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ABSTRACT

We propose Frank–Wolfe (FW) algorithms with an adaptive Bregman step-size
strategy for smooth adaptable (also called: relatively smooth) (weakly-) convex
functions. This means that the gradient of the objective function is not neces-
sarily Lipschitz continuous, and we only require the smooth adaptable property.
Compared with existing FW algorithms, our assumptions are less restrictive. We
establish convergence guarantees in various settings, including convergence rates
ranging from sublinear to linear, depending on the assumptions for convex and
nonconvex objective functions. Assuming that the objective function is weakly
convex and satisfies the local quadratic growth condition, we provide both lo-
cal sublinear and local linear convergence with respect to the primal gap. We
also propose a variant of the away-step FW algorithm using Bregman distances
over polytopes. We establish faster global convergence (up to a linear rate) for
convex optimization under the Hölder error bound condition and local linear con-
vergence for nonconvex optimization under the local quadratic growth condition.
Numerical experiments demonstrate that our proposed FW algorithms outperform
existing methods.

1 INTRODUCTION

In this paper, we consider constrained optimization problems of the form
min
x∈P

f(x), (1.1)

where f : Rn → (−∞,+∞] is a continuously differentiable function and P ⊂ Rn is a compact
convex set. We are interested in both convex and nonconvex f and assume that we have first-order
oracle access to f , i.e., given x ∈ Rn, we can compute ∇f(x). The Frank–Wolfe (FW) algorithm
is a projection-free first-order method. Instead of requiring access to a projection oracle, the FW
algorithm requires only access to a so-called linear minimization oracle (LMO), which for a given
linear function a ∈ Rn computes y ∈ argminv∈P ⟨a, v⟩. LMOs are often much cheaper than
projection oracles, as shown in Combettes & Pokutta (2021) (see also (Braun et al., 2025, Table
1.1)). Consequently, in practice, FW algorithms are often faster than projected gradient methods
even when the projection operation is nontrivial. Additionally, FW algorithms tend to be numerically
quite robust and stable due to their affine-invariance and can also be used, e.g., to provide theoretical
guarantees for the approximate Carathéodory problem by Combettes & Pokutta (2023).

Overview of Existing FW Studies: The FW algorithm was originally proposed by Frank & Wolfe
(1956) and was independently rediscovered and extended by Levitin & Polyak (1966) as the con-
ditional gradient method; we will use these terms interchangeably. Canon & Cullum (1968) estab-
lished an initial lower bound for the rate of the FW algorithm. GuéLat & Marcotte (1986) improved
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this bound and also provided the first analysis of the away-step FW algorithm by Wolfe (1970). Jaggi
(2013) provided a more detailed convergence analysis of the FW algorithm, establishing a new lower
bound that demonstrated a trade-off between sparsity and error. Concurrently, Lan (2013) examined
the complexity of linear programming-based first-order methods, establishing a similar lower bound.
For a comprehensive review of FW algorithms, we refer the interested reader to the survey by Braun
et al. (2025) and the brief introduction by Pokutta (2024).

The classical FW algorithm (Algorithm 1) has been improved in two main directions to enhance both
performance and convergence. One focuses on refining the step-size rule. The short-step strategy
computes γt using the Lipschitz constant L of ∇f . Pedregosa et al. (2020) introduced an adaptive
step-size strategy that dynamically estimates L. They proved that this strategy is at least as effective
as the short-step strategy. It was enhanced by Pokutta (2024) to improve numerical stability.

Another direction is to modify the classical FW algorithm to eliminate the zigzag behavior when
approaching the optimal face containing the optimal solution x∗. This behavior inspired Wolfe
(1970) to propose the away-step FW algorithm in 1970 that shortcuts the zigzagging by removing
atoms that slow down the iterative sequence. Lacoste-Julien & Jaggi (2015) showed the linear
convergence of the away-step FW algorithm. Their analysis1 introduced a geometric constant, the
pyramidal width, that measures the conditioning of the polytope P , representing the feasible region.

Our Research Idea: To derive the convergence rate of the above-mentioned FW algorithms, pre-
vious studies have typically required L-smoothness, i.e., that ∇f is Lipschitz continuous, and con-
vexity for the objective function f , although exceptions exist.2 These assumptions often narrow the
application of FW algorithms. Even if they do not satisfy L-smoothness, there are many functions
that satisfy the L-smooth adaptable property (L-smad) with kernel generating distances ϕ (see Defi-
nition 2.1) by choosing ϕ well to match the function f . Since the L-smad property is consistent with
L-smoothness when ϕ = 1

2∥·∥
2, the class ofL-smad functions includes theL-smooth function class.

Other first-order algorithms, such as the Bregman proximal gradient algorithm, are often analyzed
under theL-smad property (see Appendix A and Bolte et al. (2018); Hanzely et al. (2021); Rebegoldi
et al. (2018); Takahashi et al. (2022); Takahashi & Takeda (2025); Yang & Toh (2025)). L-smad
functions appear in many applications, such as nonnegative linear inverse problems (Bauschke &
Borwein, 1997; Takahashi & Takeda, 2025), ℓp loss problems (Kyng et al., 2015; Maddison et al.,
2021), phase retrieval (Bolte et al., 2018; Takahashi et al., 2022), nonnegative matrix factorization
(NMF) (Mukkamala & Ochs, 2019; Takahashi et al., 2026), and blind deconvolution (Takahashi
et al., 2023). Any C2 function is locally L-smooth over compact sets, but the resulting Lipschitz
constant L can be overly conservative, hindering practical performance. Functions outside C2 may
not satisfyL-smoothness at all. Moreover, functions in the above-mentioned applications are weakly
convex on compact sets. For nonconvex functions, although Lacoste-Julien (2016) established sub-
linear convergence, little else has been done, and simply tracing existing research does not achieve
convergence rates better than sublinear convergence. Then the following question naturally arises:

Is it possible to relax the L-smoothness and convexity assumptions often made in FW algorithm
studies while still achieving the theoretical guarantee of linear convergence rates?

Contribution: The answer to the above question is yes. We develop FW algorithms for L-smad
f and give theoretical guarantees of linear convergence under weaker assumptions (Hölder error
bound (HEB) condition with parameter q ≥ 1 for convex f and the special case with q = 2 called
quadratic growth for nonconvex f ) than the strong convexity assumption that is often made when
linear convergence is shown for FW algorithms. The convexity assumption on f is also weakened to
weakly convex, i.e., f + ρ

2∥ · ∥
2 is convex with some ρ > 0 (see, e.g., (Davis et al., 2018, Examples

3.1 and 3.2) and Nurminskii (1975)). Any C2 function on a compact set is weakly convex (Vial,
1983; Wu, 2007) (see Proposition C.1); since ρ is only for the theoretical guarantee and not for the

1Similar analyses based on the pyramidal width have been developed for other advanced variants, such
as the pairwise FW algorithm (Lacoste-Julien & Jaggi, 2015), Wolfe’s algorithm (Lacoste-Julien & Jaggi,
2015), the blended conditional gradient method (Braun et al., 2019), and blended pairwise conditional gradient
methods and similar variants (Combettes & Pokutta, 2020; Tsuji et al., 2022). Even Nesterov-style acceleration
is possible under weak assumptions (Diakonikolas et al., 2020) building upon this analysis.

2Quite recently, Vyguzov & Stonyakin (2025) proposed a FW algorithm with the Bregman distance, similar
to ours, yet it is restricted to convex problems and provides only partial convergence guarantees.
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Table 1: Our convergence rates are generalizations of existing rates. Moreover, our convergence rate is better
than O(ϵ−1) in some cases. For nonconvex functions, convergence is measured using the Frank–
Wolfe gap ⟨∇f(xt), xt − vt⟩ ≤ ϵ, instead of the primal gap f(xt)− f∗ ≤ ϵ. Convergence rates for
weakly convex optimization hold locally.

Assumptions3 Convergence rate

FW f conv. f growth IP poly. L-smooth L-smad (ν > 0)

Alg.1 (any step-size) conv. 7 7 7 O(ϵ−1) O(ϵ−1/ν) (Thm.D.2)

Alg.1 (short & adapt.) conv. q-HEB 3 7 O(log ϵ−1),O(ϵ
2−q
q )4 O(log ϵ−1),O(ϵ

1+ν−q
νq ) (Thm. 4.2)5

away-step FW conv. q-HEB 7 3 O(log ϵ−1),O(ϵ
2−q
q )4 O(log ϵ−1),O(ϵ

1+ν−q
νq ) (Thm. 4.4)5

Alg.1 (any step-size) weak 2-HEB 7 7 O(ϵ−1) O(ϵ−1/ν) (Thm. E.3)
Alg.1 (short & adapt.) weak 2-HEB 3 7 O(log ϵ−1) O(log ϵ−1), O(ϵ

ν−1
2ν ) (Thm. 5.3)6

away-step FW weak 2-HEB 7 3 O(log ϵ−1) O(log ϵ−1), O(ϵ
ν−1
2ν ) (Thm. 5.4)6

Alg.1 (any step-size) 7 7 7 7 O(ϵ−2) O(ϵ−1−1/ν) (Thm. E.1)

algorithm, there is no need for its estimation, and considering weakly convex f greatly broadens
applicability.

Table 1 summarizes our contributions for the various cases that we consider. Relaxing the assump-
tion from L-smoothness to the L-smad property extends the FW algorithm to a broader range of
problems, while making the construction of the FW algorithm and its theoretical guarantee much
more difficult. This is because we use the Bregman distance Dϕ, which is an extension of the Eu-
clidean distance, for the L-smad property. While Equation 2.1 shown later is simple with ν = 1
when using the Euclidean distance, ν > 0 cannot be eliminated for the general Bregman distance;
1 + ν represents its scaling exponent. ν needs to be estimated during the algorithm since its exact
value is unknown, and thus, the extension to an L-smad f is not straightforward.

• We establish sublinear convergence for the case of convex L-smad functions. Assuming
that f is convex and satisfies the HEB condition, and that the minimizer x∗ ∈ intP ,
we provide faster convergence (up to a linear rate). In this setting, our algorithm always
converges linearly if the exponent of the HEB condition q equals the scaling exponent of
the Bregman distance 1 + ν, i.e., q = 1 + ν.7 For q > 1 + ν, if t ≤ t0 with some
t0 ∈ N, linear convergence holds; otherwise, O(ϵ(1+ν−q)/νq), which is faster than existing
sublinear rates. A similar argument also applies to the nonconvex case (q = 2) and the
away-step FW algorithm.

• For nonconvex optimization, assuming that f is weakly convex and satisfies the local
quadratic growth condition, we establish local linear convergence. To the best of our knowl-
edge, this is the first FW algorithm with linear convergence guarantees for a certain class of
nonconvex optimization problems, albeit for a rather restricted subclass. These results are
also new for the standard setting: L-smooth f . Without weak convexity, we prove global
sublinear convergence to a stationary point of Equation 1.1 for nonconvex L-smad f .

• We also propose a variant of the away-step FW algorithm with the Bregman distance and
establish its linear convergence under the HEB condition for convex optimization and under
the local quadratic growth condition for weakly convex optimization.

3f conv. means the convexity of f , IP means x∗ ∈ intP , and poly. means that P is a polytope.
4O(log ϵ−1) if q = 2 or if q ̸= 2 and t ≤ t0 with t0 ∈ N; otherwise O(ϵ(2−q)/q) (Kerdreux et al., 2022).
5O(log ϵ−1) if the exponent of the HEB condition q equals the scaling exponent of the Bregman distance

1 + ν ((ν, q) = (1, 2) for the away-step FW algorithm). For q > 1 + ν, it holds if t ≤ t0 with t0 ∈ N;
otherwise O(ϵ(1+ν−q)/νq).

6O(log ϵ−1) holds if ν = 1. For ν ∈ (0, 1), it holds if t ≤ t0 with t0 ∈ N; otherwise O(ϵ(ν−1)/2ν).
7As discussed in Sec. 2, linear convergence with the Euclidean distance is shown in Garber & Hazan (2015)

under the quadratic growth over strongly convex sets. This corresponds to the q = 1 + ν case with ν = 1.
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2 PRELIMINARIES

Let C be a nonempty open convex subset of Rn. Let dist(x,C) := infy∈C ∥x − y∥ and let Ck be
the class of k-times continuously differentiable functions for k ≥ 0.

Definition 2.1 (Kernel Generating Distance (Bolte et al., 2018)). A function ϕ : Rn → (−∞,+∞]
is called a kernel generating distance associated with C if it satisfies the following conditions: (i) ϕ
is proper, lower semicontinuous, and convex, with domϕ ⊂ clC and dom ∂ϕ = C; (ii) ϕ is C1 on
int domϕ ≡ C. We denote the class of kernel generating distances associated with C by G(C).
Definition 2.2 (Bregman Distance (Bregman, 1967)). Given ϕ ∈ G(C), a Bregman distance Dϕ :
domϕ×int domϕ→ R+ associated with ϕ is defined byDϕ(x, y) := ϕ(x)−ϕ(y)−⟨∇ϕ(y), x−y⟩.

