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Abstract

Molecular representation learning is central to molecular property prediction, which is a
vital component in drug discovery. Existing methods, which mainly focus on the atom-level
molecular graphs, often find it challenging to directly model the relation between fragment
(substructure) and function of molecules, largely due to insufficient fragment priors. In this
work, we propose a molecular self-supervised learning framework FragFormer, which aims
to learn the representation of fragments and their contextual relationships. Given the prior
that an atom can be part of multiple functional groups, we develop k-Degree Overlapping
fragmentation (DOVE), which generates overlapping fragment graph by employing the
iterative line graph. Besides, DOVE can preserve the connection information during the
fragmentation phase compared to non-overlapping fragmentation. In the pre-training stage,
we design a nested masked fragment prediction objective, to capture the hierarchical nature
of fragments, namely that larger fragments can encompass multiple smaller ones. Based
on FragFormer, we introduce a simple yet efficient fragment-level interpretation method
FragCAM for the molecular property prediction results with greater accuracy. Moreover,
thanks to the fragment modeling, our model is more capable of processing large molecule,
such as peptides, and capturing the long-range interactions inside molecules. Our approach
achieves state-of-the-art (SOTA) performance on eight out of eleven molecular property
prediction datasets on PharmaBench. On long-range biological benchmark with peptide data,
FragFormer can beat strong baselines by a clear margin, which shows the model’s potential
to generalize to larger molecules. Finally, we demonstrate that our model can effectively
identify decisive fragments for prediction results on a real-world dataset1.

1 Introduction

Finding molecules with the desired properties is one of the biggest challenges in drug discovery (Dickson &
Gagnon, 2004). Using traditional wet-lab experiments to assess molecular properties is time-consuming, labor-
intensive, and costly (Mullard, 2014; Simoens & Huys, 2021; Wouters et al., 2020). Machine learning models

∗Corresponding authors.
1Our code is available at https://github.com/wjxts/FragFormer
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have been developed to predict molecular properties, which can significantly reduce the cost and time (Walters
& Barzilay, 2020; Wieder et al., 2020). However, the amount of data for labeled molecular properties is often
limited (Guo et al., 2021) compared with the large space of pharmacologically-relevant molecules (Virshup
et al., 2013), making the generalization performance of machine learning models unsatisfactory. Fortunately, a
wealth of unlabeled molecular data is available (Gaulton et al., 2017; Kim et al., 2022; Sterling & Irwin, 2015).
Therefore, many studies investigate self-supervised learning (SSL) methods for molecular representation
learning and achieve better results than supervised learning methods (Rong et al., 2020; You et al., 2020;
Zhou et al., 2023; Li et al., 2023). These SSL methods primarily focus on the atom-level molecular graphs. In
pharmaceutical chemistry, fragments serve as functional groups within molecules, fundamentally influencing
their properties (Guvench, 2016). Methods based on atom-level molecular graphs often suffer from over-
smoothing issue (Rusch et al., 2023) and lack fragment priors (Jiang et al., 2023), making it difficult to capture
the relation between fragments and the properties of molecules. Several works develop fragment-biased
GNNs (Zhu et al., 2023; Bouritsas et al., 2023; Wollschläger et al., 2024) from a theoretical perspective.
Nevertheless, these models primarily aim at passing certain Weisfeiler & Leman (WL) test (Zhang et al.,
2023) and are not designed for molecular property prediction. There are also studies (Zhang et al., 2021b;
Luong & Singh, 2023; Jiang et al., 2023) that explore the use of fragment-level molecular graphs to develop
deep learning models for predicting molecular properties and achieve encouraging results. However, their
molecular fragmentation methods lack overlap between fragments, overlooking the fact that a single atom can
belong to different functional groups (Merlot et al., 2003). Moreover, non-overlapping fragmentation hinders
their fragment graphs from distinguishing the connections between adjacent fragments. These limitations
impede the model’s expressivity and generalization ability. Beyond prediction accuracy, it is also important
to understand the model’s decision-making process. Existing interpretation methods for molecular property
prediction are either atom-level (Yuan et al., 2023) or slow to achieve fragment-level interpretation (Yuan
et al., 2021). In this work, we propose FragFormer, a fragment-based molecular representation learning
framework to tackle the above challenges. Our contributions can be summarized as follows:

• Given the prior that an atom can be part of multiple functional groups, we propose a novel k-Degree
Overlapping fragmentation (DOVE) method. DOVE can generate overlapping fragment graph by
utilizing the iterative line graph transformation of the molecular graph and existing non-overlapping
fragmentation methods. Besides, DOVE can retain the connection information in the fragmentation
step compared to non-overlapping fragmentation.

• Taking the hierarchical nature of fragment into consideration, we design a nested masked fragment
prediction self-supervised objective to model this prior.

• Our FragFormer consistently surpasses previous fragment-based models and achieves SOTA perfor-
mance on eight out of eleven molecular property prediction datasets on PharmaBench.

• Based on the fragment modeling, our model is more capable of processing large molecules, outperforms
strong baselines on long-range biological benchmark with peptide data.

• Building on fragment modeling, we introduce a simple fragment-level interpretation technique, called
FragCAM, for the prediction outcomes. Our method achieves greater accuracy and faster speed on a
real-world molecular property prediction dataset with labeled decisive fragments.

2 Related Works

2.1 Molecular Representation Learning

Obtaining good molecular representation is a crucial step for accurately predicting molecular proper-
ties (Tkatchenko, 2020). Conventional quantitative structure–activity relationship (QSAR) methods (Hansch
et al., 1962; Tropsha, 2010) formulate a variety of handcrafted molecular descriptors to serve as fixed features
for molecules. These features can be used as input for various machine learning models, such as SVM (Cortes
& Vapnik, 1995), XGBoost (Chen & Guestrin, 2016), etc. Such fixed features can reflect simple substructures
and physicochemical properties of molecules, but may not be able to capture the necessary and sophisticated
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structure feature of molecules for a specific task. To adaptively learn the molecular features, supervised
deep learning methods are proposed to learn the molecular representation from the molecular graph or
SMILES (Weininger, 1988) string directly with labeled data (Chen et al., 2018). These methods can effectively
capture the relevant features of molecular properties and outperform traditional methods when provided with
sufficient labeled data (Masters et al., 2023). However, the performance of these methods is constrained by
the amount of labeled data, which is usually limited in practice (Guo et al., 2021). Owing to the success of
self-supervised learning (SSL) in the field of computer vision (CV) (He et al., 2022; Chen et al., 2020b), natural
language processing (NLP) (Devlin et al., 2019) and audio analysis (Baevski et al., 2020; Hsu et al., 2021),
SSL methods have been proposed for learning molecular representation by harnessing the abundant unlabeled
molecular data. These methods primarily fall into two categories: those based on masked autoencoders, and
those that employ contrastive learning. MolBERT (Fabian et al., 2020) and MolGPT (Bagal et al., 2022) use
the string representation of molecules and predict the masked tokens in the SMILES string in the pre-training
stage. GraphLoG (Xu et al., 2021), GROVER (Rong et al., 2020) and GEM (Fang et al., 2021) treat the
molecule as 2D graph, and predict the masked nodes in the graph with graph neural networks. KPGT (Li
et al., 2023) further improves the performance by modeling the global information of the molecular graph with
a transformer style architecture. Contrastive learning-based methods depend on constructing different views
of the same molecule. GraphCL (You et al., 2020; 2021) achieves this by randomly dropping, perturbing,
and masking parts of the molecular graph. MoleculeSTM (Liu et al., 2023) utilizes text descriptions of the
molecule as an alternative view, while GraphFP (Luong & Singh, 2023) and Holi-Mol (Kim et al., 2024)
employ the fragment graph of the molecule for this purpose. Although these methods have advanced the
performance of molecular property prediction, they mainly focus on the atom-level molecular graphs, and
often struggle to directly model the relation between fragments and molecular properties due to the lack
of fragment prior, restricting their interpretability and generalization. In this work, we propose a novel
overlapping fragmentation method, along with a nested masked fragment prediction pre-training task, to
effectively learn the representation of fragments and their contextual relationships.

