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Abstract
Causal effect identification typically requires a
fully specified causal graph, which can be diffi-
cult to obtain in practice. We provide a sufficient
criterion for identifying causal effects from a can-
didate set of Markov equivalence classes with
added background knowledge, which represents
cases where determining the causal graph up to
a single Markov equivalence class is challenging.
Such cases can happen, for example, when the
untestable assumptions (e.g. faithfulness) that
underlie causal discovery algorithms do not hold.

1. Introduction
Identifying causal effects from observational data is impor-
tant when intervention experiments cannot be performed.
Under causal sufficiency, observational data can be repre-
sented using a causal graph in the form of a directed acyclic
graph (DAG). If the causal DAG is known, then all causal
effects can be identified from observational data.

However, the underlying causal DAG is usually unknown
and has to be obtained from observational data using causal
discovery algorithms, which can at most learn the causal
DAG up to its Markov equivalence class, represented as a
completed partially directed acyclic graph (CPDAG) (Meek,
1995). As such, works regarding causal effect identification
for CPDAGs (Jaber et al., 2019), as well as for maximally
oriented partially directed acyclic graphs (MPDAGs), which
represent CPDAGs with background knowledge constraints,
have been proposed (Perkovic, 2020). These methods as-
sume that the Markov equivalence class of the true causal
DAG is known.

However, causal discovery algorithms often assume
untestable assumptions, such as faithfulness, which can
often be too strong in practice. When these untestable as-
sumptions are violated, the Markov equivalence class re-
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Figure 1. Non-Markov equivalent CPDAGs G1 and G2 that repre-
sent the same distribution P .

turned by causal discovery algorithms need not be unique
and can instead be a candidate set of Markov equivalence
classes (Teh et al., 2024).

As an example, let the observational distribution P (over
Xi) be generated via

ϵi, ϕj
i.i.d.∼ Bern( 12 ), i = 1, . . . , 4, j = 1, . . . , 5,

X1 = (ϕ1, ϕ2, ϵ1),

X2 = (X1
1 , ϕ3, ϵ2),

X3 = (ϕ4, ϕ5, ϵ3),

X4 = (X1
1 +X1

3 , X
1
2 +X2

3 , X
2
2 , ϵ4),

where Xj
i denotes the j-th entry from the left of Xi.

Both CPDAGs G1 and G2 in Figure 1 represent P using the
least number of edges possible. Hence, using P as the input,
the Sparsest Permutation causal discovery algorithm and its
variants (Raskutti & Uhler, 2018; Lam et al., 2022) would
not be able to uniquely output the Markov equivalence class
of the causal DAG. The practitioner then has to work with
all possible outputs, represented as a candidate class of
non-Markov equivalent CPDAGs in Figure 1.

In this work, we aim to provide causal effect identification
results that are robust when the Markov equivalence class
of the causal DAG with background knowledge, cannot be
uniquely determined, the setting of which is represented by
a candidate set of MPDAGs.

2. Background
Slightly abusing notation, capital letters (e.g. X) will be
used to denote both nodes in a graph and the associated
variables, and bold capital letters (e.g. X) will be used
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to denote both sets of nodes in a graph and the associated
random vectors.

2.1. Graphs

Let G denote a graph over a finite set of nodes V , with edges
that are either directed (→) or undirected ( — ) between
any two adjacent nodes. A path between the nodes V0 and
Vm is a sequence of nodes ⟨V0, . . . , Vm⟩, such that for all
i ∈ {0 . . . ,m − 1}, consecutive nodes Vi and Vi+1 are
adjacent. If the edges are all directed as Vi −→ Vi+1, the
path is a directed path from V0 to Vm; if the edges are either
undirected or directed as Vi −→ Vi+1, the path is a semi-
directed path, if, in addition, V0 = Vi, the sequence is a
semi-directed cycle; if edges between consecutive nodes are
all undirected, then the path is an undirected path. Given
two disjoint subset of nodes X,Y ⊆ V , a path from X to
Y is a path from some X ∈ X to some Y ∈ Y ; if only the
first node is in X , the path is said to be proper.

