene flow task aims to estimate point-wise 3D motion
information between two consecutive point cloud frames.
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Figure 2. Illustration of the proposed network. Firstly, semantic features are hierarchically extracted and sent to GF to achieve global
embedding between the two point clouds at the highest level. Then, the Flow Prediction (FP) module produces the initial scene flow.
Subsequently, the flow and features are upsampled level by level, and the upsampled flow is accumulated onto the source frame by the
warping layer. Afterwards, Spatial Temporal Re-embedding (STR) and Local Flow Embedding (LFE) are performed in turn, and FP yields
the refined flow at a specific level.

The input includes the source frame S = {si}Ni=1 =
{xi, fi}Ni=1 and target frame T = {tj}Mj=1 = {yj , gj}Mj=1,
where xi, yj ∈ R3 are 3D coordinates of the points, and fi,
gj ∈ Rd represent the feature of the corresponding point
at a specific level. It should be noted that N and M may
not be equal due to the uneven point density and occlu-
sion. The prediction of the model is the 3D motion vector
SF = {sfi ∈ R3}Ni=1 of each source frame point, represent-
ing the non-rigid motion towards the target frame.

3.2. Hierarchical Feature Extraction

The overview of our proposed network is shown in Figure 2.
We utilize PointConv [39] as the feature extraction backbone
to build a pyramid network. To extract the higher-level se-
mantic feature Sl+1 of level (l + 1), we apply a three-step
process to the previous lower-level feature Sl. Farthest Point
Sampling (FPS) is first employed to extract Nl+1 center
points from Sl, where Nl+1 < Nl. Next, K-Nearest Neigh-
bor (KNN) is used to group the neighbor points around each
center point. Finally, PointConv is utilized to aggregate
the local features for each group, resulting in the desired
semantic feature Sl+1.

3.3. Global Fusion Flow Embedding

The GF module is designed to capture the global relation
between consecutive frames during the flow initialization.
After performing the multi-level feature extraction, we ob-
tain S∗ and T ∗ at the highest level of the semantic pyramid.
Following that, the global fusion flow embedding is con-
structed from S∗ to all points in T ∗ in both semantic context
space and Euclidean space, as shown in Figure 3. The pre-
vious algorithms[16, 33] merely utilized the individual and

unaligned semantic features of two consecutive point clouds
for hard global embedding. However, the flow embedding
of a point is generated in response to the semantic context
of another frame, necessitating the simultaneous consider-
ation of the fused features in a consistent semantic space
between the two frames during embedding. To enhance mu-
tual understanding of semantic context between two frames
of point clouds, we first utilize the DCA module to fuse
and align semantic context from both frames. This equips
each frame with the ability to perceive the global semantic
environment of the other frame, leading to a more reliable
latent correlation.

Specifically, within the DCA module, we employ a cross-
attentive mechanism to merge the semantic context of the
highest layers in the feature pyramid, yielding an attentive
weight map used for subsequent global aggregation, as il-
lustrated in Figure 3. During the dual cross-attentive fusion
phase, the semantic context in the latent feature space is
obtained for S∗ and T ∗ through linear networks Q, K, and
V. Subsequently, Q(T ∗) serves as the Query, while K(S∗)
serves as the Key for computing the cross-attention map
AS→T . The final fused features from S∗ to T ∗ are calcu-
lated via V(S∗).

AS→T = σ(
Q(T ∗) · K(S∗)√

da
), (1)

FusionS→T = A · V(S∗), (2)

where da is the output dimension of linear network K and V,
and σ denotes SoftMax. The fusion of context features from
T ∗ to S∗ follows a similar procedure.

After acquiring the fused features in the semantic space,
the GF module initializes the flow embedding for two frames.
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Figure 3. Flowchart of global flow embedding. ⊗ and ⊕ denote multiplication and concatenation, respectively.

We elucidate the process using a point si from S∗ as a case
to enhance clarity. Firstly, to establish the relative positional
association between each point-pair, a position encoder PE∗

in Euclidean space is introduced as follows, where η denotes
concatenation.