2.2 Fragment-based Molecular Learning

Fragment-based drug discovery (FBDD) is an emerging method in drug discovery (Murray & Rees, 2009).
Unlike high-throughput screening (Macarron et al., 2011), FBDD focuses on the interactions between small
fragments and target proteins, and extends the fragments to larger molecules with higher binding affinity.
FBDD can explore the chemical space more efficiently and reduce the cost of drug discovery with higher success
rate (Murray & Rees, 2009). Motivated by the success of FBDD, researchers have proposed fragment-based
methods in molecular learning tasks, mostly on molecule generation. Compared with atom-based molecule
generation, fragment-based methods can generate molecules more efficiently and with more validity. Most
fragment-based methods in molecule generation employ a variational autoencoder (VAE) framework (Voloboev,
2024; Kingma & Welling, 2014; Jin et al., 2018; 2020; Kong et al., 2022; Yu & Yu, 2024). JT–VAE decomposes
the molecule into a tree structure (Rarey & Dixon, 1998) and generates the molecule by a tree expansion.
HierVAE constructs fragment with multiple properties and subsequently expand this fragment. PS–VAE
employs a data-driven method to build fragment vocabulary and generate molecules one fragment at a
time, which emulates the subword vocabulary construction and tokenization process in NLP (Sennrich
et al., 2016). Recently, there are some studies that explore fragment-based methods for molecular property
prediction (Zhang et al., 2021a;b; Luong & Singh, 2023; Jiang et al., 2023; Kim et al., 2024). Fragment-based
methods take advantage of the prior that fragments are the functional groups within molecules (Guvench,
2016), which are basic building blocks in pharmaceutical chemistry. MGSSL (Zhang et al., 2021a) utilizes
predefined motifs as supervision in its self-supervised learning task. FragGAT (Zhang et al., 2021b) segments
the molecular graph in different ways, processes each segment with an Attentive FP network (Xiong et al.,
2020), and aggregates the segment embedding to predict the molecular properties. GraphFP (Luong & Singh,
2023) employs the fragment graph of the molecule as an alternative view in contrastive learning to enhance
atom-level molecular modeling. Holi-Mol(Kim et al., 2024) further utilizes multiple views of fragmentation
to enrich the representation. PharmHGT (Jiang et al., 2023) integrates both fragment and atom graphs to
model the molecular properties. Although existing fragment-based methods have demonstrated encouraging
results in molecular property prediction and heightened the interpretability of the model, they have yet to
surpass atom-level molecular graph based methods (Chen et al., 2024). We postulate that the reason is
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their fragmentation methods primarily focus on the non-overlapping fragmentation, which cannot model
the fact that a single atom can contribute to different functional groups (Merlot et al., 2003). Besides, the
non-overlapping fragmentation results in connection information loss between fragments. In the fragment
graph with non-overlapping fragmentation, an edge cannot specify how two fragments are connected, as
any two atoms within each fragment may serve as the connection points. In this work, we propose a novel
overlapping fragmentation method with tunable overlapping degree and learnable fragment vocabulary. Our
method allows a single atom to participate in multiple fragments and the overlapped atoms maintain the
connection information between fragments.

2.3 Interpretation Methods for Molecular Property Prediction

Identifying the critical fragments for prediction results is essential for applying machine learning models
in real-world scenarios for molecular property prediction (Proietti et al., 2024). Existing interpretation
methods can be divided into two categories: atom-level and fragment-level. Atom-level interpretation
methods aim to identify the important atoms for prediction results. Gradient-based attribution methods
from CV, such as class activation maps (CAM) (Zhou et al., 2016), GradCAM (Selvaraju et al., 2020),
GradInput (Shrikumar et al., 2017) and Integrated Gradients (IG) (Sundararajan et al., 2017), can be directly
applied to score the importance of atoms in molecular property prediction tasks. Rao et al. (2021) builds a
benchmark DrugXAI for interpreting molecular property prediction models and shows these methods can
achieve good performance on synthetic datasets, but poor performance on real-world datasets. They also find
that GradInput and IG perform better than other gradient-based methods. Many interpretation methods
have been specifically developed for graph neural networks (Ying et al., 2019; Luo et al., 2020; Yuan et al.,
2021). GNNExplainer (Ying et al., 2019) learns masks for node features and edges by maximizing the mutual
information between the masked subgraph and the prediction. PGExplainer (Luo et al., 2020) utilizes a
deep network to model the explanation generation process. While atom-level interpretation methods can
highlight key atoms relevant to the predictions, they do not necessarily guarantee fragment-level explanations.
SubgraphX (Yuan et al., 2021) aims to identify the most important connected subgraph for prediction
results using Monte Carlo Tree Search (MCTS), offering better fragment-level interpretation compared to
GNNExplainer and PGExplainer. However, it involves greater computational overhead. Existing methods
either fail to guarantee fragment explanations or are slow in producing them. In this work, we propose a
simple but efficient fragment-level interpretation method based on fragment modeling. Our method achieves
better performance with faster speed on a real-world mutagenicity dataset.

3 Methods

In this section, we introduce our self-supervised learning framework, FragFormer, designed for molecular
property prediction based on fragment modeling. The overall pipeline is depicted in Figure 1. In the following
subsections, we first propose a novel overlapping fragmentation method and derive the fragment graph. Next,
we introduce our model architecture, which takes fragment graph as input and produces the representation
for both fragments and the whole molecule. Finally, we describe the nested masked fragment prediction
pre-training, which aims to capture the hierarchical nature of fragments and their contextual relationships.

3.1 k-Degree Overlapping Fragmentation (DOVE)

Existing fragmentation methods mainly focus on non-overlapping fragmentation, which partition the molecule
into disjoint atom sets (Lewell et al., 1998; Degen et al., 2008; Kong et al., 2022). The non-overlapping
fragmentation methods have two drawbacks. First, one atom can only belong to one fragment, violating the
fact that a single atom can be part of multiple functional groups (Merlot et al., 2003). Second, the induced
fragment graph loses certain topological information from the original molecular graph. Such fragment
graph cannot capture how two fragments are connected (see Appendix B for an illustration). To solve
the above issues, we propose a novel method of overlapping fragmentation with learnable fragment library.
It permits a single atom to participate in multiple fragments. The overlapping atoms can retain pivotal
connection details between fragments, allowing for effective assembly and reducing connection information
loss during the transformation from molecular graph to fragment graph. Our method is based on the iterative
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Figure 1: Pipeline of the FragFormer. "FFN": feed forward network. "MFP": masked fragment prediction.
"8" represents our core design in FragFormer. We propose k-degree overlapping fragmentation (DOVE) to
generate overlapping fragment graph, and nested MFP self-supervised learning to capture the hierarchical
nature of fragments. FragCAM can effectively provide decisive fragments for prediction results.
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Figure 2: Pipeline of the k-degree overlapping fragmentation (DOVE) with k = 1.

line graph transformation of the molecular graph and can take advantage of the existing non-overlapping
fragmentation methods. The pipeline is shown in Figure 2. The main idea is that the non-overlapping
fragmentation of the k-order line graph can be transformed to the k-degree overlapping fragmentation of the
original molecular graph. We first formally define k-degree overlapping fragmentation and k-order line graph.
Then, we show that the k-degree overlapping fragmentation of the molecular graph can be obtained by the
non-overlapping fragmentation of the k-order line graph. We assume all the graphs G are undirected in the
following description.

Definition 1 (Fragmentation of graph). Given a graph G = (V, E), P = {Vi}m
i=1, A ∈ Rm×m, we define

F = (P, A) as a fragmentation (fragment graph) of G if
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1. P is a vertex cover of G, i.e,
m⋃

i=1
Vi = V . P also represents the nodes in fragment graph.