Given a subset of nodes D ⊆ V in graph G, let GD denote
the induced subgraph, the graph over nodes D, of which
the edges are the same as the edges between nodes in D of
graph G.

Given a subset of nodes D ⊆ V in graph G, let PaG(D)
denote the parents of D in graph G, the set of nodes X such
that there exists a directed edge X → D in G for some
node D ∈ D, and let AnG(D) denote the ancestors of D in
graph G, the set of nodes X such that there exists a directed
path from X to some node D ∈ D in G.

A chain component τ in graph G is a maximal set of nodes
such that every node X,Y ∈ τ is connected by an undi-
rected path.

A joint density p is associated to the set of nodes V of DAG
G, via the following Markov property for DAGs.

Definition 2.1 (DAG Markov property). A density p is
Markovian to DAG G if p(v) =

∏
Vi∈V pVi(vi | paG(vi)).

The Markov equivalence class of a DAG G is the set of
all DAGs that have the same set of d-separations (Pearl,
2009) as the DAG G, and can be represented by a completed
partially directed acyclic graph (CPDAG) (Meek, 1995).

Given a Markov equivalence class and background knowl-
edge in the form of a set of directed edges E , we represent a
subset of the Markov equivalence class, which consists of
DAGs G′ such that all the edges in E are in G′, as a maxi-
mally oriented partially directed acyclic graph (MPDAG) G;
let [G] denote this set of DAGs represented by the MPDAG
G. We say that the joint density p is compatible to MPDAG
G if p is Markovian to all DAGs G′ ∈ [G]. CPDAGs are
then special instances of MPDAGs when E = ∅.

In general, MPDAGs can contain semi-directed cycles, as

shown in Perkovic (2020), here we will focus on strictly
acyclic-MPDAGs (SA-MPDAGs) which are MPDAGs with
no semi-directed cycles. Since CPDAGs are MPDAGs with
no semi-directed cycles, SA-MPDAGs include CPDAGs.

All nodes of an SA-MPDAG G can be partitioned into chain
components {τ1, . . . , τm}. Given an SA-MPDAG G and
a node subset D ⊆ V of G, let CDG(D) denote the chain
decomposition of D using the SA-MPDAG G.

Definition 2.2 (Chain Decomposition CDG(.)). Given an
SA-MPDAG G, and partition of nodes V into chain compo-
nents {τ1, . . . , τm}, the chain decomposition of the node
subset D ⊆ V is the partition {D1, . . . ,Dk} consisting of
the subsets D ∩ τi for i ∈ {1, . . . ,m} that are non-empty.

Given Di ∈ CDG(D) for some node subset D ⊆ V of
graph G, let τG(Di) denote the chain component in graph
G such that Di ⊆ τG(Di).

Note that chain decomposition is similar to the PTO and
PCO algorithms from Jaber et al. (2019) and Perkovic
(2020), specialised to chain graphs (Frydenberg, 1990), of
which SA-MPDAGs are a subclass.

2.2. Causal Effect Identification

Given an observational density p Markovian to DAG G
and node subset X ⊆ V in G, we denote pdoG(x) as the
interventional density over the remaining nodes V̄ = V \X
after setting variables in X to a fixed value x, defined as

pdoG(x)(v̄) =
∏

Vi∈V̄

pVi(vi | paG(vi)),

for values paG(vi) that agree with the intervened values x.
This is known as the truncated factorisation formula or the
g-formula (Pearl, 2009).

Given disjoint node subsets X,Y ⊆ V , the causal effect of
X on Y , such as the average treatment effect, is a functional
of pdoG(x)

Y , the marginal interventional density on Y .

To identify the causal effect of X on Y , given that causal
DAG G is known, pdoG(x)

Y can be obtained using the obser-
vational density p via the truncated factorisation formula.

However, when the causal DAG is only known up to its
Markov equivalence class and some background knowledge,
represented as an MPDAG, Perkovic (2020) provided the
following sufficient and necessary criteria when the causal
effect is identifiable, that is, when p

doG(x)
Y is uniquely com-

putable from the DAGs represented by the MPDAG.