The Bregman distance Dϕ(x, y) measures the proximity between x ∈ domϕ and y ∈ int domϕ.
Since ϕ is convex, Dϕ(x, y) ≥ 0 holds. Moreover, when ϕ is strictly convex, Dϕ(x, y) = 0 holds
if and only if x = y. However, the Bregman distance is not always symmetric and does not have
to satisfy the triangle inequality. See Example B.1. We use Df in Definition 2.2 for nonconvex f
instead of convex ϕ for brevity. In the remainder of the paper, we assume that, for a given strictly
convex ϕ and C, there exists ν > 0 such that the following holds for all x, y ∈ int domϕ and
γ ∈ [0, 1] (see Lemma B.3):

Dϕ((1− γ)x+ γy, x) ≤ γ1+νDϕ(y, x). (2.1)

We recall the smooth adaptable property, which is a generalization of L-smoothness and was intro-
duced by Bauschke et al. (2017); Bolte et al. (2018); Lu et al. (2018). Its characterizations can be
found in Appendix B.2, Example B.5, Remark B.6, and (Bauschke et al., 2017, Proposition 1).

Definition 2.3 (L-smooth Adaptable Property). Let ϕ ∈ G(C) and let f : Rn → (−∞,+∞] be
proper and lower semicontinuous with domϕ ⊂ dom f , which is C1 on C ≡ int domϕ. The pair
of functions (f, ϕ) is said to be L-smooth adaptable (for short: L-smad) on C if there exists L > 0
such that Lϕ− f and Lϕ+ f are convex on C.

The L-smad property is equivalent to the extended descent lemma (Bolte et al., 2018, Lemma 2.1),
which implies that the L-smad property for (f, ϕ) provides upper and lower approximations for f
majorized by ϕ with L > 0. For example, − log x is not L-smooth on x > 0 and 1

4x
4 is not L-

smooth on R. It is the Bregman distance, rather than the Euclidean distance, that allows us to bound
the first-order approximation of these functions. See Example B.5 for further examples of L-smad
pairs. When (f, ϕ) is L-smad with a strictly convex function ϕ ∈ G(C), we have Lemma B.7, i.e.,

f(x)− f(x+) ≥ γ⟨∇f(x), x− v⟩ − Lγ1+νDϕ(v, x), (2.2)

where x+ = (1 − γ)x + γv with x, v ∈ int domϕ and γ ∈ [0, 1]. Often v ∈ P ⊂ int domϕ
in Lemma B.7 is chosen as a Frank–Wolfe vertex, i.e., v ∈ argmaxu∈P ⟨∇f(x), x − u⟩, but other
choices, e.g., those arising from away-directions, are also possible, as we will see in Section 3.2.

In Garber & Hazan (2015) (see also Garber (2020)) the linear convergence of the FW algorithm
for convex optimization under the quadratic growth condition, which is a weaker assumption than
assuming strong convexity, was established over strongly convex sets and later generalized to uni-
formly convex sets in Kerdreux et al. (2021b) as well as to conditions weaker than quadratic growth
in Kerdreux et al. (2019; 2022). Local variants of these notions, as necessary, e.g., for the non-
convex case, have been studied in Kerdreux et al. (2021a) in the context of FW algorithms. For
f : Rn → [−∞,+∞], let [f ≤ ζ] := {x ∈ Rn | f(x) ≤ ζ} be a ζ-sublevel set of f for some ζ ∈ R.

Definition 2.4 (Hölder Error Bound (Braun et al., 2025; Roulet & d’Aspremont, 2017) and Quadratic
Growth Conditions (Garber & Hazan, 2015; Garber, 2020; Liao et al., 2024)). Let f : Rn →
(−∞,+∞] be a proper lower semicontinuous function and P ⊂ Rn be a compact convex set. Let
X ∗ ̸= ∅ be the set of optimal solutions, i.e., X ∗ := argminx∈P f(x), and let f∗ = minx∈P f(x)
and ζ > 0. The function f satisfies the q-Hölder error bound (HEB) condition on P if there
exist constants q ≥ 1 and µ > 0 such that dist(x,X ∗)q ≤ q

µ (f(x) − f
∗) holds for any x ∈ P .

In particular, when q = 2, it is called the µ-quadratic growth condition. Moreover, the function
f is said to satisfy local µ-quadratic growth (with ζ) if there exists a constant µ > 0 such that
dist(x,X ∗)2 ≤ 2

µ (f(x)− f
∗) holds for any x ∈ [f ≤ f∗ + ζ] ∩ P .
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For example, f(x) = log(1 + x2) is nonconvex but satisfies local quadratic growth. This function
is used for image restoration (Boţ et al., 2016; Stella et al., 2017). See, for more examples, Ex-
amples E.4 and E.5. The HEB condition shows sharpness bounds on the primal gap (see Bolte
et al. (2017); Roulet & d’Aspremont (2017)), which has been extensively analyzed for FW al-
gorithms (Kerdreux et al., 2019; 2022). Convergence of (sub)gradient algorithms for nonconvex
optimization under the quadratic growth or HEB condition was established in Davis et al. (2018;
2024); Davis & Jiang (2024). We assume the HEB condition for convex optimization and the local
quadratic growth for nonconvex optimization.

3 PROPOSED BREGMAN FW ALGORITHMS

Throughout this paper, we make the following assumptions.
Assumption 3.1. (i) ϕ ∈ G(C) with clC = cl domϕ is strictly convex on C ≡ int domϕ and has
ν > 0 satisfying Equation 2.1; (ii) f : Rn → (−∞,+∞] is proper and lower semicontinuous with
domϕ ⊂ dom f , which is C1 on C; (iii) The pair (f, ϕ) is L-smad on P ; (iv) P ⊂ Rn is a nonempty
compact convex set with P ⊂ C.

Algorithm 1: Frank–Wolfe algorithm
Input: Initial point x0 ∈ P , objective

function f , step-size γt ∈ [0, 1]
1 for t = 0, . . . do
2 vt ← argminv∈P ⟨∇f(xt), v⟩
3 xt+1 ← (1− γt)xt + γtvt

Assumption 3.1(i)-(iii) are standard for Bregman-type
algorithms (Bolte et al., 2018; Takahashi & Takeda,
2025). The strict convexity of ϕ ensures the existence
of ν by Lemma B.3 and is satisfied by many kernel
generating distances (see, e.g., Bauschke et al. (2017);
Bauschke & Borwein (1997), and (Dhillon & Tropp,
2008, Table 2.1)). Assumption 3.1(iv) is standard for
FW algorithms, and P ⊂ C naturally ensures that Dϕ is well-defined on P . The original FW
algorithm is given in Algorithm 1. In what follows, let x∗ ∈ argminx∈P f(x) and f∗ = f(x∗).

3.1 BREGMAN STEP-SIZE STRATEGY FOR γt

Bregman Short Step-Size: Assume that (f, ϕ) is L-smad. Maximizing the right-hand side
of Equation 2.2 in terms of γ, we find

γ =

(
⟨∇f(x), x− v⟩
L(1 + ν)Dϕ(v, x)

) 1
ν

and f(x)− f(x+) ≥
ν

1 + ν

⟨∇f(x), x− v⟩1+1/ν

(L(1 + ν)Dϕ(v, x))1/ν
.

Theoretically, when x, v ∈ P and γ ∈ [0, 1], the Frank–Wolfe step x+ = (1 − γ)x + γv ∈ P is

well-defined. We update γ = min

{(
⟨∇f(x),x−v⟩
L(1+ν)Dϕ(v,x)

)1/ν

, γmax

}
with some γmax ∈ R (usually set

γmax = 1). This step-size strategy provides f(x) − f(x+) ≥ ν
1+ν γ⟨∇f(x), x − v⟩ for 0 ≤ γ ≤(

⟨∇f(x),x−v⟩
L(1+ν)Dϕ(v,x)

)1/ν

. Its proof can be found in Lemma B.8.

If ϕ = 1
2∥ · ∥

2, we have ν = 1 and γt =
⟨∇f(xt),xt−vt⟩
L∥vt−xt∥2 , which is often called the (Euclidean) short

step-size. Although the short step-size does not require line searches, it requires knowledge of the
value of L.

Adaptive Bregman Step-Size: The exact value or the tight upper bound of L is often unknown;
however, the algorithm’s performance heavily depends on it; an underestimation of L might lead to
non-convergence, and an overestimation of L might lead to slow convergence. Moreover, a worst-
case L might be too conservative for regimes where the function is better behaved. For these rea-
sons, Pedregosa et al. (2020) proposed an adaptive step-size strategy for FW algorithms in the case
where ϕ = 1

2∥ · ∥
2. We present our algorithm in Algorithm 2. This step-size strategy can be used

as a drop-in replacement. For example, inserting Lt, νt, γt ← step_size(f, ϕ, xt, vt, Lt−1, 1)
between lines 2 and 3 in Algorithm 1, we obtain that Algorithm 2 searches L and ν satisfying Equa-
tion 2.2. For ϕ = 1

2∥ · ∥
2, Algorithm 2 corresponds to a (Euclidean) adaptive step-size strategy (Pe-

dregosa et al., 2020).
Remark 3.2 (Well-definedness and termination of Algorithm 2). By the L-smad property of (f, ϕ)
and Lemma B.7, we know that Equation 2.2 holds for all M ≥ L and ν ≥ κ > 0. Therefore, the
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condition in line 7 in Algorithm 2 is well-defined and guaranteed to terminate. It suffices to update
κ in line 10 only if Equation 2.1 does not hold. Thus, κ cannot become too small.

Algorithm 2: Adaptive Bregman step-size strategy

Output: Estimates L̃∗ and ν̃∗, step-size γ
1 Procedure step_size(f, ϕ, x, v, L̃, γmax)
2 Choose β ∈ (0, 1), η ∈ (0, 1], and τ > 1

3 M ← ηL̃, κ← 1
4 loop

5 γ ← min

{(
⟨∇f(x),x−v⟩

M(1+κ)Dϕ(v,x)

)1/κ

, γmax

}
6 x+ ← (1− γ)x+ γv
7 if Df (x+, x) ≤Mγ1+κDϕ(v, x) then
8 L̃∗ ←M , ν̃∗ ← κ

9 return L̃∗, ν̃∗, γ
10 M ← τM , κ← βκ

We have a bound on the total number of eval-
uations of Algorithm 2. Its proof can be found
in Appendix B.3.
Theorem 3.3. Let L−1 be the initial L-smad
estimate and nt be the total number of evalu-
ations of Equation 2.2 up to iteration t. Then
we have nt ≤ max{(1 − log η/ log τ)(t +
1) + max{log(τL/L−1), 0}/ log τ, (1 +
log ν/ log β)(t+ 1)}.

Pedregosa et al. (2020) showed that, asymp-
totically, no more than 16% of the itera-
tions require more than one evaluation of the
line search procedures when η = 0.9 and
τ = 2. This follows from the bound (1 −
log η/ log τ) ≤ 1.16.

3.2 BREGMAN AWAY-STEP FRANK–WOLFE ALGORITHM

In the case where P is a polytope, the classical FW algorithm might zigzag when approaching the
optimal face and, in consequence, converge slowly. The away-step FW algorithm overcomes this
drawback. Away steps allow the algorithm to move away from vertices in a convex combination of
xt, which can effectively short-circuit the zigzagging. The convergence properties of this algorithm
were unknown for a long time, and it was only quite recently that Lacoste-Julien & Jaggi (2015)
established the linear convergence of the away-step FW algorithm. Inspired by GuéLat & Mar-
cotte (1986); Lacoste-Julien & Jaggi (2015); Wolfe (1970), we propose a variant of the away-step
FW algorithm utilizing Bregman distances as given in Algorithm 3. The main difference between
Algorithm 3 and the existing away-step FW algorithm lies in the update in line 8.

For the following discussion, we introduce some notions. In the same way as Braun et al.
(2025), we define an active set S ⊂ VertP , where VertP denotes the set of vertices of P ,
and the away vertex as vA

t ∈ argmaxv∈S⟨∇f(xt), v⟩, where xt is a (strict) convex combina-
tion of elements in S , i.e., xt =

∑
v∈S λvv with λv > 0 for all v ∈ S and

∑
v∈S λv = 1.

If ν is unknown, we can add line search procedures to search ν until Equation 2.1 holds. If
ν and L are unknown, we can use Lt, νt, γt ← step_size(f, ϕ, xt, vt, Lt−1, γt,max) with

γt ← min

{(
⟨∇f(xt),dt⟩

M(1+κ)Dϕ(vt,xt)

)1/κ

, γt,max

}
instead of line 5 in Algorithm 2. When ϕ = 1

2∥ · ∥
2

and ν ≡ 1, Algorithm 3 corresponds to the Euclidean away-step FW algorithm.

4 LINEAR CONVERGENCE FOR CONVEX OPTIMIZATION

In this section, we assume that f is convex.
Assumption 4.1. The objective function f is convex.