2. ∀i ∈ {1, 2, · · · , m}, G [Vi] is a connected subgraph. G [Vi] represents the subgraph restricted to vertex
set Vi.

Here, A symbolizes the adjacency matrix for the fragment graph, indicating whether two fragments are
neighbors. This adjacency is flexible and can be adjusted based on specific requirements.
Definition 2 (k-degree overlapping fragmentation). Given a graph G = (V, E), P = {Vi}m

i=1, A ∈ Rm×m,
we call a fragmentation F = (P, A) as a k-degree overlapping fragmentation if:

• ∀ i, j ∈ {1, 2, · · · , m} , i ̸= j, if Aij = 1, i.e., Vi and Vj are neighbors in G, then |Vi ∩ Vj | ≥ k.

Next, we define k-order line graph and show how it can be used to generate the k-degree overlapping
fragmentation of the original molecular graph.
Definition 3 (Line graph transformation). Given a graph G = (V, E), the line graph L(G) is an undirected
graph whose vertices correspond to the edges of G and two vertices are connected by an edge if the
corresponding edges in G share a common vertex.

We assume G is connected and leave the discussion for disconnected graph in Appendix A.
Definition 4 (k-order line graph). Let L0(G) = G. For integer k ≥ 1, the k-order line graph Lk(G) is
defined recursively as Lk(G) = L(Lk−1(G)).

Each vertex v in Lk(G) corresponds to a (k + 1)-size connected subgraph in G. We denote its node set by
C(v).
Definition 5 (Standard 0-degree overlapping fragmentation). Given a graph G = (V, E), P = {Vi}m

i=1,
A ∈ Rm×m, we call a fragmentation F = (P, A) as a standard 0-degree overlapping fragmentation if:

1. ∀ i, j ∈ {1, 2, · · · , m} , i ̸= j, we have Vi and Vj are disjoint, i.e, |Vi ∩ Vj | = 0.
2. Aij = 1 if there exists node vi ∈ Vi and vj ∈ Vj , such that vi and vj are neighbors in G, otherwise

Aij = 0.

Most commonly used fragmentation methods are standard 0-degree overlapping fragmentation, such as
principal subgraph mining (Kong et al., 2022), BRICS (Degen et al., 2008) and Recap (Lewell et al., 1998).
Definition 6 (Induced fragmentation). Given a graph G = (V, E) and a fragmentation F = (P, A) of
Lk(G), where P = {Ui}m

i=1, A ∈ Rm×m, the induced fragmentation of F is defined as F ′ = (Q, A), where
Q = {Vi}m

i=1, Vi =
⋃

v∈Ui

C(v).

Theorem 1. Given a graph G = (V, E), the induced fragmentation of standard 0-degree overlapping
fragmentation of Lk(G) is a k-degree overlapping fragmentation of G.

The proof can be found in Appendix A. By Theorem 1, we first transform the molecular graph to the k-order line
graph, then use existing graph fragmentation method to get the standard 0-degree overlapping fragmentation
of Lk(G), and finally get the k-degree overlapping fragmentation of G by the induced fragmentation. The
overlapping degree can be controlled by adjusting the order k of the line graph. We apply principal subgraph
mining (Kong et al., 2022) as our standard 0-degree overlapping fragmentation method, which can generate a
succinct and fruitful fragment vocabulary.

3.2 Model Architecture of FragFormer

Assume the fragmentation of the molecular graph is F = (P, A), where P = {Vi}m
i=1 is the fragment set and

A is the fragment adjacent matrix. The architecture of FragFormer is designed to model the contextual
relationships among fragments and to learn the representation of those fragments. The model architecture of
FragFormer consists of three main components: subgraph encoder, fragment-level graph transformer and
knowledge-aware fusion. The overall architecture is shown in Figure 3.
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Figure 3: Model architecture of FragFormer.

Subgraph Encoder

Given a fragment Vi in the overlapping fragmentation, we first obtain the embedding hi of fragment Vi by
using a subgraph encoder fsub:

hi = fsub(G[Vi]).

{hi}m
i=1 serve as the node features in the fragment graph.

Fragment-level Graph Transformer

Using fragment embeddings {hi}m
i=1 and A, we apply a transformer-based architecture (Vaswani et al.,

2017) that operates on the fragment graph to model contextual dependency between fragments and learn a
graph-level representation for molecular property prediction.

Fragment-level graph transformer is composed of L graph transformer layers, each of which consists of a
self-attention mechanism and a feed-forward module. We follow the design of self-attention mechanism in Li
et al. (2023); Ying et al. (2021); Shi et al. (2022), which includes path attention and distance attention as a
reflection of graph topology.

Specifically, given the fragment graph and fragment features Hl ∈ Rd×m at the l-th layer, where d is the
dimension of the feature and m is the number of fragments, the self attention is calculated as:

Q = WQHl, K = WKHl, V = WVHl,

A = softmax
(

KTQ√
d

+ Ad + Ap
)

,

Hl+ 1
2 = LayerNorm

(
VA + Hl

)
,

WQ, WK and WV ∈ Rd×d are projection weight matrices for query (Q), key (K) and value matrix V.

Ad and Ap are distance attention and path attention. Assume the distance between fragment i and fragment
j in fragment graph is Np, and the shortest path between fragment i and fragment j is pij = (i0, . . . , iNp

),
then Ad and Ap are computed as:

Ad
ij = cNp

,

Ap
ij = 1

Np

Np∑
k=0

Wp
khik

,
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where cNp
is a learnable scalar, Wp

k ∈ Rd×1 is a learnable weight matrix. The feed forward module is defined
as:

Hl+1 = LayerNorm
(

FFN(Hl+ 1
2 ) + Hl+ 1

2

)
,

where FFN is a two-layer MLP with ReLU activation (Agarap, 2018). The initial feature H0 is the fragment
embedding {hi}m

i=1. The output feature HL is the final fragment representation. At last, we apply a global
pooling operation on HL to obtain the graph-level representation hG.

Knowledge Fusion Layer

Incorporating fixed substructure-related features, such as extended connectivity fingerprints (ECFP) (Rogers
& Hahn, 2010), are beneficial for molecular representation learning (Li et al., 2023; Rong et al., 2020). We
refer to those fixed features as knowledge vectors. Here, we propose a knowledge fusion layer to incorporate
the knowledge vectors into the fragment representation learning. We integrate the knowledge vector k with
the fragment representation hi through a GRU unit (Xiong et al., 2020) right after the subgraph encoder:

hi ← GRU (k, hi) .

If there are multiple knowledge vectors {ki}Nk

i=1, we sequentially integrate them with the fragment representa-
tion, as illustrated in the bottom left corner of Figure 3.

3.3 Nested Masked Fragment Prediction Pre-training

To distill knowledge from massive unlabeled molecular data, it is essential to pre-train the model with a
self-supervised objective. Here, we propose a novel fragment-based pre-training task, which is designed
to model the hierarchical nature of fragments. Several atoms can assemble into small fragments, and a
combination of these small fragments can constitute larger ones. Our design follows the philosophy of mask
autoencoder (Devlin et al., 2019; He et al., 2022), where we mask the fragment nodes and predict the masked
nodes based on the context. Instead of barely predicting the class label of the masked nodes, we predict the
existence of all substructures in the vocabulary V for the masked nodes. We use a 0-1 vector y ∈ R|V | to
represent the existence of the substructure in the vocabulary. yi = 1 if the i-th substructure exists in the
masked node, otherwise yi = 0. We predict the existence of the substructure by using a linear classifier built
on the fragment representation hL and a binary cross entropy loss:

L = −
|V |∑
i=1

yi log
(
sigmoid

(
wT

i hL
))

+ (1− yi) log
(
1− sigmoid

(
wT

i hL
))

.