Definition 2.3 (Identifiability for MPDAGs). Given disjoint
node subsets X,Y ⊆ V of MPDAG G, the causal effect
of X on Y is identifiable if for all observational densities
p compatible to the MPDAG G, there does not exist DAGs
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G1,G2 ∈ [G], such that

p
doG1

(x)

Y ̸= p
doG2

(x)

Y .

If identifiability holds in MPDAG G, then we can write
p

doG(x)
Y without ambiguity.

Theorem 2.4 (Perkovic (2020)). Given disjoint node sub-
sets X,Y ⊆ V of MPDAG G, the causal effect of X on Y
is identifiable if and only if there are no proper semi-directed
paths from X to Y that start with an undirected edge, with
the following identification formula. For any observational
density p compatible to G,

p
doG(x)
Y (y) =

∫ k∏
j=1

pBj (bj | paG(Bj))db,

where B = AnGV \X
(Y )\Y , and {B1, . . . ,Bk} =

CDG(AnGV \X
(Y )), for values paG(Bj) that agree with

the intervened values x.

3. Results
Given a set of SA-MPDAGs G = {G1, . . . ,Gn} over the
same set of nodes V , we introduce the following.

Definition 3.1 (Simultaneous Identifiability). Given disjoint
node subsets X and Y , and a set of SA-MPDAGs G, the
causal effect of X on Y is simultaneously identifiable, if
for all observational densities compatible to all G ∈ G, there
does not exist DAGs G1,G2 ∈

⋃
G∈G[G] , such that

p
doG1

(x)

Y ̸= p
doG2

(x)

Y .

Definition 3.1 states that, given an observational density
p that is compatible to all SA-MPDAGs in G, the inter-
ventional marginal density over Y does not depend on the
choice of causal DAG selected from the DAGs represented
by all SA-MPDAGs in G. If simultaneous identifiability
holds for G, we can write p

doG(x)
Y without ambiguity.

Given disjoint node subsets X,Y ⊆ V , we first define
Algorithm 1 to re-weight and marginalise graphs.

Algorithm 1 Re-weighting and marginalising graphs
Input: graph G, node subset X,Y ⊆ V
Output: graph RM(G;X,Y )

1: for all I ∈ X ∩ AnG(Y ), remove directed edges of the
form J → I , call this graph G (̸→ X).

2: return RM(G;X,Y ) as the induced subgraph G( ̸→
X)AnG(̸→X)(Y ).

Note that step 1 of Algorithm 1 is just the graphical inter-
vention on G, except G is allowed to be an SA-MPDAG.

Step 2 then takes the ancestral margin of Y of the resulting
graph.

Theorem 3.2 (Causal Identification Criterion). Given dis-
joint node subsets X and Y and a set of SA-MPDAGs G,
let Ai = X ∩ AnGi(Y ). If

1. for all Gi ∈ G, there are no proper semi-directed paths
from X to Y that start with an undirected edge, and

2. for any pair Gi,Gj ∈ G, one of the following holds:

(a) for all Xk ∈ CDGi
(Ai), PaGi

(Xk) =
PaGj (Xk) and likewise for the roles of i and j
reversed, or

(b) graphs RM(Gi;X,Y ) and RM(Gj ;X,Y ) are
Markov equivalent,

then the causal effect of X on Y is simultaneously iden-
tifiable with the following identification formula. For any
observational density p compatible to any Gi ∈ G,

p
doG(x)
Y (y) =

∫ k∏
j=1

pBj (bj | paGi
(Bj))db

for any Gi ∈ G, where B = An(Gi)V \X
(Y )\Y ,

and {B1, . . . ,Bk} = CDGi(An(Gi)V \X
(Y )), for values

paGi
(Bj) that agree with the intervened values x.