Let D :=
√
supx,y∈P Dϕ(x, y) be the diameter of P . We will now establish faster convergence

rates than O(1/t) up to linear convergence depending on ν in Equation B.2 and q in Definition 2.4.
First, we establish the faster convergence of Algorithm 1 with the Bregman short step-size, i.e.,

γt = min

{(
⟨∇f(xt),xt−vt⟩
L(1+ν)Dϕ(vt,xt)

)1/ν

, 1

}
, or Algorithm 2 in the case where the optimal solution lies

in the relative interior. Its proof can be found in Appendix D.2.
Theorem 4.2 (Linear convergence of FW algorithm with short step-size or adaptive step-size). Sup-
pose that Assumptions 3.1 and 4.1 hold. Let ν > 0 and let f satisfy the HEB condition with q ≥ 1+ν
and µ > 0 and D be the diameter of P . Assume that there exists a minimizer x∗ ∈ intP , i.e., there
exists an r > 0 with B(x∗, r) ⊂ P . Consider the iterates of Algorithm 1 with short step-size
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Algorithm 3: Away-step Frank–Wolfe algorithm with the Bregman distance
Input: x0 ∈ argminv∈P ⟨∇f(x), v⟩ for x ∈ P , β < 1

1 S0 ← {x0}, λx0,0 ← 1
2 for t = 0, . . . do
3 vFW

t ← argminv∈P ⟨∇f(xt), v⟩, vA
t ← argmaxv∈St

⟨∇f(xt), v⟩
4 if ⟨∇f(xt), xt − vFW

t ⟩ ≥ ⟨∇f(xt), vA
t − xt⟩ then

5 vt ← vFW
t , dt ← xt − vFW

t , γt,max ← 1
6 else
7 vt ← vA

t , dt ← vA
t − xt, γt,max ← λvA

t ,t
/(1− λvA

t ,t
)

8 γt ← min

{(
⟨∇f(xt),dt⟩

L(1+ν)Dϕ(vt,xt)

)1/ν

, γt,max

}
, xt+1 ← xt − γtdt

9 if ⟨∇f(xt), xt − vFW
t ⟩ ≥ ⟨∇f(xt), vA

t − xt⟩ then
10 λv,t+1 ← (1− γt)λv,t for all vt ∈ St \ {vFW

t }

11 λvFW
t ,t+1 ←

{
γt if vFW

t /∈ St
(1− γt)λvFW

t ,t + γt if vFW
t ∈ St

, St+1 ←
{
St ∪ {vFW

t } if γt < 1

{vFW
t } if γt = 1

12 else
13 λv,t+1 ← (1 + γt)λv,t for all v ∈ St \ {vA

t }, λvA
t ,t+1 ← (1 + γt)λvA

t ,t
− γt

14 St+1 ←

{
St \ {vA

t } if λvA
t ,t+1 = 0

St if λvA
t ,t+1 > 0

γt = min

{(
⟨∇f(xt),xt−vt⟩
L(1+ν)Dϕ(vt,xt)

)1/ν

, 1

}
or the adaptive Bregman step-size strategy (Algorithm 2).

Then, it holds that, for all t ≥ 1,

f(xt)− f∗ ≤


max

{
1

1+ν , 1−
ν

1+ν
r1+1/ν

c1+1/νD2/ν

}t−1

LD2 if q = 1 + ν,

LD2

(1+ν)t−1 if 1 ≤ t ≤ t0, q > 1 + ν,
(L(1+ν)(c/r)1+νD2)q/(q−1−ν)

(1+ 1−ν
2(1+ν)

(t−t0))
νq/(q−1−ν) = O(1/tνq/(q−1−ν)) if t ≥ t0, q > 1 + ν,

where c = (q/µ)1/q and t0 := max{⌊log1/(1+ν)((L(1 + ν(c/r)1+νD2)q/(q−1−ν)/LD2)⌋+ 2, 1}.

Next, we establish the linear convergence of Algorithm 3. Recall that the pyramidal width is the
minimal δ > 0 satisfying Lemma C.9 (see (Braun et al., 2025, Lemma 2.26) or (Lacoste-Julien &
Jaggi, 2015, Theorem 3) for an in-depth discussion). Under Assumption 4.3, it holds that δ ≤ D,
and this will be important in establishing convergence rates of Algorithm 3. We make the following
assumption:
Assumption 4.3. The kernel generating distance ϕ is σ-strongly convex.

We have the linear convergence of Algorithm 3. Its proof can be found in Appendix D.3.
Theorem 4.4 (Linear convergence of the away-step FW algorithm). Suppose that Assump-
tions 3.1, 4.1, and 4.3 hold. Let ν > 0 and let P be a polytope and f satisfy the HEB condition with
q > 1 + ν or (ν, q) = (1, 2). The convergence rate of Algorithm 3 is linear: for all t ≥ 1

f(xt)− f∗ ≤


(
1− µ

32L
δ2

D2

)⌈(t−1)/2⌉
LD2 if (ν, q) = (1, 2),

1
(1+ν)⌈(t−1)/2⌉LD

2 if 1 ≤ t ≤ t0, q > 1 + ν,
(L(1+ν)D2c/(δ/2)1+ν)q/(q−1−ν)

(1+ 1−ν
2(1+ν)

⌈(t−t0)/2⌉)
νq/(q−1−ν) = O(1/tνq/(q−1−ν)) if t ≥ t0, q > 1 + ν,

where c := (q/µ)1/q D and δ are the diameter and the pyramidal width of the polytope P , respec-
tively, and t0 := max{⌊log1/(1+ν)(L(1 + ν)D2/((µ/q)1/qδ/2)1+ν)q/(q−1−ν)/LD2⌋+ 2, 1}.

When ϕ = 1
2∥ · ∥

2, i.e., ν = 1, Theorems 4.2 and 4.4 correspond to existing results (Braun et al.,
2025; Kerdreux et al., 2022).

7
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5 LOCAL LINEAR CONVERGENCE FOR NONCONVEX OPTIMIZATION

In this section, we consider a nonconvex objective function. We establish global sublinear, local
sublinear, and local linear convergence (see Theorem E.1 and Theorem E.3 for global and local
sublinear convergence, respectively). We show that the FW algorithm converges to a minimizer x∗
when an initial point is close enough to x∗. We need weak convexity and local quadratic growth for
local convergence.
Assumption 5.1. f is ρ-weakly convex and has local µ-quadratic growth with ζ > 0.

Assumption 5.1 is not too restrictive because the (local) strong convexity or the (local) Polyak–
Łojasiewicz (PL) inequality implies the (local) quadratic growth condition for weakly convex func-
tions (Liao et al., 2024, Theorem 3.1). For more examples satisfying Assumption 5.1 and ρ ≤ µ,
see Examples E.4 and E.5.
Remark 5.2. Linear convergence rates for nonconvex optimization problems are, to the best of
our knowledge, the first such result for the Frank–Wolfe algorithm. Their proofs are technically
challenging. Proposition C.8 is new and key for establishing a linear rate. In the nonconvex case,
one cannot derive primal-gap inequalities such as Lemma D.1. We overcome this by restricting our
function class to weakly convex functions and proving Lemma C.2. There remains an obstacle that
could be resolved by the assumption of the quadratic growth condition. Assumption 5.1 enables us
to derive Lemma C.3 and Proposition C.8 (as well as Remark C.4), which are crucial for establishing
linear convergence.

We have local linear convergence, and its proof can be found in Appendix E.3.
Theorem 5.3 (Local linear convergence of FW algorithm with short step-size or adaptive step-size).
Suppose that Assumptions 3.1 and 5.1 hold. Let ν ∈ (0, 1] and let D be the diameter. Assume
that there exists a minimizer x∗ ∈ intP , i.e., there exists an r > 0 with B(x∗, r) ⊂ P . Consider

the iterates of Algorithm 1 with γt = min

{(
⟨∇f(xt),xt−vt⟩
L(1+ν)Dϕ(vt,xt)

)1/ν

, 1

}
or the adaptive Bregman

step-size strategy (Algorithm 2). Then, if ρ/µ < 1, it holds that, for all t ≥ 1,

f(xt)− f∗ ≤


max

{
1
2

(
1 + ρ

µ

)
, 1− r2

2Mc2D2

}t−1

LD2 if ν = 1,(
1

1+ν

(
1 + νρ

µ

))t−1

LD2 if 1 ≤ t ≤ t0, ν ∈ (0, 1),

(L(1+ν)(1−ρ/µ)νc1+νD2/r1+ν)2/(1−ν)

(1+ 1−ν
2(1+ν) (1−

ρ
µ )(t−t0))

2ν/(1−ν) = O(1/t2ν/(1−ν)) if t ≥ t0, ν ∈ (0, 1),

where c =
√
2µ/(µ− ρ), M := (L(1+ ν))1/ν , and t0 := max{⌊log(1+νρ/µ)/(1+ν)((L(1+ ν)(1−

ρ/µ)νc1+νD2/r1+ν)2/(1−ν)/LD2)⌋+ 2, 1}.

Finally, we establish the local linear convergence of Algorithm 3. Its proof can be found in Ap-
pendix E.4. We assume ρ ≤ L, which is not restrictive (see Appendix E.2 and Example E.4).
Theorem 5.4 (Local linear convergence by the away-step FW algorithm). Suppose that Assump-
tions 3.1, 4.3, and 5.1 hold. Let ν ∈ (0, 1] and let P ⊂ Rn be a polytope. The convergence rate of
Algorithm 3 with f is linear: if ρ < µ ≤ L, for all t ≥ 1

f(xt)− f∗ ≤


2
(
1− ω

4L
δ2

D2

)⌈(t−1)/2⌉
LD2 if ν = 1,

2
(

1
1+ν

(
1 + νρ

µ

))⌈(t−1)/2⌉
LD2 if 1 ≤ t ≤ t0, ν ∈ (0, 1),

(L(1+ν)(1−ρ/µ)νD2/(
√
ωδ)1+ν)2/(1−ν)

(1+ 1−ν
2(1+ν) (1−

ρ
µ )⌈(t−t0)/2⌉)

2ν/(1−ν) = O(1/t2ν/(1−ν)) if t ≥ t0, ν ∈ (0, 1),

where D and δ are the diameter and the pyramidal width of P , respectively, and ω := (µ− ρ)2/8µ,
and t0 := max{⌊log(1+νρ/µ)/(1+ν)(L2(1+ ν)2D4(1− ρ/µ)2ν/(ωδ2)1+ν)1/(1−ν)/2LD2⌋+2, 1}.

Without loss of generality, σ = 1. If ρ > L, we can use (ρ + L)D2, instead of 2LD2 as the initial
bound of f(x1)−f∗. When ϕ = 1

2∥ · ∥
2, i.e., ν = 1, Theorems 5.3 and 5.4 show linear convergence

rates for Euclidean cases. Even if we use the Euclidean distance, our convergence results are novel
in that linear convergence is achieved for the first time for a certain type of nonconvex problem.
Moreover, when P is (α, p)-uniformly convex set (see Definition E.7) and ϕ = 1

2∥ · ∥
2, we also

establish local linear convergence (Theorems E.9 and E.10) in Appendix E.5.
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Figure 1: Log plot of primal and FW gaps on ℓp loss
for gas sensor data with bmax = 130.

Figure 2: Log plot of primal and FW gaps on ℓp loss
for gas sensor data with bmax = 200.

Figure 3: Log plot of primal and FW gaps on phase
retrieval for (m,n) = (1000, 10000).

Figure 4: Log plot of primal and FW gaps on phase
retrieval for (m,n) = (2000, 10000).

6 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to examine the performance of our algorithms.
All numerical experiments were performed in Julia 1.11 using the FrankWolfe.jl package (Be-
sançon et al., 2022)8 on a MacBook Pro with an Apple M2 Max and 64GB LPDDR5 memory.

We compare BregFW (Algorithm 1) and BregAFW (Algorithm 3, whose results are shown in
Figures 7) using the adaptive Bregman step-size strategy (Algorithm 2), with existing algorithms,
EucFW, EucAFW, ShortFW, ShortAFW, OpenFW, OpenAFW, MD, and ProjGD (their notation is
described in Appendix F). In this section, we consider ℓp loss problems and phase retrieval, and we
report additional experiments on nonnegative linear inverse problems, low-rank minimization, and
NMF in Appendix F. Note that we included OpenAFW only for comparison purposes; there is no es-
tablished convergence theory for the away-step FW algorithm with the open loop. Indeed, there are
no proper drop steps (operations corresponding to line 14 in Algorithm 3), and the favorable prop-
erties of the away-step FW algorithm are lost; see Braun et al. (2025). We use β = 0.9, η = 0.9,
τ = 2, γmax = 1, and the termination criterion maxv∈P ⟨∇f(xt), xt − v⟩ ≤ 10−7 throughout all
experiments.

6.1 ℓp LOSS PROBLEM

We consider the ℓp loss problem (Kyng et al., 2015; Maddison et al., 2021) to find x ∈ P such that
Ax ≃ b, defined by a convex optimization problem minx∈P ∥Ax−b∥pp, whereA ∈ Rm×n, b ∈ Rm,
and p > 1. Let f(x) = ∥Ax−b∥pp. The gradient∇f is not Lipschitz continuous on Rn when p ̸= 2.
Furthermore, when p < 2, f is not C2 but C1. Therefore, for 1 < p < 2, ∇f is also not Lipschitz
continuous over compact sets. Since f is convex, the pair (f, ϕ) is 1-smad with ϕ := f .