3.4 Fragment-level Interpretation: FragCAM

Inspired by the class activation mapping (Zhou et al., 2016) in CV, we combine it with our fragment modeling
and propose Fragment Class Activation Mapping (FragCAM) for explaining the prediction results with
fragments. Assume the final fragment representation is

{
hL

i

}m

i=1 and we predict the molecular property with
a linear classifier w ∈ Rd:

ŷ = wT SumPooling
({

hL
i

}m

i=1

)
.

Then, the attribution of the i-th fragment to the prediction result is calculated as:

Attributioni = wT hL
i −Min

Max−Min ,

where Max and Min are the maximum and minimum value of
{

wT hL
i

}m

i=1, respectively.

4 Experiments

4.1 Pre-training

Dataset We use two millions unlabeled molecular SMILES (Weininger, 1988) from CHEMBL29 (Gaulton
et al., 2017) as our pre-training data. We use RDKit (Landrum, 2016) to generate the molecular graph from
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Table 1: Results on PharmaBench. The best results are in bold. "↑" means the higher the better, while "↓"
means the lower the better. FragFormer can achieve the SOTA preformance on eight out of eleven tasks. "‡"
indicates traditional QSAR method. "∗" means the methods include a pre-training stage. Baselines labeled
with "†" are fragment-based methods. The best performance of previous baseline methods (annotated with
underlines) on each dataset mostly comes from methods based on atomic graphs.

Classfication (AUROC ↑) Regression (RMSE ↓)
Model/Dataset AMES BBB CYP2C9 CYP2D6 CYP3A4 HLMC MLMC RLMC LogD PPB Sol

RF‡ (Breiman, 2001) 0.761 0.731 18.471 18.041 16.540 0.813 0.987 0.958 1.249 0.204 0.918
XGBoost‡ (Chen & Guestrin, 2016) 0.768 0.750 17.582 17.819 16.123 0.647 0.844 0.819 1.071 0.186 0.832

CMPNN (Song et al., 2020) 0.858 0.887 18.377 19.156 16.701 0.921 1.130 0.939 0.807 0.236 0.858
FPGNN (Cai et al., 2022) 0.858 0.923 16.933 17.611 15.606 0.604 0.774 0.716 0.838 0.179 0.747

DHTNN (Song et al., 2023) 0.844 0.909 17.449 17.890 16.156 0.729 0.926 0.915 0.912 0.235 0.828
KANO∗ (Fang et al., 2023) 0.865 0.915 17.350 17.622 15.307 0.554 0.767 0.762 0.766 0.185 0.772

MPG∗ (Li et al., 2021) 0.869 0.923 17.417 17.527 14.376 0.541 0.723 0.685 0.758 0.170 0.758
Unimol∗ (Zhou et al., 2023) 0.878 0.920 17.774 18.071 15.895 0.613 0.824 0.651 0.745 0.179 0.707
Trans-M∗ (Luo et al., 2023) 0.869 0.935 18.080 17.677 15.867 0.567 0.744 0.677 0.737 0.172 0.834

KPGT∗ (Li et al., 2023) 0.880 0.935 17.036 16.860 16.379 0.564 0.726 0.881 0.728 0.172 1.221
GraphFP∗† (Luong & Singh, 2023) 0.830 0.893 17.367 21.183 17.219 0.764 0.878 0.771 0.835 0.208 1.935

FraGAT† (Zhang et al., 2021b) 0.778 0.684 17.788 22.503 20.313 0.775 0.849 1.050 0.945 0.220 1.352
PharmHGT† (Jiang et al., 2023) 0.863 0.913 17.490 15.020 16.077 0.544 0.820 0.677 0.676 0.172 0.954

FragFormer-0∗† (ours) 0.868 0.920 18.094 17.096 17.036 0.624 0.875 0.619 0.774 0.190 0.968
FragFormer-1∗† (ours) 0.889 0.928 16.855 14.425 15.894 0.514 0.702 0.596 0.667 0.157 0.895
FragFormer-2∗† (ours) 0.870 0.921 17.017 14.505 15.708 0.525 0.688 0.541 0.670 0.177 0.901
FragFormer-3∗† (ours) 0.870 0.918 17.835 16.780 16.977 0.545 0.732 0.571 0.714 0.193 0.961

SMILES and extract the atom features with 137 dimension. The detailed description of atom featurization
can be found in Appendix D. We randomly sample 100k molecules to generate the fragment vocabulary
by principal subgraph mining (Kong et al., 2022). We set the vocabulary size as 500 for the vocabulary
constructon. We separately generate the library for different degree of overlapping fragmentation. The
higher the degree of overlapping, the slower the vocabulary construction and molecule fragmentation. We
select the degree of overlapping from {0, 1, 2, 3} in our experiments. FragFormer with k-degree overlapping
fragmentation is denoted as FragFormer-k. For the knowledge fusion layer, we extract ECFP (Rogers &
Hahn, 2010) with radius = 2 and 1024 bits, MACCS (Durant et al., 2002), TorsionFP (Schulz-Gasch et al.,
2012), and physic-chemical descriptors (Yang et al., 2019; Xue & Bajorath, 2000) as the knowledge vectors.
We linearly transform the raw knowledge vectors to the same dimension as the fragment representation with
a learnable projection for each kind of knowledge before the fusion.
Training Details We use L = 6 graph transformer layers in FragFormer with model dimension d = 512.
We use a two-layer Graph IsoMorphism Network (GIN) (Xu et al., 2019) with mean pooling and hidden
dimension d as the subgraph encoder fsub. We use batch size bs = 4096, learning rate lr = 2e − 4, and
Adam optimizer (Kingma & Ba, 2015) with (β1, β2) = (0.9, 0.999) in the stochastic training. We apply linear
learning rate decay scheduler with 5k warm-up steps. We totally train the model for 25k steps on 4 NVIDIA
4090 GPUs. The masked fragment ratio is set as 0.3. The attention dropout rate and feed forward dropout
rate are set as 0.1 in all fragment-level graph transformer layer. We adopt the multi-head attention technique
with 8 heads in each layer (Vaswani et al., 2017). In the fine-tuning stage, we add a sum pooling on top
of the pre-trained model and apply a linear predictor at last. More detailed description can be found in
Appendix D.

4.2 Downstream Tasks

We test our method on molecular ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
property prediction benchmark PharmaBench (Niu et al., 2024), long-range biological benchmark (Dwivedi
et al., 2022b), and interpretability benchmark DrugXAI for molecular property prediction (Rao et al., 2021).

PharmaBench PharmaBench (Niu et al., 2024) is a comprehensive benchmark for predicting molecular
ADMET properties, featuring eleven distinct molecular property prediction tasks curated with the assistance
of a multi-agent large language model system. The benchmark encompasses a total of 52,482 entries drawn
from 14,401 bioassays, including two classification tasks and nine regression tasks. The detailed profile of
the tasks can be found in the Appendix D. We follow the same scaffold splitting setting (Yang et al., 2019)
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in PharmaBench which divides the dataset into training and test sets with a ratio of 4:1. We compare our
method with traditional QSAR methods, atom-based methods and fragment-based methods. For traditional
QSAR methods, we use ECFP descriptors with radius 2 and 1024 bits. For classification and regression tasks,
we use AUROC and root mean square error (RMSE) as evaluation metrics, respectively. We report the mean
performance of three runs with different random seeds.

Long-range Biological Benchmark To assess the model’s generalization preformance on large molecules
and its capacity to capture long-range interactions, we evaluate it using the peptides-func datatset from the
Long Range Graph Benchmark (Dwivedi et al., 2022b)2 which predicts 10 biological functions of peptide
data, e.g., Antibacterial, Antiviral, cell-cell communication, and others. This benchmark is designed to test
the model’s ability to model long range interactions between atoms. We compare our method with both
graph convolutional based methods (Kipf & Welling, 2017; Chen et al., 2020a; Hu et al., 2020; Bresson &
Laurent, 2017), transformer-based methods (Kreuzer et al., 2021) and fragment-based methods (Luong &
Singh, 2023). Due to the large GPU memory cost for large molecule, we reduce the model dimension d to 32
in this benchmark. We report the average precision (AP) for the benchmark with three different runs.