Note that simultaneously identifiability in G implies iden-
tifiability in each Gi ∈ G which, by Theorem 2.4, is equiv-
alent to condition 1 in Theorem 3.2, thus condition 1 is a
necessary condition for simultaneous identifiability. The
identification formula in Theorem 3.2 is the identification
formula in Perkovic (2020) applied to some Gi ∈ G.

In the case of Gi and Gj being DAGs, the interventional
densities pdoGi

(x) and pdoGj
(x) can be obtained from ob-

servational density p by re-weighting based on Gi and Gj

respectively. Condition 2a in Theorem 3.2 can be thought of
as a graphical condition ensuring that this re-weighting step
is the same for both Gi and Gj , generalised to SA-MPDAGs.

The Markov equivalence in condition 2b is with respect to
the Markov property defined for chain graphs, characterised
in Frydenberg (1990). Condition 2b can be thought of as the
ancestral subgraphs of SA-MPDAGs Gi and Gj being inter-
ventionally Markov equivalent, however, this differs from
Hauser & Bühlmann (2012) in that observational Markov
equivalence is not required and that Markov equivalence
need only hold on the ancestral subgraph.

3.1. Examples

We illustrate Theorem 3.2 using some examples.
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Example 1 (Case when condition 2a holds). Consider again
the CPDAGs in Figure 1, we are interested in the causal
effect of 3 on 2.

There are no proper semi-directed paths from 3 to 2 that start
with an undirected edge in both CPDAGs, thus condition
1 of Theorem 3.2 holds. Since A1 = ∅ and A2 = {3}, for
{3} ∈ CDG2

(A2), we have paG1
({3}) = paG2

({3}) = ∅.
Thus, condition 2a of Theorem 3.2 holds; given G =
{G1,G2}, the causal effect of 3 on 2 is simultaneously iden-
tifiable.

In this case, intervening on 3 is equivalent to conditioning
on 3. Note that p being compatible to CPDAG G1 implies
the independence 2⊥⊥ 3, as such although there exists a di-
rected path from 3 to 2 in G2, the marginal distribution of
2 is not affected by intervening on 3. Note that this ex-
ample holds for any distribution P satisfying X1 ⊥⊥ X2 and
X1 ⊥⊥ X2 | {X3, X4} and X3 ⊥⊥ X4 | {X1, X2}.

G1 1

4 2

35

G2 1

4 2

35

RM(G1; {4}, {5}) = RM(G2; {4}, {5})

145

Figure 2. Non-Markov equivalent SA-MPDAGs G1 and G2 with
different adjacencies.

Example 2 (Case when condition 2b holds). Consider the
SA-MPDAGs in Figure 2, we are interested in the causal
effect of 4 on 5.

There are no proper semi-directed paths from 4 to 5 that start
with an undirected edge in both CPDAGs, thus condition
1 of Theorem 3.2 holds. We have RM(G1; {4}, {5}) =
RM(G2; {4}, {5}). Thus, condition 2b of Theorem 3.2
holds; given G = {G1,G2}, the causal effect of 4 on 5 is
simultaneously identifiable.

Note that SA-MPDAGs of different adjacencies such as
those in Figure 2 may be obtained when the skeleton build-
ing step of the PC algorithm, which is the most computa-
tionally intensive part of the PC algorithm, lacks power.

4. Discussion and Future Directions
Causal effect identification when the causal graph cannot be
fully specified is not new, with many settings for doing so
being proposed. In our setting, the Markov equivalence class
of the true causal DAG G0 cannot be uniquely determined

and we can only work with a candidate set of SA-MPDAGs
(which includes CPDAGs) G = {G1, ...,Gn} such that G0 ∈⋃

Gi∈G[Gi], representing the Markov equivalence classes
with background knowledge which could contain G0. This
can happen when untestable assumptions (e.g. faithfulness,
Sparsest Markov Representation (SMR)) are not satisfied,
causing causal discovery algorithms to not return a unique
Markov equivalence class such as in Figure 1, or when the
conditional independence testing step of causal discovery
lacks power in detecting edges such as in Example 2.