PEij = η(xi, yj , yj − xi), (3)

PE∗
ij = η(PEij ,MLP(PEij)). (4)

The external position encoder PE∗ instead of internal inte-
gration in the DCA module provides explicit position context
during global flow embedding. Then we proceed to construct
the initial global flow embedding GFE = {GFEij} from
both fusion semantic context and Euclidean space. The latent
embedding of point-pair si and tj is represented as:

GFEij = MLP(η(FusionT→S
i , FusionS→T

j , PE∗
ij)),

(5)
where η denotes dimension concatenation. After obtaining
the dual cross-attentive maps AS→T and AT→S within the
DCA module, we perform element-wise addition and then
pass them through SoftMax to obtain the aggregation weights
W = {Wij} for the global flow embedding aggregation,
which was later proven to be superior to the MaxPooling.
Finally, the initial global flow embedding is aggregated by
utilizing the aggregation map W , to obtain the global fusion
flow embedding from the specific point si to all points in the
target:

GFFEi =
∑

jWij ·GFEij . (6)

Once GFFE = {GFFEi} has been obtained, it is then fed
into the flow predictor (described in Section 3.6) to generate
the global initial scene flow.

3.4. Warping Layer

We employ distance-inverse interpolation to upsample the
coarse sparse scene flow from level (l + 1) to obtain the
coarse dense scene flow of level l. The obtained coarse
dense flow is directly accumulated onto the source frame Sl

to generate the warped source frame WSl = {wsi}Nl
i=1 =

{wxi = xi + sfi, fi}Nl
i=1, which brings the source and tar-

get frames closer and allows the subsequent layers to only
consider the estimation of residual flow [4, 9, 16, 33, 38, 40].

3.5. Spatial Temporal Re-embedding

After the warping layer, the spatiotemporal relation between
the consecutive frames may change. Specifically, the tem-
poral features of points from the warped source frame to
the target change since the position between the two point
clouds is closer. Furthermore, dynamic non-rigid objects in
the source frame may encounter surface distortion during
warping, resulting in different spatial features. Therefore,
it is necessary to re-embed spatiotemporal point features
before the Local Flow Embedding (LFE), which is imple-
mented in a patch-to-patch manner between the two frames
following [40]. Based on this consideration, we re-embed
the spatiotemporal features of each point wsi at level l based
on the warped source frame WSl and the target frame Tl, as
depicted in Figure 4.

Temporal Re-embedding First, we locate the K nearest
neighbor points group NT (wsi) of point wsi in Tl. For
each target point tj ∈ NT (wsi), by employing position
encoder as (3), a 9D positional feature PEij is acquired
for this group, representing the positional relation between
the two frames after warping. Then, the initial temporal re-
embedding feature is derived using the following formula:

TRFij = MLP(η(gj , fi, PEij)). (7)

Instead of employing the hard aggregation method of
MaxPooling, which results in flow bias due to the non-
corresponding points between the two frames, we leverage
local similarity map LMi = {LMij} in both feature space
and Euclidean space to derive the soft aggregation weights,

LMij = σ(MLP(η(TRFij ,MLP(PEij)))), (8)

TRF ∗
i =

∑
jLMijTRFij . (9)

Spatial Re-embedding Spatial Re-embedding shares the
same framework as Temporal Re-embedding, with the only
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Figure 4. The details of STR module.

distinction being that the embedding object changes to the
warped source frame itself. Upon acquiring the temporal
re-embedding features TRF ∗ = {TRF ∗

i } and spatial re-
embedding features SRF ∗ = {SRF ∗

i } of each point in the
warped source frame of level l, we fuse them by leveraging
the Fusion Net module to derive the ultimate comprehensive
features

STRFi = MLP(η(TRF ∗
i , SRF ∗

i )), (10)

and the warped frame updates to WSl = {wxi, STRFi}Nl
i=1.

As shown in Figure 2, the STR module is followed by LFE,
which computes the patch-to-patch cost volume of each point
wsi by utilizing the spatiotemporal re-embedding features.