DrugXAI Apart from the performance on molecular property prediction, explainability is also crucial for
the model to be deployed in real-world applications. We evaluate our interpretation method FragCAM on
DrugXAI (Rao et al., 2021). We choose two synthetic datasets and one real-world dataset from DrugXAI.
Detailed descriptions of the datasets can be found in the Appendix C. Two synthetic datasets predict the
existence of 3MR and Benzene substructures in the molecule, respectively. The ground truth attribution
fragment is the corresponding substructure. The real-world dataset aims at predicting the ames mutagenicity.
We use the 46 substructure alerts given by Sushko et al. (2012) as ground truth fragments. Following DrugXAI,
we use AUROC metric proposed by McCloskey et al. (2019) to measure the model preformance, which
computes the macro average AUROC between the predicted attribution and the ground truth attribution
across test molecules. To evaluate FragCAM, we convert the fragment attribution into atom attribution
by assigning the attribution of the fragment to the atoms it contains. If one atom is present in multiple
fragments, we assign it the maximum attribution from those fragments. We compare our method with
both atom-based and subgraph-based attribution approaches. For the atom-based methods, we adhere to
the baseline settings established in DrugXAI. We apply CAM (Zhou et al., 2016), GradCAM (Selvaraju
et al., 2020), GradInput (Shrikumar et al., 2017), and IG (Sundararajan et al., 2017) to CMPNN (?),
GraphSAGE (Hamilton et al., 2017a), GraphNet (Battaglia et al., 2018), and GAT (Velickovic et al., 2018).
We report the best results among the four atom-based attribution methods for each model. For subgraph-based
method, we use SubgraphX (Yuan et al., 2021) on a two-layer GCN (Kipf & Welling, 2017) with dimension
d. In SubgraphX, we set the target number of fragment nodes Nmin from {3, 7, 10, 15}, use 20 rollouts in
MCTS, and apply 20 steps in shapley value estimation. We also report the fidelity and sparsity score (Pope
et al., 2019; Yuan et al., 2023) for fragment attribution. The fidelity metric evaluates how accurately the
explanations reflect the model’s decision-making process. It removes the crucial substructures from the input
graphs and analyze the variation in predictions. The sparsity metric quantifies the proportion of structures
ignored by the explanation methods. Higher fidelity under similar or lower sparsity are preferred.

4.3 Results and Discussions

PharmaBench The model performance on PharmaBench is presented in Table 1. Firstly, it is noteworthy
that FragFormer achieves the SOTA performance in eight out of eleven tasks. Secondly, it consistently
outperforms fragment-based baselines (indicated with †) with clear margins across all tasks. Thirdly,
FragFormer employing overlapping fragmentation (k = 1 or k = 2) exhibits substantially superior performance
in contrast to the non-overlapping fragmentation (k = 0). Excessive overlapping (k = 3) lead to performance
degradation. We recommend using k = 1 or k = 2 for optimal results. These outcomes substantiate the
efficiency of the FragFormer framework, particularly in context to its overlapping fragmentation feature.
However, our method still falls short of atom-based pre-training methods on three tasks, which we aim to
address in future work. We also find that for each task, the best method always involves a pre-training stage,
which highlights the importance of pre-training in molecular property prediction.

2There is another peptide dataset called peptides-struct in the benchmark. However, peptides-struct pays attention to
predicting the geometric quantities of peptides, which is beyond the scope of our work.
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Table 2: Results on long-range biological benchmark. "w.o KF": without knowledge fusion layer.

Model # Params. Test AP (↑)
GCN (Kipf & Welling, 2017) 508k 0.5930±0.0023
GCNII (Chen et al., 2020a) 505k 0.5543±0.0078
GINE (Hu et al., 2020) 476k 0.5498±0.0079
GatedGCN (Bresson & Laurent, 2017) 509k 0.5864±0.0077
GatedGCN (Bresson & Laurent, 2017)+RWSE (Dwivedi et al., 2022a) 506k 0.6069±0.0035
GraphFP (Luong & Singh, 2023) 2.5M 0.6267±0.0073
Transformer (Vaswani et al., 2017)+LapPE (Dwivedi et al., 2020) 488k 0.6326±0.0126
SAN (Kreuzer et al., 2021)+LapPE (Dwivedi et al., 2020) 493k 0.6384±0.0121
SAN (Kreuzer et al., 2021)+RWSE (Dwivedi et al., 2022a) 500k 0.6439±0.0075
FragFormer (w.o KF) 500k 0.6571±0.0104
FragFormer 2M 0.6693±0.0154

Table 3: Performance (AUROC) results on DrugXAI. The best results are in bold. For CMPNN, GraphSAGE,
GraphNet, and GAT, we report the best results among CAM, GradCAM, GradInput, and IG.

Dataset/Model CMPNN GraphSAGE GraphNet GAT FragCAM
3MR 0.966 0.932 0.967 0.905 0.981

Benzene 0.906 0.859 0.934 0.867 0.935
Mutagenicity 0.742 0.742 0.759 0.683 0.793

Long-range Biological Benchmark We show the results on the long-range biological benchmark in
Table 2. FragFormer without knowledge fusion layer has the same amount of parameters as the baselines and
outperforms the best baseline by more than 1% in terms of test AP. Compared to another fragment-based
method GraphFP, FragFormer contains less parameters, but achieves a absolute improvement of 4.26% in
test AP. These results demonstrate the effectiveness of FragFormer in processing large molecule and modeling
long-range interactions in biological data.

Interpretability Benchmark DrugXAI The results on DrugXAI are displayed in Table 3 and Table 4.
In Table 3, FragCAM can significantly outperform the atom-based methods for baseline models on 3MR and
mutagenicity dataset. For Benzene, FragCAM can also achieve competitive performance among all models.
Compared to SubgraphX, FragCAM demonstrates superior AUROC and fidelity while achieving significantly
faster speeds on the mutagenicity dataset. We also visualize the FragCAM results on mutagenicity datasets
in Figure 4. FragCAM can accurately locate the nitro group, diazene and epoxyethane group as alerts for
ames mutagenicity. These results demonstrate the effectiveness of FragCAM in explaining the prediction
results with fragments.

4.4 Ablation Study
H2N

NHN

N

N+

O

-O
O

O

Epoxyethane GroupNitro Group Diazene

Figure 4: Interpretation results of FragCAM on mu-
tagenicity datasets. The green nodes are the ground
truth alerts. The blue fragments are the fragments
with the highest attribution score in FragCAM.

In this section, we use the PharmaBench dataset to
analyze the impact of different module designs on
the model performance. We set k = 1 in k-degree
overlapping fragmentation for fair comparison. We
define the normalized performance as the RMSE di-
vided by the standard deviation of the labels for
regression tasks. For classification tasks, it is cal-
cuated by 1 − AUROC. A lower normalized value
indicates better performance.

11



Published in Transactions on Machine Learning Research (04/2025)

Table 4: Performance comparison between FragCAM and SubgraphX on DrugXAI. The best results are in
bold. Nmin represents the target number of fragment nodes in SubgraphX.

SubgraphX FragCAM
Nmin 3 7 10 15 –

AUROC 0.655 0.683 0.663 0.592 0.793
Fidelity(sparsity) 0.24(0.81) 0.29(0.58) 0.30(0.41) 0.28(0.21) 0.35(0.72)

Time per sample (s) 52 28 17 11 0.024
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Figure 5: Left: Comparison between nested masked fragment prediction (w.) and cross entropy loss (w.o).
"MFP": masked fragment prediction. Right: Comparison between models w./w.o knowledge fusion (KF).

Table 6: Comparison between different mask rates in pre-training.