4.1. Definition of Simultaneous Identifiability

In Definition 3.1, observational density p is Markovian to
all DAGs in

⋃
G∈G[G]. When the represented DAGs are

not Markov equivalent, a natural question would be: “ Can
density p be uniquely Markovian to some graph that is not
necessarily a DAG?”. Teh et al. (2024) has shown that
even for anterial graphs (Lauritzen & Sadeghi, 2018), a
general class of graphs containing DAGs, chain graphs and
ancestral graphs, there still exist observational distributions
that cannot be uniquely Markovian to any anterial graph.

4.2. Necessity and Restricting G

Theorem 3.2 applies to any candidate set G–no assumptions
about G has been made.

To show the necessity of Theorem 3.2, given a set of SA-
MPDAGs G, a counter-example of the following form is
needed: a density p that is Markovian to all SA-MPDAGs in
G such that G does not satisfy the conditions in Theorem 3.2
and p

doG(x)
Y ̸= p

doG′ (x)
Y for some DAGs G,G′ ∈

⋃
Gi∈G[Gi].

Without further assumptions on the candidate set G, it can
be challenging to construct, in general, such a density p to
show necessity.

In practice, also, G is usually not arbitrary. For example,
consider the SA-MPDAGs in G of Figure 1, which are the
Markovian CPDAGs to some distribution P with the least
number of edges possible, representing all possible outputs
of the Sparsest Permutation algorithm when faithfulness is
violated. The SA-MPDAGs in G may also have the same
background knowledge (see Figure 2 with both G1,G2 hav-
ing background knowledge E = {1 → 4, 4 → 5}), which
represents the case of applying the same background knowl-
edge to different CPDAGs obtained from causal discovery.

4.3. Generalising to MPDAGs

The proof of Theorem 3.2 relies on results for chain graphs
in Frydenberg (1990). Since MPDAGs can have semi-
directed cycles, they are in general not chain graphs. Hence,
a different proof technique is needed to show simultaneous
identifiability when G is a set of general MPDAGs.
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A. Proofs
We will use the following results on MPDAGs and chain graphs.

Proposition A.1 (Properties of SA-MPDAGs). SA-MPDAG G contains only directed and undirected edges, and there are
no nodes I, J,K of G, such that I → J −K and I is not adjacent to K.

Proposition A.1 holds for all MPDAGs, and is a straightforward consequence of the orientation rules from Meek (1995), and
implies that in an SA-MPDAG, all nodes sharing a chain component have the same parents.

Proposition A.2 (Markov properties of SA-MPDAGs). Given an SA-MPDAG G, for any DAG G′ ∈ [G], G and G′ are
Markov equivalent.

In Proposition A.2, the Markov property for SA-MPDAG G refers to the Markov property on chain graphs (Frydenberg,
1990), of which SA-MPDAGs are a subclass. Hence, Proposition A.2 implies that if a joint density p is compatible to
SA-MPDAG G, then p is Markovian to SA-MPDAG G, admitting a chain graph factorisation using G.

Proof of Proposition A.2. We use the following from Frydenberg (1990):

Lemma A.3. Two chain graphs G′ and G are Markov equivalent if they have the same skeleton and minimal complexes.

A minimal complex in chain graph G is a triple (I,C, J) such that node I is not adjacent to node J , and C is the minimal
subset of a chain component such that I → C1 and J → C2 for some C1, C2 ∈ C. We will show that all minimal complexes
in SA-MPDAG G are unshielded colliders. Since in SA-MPDAG G, I → J −K implies that I is adjacent to K, and we
must have I → K otherwise the semi-directed cycle I → J −K → I or I → J −K − I will occur in SA-MPDAG G, a
contradiction. Thus, all minimal complexes in G are of of the form (I,K, J), with K a single node and is thus a collider.

By construction, the colliders in represented DAG G′ and SA-MPDAG G must coincide and share the same skeleton, and
since DAGs are chain graphs, by Lemma A.3, DAG G′ is Markov equivalent to SA-MPDAG G.

We also have the following observation on output graphs of Algorithm 1.

Lemma A.4. If there are no proper semi-directed paths from X to Y in SA-MPDAG G that start with an undirected edge,
then in RM(G;X,Y ), I → J −K implies I → K.