8https://github.com/ZIB-IOL/FrankWolfe.jl
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We consider real-world gas sensor data.9 The data size is (m,n) = (13910, 128). We use the
ℓ2 constraint P = {x ∈ Rn | ∥x∥2 ≤ bmax}. We compare BregFW with EucFW, OpenFW, and
ProjGD because ShortFW does not converge. The maximum number of iterations is 1000 for all
methods except OpenFW, for which it is 5000. The initial point x0 is an all-ones vector. We set
p = 1.1, i.e., f is C1 not C2. Figures 1 and 2 show the primal and FW gaps per iteration and gaps
per second for bmax = 130 and bmax = 200, respectively. Because ∇f is not Lipschitz continuous,
ShortFW and EucFW do not converge. The primal gap and the FW gap achieved by BregFW
are the smallest among these methods because only BregFW has a theoretical guarantee for this
problem.

6.2 PHASE RETRIEVAL

We are interested in phase retrieval, which involves finding a signal x ∈ P ⊂ Rn such that
|⟨ai, x⟩|2 ≃ bi, i = 1, . . . ,m, where ai ∈ Rn describes the model and b ∈ Rm is a vector of
measurements. Phase retrieval arises in many fields of science and engineering, such as image
processing (Candés et al., 2015), X-ray crystallography (Patterson, 1934; 1944), and optics (Shecht-
man et al., 2015). To achieve the goal of phase retrieval, we focus on the nonconvex optimiza-
tion problem minx∈P f(x) := 1

4

∑
i(|⟨ai, x⟩|2 − bi)

2. Let ϕ be defined by σ-strongly convex
ϕ(x) = 1

4∥x∥
4 + 1

2∥x∥
2 for σ ≤ 1. For any L satisfying L ≥

∑
i(3∥ai∥4 + ∥ai∥2|bi|), the pair

(f, ϕ) is L-smad on Rn (Bolte et al., 2018, Lemma 5.1). In addition, ∇2f(x) + ρI is positive
semidefinite for ρ ≥

∑
i ∥ai∥2|bi|, i.e., f is ρ-weakly convex. Thus, L ≥ ρ/σ holds with σ = 1.

We use a K-sparse polytope as a constraint, i.e., P = {x ∈ Rn | ∥x∥1 ≤ K, ∥x∥∞ ≤ 1}. We
compare BregFW with EucFW, ShortFW, and OpenFW. The maximum number of iterations is
1000 for all methods except OpenFW, for which it is 5000. We generated ai, i = 1, . . . ,m from
an i.i.d. normal distribution and normalized them to have norm 1 (random seed 1234). We also
generated x∗ from an i.i.d. uniform distribution in [0, 1] and normalized x∗ to have sum 1. The initial
point x0 was generated by computing an extreme point of P that minimizes the linear approximation
of f . Figures 3 and 4 show the primal and FW gaps per iteration and gaps per second for (m,n) =
(1000, 10000) and K = 2000 and for (m,n) = (2000, 10000) and K = 2000, respectively. The
primal gap and the FW gap by the adaptive Bregman step-size strategy are the smallest among these
step-size strategies. In both cases, BregFW stopped before the 1000th iteration.

7 CONCLUSION AND FUTURE WORK

Summary: We propose FW algorithms with an adaptive Bregman step-size strategy for smooth
adaptable functions, which do not require Lipschitz continuous gradients. We have established
convergence rates ranging from sublinear to linear, depending on various assumptions for convex and
nonconvex optimization. We also propose a variant of the away-step FW algorithm using Bregman
distances over polytopes and have established global convergence for convex optimization under the
HEB condition and local linear convergence for nonconvex optimization under the local quadratic
growth condition. Numerical experiments show that our algorithms outperform existing algorithms.

Limitations and future work: Our step-size strategy for L-smad functions requires the value of
ν, which must be estimated because it depends on the choice of the Bregman distance. Theoretically,
linear convergence of the FW algorithm always holds for convex optimization if the exponent of the
HEB condition q equals the scaling exponent of the Bregman distance 1 + ν, i.e., q = 1 + ν. For
q > 1 + ν, if t ≤ t0, linear convergence holds; otherwise, sublinear convergence. The condition
q = 1+ ν, derived from the growth of f and ϕ, is natural because ϕ has a similar structure to f . On
the other hand, for nonconvex optimization, we assume the local quadratic growth condition, i.e., the
2-HEB condition. Since this is derived from the weak convexity of f , relaxing the quadratic growth
condition may not be possible. One direction is to consider an extension using the difference of
convex functions (DC) optimization. Recently, Maskan et al. (2025) incorporated DC optimization
into FW algorithms and established sublinear convergence. Our algorithms could potentially benefit
from DC optimization techniques.

9The dataset is freely available at https://archive.ics.uci.edu/dataset/270/gas+
sensor+array+drift+dataset+at+different+concentrations
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R. I. Boţ, E. R. Csetnek, and S. C. László. An inertial forward-backward algorithm for the mini-
mization of the sum of two nonconvex functions. EURO J. Comput. Optim., 4(1):3–25, 2016.

J. Bolte, A. Daniilidis, and A. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic func-
tions with applications to subgradient dynamical systems. SIAM J. Optim., 17(4):1205–1223,
2007.

11



Published as a conference paper at ICLR 2026

J. Bolte, T.-P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity of
first-order descent methods for convex functions. Math. Program., 165:471–507, 2017.

J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convexity and
Lipschitz gradient continuity with applications to quadratic inverse problems. SIAM J. Optim., 28
(3):2131–2151, 2018.

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: The unconditioning of
conditional gradients. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of PMLR, pp. 735–743. PMLR, 2019.

G. Braun, A. Carderera, C. W. Combettes, H. Hassani, A. Karbasi, A. Mokhtari, and S. Pokutta.
Conditional gradient methods: From core principles to AI applications, volume 35 of MOS-SIAM
Series on Optimization. SIAM, Philadelphia, PA, 2025.

L. M. Bregman. The relaxation method of finding the common point of convex sets and its applica-
tion to the solution of problems in convex programming. U.S.S.R. Comput. Math. Math. Phys., 7
(3):200–217, 1967.

E. J. Candés, X. Li, and M. Soltanolkotabi. Phase retrieval from coded diffraction patterns. Appl.
Comput. Harmon. Anal., 39(2):277–299, 2015.

M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe
algorithm. SIAM J. Control Optim., 6(4):509–516, 1968.

C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. In Proceedings
of the 37th International Conference on Machine Learning (ICML), volume 119 of PMLR, pp.
2111–2121. PMLR, 2020.

C. W. Combettes and S. Pokutta. Complexity of linear minimization and projection on some sets.
Oper. Res. Lett., 49(4):565–571, 2021.

C. W. Combettes and S. Pokutta. Revisiting the approximate Carathéodory problem via the Frank-
Wolfe algorithm. Math. Program., 197:191–214, 2023.

D. Davis and L. Jiang. A local nearly linearly convergent first-order method for nonsmooth functions
with quadratic growth. Found. Comput. Math., 25:943–1024, 2024.

D. Davis, D. Drusvyatskiy, K. J. MacPhee, and C. Paquette. Subgradient methods for sharp weakly
convex functions. J. Optim. Theory Appl., 179(3):962–982, 2018.

D. Davis, D. Drusvyatskiy, and V. Charisopoulos. Stochastic algorithms with geometric step decay
converge linearly on sharp functions. Math. Program., 207(1-2):145–190, 2024.

I. S. Dhillon and J. A. Tropp. Matrix nearness problems with Bregman divergences. SIAM J. Matrix
Anal. Appl., 29(4):1120–1146, 2008.

J. Diakonikolas, A. Carderera, and S. Pokutta. Locally accelerated conditional gradients. In Pro-
ceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 108 of PMLR, pp. 1737–1747. PMLR, 2020.

R. A. Dragomir, A. d’Aspremont, and J. Bolte. Quartic first-order methods for low-rank minimiza-
tion. J. Optim. Theory Appl., 189(2):341–363, 2021.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Nav. Res. Logist. Q., 3(1-2):
95–110, 1956.

K. Fujiki, S. Takahashi, and A. Takeda. Approximate Bregman proximal gradient algorithm with
variable metric Armijo–Wolfe line search. arXiv preprint arXiv:2510.06615, 2025.

D. Garber. Revisiting Frank-Wolfe for Polytopes: Strict Complementarity and Sparsity. In Adv.
Neural Inf. Process. Syst., volume 33, pp. 18883–18893. Curran Associates, Inc., 2020.

12



Published as a conference paper at ICLR 2026

D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets. In
Proceedings of the 32nd International Conference on Machine Learning (ICML), volume 37 of
PMLR, pp. 541–549. PMLR, 2015.

J. GuéLat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Math. Program., 35(1):110–
119, 1986.

F. Hanzely, P. Richtárik, and L. Xiao. Accelerated Bregman proximal gradient methods for relatively
smooth convex optimization. Comput. Optim. Appl., 79(2):405–440, 2021.

F. Itakura and S. Saito. Analysis synthesis telephony based on the maximum likelihood method. In
Proceedings of the 6th International Congress on Acoustics, 1968.

M. Jaggi. Revisiting Frank–Wolfe: Projection-free sparse convex optimization. In Proceedings
of the 30th International Conference on Machine Learning (ICML), volume 28 of PMLR, pp.
427–435. PMLR, 2013.

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank-Wolfe. In Proceedings of the 22nd
International Conference on Artificial Intelligence and Statistics (AISTATS), volume 89 of PMLR,
pp. 1275–1283. PMLR, 2019.

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Local and global uniform convexity conditions. arXiv
preprint arXiv:2102.05134, 2021a.

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Projection-free optimization on uniformly convex
sets. In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics
(AISTATS), volume 130 of PMLR, pp. 19–27. PMLR, 2021b.

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank-Wolfe: Faster rates under Hölderian
error bounds. J. Optim. Theory Appl., 192:799–829, 2022.

W. Krichene, A. Bayen, and P. L. Bartlett. Accelerated mirror descent in continuous and discrete
time. In Adv. Neural Inf. Process. Syst., volume 28, pp. 2845–2853, 2015.

S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat., 22(1):79–86, 1951.

R. Kyng, A. Rao, S. Sachdeva, and D. A. Spielman. Algorithms for Lipschitz learning on graphs.
In Conference on Learning Theory, volume 40 of PMLR, pp. 1190–1223. PMLR, 2015.

S. Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv preprint
arXiv:1607.00345, 2016.

S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization
variants. In Adv. Neural Inf. Process. Syst., volume 28, pp. 496–504. Curran Associates, Inc.,
2015.

G. Lan. The complexity of large-scale convex programming under a linear optimization oracle.
arXiv preprint arXiv:1309.5550, 2013.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. U.S.S.R. Comput. Math. Math.
Phys., 6(5):1–50, 1966.

F. Y. Liao, L. Ding, and Y. Zheng. Error bounds, PL condition, and quadratic growth for weakly
convex functions, and linear convergences of proximal point methods. In 6th Annual Learning
for Dynamics & Control Conference, volume 242 of PMLR, pp. 993–1005, 2024.

S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. In Les équations
aux dérivées partielles, pp. 87–89. Éditions du centre National de la Recherche Scientifique, Paris,
1963.

S. Łojasiewicz. Ensembles semi-analytiques. Available at http://perso.univ-rennes1.
fr/michel.coste/Lojasiewicz.pdf, 1965.

H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order meth-
ods, and applications. SIAM J. Optim., 28(1):333–354, 2018.

13

http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf
http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf


Published as a conference paper at ICLR 2026

C. J. Maddison, D. Paulin, Y. W. Teh, and A. Doucet. Dual space preconditioning for gradient
descent. SIAM J. Optim., 31(1):991–1016, 2021.

H. Maskan, Y. Hou, S. Sra, and A. Yurtsever. Revisiting Frank-Wolfe for structured nonconvex
optimization. arXiv preprint arXiv:2503.08921, 2025.

M. C. Mukkamala and P. Ochs. Beyond alternating updates for matrix factorization with inertial
Bregman proximal gradient algorithms. In Adv. Neural Inf. Process. Syst., volume 32, pp. 4268–
4278. Curran Associates, Inc., 2019.

A. S. Nemirovskij and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley, New York, NY, 1983.

E. A. Nurminskii. The quasigradient method for the solving of the nonlinear programming problems.
Cybern. Syst. Anal., 9(1):145–150, 1975.

A. L. Patterson. A Fourier series method for the determination of the components of interatomic
distances in crystals. Phys. Rev., 46(5):372–376, 1934.

A. L. Patterson. Ambiguities in the X-ray analysis of crystal structures. Phys. Rev., 65(5-6):195–201,
1944.

F. Pedregosa, G. Negiar, A. Askari, and M. Jaggi. Linearly convergent Frank-Wolfe with backtrack-
ing line-search. In Proceedings of the 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 108 of PMLR, pp. 1–10. PMLR, 2020.

S. Pokutta. The Frank-Wolfe algorithm: A short introduction. Jahresber. Dtsch. Math.-Ver., 126(1):
3–35, 2024.

B. T. Polyak. Gradient methods for the minimisation of functionals. U.S.S.R. Comput. Math. Math.
Phys., 3(4):864–878, 1963.