Classfication (AUROC ↑) Regression (RMSE ↓) Average Rank
Mask Rate AMES BBB CYP2C9 CYP2D6 CYP3A4 HLMC MLMC RLMC LogD PPB Sol

0.1 0.879 0.924 17.886 16.676 16.298 0.523 0.733 0.592 0.698 0.174 0.922 2.2
0.3 0.889 0.927 16.855 14.425 15.894 0.514 0.702 0.596 0.667 0.157 0.895 1.1
0.5 0.868 0.919 17.527 16.627 16.379 0.527 0.738 0.621 0.689 0.180 0.924 2.7

Effectiveness of Nested Masked Fragment Predictions To evaluate the effect of the nested masked
fragment prediction criterion, we pre-train the model with cross entropy loss which only predicts the identity
of the masked fragment. The finetuning procedure remains unchanged. The results are illustrated in Figure 5
(left). We can see that the nested masked fragment prediction consistently outperforms the cross-entropy loss,
often by a substantial margin, particularly for CYP2C9, CYP2D6, MLMC, RLMC, and PPB datasets.

Impact of Knowledge Fusion Layer We compare models with and without knowledge fusion layer. The
results, displayed in Figure 5 (right), reveal that the model utilizing knowledge fusion layer outperforms its
counterpart on most datasets except for HLMC, demonstrating the efficacy of our knowledge fusion module.

How Vocabulary Size Affects Performance? To evaluate the influence of vocabulary size, we vary
the fragment vocabulary size to 200, 500, and 1000. The results are presented in Table 5. Notably, each
vocabulary size achieves the best performance on at least one dataset. On average, a vocabulary size of 500
yields the best overall performance w.r.t average rank. If the vocabulary size is too small, it may not be able
to capture the diversity of fragments, whereas an overly large vocabulary can introduce redundant fragments.

Effect of Mask Rate in Pre-training We investigate the effect of the mask rate in pre-training by
adjusting it to 0.1, 0.3, and 0.5. The results, shown in Table 6, indicate that a mask rate of 0.3 provides the
best performance across nearly all datasets. A mask rate that is too high can make the pre-training task too
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Table 5: Comparison between different fragment vocabulary sizes.

Classfication (AUROC ↑) Regression (RMSE ↓) Average Rank
Vocab Size AMES BBB CYP2C9 CYP2D6 CYP3A4 HLMC MLMC RLMC LogD PPB Sol

200 0.855 0.923 17.177 15.033 15.960 0.508 0.705 0.610 0.670 0.171 0.910 2.7
500 0.889 0.927 16.855 14.425 15.894 0.514 0.702 0.596 0.667 0.157 0.895 1.3
1000 0.878 0.922 16.678 15.234 15.697 0.535 0.675 0.549 0.679 0.170 0.897 2.0

hard for the model to learn, while one that is too low may make the pre-training process excessively easy,
offering little benefit for developing useful fragment representations.

5 Conclusion

In this paper, we propose a self-supervised learning framework, FragFormer, designed for molecular prop-
erty prediction that enhances both performance and model interpretability. FragFormer features a novel
molecule fragmentation method DOVE which generates overlapping fragments through iterative line graph
transformation. Additionally, we implement a nested masked fragment prediction task to help the model learn
the hierarchical fragment representations, along with a knowledge fusion layer to integrate fixed molecular
features. To facilitate interpretability, we propose a simple yet effective method called FragCAM, which
identifies the critical fragments contributing to predictions. FragFormer achieves state-of-the-art performance
on eight out of eleven molecular property prediction tasks on PharmaBench and surpasses strong baseline
models on long-range biological benchmark. Furthermore, FragFormer demonstrates superior interpretability
on both synthetic and real-world molecular datasets, effectively identifying decisive fragments.
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A Proof of Theorem 1

Recall that Lk(G) is the k-order line graph of G. Each vertex v in Lk(G) corresponds to a (k + 1)-size
connected subgraph in G and we denote its node set by C(v). We assume G is connected with more than k
vertices.
Lemma 1. Given a graph G = (V, E), for every two adjacent nodes u, v in Lk(G), we have |C(u) ∩ C(v)| ≥ k.

Proof. Since u and v are adjacent in Lk(G), they share a vertex in Lk−1(G), which means they share a k-size
connected subgraph in G. Thus, |C(u) ∩ C(v)| ≥ k.

Theorem. Given a graph G = (V, E), the induced fragmentation of standard 0-overlapping fragmentation of
Lk(G) is a k-overlapping fragmentation of G.

Proof. Denote the standard 0-overlapping fragmentation of Lk(G) by F = (P, A) and the induced fragmenta-
tion as F ′ = (Q, A), where P = {Ui}m

i=1, A ∈ Rm×m, Q = {Vi}m
i=1, Vi =

⋃
v∈Ui

C(v). We will prove that F ′ is

a k-overlapping fragmentation of G.
1.

m⋃
i=1

Vi =
m⋃

i=1
C(Ui) = V , so Q is a vertex cover of G.

Since G [Ui] is connected, and every two adjacent nodes in Lk(G) share at least k nodes in G, so G [Vi] is
also connected.
Thus, F ′ is a fragmentation of G.
2. If Aij = 1, then there exists ui ∈ Ui and uj ∈ Uj , ui and uj are adjacent in Lk(G). By Lemma 1,
|C(ui) ∩ C(uj)| ≥ k. Thus,

|Vi ∩ Vj | =

∣∣∣∣∣∣(
⋃

v∈Ui

C(v)) ∩ (
⋃

v′∈Uj

C(v′))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

v∈Ui,v′∈Uj

C(v) ∩ C(v′)

∣∣∣∣∣∣ ≥ |C(ui) ∩ (uj)| ≥ k

Combining 1 and 2, we conclude F ′ is a k-overlapping fragmentation of G.

Disconnected Graph For a disconnected graph, we can apply the above theorem to each connected
component. If a connected component contains only one node, we keep it unchanged in the line graph
transformation.
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Figure 7: (a): 3MR dataset. The blue nodes indicate the 3MR substructure. The last molecule does not
contain the 3MR substructure. (b) Benzene dataset. The green nodes indicate the benzene substructure. The
last molecule does not contain the benzene substructure. (c) Mutagenicity dataset. The red nodes indicate
the substructure alerts. All molecules are mutagenic in ames test.

B Connection Information Loss

We use an example to illustrate the connection information loss in the non-overlapping fragmentation. In
Figure 6, we segment the molecule into six non-overlapping fragments and get the fragment graph. Within
the fragment graph, the blue fragment is linked to the green fragment, but it’s indistinguishable whether
the connection is established through atom 1 and atom 2, or through atom 1 and atom 3. Similarly, the red
fragment is connected with the yellow fragment, yet it remains unclear if this connection is formed by atom 4
and atom 5, or possibly atom 4 and atom 6. This specific kind of connection information is unfortunately lost
within the context of a non-overlapping fragment graph. Based on our k-degree overlapping fragmentation,
we can identify the connection information between fragments through the overlapping atoms. Since the
connection information is preserved in the fragment graph, the model can access and implicitly utilize the
connection information between fragments. We will explore more explicit ways to utilize the connection
information in the future work.

C Interpretability Benchmark: DrugXAI

3MR 3MR dataset is a synthetic dataset that predicts the existence of 3MR substructure in the molecule.
3MR is a ring that consists of two carbon atoms and one oxygen atom, all connected by single bonds. The
examples are given in Figure 7(a). The dataset is collected from ZINC15 lead-like subset and the ground
truth attribution is the 3MR substructure.
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Table 7: Dataset size of 3MR, Benzene and Mutagenicity.

Train Set Size Test Set Size
3MR 2521 631

Benzene 9600 2400
Mutagenicity 5204 1302

Table 8: Performance (AUROC) of CMPNN, GraphSAGE, GraphNet, GAT with CAM, GradCAM, GradInput,
IG on 3MR dataset.