Proof. Observe that chain components τ with directed edges into τ being removed in RM(G;X,Y ) are the chain
components τ such that τ ∩ X ̸= ∅, for which we have τ\X ∩ AnG( ̸→X)(Y ) = ∅, otherwise there exists a proper
semi-directed path from X to Y that starts with undirected edges. Thus, chain components τ with directed edges into τ
being removed does not appear as nodes in the induced subgraph G( ̸→ X)AnG(̸→X)(Y ), and thus RM(G;X,Y ).

Observe that the proof of Proposition A.2 only uses the fact that I → J − K implies that I → K in graph G, and G′

and G share skeletons and unshielded colliders. This property is also satisfied by the graph RM(G;X,Y ) obtained from
input SA-MPDAG G and node subsets X and Y that satisfy the condition of Theorem 2.4 in graph G. Thus, analogously
RM(G;X,Y ) is Markov equivalent to some DAG G.

We have the following proposition.

Proposition A.5. For SA-MPDAGs G1 and G2 and node subsets X and Y that satisfies the condition of Theorem 2.4 in
both G1,G2, if RM(G1;X,Y ) is Markov equivalent to RM(G2;X,Y ), then the factorisation of density p based on either
graph has the same evaluation.

Proof of Proposition A.5. RM(G1;X,Y ), RM(G2;X,Y ), and respective DAGs that RM(G1;X,Y ), RM(G2;X,Y )
are Markov equivalent to, G′

1 and G′
2, are all Markov equivalent.

Since there always exists a sequence of covered edge flips that transforms between Markov equivalent DAGs (Chickering,
2002), the factorisation of the density p based on DAG G′

1 can be transformed into the factorisation of the same density p
based on DAG G′

2 without changing the evaluation. By Proposition A.2, the factorisation of p based on DAG G′
1 and the

factorisation of p based on RM(G1;X,Y ) have the same evaluation, likewise for DAG G2 and RM(G2;X,Y ). Thus, the
factorisation of density p based on either RM(G1;X,Y ) or RM(G2;X,Y ) has the same evaluation.
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We also have the following proposition re-expressing the identification formula in Theorem 2.4 from (Perkovic, 2020), as a
marginal distribution of a re-weighted distribution of the observational density p. In the case when G is a DAG, both sides
reduces to the truncated factorisation formula (Pearl, 2009).

Proposition A.6. For variables X (with intervened value x) and variables Y in SA-MPDAG G such that the condition of
Theorem 2.4 holds, i.e. there does not exist proper semi-directed paths that start with an undirected edge from X to Y in G,
and observational density p compatible to G,∫ k∏

j=1

pBj
(bj | paG(Bj))db =

∫
p(v)∏m

j=1 pXj (xj | paG(Xj))
dv′, (1)

where {B1, . . . ,Bk} = CDG(AnGV \X
(Y )), B = AnGV \X

(Y )\Y , {X1, ...,Xm} = CDG(X ∩ AnG(Y )), and V ′ =
V \(X ∪ Y ), for values paG(Bj) and paG(Xj) that agree with the intervened values x.

Proof of Proposition A.6. We will start with the RHS, showing that it is equal to the LHS in 1. By Proposition A.2,
observational density p is Markovian to SA-MPDAG G and we have the following chain graph factorisation

p(v) =

ℓ∏
j=1

pcj (cj | paG(Cj)), (2)

where C1, . . . ,Cℓ are the chain components of SA-MPDAG G.