S. Rebegoldi, S. Bonettini, and M. Prato. A Bregman inexact linesearch-based forward-backward
algorithm for nonsmooth nonconvex optimization. J. Phys. Conf. Ser., 1131:012013, 2018.

V. Roulet and A. d’Aspremont. Sharpness, restart and acceleration. SIAM J. Optim., 30(1):262–289,
2017.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase retrieval with
application to optical imaging: A contemporary overview. IEEE Signal Process. Mag., 32(3):
87–109, 2015.

L. Stella, A. Themelis, and P. Patrinos. Forward-backward quasi-Newton methods for nonsmooth
optimization problems. Comput. Optim. Appl., 67(3):443–487, 2017.

S. Takahashi and A. Takeda. Approximate Bregman proximal gradient algorithm for relatively
smooth nonconvex optimization. Comput. Optim. Appl., 90(1):227–256, 2025.

S. Takahashi, M. Fukuda, and M. Tanaka. New Bregman proximal type algorithms for solving DC
optimization problems. Comput. Optim. Appl., 83(3):893–931, 2022.

S. Takahashi, M. Tanaka, and S. Ikeda. Blind deconvolution with non-smooth regularization via
Bregman proximal DCAs. Signal Processing, 202:108734, 2023.

S. Takahashi, M. Tanaka, and S. Ikeda. Majorization-minimization Bregman proximal gradient
algorithms for NMF with the Kullback–Leibler divergence. J. Optim. Theory Appl., 208(1):1–34,
2026.

K. Tsuji, K. Tanaka, and S. Pokutta. Pairwise conditional gradients without swap steps and sparser
kernel herding. In Proceedings of the 39th International Conference on Machine Learning
(ICML), volume 162 of PMLR, pp. 21864–21883. PMLR, 2022.

Y. Vardi, L. A. Shepp, and L. Kaufman. A statistical model for positron emission tomography. J.
Am. Stat. Assoc., 80(389):8–20, 1985.

14



Published as a conference paper at ICLR 2026

J. Vial. Strong and weak convexity of sets and functions. Math. Oper. Res., 8(2):231–259, 1983.

A. A. Vyguzov and F. S. Stonyakin. An adaptive variant of the Frank–Wolfe method for relative
smooth convex optimization problems. Comput. Math. Math. Phys., 65(3):591–602, 2025.

P. Wolfe. Convergence theory in nonlinear programming. In Integer and nonlinear programming,
pp. 1–36. North-Holland Publishing Company, Amsterdam, 1970.

Z. Y. Wu. Sufficient global optimality conditions for weakly convex minimization problems. J.
Glob. Optim., 39(3):427–440, 2007.

L. Yang and K.-C. Toh. Inexact Bregman proximal gradient method and its inertial variant with
absolute and partial relative stopping criteria. Math. Oper. Res., 2025.

A RELATED WORK

Overview of Existing Bregman-Based Algorithm Studies: The Bregman gradient method was
first introduced as the mirror descent by Nemirovskij & Yudin (1983). Accelerated mirror descent
methods were proposed by Krichene et al. (2015); Allen-Zhu & Orecchia (2017). Some first-order
methods based on the Bregman distance do not require the global Lipschitz continuity of∇f . Bolte
et al. (2018) proposed the Bregman proximal gradient algorithm (BPG) for nonconvex optimization
problems and established its global convergence under the smooth adaptable property (see Defini-
tion 2.3). Hanzely et al. (2021) introduced the accelerated BPGs. Takahashi et al. (2022) developed
the BPG for the DC optimization and its accelerated version. The subproblem of BPG is often
not solvable in closed form. Takahashi & Takeda (2025); Fujiki et al. (2025) used approximations
to Bregman distances to solve subproblems in closed form. Takahashi et al. (2026) developed the
majorization-minimization BPG and its accelerated version, and applied them to NMF. Rebegoldi
et al. (2018) proposed an inexact version of the Bregman proximal gradient algorithm.

B RESULTS FROM SMOOTH ADAPTABLE PROPERTY

B.1 PROPERTIES OF BREGMAN DISTANCES

The Bregman distance Dϕ(x, y) measures the proximity between x ∈ domϕ and y ∈ int domϕ.
Indeed, since ϕ is convex, it holds that Dϕ(x, y) ≥ 0 for all x ∈ domϕ and y ∈ int domϕ.
Moreover, when ϕ is strictly convex, Dϕ(x, y) = 0 holds if and only if x = y. However, the
Bregman distance is not always symmetric and does not have to satisfy the triangle inequality. The
Bregman distance is also called the Bregman divergence.
Example B.1. Well-known choices for ϕ and Dϕ are listed below; for more examples, see, e.g.,
(Bauschke et al., 2017, Example 1), (Bauschke & Borwein, 1997, Section 6), and (Dhillon & Tropp,
2008, Table 2.1).

(i) Let ϕ(x) = 1
2∥x∥

2 and domϕ = Rn. Then, the Bregman distance corresponds to the
squared Euclidean distance, i.e., Dϕ(x, y) =

1
2∥x− y∥

2.

(ii) The Boltzmann–Shannon entropy ϕ(x) =
∑n
i=1 xi log xi with 0 log 0 = 0 and domϕ =

Rn+. Then, Dϕ(x, y) =
∑n
i=1(xi log

xi

yi
− xi + yi) is called the Kullback–Leibler (KL)

divergence (Kullback & Leibler, 1951).

(iii) The Burg entropy ϕ(x) = −
∑n
i=1 log xi and domϕ = Rn++. Then, Dϕ(x, y) =∑n

i=1(
xi

yi
− log xi

yi
− 1) is called the Itakura–Saito divergence (Itakura & Saito, 1968).

(iv) Let ϕ(x) = 1
4∥x∥

4 + 1
2∥x∥

2 and domϕ = Rn. The Bregman distance Dϕ is used in phase
retrieval (Bolte et al., 2018), low-rank minimization (Dragomir et al., 2021), NMF (Mukka-
mala & Ochs, 2019), and blind deconvolution (Takahashi et al., 2023).

We recall the triangle scaling property for Bregman distances from (Hanzely et al., 2021, Section
2), where several properties of the triangle scaling property are also shown.
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Definition B.2 (Triangle Scaling Property (Hanzely et al., 2021, Definition 2)). Given a kernel
generating distance ϕ ∈ G(C), the Bregman distance Dϕ has the triangle scaling property if there
exists a constant ν > 0 such that, for all x, y, z ∈ int domϕ and all γ ∈ [0, 1], it holds that

Dϕ((1− γ)x+ γy, (1− γ)x+ γz) ≤ γνDϕ(y, z). (B.1)

Now, substituting z ← x on the left-hand side of Equation B.1, we obtain

Dϕ((1− γ)x+ γy, x) = ϕ((1− γ)x+ γy)− ϕ(x)− γ⟨∇ϕ(x), y − x⟩
≤ (1− γ)ϕ(x) + γϕ(y)− ϕ(x)− γ⟨∇ϕ(x), y − x⟩ = γDϕ(y, x),

where the inequality holds because of the convexity of ϕ. Therefore, there exists ν > 0 such that
Dϕ((1− γ)x+ γy, x) ≤ γνDϕ(y, x) holds for all x, y ∈ int domϕ and all γ ∈ [0, 1].

We will now show that a stronger version can be obtained if ϕ is strictly convex, so that we can
rephrase ν with 1 + ν where ν > 0, i.e., the right-hand side is superlinear, which will be crucial for
the convergence analysis later.

Lemma B.3. Given a kernel generating distance ϕ ∈ G(C), if ϕ is strictly convex, then there exists
ν > 0 such that, for all x, y ∈ int domϕ and all γ ∈ [0, 1], it holds that

Dϕ((1− γ)x+ γy, x) ≤ γ1+νDϕ(y, x). (B.2)

Proof. Equation B.2 holds if y = x or γ ∈ {0, 1}. In what follows, we assume y ̸= x and
0 < γ < 1. Let g(ν) := γ1+νDϕ(y, x) − Dϕ((1 − γ)x + γy, x) for all x, y ∈ int domϕ, y ̸= x
and all γ ∈ (0, 1). Using Dϕ(y, x) > 0 due to the strict convexity of ϕ, we have, for any ν ≥ 0,

g′(ν) = γ1+νDϕ(y, x) log γ < 0,

which implies g monotonically decreases. In addition, it holds that

g(0) = γDϕ(y, x)−Dϕ((1− γ)x+ γy, x)

= γ(ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩)− ϕ((1− γ)x+ γy) + ϕ(x) + γ⟨∇ϕ(x), y − x⟩
= (1− γ)ϕ(x) + γϕ(y)− ϕ((1− γ)x+ γy) > 0,

where the last inequality holds because ϕ is strictly convex, i.e., ϕ((1− γ)x+ γy) < (1− γ)ϕ(x)+
γϕ(y). Therefore, there exists ν > 0 such that g(ν) ≥ 0 by the intermediate value theorem.

Because ϕ is quadratic whenDϕ is symmetric (Bauschke & Borwein, 2001, Lemma 3.16), it always
holds that Dϕ((1− γ)x+ γy, x) = γ1+νDϕ(y, x) with ν = 1.

B.2 PROPERTIES OF SMOOTH ADAPTABLE PROPERTY

The convexity of Lϕ − f and Lϕ + f plays a central role in developing and analyzing algorithms,
and the smooth adaptable property implies the extended descent lemma.

Lemma B.4 (Extended Descent Lemma (Bolte et al., 2018, Lemma 2.1)). The pair of functions
(f, ϕ) is L-smad on C if and only if for all x, y ∈ int domϕ,

|f(x)− f(y)− ⟨∇f(y), x− y⟩| ≤ LDϕ(x, y).

From this, it can be seen that the L-smad property for (f, ϕ) provides upper and lower approxi-
mations for f majorized by ϕ with L > 0. In addition, if ϕ(x) = 1

2∥x∥
2 on int domϕ = Rn,

Lemma B.4 corresponds to the classical descent lemma. While the L-smad property might seem
unfamiliar at first, it is a natural generalization of L-smoothness, and examples of functions f and ϕ
satisfying the L-smad property are given, e.g., in (Bauschke et al., 2017, Lemmas 7 and 8), (Bolte
et al., 2018, Lemma 5.1), (Dragomir et al., 2021, Propositions 2.1 and 2.3), (Mukkamala & Ochs,
2019, Proposition 2.1), (Takahashi & Takeda, 2025, Proposition 24), (Takahashi et al., 2023, Theo-
rem 1), and (Takahashi et al., 2026, Theorem 15).

Example B.5. Other examples can be found in Sections 6.1, 6.2, Appendices F.1, F.4, and F.5.
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(i) Blind deconvolution: Let f : Rd1 × Rd2 → R be f(h, x) = 1
4∥Bh ⊙ Ax − y∥

2, where
⊙ denotes the Hadamard product (also known as the element-wise product). The function
f can be decomposed into a DC function f(h, x) = f1(h, x) − f2(h, x) with f1(h, x) =
1
4∥Bh∥

4
4 + 1

4∥Ax∥
4
4 + 1

2

(
∥Bh⊙Ax∥2 + ∥y ⊙Bh∥2 + ∥Ax∥2 + ∥y∥2

)
and f2(h, x) =

1
4∥Bh∥

4
4 +

1
4∥Ax∥

4
4 +

1
2∥y ⊙Bh+Ax∥2, where B ∈ Rm×d1 , A ∈ Rm×d2 , and y ∈ Rm.

Let ϕ(h, x) = 1
4 (∥h∥

2 + ∥x∥2)2 + 1
2 (∥h∥

2 + ∥x∥2) For any L satisfying

L ≥
m∑
j=1

(
3∥bj∥4 + 3∥aj∥4 + ∥bj∥∥aj∥+ |yj |∥bj∥2 + ∥aj∥2

)
,

where bj and aj are the jth row vectors of B and A, respectively, (f1, ϕ) is L-smad (Taka-
hashi et al., 2023, Theorem 1). Note that Bregman proximal DC algorithms require the
smooth adaptable property of (f1, ϕ), instead of (f, ϕ).

(ii) KL-NMF: Let f : Rm×r
+ × Rr×n+ → R be f(W,H) =

∑m
i=1

∑n
j=1(Xij log

Xij

(WH)ij
−

Xij + (WH)ij), where X ∈ Rm×n
+ . f is bounded by f̂(W,H) =

∑
i,j(Xij logXij −

Xij

∑r
l=1 αilj log

WilHlj

αilj
−Xij+(WH)ij) with αilj ∈ [0, 1], i = 1, . . . ,m, l = 1, . . . , r,

j = 1, . . . , n. Let ϕ(W,H) =
∑
i,l(− logWil +

1
2W

2
il) +

∑
l,j(− logHlj +

1
2H

2
lj). Then,

for any Lk > 0 satisfying

L ≥ max

max
i,l


n∑
j=1

αiljXij

 ,max
l,j

{
m∑
i=1

αiljXij

}
,m, n

 ,

the pair (f̂ , ϕ) is L-smad on Rm×r
++ ×Rr×n++ (Takahashi et al., 2026, Theorem 4.1). Note that

the majorization-minimization BPGs (Takahashi et al., 2026) require the smooth adaptable
property of (f̂ , ϕ), instead of (f, ϕ).