3.6. Flow Prediction

This module is constructed by combining PointConv, MLP,
and a Fully Connected (FC) layer. For each point si in the
source frame, its local flow embedding feature, along with
the warped coordinates and STRFi are input into the mod-
ule. PointConv is first employed to incorporate the local
information of each point, followed by non-linear transfor-
mation in the MLP layer. The final output is the scene flow
sfi, regressed through the FC layer.

4. Training Losses
4.1. Hierarchical Supervised Loss

A supervised loss is directly hooked to the GT of scene flow,
and we leverage multi-level loss functions as supervision to
optimize the model across various pyramid levels. The GT
of scene flow at level l is represented as S̃F l = {s̃f l

i}
Nl
i=1

and the predicted flow is SFl = {sf l
i}

Nl
i=1. The multi-level

supervised loss is as follows:

Lsup =

5∑
l=1

δl
Nl

Nl∑
i=1

∥s̃f l
i − sf l

i∥2, (11)

where δ is the penalty weight, with δ1 = 0.02, δ2 =
0.04, δ3 = 0.08, δ4 = 0.16, and δ5 = 0.32.

4.2. Domain Adaptive Losses

Local Flow Consistency (LFC) Loss Dynamic objects in
real-world scenes may not exhibit absolute rigid or regular
motion. Instead, they typically undergo local rigid motion,
which is manifested through the consistency of local flow.
The degree of predicted flow difference between each point
si and its KNN+Radius points group NR

S (si) in the source
frame at the full resolution level (N1 = 8192) is defined
as the LFC loss, where point p ∈ NR

S (si) denotes p ∈
NS(si) and the ℓ2 distance between p and si is less than
R. The KNN+Radius search strategy effectively mitigates
the influence of noise points resulting from occlusion and
sparsity in point clouds, as demonstrated in Supple.Sec 8.2.
Formally, the LFC loss is represented as follows:

Llfc =
1

N1

N1∑
i=1

1

|NR
S (si)|

∑
sj∈NR

S (si)

∥sfi − sfj∥2, (12)

where | · | is the number of points in a group.
Cross-frame Feature Similarity (CFS) Loss The seman-

tic features of the points in the warped source frame are simi-
lar to those in the surrounding target frame, as they should be
in a dynamic registered state. Specifically, we accumulate the
GT scene flow s̃f directly onto the source frame at the full
resolution level, as described by w̃si = {xi+ s̃fi, STRFi}.
Next, we utilize cosine similarity to compute the similarity
between w̃si and tj ∈ NR

T (w̃si) in the target frame:

CS(w̃si, tj) =
STRFi ⊙ gj

∥STRFi∥2∥gj∥2
. (13)

We utilize the features of source frame points derived from
the last layer of the STR module (the rightmost re-embedding
feature in Figure 2) as input instead of the initially extracted



(a) FT3Ds (b) KITTIs

(c) SF-KITTI (d) LiDAR-KITTI

Figure 5. Comparisons of scene flow datasets, including (a) syn-
thetic stereo, (b) real-world stereo, and (c)(d) real-world LiDAR-
scanned. Blue and purple denote the source and target frames,
respectively.

features. Lastly, we establish a similarity threshold TH and
employ function F to penalize points that exhibit a similarity
lower than TH:

Lcfs =
1

N1

N1∑
i=1

∑
tj∈NR

T (w̃si)

F (CS(w̃si, tj)− TH)

|NR
T (w̃si)|

, (14)

where F (x) = −x if x < 0 and 0 otherwise, and gj is
updated by the Temporal Re-embedding module of the STR
module with the warped source frame for a reliable and
precise loss. The final loss of our model is :

Lall = λ1Lsup + λ2Llfc + λ3Lcfs, (15)

where R = 0.05, TH = 0.95, and λ1 = 0.7, λ2 = 0.15,
λ3 = 0.15 by default.

5. Experiments
5.1. Datasets and Data Preprocessing

The experiments were performed on four datasets: the syn-
thetic dataset FlyThings3D (FT3D) [23] and three real-world
datasets including Stereo-KITTI [24, 25], SF-KITTI [8], and
LiDAR-KITTI [10, 12], as shown in Figure 5. These datasets
are preprocessed in two ways [13, 21]: FT3Ds and KITTIs re-
move non-corresponding points between consecutive frames,
while FT3Do and KITTIo retain occluded points using mask
labels. Further dataset details can be found in Supple.Sec
10.