Observe that for any j1, j2, we have that Bj1 and Xj2 cannot be from the same chain component, otherwise there exists an
undirected path from X to AnGV \X

(Y ), implying a proper semi-directed path that starts with undirected edges from X to
Y in G, a contradiction. Thus by Bayes rule and 2, we can factorise the integrand of the RHS in 1, as

ℓ1∏
j1=1

pCj1
(cj1 | paG(Cj1))

ℓ2∏
j2=1

pC′
j2
(c′j2 | paG(Cj2),xj2), (3)

where C′
j2

= Cj2\Xj2 , and for values paG(Cj1) and paG(Cj2) that agree with the intervened values x. Note that C′
j2

does not intersect AnGV \X
(Y ) otherwise there exists a proper semi-directed path that starts with undirected edges from

X to Y in G, a contradiction. Hence, when computing the marginal density of variables Y using 3, the second product
in 3 sums to 1, by summing over each C′

j2
from the last chain component in GV \X . Likewise the chain components Cj1

such that τj1 does not intersect AnGV \X
(Y ) can be summed out. Thus marginalising 3 is equivalent to marginalising the

expression
ℓ′1∏

j1=1

pCj1
(cj1 | paG(Cj1)), (4)

where C1, . . . ,Cℓ′1
are the Cj1 in the first product of 3 such that Cj1 ∩ AnGV \X

(Y ) ̸= ∅, and for values paG(Cj1) that
agree with the intervened values x.

There do not exist directed paths from I ∈ Cj1\AnGV \X
(Y ) to any of the other PaG(Ci) in 4, otherwise by Proposition

A.1, PaG(Ci) = PaG(Bi), for some Bi such that Ci = τG(Bi), and we have I ∈ AnGV \X
(Y ), a contradiction.

Thus, we can sum over the nodes in Cj1\AnGV \X
(Y ) = Cj1\Bj1 , and replace PaG(Cj1) = PaG(Bj1) using Proposition

A.1 in 4 gives the LHS of 1.

Proof of Theorem 3.2. Applying Theorem 2.4 to each SA-MPDAG Gi ∈ G, p
doGi

(x)

Y is identifiable in each Gi if and only if
condition 1 of Theorem 3.2 holds, and can be expressed via 1 of Proposition A.6 for graph SA-MPDAG Gi as:∫

p(v)∏m
j=1 pXj (xj | paGi

(Xj))
dv′ (5)

{X1, ...,Xm} = CDGi(X ∩ AnGi(Y )), V ′ = V \(X ∪ Y ), and for values paGi
(Xj) that agree with the intervened

values x. We will show that if condition 2a from Theorem 3.2 holds for both Gi and Gj , then 5 will have the same evaluation.
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Note that the LHS of 1 (the identification formula) in Proposition A.6 for graph Gi only contains terms with variables from
An(Gi)V \X

(Y ), thus the evaluation of 5 is not changed by introducing denominator terms of the form pXℓ(xℓ | paGi
(Xℓ)),

where Xℓ is a subset of some chain component in Gi, such that Xℓ ∩ An(Gi)V \X
(Y ) = ∅ to the integrand in 5.

Given SA-MPDAGs Gi,Gj ∈ G. If condition 2a in Theorem 3.2 iholds, for Xℓ ∈ CDGj
(Aj\Ai), we

have pXℓ
(xℓ | paGj

(Xℓ)) = pXℓ
(xℓ | paGi

(Xℓ)). Hence, note that we can introduce denominators of the form
pXℓ

(xℓ | paGj
(Xℓ)) from the integrand in 5 for graph Gj , where Xℓ ∈ CDGj (Aj\Ai), as the equivalent term

pXℓ
(xℓ | paGi

(Xℓ)) to the integrand in 5 for graph Gi without changing the evaluation of 5 for graph Gi. Likewise
with the roles of Gi and Gj reversed. We can repeat this procedure until the denominator in the integrand in 5 is the same for
both Gi and Gj and since the observational density p is the same for both Gi and Gj , 5 will have the same evaluation for both
Gi and Gj .

We will show that if condition 2b from Theorem 3.2 holds for both Gi and Gj , then the LHS of 1 in Proposition A.6
(identification formula) will have the same evaluation. Observe that the integrand density of the identification formula
for graph Gi factorises based on RM(Gi;X,Y ). If condition 2b in Theorem 3.2 holds for SA-MPDAGs Gi,Gj ∈ G, by
Proposition A.5, the integrand density in the identification formula for both Gi and Gj have the same evaluation.
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