3MR CMPNN GraphSAGE GraphNet GAT
CAM 0.858 0.771 0.832 0.734

GradCAM 0.794 0.783 0.754 0.745
GradInput 0.951 0.844 0.967 0.877

IG 0.966 0.932 0.942 0.905
Best 0.966 0.932 0.967 0.905

Benzene Benzene dataset is a synthetic dataset designed to predict the presence of the benzene substructure
within a molecule. Benzene is a ring consisting of six carbon atoms connected by aromatic bonds. The
examples are illustrated in Figure 7(b). The dataset is also sourced from the ZINC15 lead-like subset, with
the ground truth attribution being the benzene substructure.

Mutagenicity Mutagenicity dataset aims to predict the ames mutagenicity of molecules (Ames et al.,
1973). We use the 46 substructure alerts from Sushko et al. (2012) as ground truth fragments.

The size of train and test set after dataset splitting are shown in Table 7. We report the test set attribution
AUROC (McCloskey et al., 2019) of CMPNN, GraphSAGE, GraphNet, GAT with CAM, GradCAM,
GradInput. in Table 8 (3MR dataset), Table 9 (Benzene datase), and Table 10 (Mutagenicity dataset). These
results refer to DrugXAI (Rao et al., 2021). We list them here for the convenience of the reader.

Other Alternatives of FragCAM We adopt DeepLIFT (Shrikumar et al., 2017) and Integrated Gradients
(IG) (Sundararajan et al., 2017) on the initial fragment vectors, which is the output of subgraph encoder,
and denote these methods as FragDeepLIFT and FragIG. We set steps=50 for IG and use the default setting
for DeepLIFT in Captum (Kokhlikyan et al., 2020). The results on DrugXAI are shown in Table 11 and
Table 12. FragCAM outperforms FragDeepLIFT and FragIG on all datasets in terms of AUROC and fidelity,
which demonstrates the effectiveness of FragCAM in explaining the prediction results with fragments.

D Experimental Details

Atom Features The composition of atom features is shown in Table 13.

Profile of PharmaBench The profile of the PharmaBench dataset is shown in Table 14.

Finetuning Details In the fine-tuning stage, we add a sum pooling on top of the pre-trained model and
apply a linear predictor at last. We use Adam optimizer with a learning rate of 3e− 5 and a batch size of
32. We train the model for 50 epochs and report the mean performance on the test set over three runs with
different random seeds. The model is implemented in DGL (Wang et al., 2019) with PyTorch (Paszke et al.,
2019) as backend and trained on a single NVIDIA A800 GPU.

Time Measurement on Mutagenicity Dataset We measure the time per sample of FragCAM and
SubgraphX on the mutagenicity dataset on a single NVIDIA 4090 GPU.
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Table 9: Performance (AUROC) of CMPNN, GraphSAGE, GraphNet, GAT with CAM, GradCAM, GradInput,
IG on Benzene dataset.

Benzene CMPNN GraphSAGE GraphNet GAT
CAM 0.831 0.798 0.859 0.776

GradCAM 0.566 0.582 0.657 0.604
GradInput 0.894 0.859 0.934 0.867

IG 0.906 0.801 0.865 0.798
Best 0.906 0.859 0.934 0.867

Table 10: Performance (AUROC) of Mutagenicity, GraphSAGE, GraphNet, GAT with CAM, GradCAM,
GradInput, IG on Benzene dataset.

Mutagenicity CMPNN GraphSAGE GraphNet GAT
CAM 0.539 0.542 0.539 0.494

GradCAM 0.560 0.542 0.539 0.503
GradInput 0.607 0.607 0.654 0.608

IG 0.742 0.742 0.759 0.683
Best 0.742 0.742 0.759 0.683

E More Ablation Study on PharmaBench

Comparison between Different Fragmentation Hierarchies We first construct three hierarchy of
fragmentation: All Atom, Junction Tree (JT) (Jin et al., 2018), and DOVE-1. "All Atom" takes each
atom as a fragment. JT decomposes the molecule into rings and bonds. The number of fragments follows
All Atom > JT > DOVE. We then evaluate the performance of FragFormer with different fragmentation
methods, as shown in Table 15. The results show that the overall performance of FragFormer with DOVE is
better than JT, which is better than All Atom.

Comparison between DOVE and JT-VAE JT-VAE (Jin et al., 2018) decomposes the molecule into
rings and bonds. DOVE decomposes the molecule based on iterative line graph and principal subgraph
mining (Kong et al., 2022). Compared with JT-VAE, DOVE can learn a succinct and expressive fragment
library from molecule database by mining frequent substructures. The chemical functional groups in DOVE are
more diverse and flexible than the rings and bonds in JT-VAE. Moreover, DOVE can decompose the molecule
into fragments with tunable overlapping degree, which is not supported by JT-VAE. We constuct a baseline
model called FragFormer-JT, which replace the DOVE with the Junction Tree fragmentation (JT-VAE) and
keep all other settings the same. The results on PharmaBench are shown in Table 15. FragFormer-JT achieves
lower performance than FragFormer on Pharmabench, which demonstrates the effectiveness of DOVE.

Comparison between Different k with the Same Vocabulary Vocabulary construction inherently
depends on k, as it is performed on Lk(G). We conduct an ablation experiment to isolate the difference of
vocabulary. We first build the vocabulary for k = 0, 1, 2, 3 with vocab_size=500 and merge the vocabularies
to get the final vocabulary. Then, we pre-train the model for k = 0, 1, 2, 3 with the final vocabulary separately
and evaluate the performance on Pharmabench. The results are shown in Table 16. The optimal results for
each dataset occur at k = 1 or k = 2, which is consistent with the findings in Table 1. Interestingly, under
the same vocabulary, k = 2 yields superior performance more frequently than k = 1. The trend is reversed in
Table 1.

Effect of Key Components Through an Incremental Ablation Study We begin with the baseline
model, which employs mask atom prediction without incorporating knowledge fusion (’FragFormer-Atom w/o
K’). Next, we introduce DOVE fragmentation with k = 1 (’FragFormer w/o K & Nested MFP’). Subsequently,
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Table 11: Performance (AUROC) of FragCAM, FragIG, and FragDeepLift on DrugXAI.

Dataset/Method FragCAM FragIG FragDeepLift
3MR 0.981 0.971 0.934

Benzene 0.935 0.886 0.875
Mutagenicity 0.793 0.711 0.704

Table 12: Fidelity(sparsity) of FragCAM, FragIG, and FragDeepLift on DrugXAI.

Dataset/Method FragCAM FragIG FragDeepLift
3MR 0.87(0.85) 0.87(0.78) 0.13(0.75)

Benzene 0.50(0.67) 0.46(0.64) 0.45(0.64)
Mutagenicity 0.35(0.72) 0.36(0.67) 0.19(0.66)

we incorporate the nested MFP pre-training criterion (’FragFormer w/o K’). Finally, we enhance the model
by adding the knowledge fusion layer (’FragFormer’). The results are shown in Table 17. Each component
contributes to the performance improvement.

F Results on MoleculeNet

We test FragFormer (DOVE-1) on the MoleculeNet benchmark (Wu et al., 2017). We follow the experimental
settings in KPGT (Li et al., 2023). We split the dataset into 80% training, 10% validation, and 10% test
with scaffold splitting. We report the mean performance over three runs with different random splits. The
results are shown in Table 18. All baseline results of atom-based models are taken from KPGT. FragFormer
outperforms all fragment-based baselines and achieves the SOTA performance on 7 out of 11 datasets. We
find that FragFormer excels at the target-related tasks, e.g., BBBP, BACE, Estrogen, while underperforms
previous SOTA method on toxicity-related tasks, e.g., Tox21, ToxCast. We hypothesize that this could be due
to differences in task characteristics, and we plan to investigate the underlying reasons for this phenomenon
in future work.
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Table 13: Composition of atom features.