5.2. Experimental Settings

Implementation Details Our model is implemented with
PyTorch 1.9, and both training and testing are conducted on a
single NVIDIA RTX3090 GPU. The AdamW optimizer [22]

with β1 = 0.9 and β2 = 0.99 is used for model tuning dur-
ing the training phase, with an initial learning rate of 0.001
which was decayed by half every 80 epochs. We train our
model in an end-to-end manner for 900 epochs (or reached
convergence) with batch size 8. The cross-attention is uti-
lized with head = 8 and da = 128. Our model code and
weights will be released upon publication. More architec-
tural details are listed in Supple.Sec 7.1.

Evaluation Metrics Following previous methods [4, 8,
12, 28, 33, 40], we employ the same evaluation metrics for
fair comparisons, including EPE3D, AS3D, AR3D, Out3D,
EPE2D, and Acc2D, which are discussed in detail in Sup-
ple.Sec 8.1.

5.3. Results and Analysis

Our method exhibits remarkable generalization ability across
various scenarios, encompassing both synthetic and real-
world scenes, as well as dense or sparse point clouds. In con-
trast, some previous methods are tailored to specific datasets.

FT3Ds and KITTIs We compare with recent SOTA meth-
ods on the FT3Ds and KITTIs datasets. The quantitative
results presented in Table 1 indicate that SSRFlow outper-
forms the other methods by a large margin, especially in
real-world datasets. Specifically, on the FT3Ds dataset, SS-
RFlow is on par with previous SOTA[20] while achieving a
56% reduction in inference time, as listed in Table 2. Further,
our model exhibits exceptional generalization performance
on the KITTIs dataset, surpassing the second place by 24%
on EPE3D. Qualitative analysis is shown in Figure 6.

FT3Do and KITTIo Similar to the above, we train our
model on FT3Do and test on KITTIo without any fine-tuning.
The experimental results are listed in Table 3, which reveal
the good performance of our model even with occlusion.
Specifically, our model achieves 24% improvement over
the previous SOTA method [20] on FT3Do. Furthermore,
SSRFlow outperforms [20] in terms of EPE3D on the real-
world occluded KITTIo dataset. Visualized experimental
results are provided in the Figure 7.

Generalization on LiDAR-KITTI To validate the gen-
eralization on real-world LiDAR-scanned datasets, we train
our model on FT3Ds and SF-KITTI datasets separately, fol-
lowed by evaluation on the LiDAR-KITTI dataset. The
results are shown in Table 4 and Figure 7. Specifically, SS-
RFlow reduces EPE3D by 41% and 22% compared to the
second place [5] under training on FT3Ds and SF-KITTI
datasets, respectively.

5.4. Ablation Study

To investigate the distinct impacts of GF, STR, and DA
Losses, a set of ablation experiments are conducted to per-
form functional analysis. The comprehensive results of the
ablation experiments can be found in Table 5, while detailed
information is presented in Table 6 and Table 7.



FT3Ds KITTIs
Method EPE3D↓ AS3D↑ AR3D↑ Out3D↓ EPE2D↓ Acc2D↑ EPE3D↓ AS3D↑ AR3D↑ Out3D↓ EPE2D↓ Acc2D↑