Remark B.6. In general, it is difficult to choose the best ϕ such that (f, ϕ) is L-smad. On the other
hand, it is known how to choose a suitable ϕ empirically. An easy way to find ϕ is to use elementary
functions similar to f . See also the above examples, Section 6, and Appendix F.

The extended descent lemma immediately implies primal progress of FW algorithms under the L-
smad property as a straightforward generalization of the L-smooth case.
Lemma B.7 (Primal progress from the smooth adaptable property). Let the pair of functions (f, ϕ)
be L-smad with a strictly convex function ϕ ∈ G(C) and let x+ = (1 − γ)x + γv with x, v ∈
int domϕ and γ ∈ [0, 1]. Then it holds:

f(x)− f(x+) ≥ γ⟨∇f(x), x− v⟩ − Lγ1+νDϕ(v, x).

Proof. Using Lemma B.4 and substituting x+ for x and x for y, we have
f(x)− f(x+) ≥ γ⟨∇f(x), x− v⟩ − LDϕ(x+, x).

It holds that Dϕ(x+, x) ≤ γ1+νDϕ(v, x) for some ν > 0 by Lemma B.3. Therefore, this provides
the desired inequality.

We also have a progress lemma from the Bregman short step-size.
Lemma B.8 (Progress lemma from the Bregman short step-size). Suppose that Assumption 3.1
holds. Define xt+1 = (1− γt)xt + γtvt. Then if xt+1 ∈ dom f ,

f(xt)− f(xt+1) ≥
ν

1 + ν
γt⟨∇f(xt), xt − vt⟩ for 0 ≤ γt ≤

(
⟨∇f(xt), xt − vt⟩
L(1 + ν)Dϕ(vt, xt)

) 1
ν

.

Proof. Substituting xt+1 = (1− γt)xt + γtvt with xt, vt ∈ P for x+ in Lemma B.7, we have
f(xt)− f(xt+1) ≥ γt⟨∇f(xt), xt − vt⟩ − Lγ1+νt Dϕ(vt, xt)

≥ γt⟨∇f(xt), xt − vt⟩ −
γt

1 + ν
⟨∇f(xt), xt − vt⟩

=
ν

1 + ν
γt⟨∇f(xt), xt − vt⟩,

where the second inequality holds because of an upper bound of γt.
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B.3 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. By following the same argument as (Pedregosa et al., 2020, Theorem 1),
we have a bound on estimating L as (1 − log η/ log τ)(t + 1) + max{log(τL/L−1), 0}/ log τ .
Let ni be the number of evaluations needed to estimate ν. We have ν = βni−1, which pro-
vides ni = 1 + log ν/ log β. Therefore, we obtain nt ≤ max{(1 − log η/ log τ)(t + 1) +
max{log(τL/L−1), 0}/ log τ, (1 + log ν/ log β)(t+ 1)}

C PROPERTIES FROM SHARPNESS

C.1 RESULTS FROM WEAK CONVEXITY

A function f is ρ-weakly convex and differentiable if and only if, for all x, y ∈ dom f ,

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩ − ρ

2
∥y − x∥2.

Any C2 function defined on a compact set is weakly convex (Vial, 1983, Proposition 4.11) and Wu
(2007). Since the proof of this fact is omitted therein, we provide the argument for the sake of
completeness below.
Proposition C.1. Let P ⊂ Rn be a compact set and f be a proper and C2 function on P . Then, f is
weakly convex on P .

Proof. Let g = λmin(∇2f(·)), where λmin(·) is the smallest eigenvalue. The function g is con-
tinuous because λmin(·) and ∇2f(·) are continuous. Therefore, there exists the minimum value of
g on P due to the continuity of g and the compactness of P . For ρ = |minx∈P g(x)|, we have
∇2f(x) + ρI ⪰ O for any x ∈ P , which implies f + ρ

2∥ · ∥
2 is convex on P , i.e., f is ρ-weakly

convex on P .

Minimizing a nonconvex C2-function over a compact set P is equivalent to minimizing a weakly
convex function over P . However, it is important to note that when ρ becomes large, the assumptions
of algorithms may not be satisfied (see also Theorems E.3 and 5.4).

We have the key lemma for convergence analysis from weak convexity.
Lemma C.2 (Primal gap, dual gap, and Frank–Wolfe gap for weakly convex f ). Suppose that
Assumptions 3.1(ii), (iv), and that f is ρ-weakly convex. Then for all x ∈ P , it holds:

f(x)− f∗ ≤ ⟨∇f(x), x− x∗⟩+ ρ

2
∥x− x∗∥2 ≤ max

v∈P
⟨∇f(x), x− v⟩+ ρ

2
∥x− x∗∥2. (C.1)

Proof. The first inequality follows from the weak convexity of f and the second follows from the
maximality of ⟨∇f(x), x− v⟩.

C.2 PRIMAL GAP BOUND

We show in the following lemma that the HEB condition immediately provides a bound on the primal
optimality gap, which will be useful for establishing convergence rates of the proposed algorithms
as well as the Łojasiewicz inequality (Bolte et al., 2007; Łojasiewicz, 1963; 1965), provided f is
convex.
Lemma C.3 (Primal gap bound from Hölder error bound). Let f be a convex function and satisfy
the HEB condition with q ≥ 1 and µ > 0. Let x∗ be the unique minimizer of f over P . Then, the
following argument holds in general, for all x ∈ P :

f(x)− f∗ ≤
(
q

µ

) 1
q−1

(
⟨∇f(x), x− x∗⟩
∥x− x∗∥

) q
q−1

, (C.2)

or equivalently, (
µ

q

)1/q

(f(x)− f∗)1−1/q ≤ ⟨∇f(x), x− x
∗⟩

∥x− x∗∥
.
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Proof. By first applying convexity and then the HEB condition for any x∗ ∈ X ∗ with f∗ = f(x∗)
it holds:

f(x)− f∗ ≤ ⟨∇f(x), x− x∗⟩

=
⟨∇f(x), x− x∗⟩
∥x− x∗∥

∥x− x∗∥

≤ ⟨∇f(x), x− x
∗⟩

∥x− x∗∥

(
q

µ
(f(x)− f∗)

)1/q

,

which implies (
µ

q

)1/q

(f(x)− f∗)1−1/q ≤ ⟨∇f(x), x− x
∗⟩

∥x− x∗∥
,

or equivalently

f(x)− f∗ ≤
(
q

µ

) 1
q−1

(
⟨∇f(x), x− x∗⟩
∥x− x∗∥

) q
q−1

.

Remark C.4. With the remark from above, we can immediately relate the HEB condition to the
Łojasiewicz inequality (Bolte et al., 2007; Łojasiewicz, 1963; 1965); the Łojasiewicz inequality is
used to establish convergence analysis (Bolte et al., 2007). To this end, using Equation C.2, we
estimate ⟨∇f(x),x−x∗⟩

∥x−x∗∥ ≤ ∥∇f(x)∥∥x−x∗∥
∥x−x∗∥ = ∥∇f(x)∥ to then obtain the weaker condition:

f(x)− f∗ ≤
(
q

µ

) 1
q−1

∥∇f(x)∥
q

q−1 = c
1
θ ∥∇f(x)∥ 1

θ , (C.3)

where c =
(
q
µ

) 1
q

and θ = q−1
q . Inequality Equation C.3 is called the c-Łojasiewicz inequality with

θ ∈ [0, 1). If X ∗ ⊆ riP , then the two conditions are equivalent. However, if the optimal solution(s)
are on the boundary of P as is not infrequently the case, then the two conditions are not equivalent
as ∥∇f(x)∥ might not vanish for x ∈ X ∗, whereas ⟨∇f(x), x − x∗⟩ does, i.e., the HEB condition
is tighter than the one induced by the Łojasiewicz inequality.

The next lemma shows that we can also obtain primal gap bounds in the weakly convex case together
with (local) quadratic growth.

Lemma C.5 (Primal gap bound from the quadratic growth). Let f be a ρ-weakly convex function
that satisfies the local µ-quadratic growth condition such that ρ < µ. Let x∗ be the unique minimizer
of f over P and let ζ > 0. Then, the following holds: for all x ∈ [f ≤ f∗ + ζ] ∩ P ,

f(x)− f∗ ≤ 2µ

(µ− ρ)2

(
⟨∇f(x), x− x∗⟩
∥x− x∗∥

)2

, (C.4)

or equivalently, (µ
2

)1/2
(
1− ρ

µ

)
(f(x)− f∗)1/2 ≤ ⟨∇f(x), x− x

∗⟩
∥x− x∗∥

.

Proof. By first applying weak convexity and then the local quadratic growth condition for x∗ ∈ X ∗

with f(x∗) = f∗ and for all x ∈ [f ≤ f∗ + ζ] ∩ P , it holds:

f(x)− f∗ = f(x)− f(x∗)

≤ ⟨∇f(x), x− x∗⟩+ ρ

2
∥x− x∗∥2

≤ ⟨∇f(x), x− x∗⟩+ ρ

µ
(f(x)− f∗) ,
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which implies(
1− ρ

µ

)
(f(x)− f∗) ≤ ⟨∇f(x), x− x∗⟩ = ⟨∇f(x), x− x

∗⟩
∥x− x∗∥

∥x− x∗∥. (C.5)

Using the local quadratic growth condition again, we have(
1− ρ

µ

)
(f(x)− f∗) ≤ ⟨∇f(x), x− x

∗⟩
∥x− x∗∥

(
2

µ
(f(x)− f∗)

)1/2

,

which provides (µ
2

)1/2
(
1− ρ

µ

)
(f(x)− f∗)1/2 ≤ ⟨∇f(x), x− x

∗⟩
∥x− x∗∥

,

or equivalently

f(x)− f∗ ≤ 2µ

(µ− ρ)2

(
⟨∇f(x), x− x∗⟩
∥x− x∗∥

)2

.

Remark C.6. In the same vein as the discussion in Remark C.4, we can immediately relate the
local µ-quadratic growth condition with ζ > 0 to the local Polyak–Łojasiewicz (PL) inequality.
Using Equation C.4 in Lemma C.5, for all x ∈ [f ≤ f∗ + ζ] ∩ P , we have

f(x)− f∗ ≤ 2µ

(µ− ρ)2
∥∇f(x)∥2, (C.6)

which is equivalent to the PL inequality (Polyak, 1963), also called the gradient dominance prop-
erty (Combettes & Pokutta, 2020), with c =

√
2µ

µ−ρ . The PL inequality is also equivalent to the
Łojasiewicz inequality with θ = 1

2 . Strongly convex functions satisfy the PL inequality (Braun
et al., 2025, Lemma 2.13). Note that we will not have the primal gap bound under the HEB con-
dition and weak convexity because an inequality like Equation C.5 does not follow from the HEB
condition.

C.3 SCALING INEQUALITIES, GEOMETRIC HÖLDER ERROR BOUNDS, AND CONTRACTIONS

In the following, we will now bring things together to derive tools that will be helpful in establishing
convergence rates.

SCALING INEQUALITIES

Scaling inequalities are a key tool in establishing convergence rates of FW algorithms. We will
introduce two such inequalities that we will use in the following. The first scaling inequality is
useful for analyzing the case where the optimal solution lies in the relative interior of the feasible
region. While its formulation in (Braun et al., 2025, Proposition 2.16) required L-smoothness of f ,
it is actually not used in the proof, and the results hold more broadly. We restate it here for the sake
of completeness.

Proposition C.7 (Scaling inequality from convexity when x∗ ∈ intP (Braun et al., 2025, Proposi-
tion 2.16)). Let P ⊂ Rn be a nonempty compact convex set. Let f : Rn → (−∞,+∞] be C1 and
convex on P . If there exists r > 0 so that B(x∗, r) ⊂ P for a minimizer x∗ of f , then for all x ∈ P ,
we have

⟨∇f(x), x− v⟩ ≥ r∥∇f(x)∥ ≥ r⟨∇f(x), x− x∗⟩
∥x− x∗∥

,

where v ∈ argmaxu∈P ⟨∇f(x), x− u⟩.

When f is not convex, assuming that f is weakly convex and local quadratic growth, we have the
scaling inequality for a nonconvex objective function.
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Proposition C.8 (Scaling inequality from weak convexity when x∗ ∈ intP ). Let P ⊂ Rn be
a nonempty compact convex set. Let f : Rn → (−∞,+∞] be C1, ρ-weakly convex, local µ-
quadratic growth with ζ > 0 on P . If there exists r > 0 so that B(x∗, r) ⊂ P for a minimizer x∗ of
f and ρ ≤ µ, then for all x ∈ [f ≤ f∗ + ζ] ∩ P , we have

⟨∇f(x), x− v⟩ ≥ r∥∇f(x)∥ ≥ r⟨∇f(x), x− x∗⟩
∥x− x∗∥

,

where v ∈ argmaxu∈P ⟨∇f(x), x− u⟩.