Feature Description Feature Dimension
One hot encoding for the atom type, e.g., C, N, O 101

One hot encoding for the atom degree 12
Formal charge 1

One hot encoding for radical electrons 6
One hot encoding for atom hybridization 6

Whether the atom is in aromatic ring 1
One hot encoding of number of H 6
Whether the atom is chiral center 1
One hot encoding of chirality type 2

normalized atom mass 1

Table 14: Datasets Profile for PharmaBench.

Dataset Name Dataset Size Task Type Category Task Description
AMES 9,139 classification Toxicity The result of AMES test (Ames et al., 1973) which evaluates the

mutagenic potential of the molecule.
BBB 8,301 classification Absorption Predict the Blood-Brain Barrier (BBB) penetration. The dataset

is labeled according to threshold log BB = −1.
CYP2C9 999 regression Metabolism Binding affinity to CYP2C9 (unit: log 10µM).
CYP2D6 1,214 regression Metabolism Binding affinity to CYP2D6 (unit: log 10µM).
CYP3A4 1,980 regression Metabolism Binding affinity to CYP3A4 (unit: log 10µM).
HLMC 2,286 regression Clearance The clearance speed in the liver microsomal system in human

(unit: log 10(mL/min/g)).
MLMC 1,403 regression Clearance The clearance speed in the liver microsomal system in mouse (unit:

log 10(mL/min/g)).
RLMC 1,129 regression Clearance The clearance speed in the liver microsomal system in rat (unit:

log 10(mL/min/g)).
LogD 13,068 regression Physochemical LogD is the logarithm of the distribution coefficient (D), which

measures PH-adjusted lipophilicity of the molecule.
PPB 1,262 regression Distribution Percentage of the molecule in the plasma that is bound.
Sol 11,701 regression Physochemical Water solubility of the molecule (unit: log 10nM).

Table 15: Comparison between different hierarchy of fragmentation.

Classfication (AUROC ↑) Regression (RMSE ↓)
Method/Dataset AMES BBB CYP2C9 CYP2D6 CYP3A4 HLMC MLMC RLMC LogD PPB Sol

FragFormer-Atom 0.867 0.916 17.849 16.133 16.663 0.606 0.755 0.718 0.800 0.192 1.045
FragFormer-JT 0.863 0.919 17.413 15.666 16.603 0.550 0.746 0.711 0.709 0.185 0.938

FragFormer-DOVE 0.889 0.927 16.855 14.425 15.894 0.514 0.702 0.596 0.667 0.157 0.895

Table 16: Comparison between different overlapping degree k with the same vocabulary.

Classfication (AUROC ↑) Regression (RMSE ↓)
Method/Dataset AMES BBB CYP2C9 CYP2D6 CYP3A4 HLMC MLMC RLMC LogD PPB Sol

FragFormer-0 0.858 0.918 17.358 17.241 16.859 0.625 0.854 0.603 0.780 0.193 0.952
FragFormer-1 0.865 0.922 17.316 14.833 15.773 0.517 0.734 0.565 0.695 0.175 0.910
FragFormer-2 0.870 0.920 16.732 14.538 15.302 0.519 0.708 0.548 0.687 0.177 0.905
FragFormer-3 0.860 0.917 17.809 16.986 16.910 0.544 0.754 0.577 0.725 0.199 0.959
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Table 17: Effect of key components.

Classfication (AUROC ↑) Regression (RMSE ↓)
Method/Dataset AMES BBB CYP2C9 CYP2D6 CYP3A4 HLMC MLMC RLMC LogD PPB Sol

FragFormer-Atom w.o K 0.837 0.913 18.264 16.691 17.190 0.620 0.996 0.937 0.894 0.236 1.387
FragFormer w.o (K&Nested MFP) 0.856 0.921 17.919 15.659 16.894 0.563 0.877 0.774 0.740 0.211 1.134

FragFormer w.o K 0.882 0.921 17.851 14.815 16.055 0.512 0.799 0.680 0.706 0.166 0.981
FragFormer 0.889 0.928 16.855 14.425 15.894 0.514 0.702 0.596 0.667 0.157 0.895

Table 18: Results on MoleculeNet. Baselines labeled with "†" are fragment-based methods.

Method Classification (AUROC ↑) Regression (RMSE ↓)
BACE BBBP ClinTox SIDER Estrogen MetStab Tox21 ToxCast FreeSolv ESOL Lipo

Infomax (Velickovic et al., 2019) 0.839 0.840 0.661 0.616 0.888 0.837 0.816 0.690 4.119 1.462 0.978
Edgepred (Hamilton et al., 2017b) 0.817 0.873 0.730 0.603 0.881 0.844 0.818 0.712 3.849 2.272 1.030
Masking (Hu et al., 2020) 0.823 0.864 0.729 0.573 0.869 0.868 0.798 0.663 3.646 2.100 1.063
Contextpred (Hu et al., 2020) 0.840 0.877 0.732 0.609 0.882 0.857 0.806 0.714 3.141 1.349 0.969
Infomax_sup (Hu et al., 2020) 0.839 0.873 0.754 0.622 0.864 0.864 0.826 0.713 3.017 1.238 0.729
Edgepred_sup (Hu et al., 2020) 0.847 0.859 0.745 0.620 0.890 0.852 0.829 0.721 2.889 1.133 0.707
Masking_sup (Hu et al., 2020) 0.824 0.859 0.796 0.606 0.888 0.872 0.827 0.715 3.210 1.387 0.725
Contextpred_sup (Hu et al., 2020) 0.855 0.875 0.802 0.620 0.885 0.859 0.840 0.724 3.105 1.477 0.754
GraphLoG (Xu et al., 2021) 0.830 0.846 0.667 0.615 0.871 0.850 0.796 0.677 4.174 2.335 1.104
GraphCL (You et al., 2020) 0.825 0.887 0.691 0.587 0.875 0.821 0.805 0.696 4.014 1.835 0.945
JOAO (You et al., 2021) 0.826 0.879 0.741 0.640 0.861 0.837 0.823 0.711 3.466 1.771 0.933
GROVER (Rong et al., 2020) 0.840 0.887 0.874 0.638 0.892 0.876 0.838 0.696 2.991 0.928 0.752
3DInfomax (Stärk et al., 2022) 0.811 0.877 0.887 0.585 0.880 0.866 0.805 0.716 2.919 1.906 1.045
GraphMVP (Liu et al., 2022) 0.818 0.860 0.719 0.584 0.865 0.820 0.799 0.689 2.532 1.937 0.990
MolFormer (Ross et al., 2021) 0.791 0.866 0.810 0.578 0.806 0.651 0.764 0.687 2.322 0.821 0.673
ImageMol (Zeng et al., 2022) 0.786 0.881 0.885 0.625 0.839 0.874 0.816 0.710 2.634 1.869 0.765
GEM (Fang et al., 2021) 0.857 0.895 0.905 0.621 0.894 0.863 0.832 0.733 2.389 0.803 0.663
GraphMAE (Hou et al., 2022) 0.857 0.878 0.748 0.597 0.881 0.853 0.801 0.691 3.023 1.378 0.746
MoleBERT (Xia et al., 2023) 0.843 0.851 0.797 0.615 0.887 0.868 0.832 0.720 2.801 1.185 0.690
KPGT (Li et al., 2023) 0.855 0.908 0.946 0.649 0.905 0.889 0.848 0.746 2.121 0.803 0.600
GraphFP† (Luong & Singh, 2023) 0.839 0.869 0.832 0.598 0.879 0.857 0.813 0.707 3.228 1.805 0.803
FraGAT† (Zhang et al., 2021b) 0.813 0.841 0.726 0.577 0.867 0.841 0.771 0.682 4.049 2.043 0.913
PharmHGT† (Jiang et al., 2023) 0.846 0.891 0.895 0.625 0.892 0.874 0.824 0.715 2.411 1.276 0.779

FragFormer† 0.868 0.912 0.919 0.656 0.918 0.894 0.840 0.732 1.990 0.801 0.642
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