FlowNet3D[21] 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
PointPWC[40] 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
FLOT[28] 0.0520 0.7322 0.9276 0.3578 – – 0.0560 0.7550 0.9080 0.2420 – –
PV-RAFT[38]* 0.0461 0.8169 0.9574 0.2924 – – 0.0560 0.8226 0.9372 0.2163 – –
HCRF[19] 0.0488 0.8337 0.9507 0.2614 2.5652 0.8704 0.0531 0.8631 0.9444 0.1797 2.0700 0.8656
FlowStep3D[16] 0.0455 0.8162 0.9614 0.2165 – – 0.0546 0.8051 0.9254 0.1492 – –
SCTN[17] 0.0383 0.8474 0.9681 0.2686 – – 0.0375 0.8730 0.9592 0.1793 – –
Bi-PointFlow[4] 0.0282 0.9184 0.9781 0.1436 1.5822 0.9296 0.0307 0.9202 0.9603 0.1414 1.0562 0.9493
WM3DSFNet[33] 0.0281 0.9290 0.9817 0.1458 1.5229 0.9279 0.0309 0.9047 0.9580 0.1612 1.1285 0.9451
RPPformer-Flow[18] 0.0270 0.9211 0.9783 0.1178 – – 0.0284 0.9220 0.9756 0.1410 – –
PT-Flow[18]* 0.0304 0.9142 0.9814 0.1735 1.6150 0.9312 0.0224 0.9551 0.9838 0.1186 0.9893 0.9667
MSBRN[5]* 0.0158 0.9733 0.9923 0.0568 0.8335 0.9703 0.0118 0.9713 0.9893 0.0856 0.4435 0.9853
DifFlow[20]* 0.0114 0.9836 0.9949 0.0350 0.6220 0.9824 0.0078 0.9817 0.9924 0.0795 0.2987 0.9932
SSRFlow (Ours) 0.0122 0.9790 0.9942 0.0575 0.7891 0.9821 0.0059 0.9961 0.9993 0.0762 0.2292 0.9981

Table 1. Performance comparisons on the FT3Ds and KITTIs datasets. All models in the table are only trained on FT3Ds and no fine-tuning
is applied when tested on KITTIs. The best results for each dataset are marked in bold. * denotes the methods with an inference time
exceeding 200ms which are high latency.

PointPWC [40] Bi-PointFlow [4] SSRFlow (Ours)

Figure 6. Visualization comparisons on KITTIs (first row) and FT3Ds (second row). The blue points represent the source frame, and the
green points represent the result of warping the source frame using predictions. The red signifies incorrectly predicted warped points whose
EPE3D > 0.1m.

(a) FT3Do [23] (b) KITTIo [4] (c) SF-KITTI [8] (d) LiDAR-KITTI [10]

Figure 7. Illustration of results on other datasets of our proposed SSRFlow method. Colors mean the same as Figure 6. More visualization
results are exhibited in Supplementary Material, Sec 11

GF In (a) of Table 7, we provide a detailed list of the
importance of the DCA Fusion, location of position encoder,
aggregation style, and all-to-all point-pair concatenation.
Firstly, we exclude the DCA Fusion and the subsequent

global attentive aggregation in GF and directly utilize the
original semantic feature for global flow embedding. Sec-
ondly, we test the internal and external position encoder of
cross-attention in DCA Fusion. Additionally, we replace the



Method Runtime Method Runtime

FlowStep3D[16] 292.1ms PV-RAFT[38] 780.2ms
PT-Flow[9] 376.2ms MSBRN[5] 225.9ms
DifFlow[20] 231.7ms SSRFlow (Ours) 101.1ms

Table 2. Runtime of the methods evaluated on KITTIs. Compared
with iterative methods, our end-to-end model is efficient.

Dataset Method EPE3D↓ AS3D↑ AR3D↑ Out3D↓

FT3Do

WM3DSF[33] 0.0630 0.7911 0.9090 0.2790
MSBRN[5] 0.0535 0.8364 0.9261 0.2314
DifFlow[20] 0.0430 0.8910 0.9440 0.1330
SSRFlow (Ours) 0.0326 0.9152 0.9742 0.1308

KITTIo

WM3DSF[33] 0.0730 0.8190 0.8900 0.2610
MSBRN[5] 0.0448 0.8732 0.9500 0.2085
DifFlow[20] 0.0310 0.9550 0.9660 0.1080
SSRFlow (Ours) 0.0298 0.9606 0.9740 0.1037

Table 3. Comparisons on the FT3Do and KITTIo datasets. All
methods are trained only on FT3Do.