Proof. We consider x∗ − rz, where z is a point with ∥z∥ = 1 and ⟨∇f(x), z⟩ = ∥∇f(x)∥. It holds
that

⟨∇f(x), v⟩ ≤ ⟨∇f(x), x∗ − rz⟩ = ⟨∇f(x), x∗⟩ − r∥∇f(x)∥. (C.7)

From weak convexity, for all x ∈ [f ≤ f∗ + ζ] ∩ P , we have

f∗ − f(x) ≥ ⟨∇f(x), x∗ − x⟩ − ρ

2
∥x− x∗∥2

≥ ⟨∇f(x), x∗ − x⟩ − ρ

µ
(f(x)− f∗),

where the last inequality holds due to the local quadratic growth condition. Because of ρ ≤ µ, this
inequality implies

⟨∇f(x), x− x∗⟩ ≥
(
1− ρ

µ

)
(f(x)− f∗) ≥ 0.

By rearranging Equation C.7 and using ⟨∇f(x), x− x∗⟩ ≥ 0, we obtain

⟨∇f(x), x− v⟩ ≥ ⟨∇f(x), x− x∗⟩+ r∥∇f(x)∥ ≥ r∥∇f(x)∥.

In addition, it holds that

r⟨∇f(x), x− x∗⟩
∥x− x∗∥

≤ r∥∇f(x)∥∥x− x∗∥
∥x− x∗∥

= r∥∇f(x)∥,

where the first inequality holds because of the Cauchy–Schwarz inequality.

Lacoste-Julien & Jaggi (2015) defined a geometric distance-like constant of a polytope, known as
the pyramidal width, to analyze the convergence of the away-step Frank–Wolfe algorithm (and other
variants that use the pyramidal width) over polytopes. It can be interpreted as the minimal δ > 0
satisfying the following scaling inequality Equation C.8, which plays a central role in establishing
convergence rates for the away-step FW algorithm; see Braun et al. (2025) for an in-depth discus-
sion.
Lemma C.9 (Scaling inequality via pyramidal width (Braun et al., 2025, Theorem 2.26), (La-
coste-Julien & Jaggi, 2015, Theorem 3)). Let P ⊂ Rn be a polytope and let δ denote the pyramidal
width of P . Let x ∈ P , and let S denote any set of vertices of P with x ∈ conv S , where conv S
denotes the convex hull of S . Let ψ be any vector, so that we define vFW = argminv∈P ⟨ψ, v⟩ and
vA = argmaxv∈S⟨ψ, v⟩. Then for any y ∈ P

⟨ψ, vA − vFW⟩ ≥ δ ⟨ψ, x− y⟩
∥x− y∥

. (C.8)

Note that Lemma C.9 does not require the convexity of f , and we will use it for nonconvex opti-
mization. When ϕ is σ-strongly convex and ⟨ψ, x− y⟩ ≥ 0, Lemma C.9 implies

⟨ψ, vA − vFW⟩2 ≥ δ2 ⟨ψ, x− y⟩
2

∥x− y∥2
≥ δ2σ ⟨ψ, x− y⟩

2

2Dϕ(x, y)
.

Note that the last inequality of the above also holds for δ2σ ⟨ψ,x−y⟩2
2Dϕ(y,x)

, i.e., with x and y swapped in
the divergence.
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GEOMETRIC HÖLDER ERROR BOUND CONDITION

We will now introduce the more compact notion of geometric Hölder error bound condition, which
simply combines the pyramidal width and the HEB condition of the function f ; see also (Braun
et al., 2025, Lemma 2.27) for details when q = 2.
Lemma C.10 (Geometric Hölder error bound). Let P be a polytope with pyramidal width δ > 0
and let f be a convex function and satisfy the HEB condition with vFW = argminv∈P ⟨∇f(x), v⟩
and vA = argmaxv∈S⟨∇f(x), v⟩ with S ⊆ VertP , so that x ∈ conv S , we have

f(x)− f∗ ≤
(
q

µ

) 1
q−1

(
⟨∇f(x), vA − vFW⟩

δ

) q
q−1

.

Proof. Combining Equation C.8 with Lemma C.3 for ψ = ∇f(x), we have

f(x)− f∗ ≤
(
q

µ

) 1
q−1

(
⟨∇f(x), x− x∗⟩
∥x− x∗∥

) q
q−1

≤
(
q

µ

) 1
q−1

(
⟨∇f(x), vA − vFW⟩

δ

) q
q−1

.

FROM CONTRACTIONS TO CONVERGENCE RATES

Besides scaling inequalities and the geometric Hölder error bound, we also utilize the following
lemma for convex and nonconvex optimization, which allows us to turn a contraction into a conver-
gence rate.
Lemma C.11 (From contractions to convergence rates (Braun et al., 2025, Lemma 2.21)). Let {ht}t
be a decreasing sequence of positive numbers and c0, c1, c2, θ0 be positive numbers with c1 < 1
such that h1 ≤ c0 and ht − ht+1 ≥ htmin{c1, c2hθ0t } for t ≥ 1, then

ht ≤

{
c0(1− c1)t−1 if 1 ≤ t ≤ t0,

(c1/c2)
1/θ0

(1+c1θ0(t−t0))1/θ0
= O(1/t1/θ0) if t ≥ t0,

where

t0 := max

{⌊
log1−c1

(
(c1/c2)

1/θ0

c0

)⌋
+ 2, 1

}
.

In particular, we have ht ≤ ϵ if t ≥ t0 + 1
θ0c2ϵθ0

− 1
θ0c1

and ϵ ≤ (c1/c2)
1/θ0 .

D PROOF OF CONVERGENCE ANALYSIS FOR CONVEX OPTIMIZATION

We would also like to stress that while we formulate some of the results for the case that x∗ ∈ intP ,
the results can be extended to the case that x∗ ∈ riP , i.e., the relative interior of P , which we did
not do for the sake of clarity. Basically, the analysis is performed in the affine space spanned by the
optimal face of P in that case; the interested reader is referred to Braun et al. (2025) for details on
how to extend the results.

D.1 SUBLINEAR CONVERGENCE

We recall a key property for analyzing convergence rates in convex optimization.
Lemma D.1 (Primal gap, dual gap, and Frank–Wolfe gap for convex f (Pokutta, 2024, Lemma 4.1)).
Suppose that Assumptions 3.1(ii), (iv), and that f is convex. Then for all x ∈ P , it holds:

f(x)− f∗ ≤ ⟨∇f(x), x− x∗⟩ ≤ max
v∈P
⟨∇f(x), x− v⟩. (D.1)

We establish a sublinear convergence rate of the FW algorithm under the smooth adaptable property.
It is a similar result to (Vyguzov & Stonyakin, 2025, Theorem 1). We conducted its proof following
Braun et al. (2025); Jaggi (2013); Pokutta (2024). The FW algorithm uses the open loop step-size,
i.e., γt = 2

2+t in the following theorem.
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Theorem D.2 (Primal convergence of the Frank–Wolfe algorithm). Suppose that Assumptions 3.1
and 4.1 hold. Let D :=

√
supx,y∈P Dϕ(x, y) be the diameter of P characterized by the Bregman

distance Dϕ and let ν ∈ (0, 1]. Consider the iterates of Algorithm 1 with the open loop step-size,
i.e., γt = 2

2+t . Then, it holds that, for all t ≥ 1,

f(xt)− f∗ ≤
21+νLD2

(t+ 2)ν
, (D.2)

and hence for any accuracy ϵ > 0 we have f(xt)− f∗ ≤ ϵ for all t ≥ (21+νLD2/ϵ)1/ν .

Proof. For some ν ∈ (0, 1], we have

f(xt)− f(xt+1) ≥ γt⟨∇f(xt), xt − vt⟩ − Lγ1+νt Dϕ(vt, xt)

≥ γt(f(xt)− f∗)− Lγ1+νt Dϕ(vt, xt),

where the first inequality holds because of Lemma B.7 and the last inequality holds because of
Lemma D.1. Subtracting f∗ on both sides, using Dϕ(vt, xt) ≤ D2, and rearranging leads to

f(xt+1)− f∗ ≤ (1− γt)(f(xt)− f∗) + Lγ1+νt D2.

When t = 0, it follows f(x1)− f∗ ≤ LD2 ≤ 2LD2. Now, we consider t ≥ 1 and obtain

f(xt+1)− f∗ ≤ (1− γt)(f(xt)− f∗) + Lγ1+νt D2

≤ t

2 + t
(f(xt)− f∗) +

21+ν

(2 + t)1+ν
LD2

≤ t

2 + t

21+νLD2

(2 + t)ν
+

21+ν

(2 + t)1+ν
LD2

=
21+νLD2

(3 + t)ν

(
(3 + t)ν(1 + t)

(2 + t)1+ν

)
≤ 21+νLD2

(3 + t)ν
,

where the last inequality holds due to (3 + t)ν(1 + t) ≤ (2 + t)1+ν with 0 < ν ≤ 1.

If ϕ = 1
2∥ · ∥

2 and ν = 1 in Equation D.2, we have f(xt)− f∗ ≤ 4LD2/(t+ 2), which is the same
as a sublinear convergence rate of the classical FW algorithm.
Remark D.3. While the convergence rate Equation D.2 is the same as Vyguzov & Stonyakin (2025),
Vyguzov and Stonyakin assume that the triangle scaling property holds for Dϕ. In contrast, we
require significantly weaker assumptions: it is enough to assume that ϕ is strictly convex due to
Lemma B.3 in order to establish Theorem D.2.

D.2 PROOF OF THEOREM 4.2

Because Algorithm 2 is well-defined (see Remark 3.2), the convergence result of the FW algorithm
using the adaptive step-size strategy (Algorithm 2) is essentially the same as the one that uses Breg-
man short steps (Theorems 4.2 and 5.3); up to small errors arising from the approximation whose
precise analysis we skip for the sake of brevity.

Proof of Theorem 4.2. Let ht := f(xt)− f∗. Using Lemma B.8, we have

ht − ht+1 = f(xt)− f(xt+1) ≥
ν

1 + ν
⟨∇f(xt), xt − vt⟩γt,

where γt = min

{(
⟨∇f(xt),xt−vt⟩
L(1+ν)Dϕ(vt,xt)

) 1
ν

, 1

}
. We consider two cases: (i) γt < 1 and (ii) γt = 1.

(i) γt < 1: Using γt =
(

⟨∇f(xt),xt−vt⟩
L(1+ν)Dϕ(vt,xt)

) 1
ν

, we have

ht − ht+1 ≥
ν

1 + ν

⟨∇f(xt), xt − vt⟩1+1/ν

(L(1 + ν)Dϕ(vt, xt))1/ν
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≥ ν

1 + ν

r1+1/ν∥∇f(xt)∥1+1/ν

(L(1 + ν))1/νD2/ν

≥ ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν
h

(1+ν)(q−1)
νq

t ,

where the second inequality holds from ⟨f(xt), xt − vt⟩ ≥ r∥∇f(xt)∥ in Proposition C.7, and
the last inequality holds because f satisfies the c-Łojasiewicz inequality with c = (q/µ)1/q (see
Remark C.4), and M := (L(1 + ν))1/ν .

(ii) γt = 1: Using Equation D.1, we have

ht − ht+1 = f(xt)− f(xt+1) ≥
ν

1 + ν
⟨∇f(xt), xt − vt⟩ ≥

ν

1 + ν
(f(xt)− f∗) =

ν

1 + ν
ht,

where the second inequality holds due to the convexity of f .

From (i) and (ii), we have

ht − ht+1 ≥ min

{
ν

1 + ν
ht,

ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν
h

(1+ν)(q−1)
νq

t

}
.

When q = 1 + ν, we have

ht − ht+1 ≥ min

{
ν

1 + ν
,

ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν

}
· ht.

This inequality and the initial bound f(x1)− f∗ ≤ LD2 due to Lemma B.4 imply

ht ≤ max

{
1

1 + ν
, 1− ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν

}t−1

LD2.

On the other hand, when q > 1 + ν, we have

ht − ht+1 ≥ min

{
ν

1 + ν
,

ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν
h

q−1−ν
νq

t

}
· ht.

Using f(x1) − f∗ ≤ LD2 and Lemma C.11 with c0 = LD2, c1 = ν
1+ν , c2 = ν

1+ν
r1+1/ν

Mc1+1/νD2/ν ,
and θ0 = q−1−ν

νq > 0 from q > 1 + ν, we have the claim.