Methods FT3Ds→LiDAR-KITTI SF-KITTI→LiDAR-KITTI

EPE3D↓AS3D↑AR3D↑Out3D↓EPE3D↓AS3D↑AR3D↑Out3D↓

FlowNet3D[21] 0.722 0.030 0.122 0.965 0.289 0.107 0.334 0.749
PointPWC[40] 0.390 0.387 0.550 0.653 0.275 0.151 0.405 0.737
FLOT[28] 0.653 0.155 0.313 0.837 0.271 0.133 0.424 0.725
FH-R[8] 0.472 0.369 0.432 0.805 0.156 0.341 0.636 0.612
MSBRN[5] 0.351 0.400 0.592 0.685 0.138 0.433 0.790 0.412
SSRFlow (Ours) 0.205 0.498 0.712 0.552 0.108 0.570 0.892 0.401

Table 4. Evaluation results on real-world LiDAR-scanned scene
flow dataset LiDAR-KITTI.

STR GF DA Loss
FT3Ds

EPE3D↓
KITTIs

EPE3D↓

✔ ✔ 0.0319 0.0208
✔ ✔ 0.0301 0.0221

✔ ✔ 0.0183 0.0124
✔ ✔ ✔ 0.0122 0.0059

Table 5. Ablation studies of distinct modules. All module combina-
tions are trained on FT3Ds.

Lcfs Llfc KNN Radius
FT3Ds

EPE3D↓
KITTIs

EPE3D↓

✔ ✔ ✔ 0.0171 0.0109
✔ ✔ ✔ 0.0169 0.0101

✔ ✔ ✔ 0.0136 0.0082
✔ ✔ ✔ ✔ 0.0122 0.0059

Table 6. Detailed ablations of the DA Losses. KNN and Radius
signify different neighborhood search ways.

attentive weighted aggregation with MaxPooling. Finally,
we substitute the all-to-all match method with KNN. After
removing the DCA Fusion, the model experienced a sub-
stantial decline in accuracy, primarily due to its capability

Method EPE3D↓

Ours (full equip) 0.0122

(a) Global Fusion Flow Embedding
w/o DCA Fusion 0.0259
r/w attentive weight → MaxPooling 0.0208
w/ internal position encoder 0.0162
r/w all-to-all → KNN 0.0203

(b) Spatial Temporal Re-embedding
w/o Spatial Re-embedding 0.0171
w/o Temporal Re-embedding 0.0203
r/w Fusion net → element-wise addition 0.0159

Table 7. Detailed ablations on FT3Ds, where r/w A→B denotes
replace A with B.

to fuse point features with another frame context before em-
bedding. Moreover, the position encoder outside the DCA
Fusion provides additional spatial features that are superior
to internal equipment. The KNN method struggles to process
long-range distance dependencies.

STR We remove the Spatial and Temporal Re-embedding
sub-modules separately to consider their contribution to the
STR module. The detailed results are listed in (b) of Table 7.
It is observed that the Spatial Re-embedding sub-module has
brought greater performance improvement, which is in line
with common sense, as the relation between the two frames
has been taken into account in the subsequent cost volume
calculations.

DA Losses We conduct a series of ablation experiments
exploring the effectiveness of the LFC loss and the CFS loss,
as well as neighborhood search strategies. The results are
listed in Table 6. Detailed analysis of the hyper-parameters
is in Supple.Sec 8.3.

Transfer to Other Models To evaluate the effectiveness
of the proposed GF and STR modules, we conduct exper-
iments by integrating them directly into PointPWC [40],
FlowNet3D [21], Bi-PointFlow[4] and WM3DSF[33]. Fol-
lowing the original training strategy as described in the re-
spective papers, the results are listed in Supple.Table 9. Both
modules improve network performance.

6. Conclusion
We propose the SSRFlow network to accurately and robustly
estimate scene flow. SSRFlow conducts global semantic
feature fusion to effectively align the semantic space
of both frames and performs attentive flow embedding
in both Euclidean and context spaces. Additionally, it
effectively re-embeds deformed spatiotemporal features
within local refinement. The DA Losses enhance the
generalization ability of SSRFlow on various pattern
datasets. Experiments show that our method achieves
SOTA performance on multiple distinct datasets and we
also discuss our limitations in the Supplementary Material.
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