D.3 PROOF OF THEOREM 4.4

Proof of Theorem 4.4. By using the induced guarantee on the primal gap via Lemma C.10, we have

ht = f(xt)− f∗ ≤
(
q

µ

) 1
q−1

(
⟨∇f(xt), vA

t − vFW
t ⟩

δ

) q
q−1

≤
(
q

µ

) 1
q−1

(
2⟨∇f(xt), dt⟩

δ

) q
q−1

,

(D.3)

where the last inequality holds because dt is either xt − vFW
t or vA

t − xt with ⟨∇f(xt), dt⟩ ≥
⟨∇f(x), vA − vFW⟩/2 in Lines 4 and 7 of Algorithm 3. We obtain

ht − ht+1 ≥
ν

1 + ν
⟨∇f(xt), dt⟩min

{
γt,max,

(
⟨∇f(xt), dt⟩

L(1 + ν)Dϕ(vt, xt)

) 1
ν

}

= min

{
γt,max

ν

1 + ν
⟨∇f(xt), dt⟩,

ν

1 + ν

⟨∇f(xt), dt⟩1+1/ν

(L(1 + ν)Dϕ(vt, xt))1/ν

}
≥ min

{
γt,max

νht
1 + ν

,
ν

1 + ν

((µ/q)1/qh
1−1/q
t δ/2)

1+ν
ν

(L(1 + ν)D2)1/ν

}

= min

{
νht
1 + ν

γt,max,
ν

1 + ν

((µ/q)1/qδ/2)
1+ν
ν

(L(1 + ν)D2)1/ν
h

(1+ν)(q−1)
νq

t

}
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where the first inequality holds due to Lemma B.8 with γt,max = 1 (Frank–Wolfe steps) and

γt,max =
λ
vA
t ,t

1−λ
vA
t ,t

(away steps), and the second inequality holds because of Equation D.3 and

⟨∇f(xt), dt⟩ ≥ ⟨∇f(xt), xt − vt⟩ ≥ ht.
In (ν, q) = (1, 2), for Frank–Wolfe steps, γt,max = 1 ≥ µδ2/LD2 ≥ µδ2/32LD2. For away
steps, we only rely on monotone progress ht+1 < ht because it is difficult to estimate γt,max below.
However, γt,max cannot be small too often, which is the key point. Let us consider γt = γt,max

in an away step. In that case, vA
t is removed from the active set St+1 in line 14. Moreover, the

active set can only grow in Frank–Wolfe steps (line 11). It is impossible to remove more vertices
from St+1 than have been added in Frank–Wolfe steps. Therefore, at most half of iterations until
t iterations are in away steps, i.e., in all other steps, we have γt =

⟨∇f(xt),dt⟩
2LDϕ(vt,xt)

< γt,max and then

ht − ht+1 ≥ µδ2

32LD2ht. Because we have ht+1 ≤
(
1− µδ2

32LD2

)
ht for at least half of the iterations

and ht+1 ≤ ht for the rest, we obtain

f(xt)− f∗ ≤
(
1− µ

32L

δ2

D2

)⌈(t−1)/2⌉

LD2.

In q > 1 + ν, we have ht − ht+1 ≥ min

{
ν

1+ν ,
ν

1+ν
((µ/q)1/qδ/2)

1+ν
ν

(L(1+ν)D2)1/ν
h

q−1−ν
νq

t

}
· ht for at least half

of the iterations (Frank–Wolfe steps) and ht+1 ≤ ht for the rest (away steps). The initial bound
f(x1) − f∗ ≤ LD2 holds generally for the Frank–Wolfe algorithm (see the proof of Theorem D.2
and (Braun et al., 2025, Remark 2.4)). We use Lemma C.11 with c0 = LD2, c1 = ν

1+ν , c2 =

c1
((µ/q)1/qδ/2)

1+ν
ν

(L(1+ν)D2)1/ν
, and θ0 = q−1−ν

νq > 0 from q > 1 + ν and obtain the claim.

Remark D.4 (Compatibility of parameters). The condition q > 1 + ν is necessary in case that
(ν, q) ̸= (1, 2). The reason is as follows. In the case q = 1 + ν, for Frank–Wolfe steps, we have

((µ/q)1/qδ/2)
1+ν
ν

(L(1 + ν)D2)1/ν
=

(µ
L

)1/ν
(
δ

D

) 1+ν
ν 1

2
1+ν
ν (1 + ν)2/νD(1−ν)/ν

, (D.4)

which might be greater than 1 because 1
D(1−ν)/ν ≥ 1 if D < 1 and ν are small enough. In order to

make Equation D.4 smaller than 1, ν should be 1, i.e., (ν, q) = (1, 2). When ν = 1 and q ̸= 2, it
reduces to the q > 1 + ν case.

E PROOF OF CONVERGENCE ANALYSIS FOR NONCONVEX OPTIMIZATION

E.1 GLOBAL CONVERGENCE

We show that Algorithm 1 with γt = γ := 1/(T + 1)
1

1+ν globally converges to a stationary point,
where T ∈ N is the number of iterations. Its proof is inspired by (Lacoste-Julien, 2016, Theorem 1)
and (Pokutta, 2024, Theorem 4.7) and identical to those for the case when ϕ = 1

2∥ · ∥
2.

Theorem E.1 (Global sublinear convergence for nonconvex optimization). Suppose that Assump-
tion 3.1 holds. Let ν > 0 and D :=

√
supx,y∈P Dϕ(x, y) be the diameter of P characterized by Dϕ

and let T ∈ N. Then, the iterates of the FW algorithm with γt = γ := 1/(T + 1)
1

1+ν satisfy

GT := min
0≤t≤T

max
vt∈P
⟨∇f(xt), xt − vt⟩ ≤

2max{h0, LD2}
(T + 1)

ν
1+ν

,

where h0 = f(x0)− f∗ is the primal gap at x0.

Proof. Substituting xt+1 for x+ and xt for x in Lemma B.7, we have the following inequality:

f(xt)− f(xt+1) ≥ γ⟨∇f(xt), xt − vt⟩ − Lγ1+νDϕ(vt, xt).
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Summing up the above inequality along t = 1, . . . , T and rearranging provides

γ

T∑
t=0

⟨∇f(xt), xt − vt⟩ ≤ f(x0)− f(xT+1) + γ1+ν
T∑
t=0

LDϕ(xt, vt)

≤ f(x0)− f∗ + γ1+ν
T∑
t=0

LD2 = h0 + γ1+ν(T + 1)LD2.

Dividing by γ(T + 1) on the both sides, we obtain

GT ≤
1

T + 1

T∑
t=0

⟨∇f(xt), xt − vt⟩ ≤
h0

γ(T + 1)
+ γνLD2,

which, for γ = 1/(T + 1)
1

1+ν , implies

GT ≤
1

T + 1

T∑
t=0

⟨∇f(xt), xt − vt⟩ ≤ (h0 + LD2)(T + 1)−
ν

1+ν ≤ 2max{h0, LD2}(T + 1)−
ν

1+ν .

This is the desired claim.

As mentioned above, we generalize prior similar results. In fact, in the case where ϕ = 1
2∥ · ∥

2 and
ν = 1, we have γt = 1√

T+1
and obtain as guarantee

min
0≤t≤T

max
vt∈P
⟨∇f(xt), xt − vt⟩ ≤

2max{h0, LD2}√
T + 1

,

which is the same rate as (Lacoste-Julien, 2016, Theorem 1).

E.2 LOCAL SUBLINEAR CONVERGENCE

We prove a lemma used in the proof of convergence analysis.
Lemma E.2. For any ν ∈ (0, 1] and t ≥ 0, it holds that

h(t) :=
(t+ 3)ν(t+ 2− ν)

(t+ 2)1+ν
≤ 1. (E.1)

Proof. We have

lim
t→∞

h(t) = lim
t→∞

(t+ 3)ν(t+ 2− ν)
(t+ 2)1+ν

= lim
t→∞

(
1 +

1

t+ 2

)ν (
1− ν

t+ 2

)
= 1.

We take the logarithm of h(t), that is, log h(t) = ν log(t+3)+ log(t+2− ν)− (1+ ν) log(t+2)
and obtain

h′(t)

h(t)
=

ν

t+ 3
+

1

t+ 2− ν
− 1 + ν

t+ 2
=

−2ν2 + 10ν

(t+ 2)(t+ 3)(t+ 2− ν)
> 0,

where the last inequality holds for ν ∈ (0, 1] and t ≥ 0. Since h(t) > 0 for t ≥ 0, the above
inequality implies h′(t) > 0. Therefore, we have suph(t) = 1, which implies h(t) ≤ 1.

Now we show sublinear convergence with γt = 2
2+t . The proof is a modified version of Theo-

rem D.2.
Theorem E.3 (Local sublinear convergence). Suppose that Assumptions 3.1, 4.3, and 5.1 hold. Let
ν ∈ (0, 1] and let D :=

√
supx,y∈P Dϕ(x, y) be the diameter of P characterized by the Bregman

distanceDϕ. Consider the iterates of Algorithm 1 with the open loop step-size, i.e., γt = 2
2+t . Then,

if ρ/σ ≤ L and 3ρ
µ ≤ 2− ν hold, it holds that, for all t ≥ 1,

f(xt)− f∗ ≤
21+νµLD2

ρ(t+ 2)ν
, (E.2)

and hence for any accuracy ϵ > 0 we have f(xt)− f∗ ≤ ϵ for all t ≥ (21+νµLD2/ρϵ)1/ν .
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Proof. Using Lemma B.7, we have

f(xt)− f(xt+1) ≥ γt⟨∇f(xt), xt − vt⟩ − Lγ1+νt Dϕ(vt, xt)

≥ γt
(
f(xt)− f∗ −

ρ

2
∥xt − x∗∥2

)
− Lγ1+νt Dϕ(vt, xt),

where the last inequality holds because of Equation C.1 in Lemma C.2. Subtracting f∗ and rear-
ranging provides

f(xt+1)− f∗ ≤ (1− γt)(f(xt)− f∗) +
ργt
2
∥xt − x∗∥2 + Lγ1+νt Dϕ(vt, xt) (E.3)

≤
(
1−

(
1− ρ

µ

)
γt

)
(f(xt)− f∗) + Lγ1+νt D2, (E.4)

where the last inequality holds due to the quadratic growth condition. For t = 0, using Equation E.3,
we have

f(x1)− f∗ ≤
ρ

2
∥x0 − x∗∥2 + LDϕ(v0, x0) ≤

( ρ
σ
+ L

)
D2 ≤ 2LD2 ≤ 2µ

ρ
LD2, (E.5)

where the second inequality holds because ϕ is σ-strongly convex and the last inequality holds
because of 3 < 6/(2− ν) ≤ 2µ/ρ. Now we consider t ≥ 1. Using Equation E.4 and γt = 2

2+t , we
have

f(xt+1)− f∗ ≤
(
t+

2ρ

µ

)
21+νµLD2

ρ(t+ 2)1+ν
+

21+νLD2

(t+ 2)1+ν

=

(
t+

2ρ

µ
+
ρ

µ

)
µ

ρ

21+νLD2

(t+ 2)1+ν

=
µ

ρ

21+νLD2

(t+ 3)ν

(
(t+ 3)ν(t+ 3ρ/µ)

(t+ 2)1+ν

)
≤ 21+νµLD2

ρ(t+ 3)ν
,

where the last inequality holds because of (t+ 3)ν(t+ 3ρ/µ) ≤ (t+ 3)ν(t+ 2− ν) ≤ (t+ 2)1+ν

from Equation E.1.

We can apply the quadratic growth condition again as before and obtain

dist(xt,X ∗)2 ≤ 2

µ
(f(xt)− f∗) ≤

22+νLD2

ρ(t+ 2)ν
,

and hence

dist(xt,X ∗) ≤ 21+ν/2D
√
L

√
ρ(t+ 2)ν/2

.

Note that Theorem E.3 does not require knowledge of the number of iterations T ahead of time
compared to Theorem E.1. We stress, nonetheless, that the latter can also be adjusted using a dif-
ferent step-size strategy to obtain an any-time guarantee; see Braun et al. (2025) for details for the
standard Euclidean case, which can be generalized to our setup. Moreover, we can apply The-
orem E.3 to the Euclidean FW algorithm, i.e., ϕ = 1

2∥ · ∥
2 and ν = 1. Using Equation E.2,

DEuc := supx,y∈P ∥x− y∥2, and DEuc =
√
2D, we obtain

f(xt)− f∗ ≤
2µLD2

Euc

ρ(t+ 2)
,

Theorem E.3 requires ρ/σ ≤ L and 3ρ
µ ≤ 2− ν. These assumptions are easy to satisfy.

Example E.4 (Example 3.1 in the arXiv version of Liao et al. (2024)). Let us consider

f(x) =

{
−x2 + 1, if − 1 < x < −0.5,
3(x+ 1)2, otherwise.
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The function f is not convex but ρ-weakly convex with ρ = 2. A global optimal solution of f is
x∗ = −1 and its value is f(x∗) = 0. Moreover, f satisfies the quadratic growth condition with
0 < µ ≤ 6. Because f is a quadratic function, we have L ≥ 6. It holds that 2 = ρ ≤ L and
1 = 3ρ

µ ≤ 1 < 2− ν (set µ = 6). Therefore, the assumption of Theorem E.3 holds.

In order to verify 3ρ
µ ≤ 2− ν, it is easier to examine the sufficient condition 3ρ

µ ≤ 1 instead because
the exact value of ν is difficult to estimate. On the other hand, without loss of generality, we can
assume σ = 1. When σ > 1, ρ/σ < ρ ≤ L holds. When σ < 1, we can use ϕ1 = ϕ + 1−σ

2 ∥ · ∥
2,

which is 1-strongly convex. When ϕ is convex but not strongly convex, we can use ϕ2 = ϕ+ 1
2∥·∥

2.
Therefore, it suffices to verify ρ/σ ≤ ρ ≤ L, which often holds (for example, see an example of
phase retrieval in Section 6.2).

E.3 PROOF OF THEOREM 5.3

Theorems 5.3, 5.4, and E.9 require the weak convexity and the local quadratic growth condition of
f with ρ ≤ µ. We show several examples as follows.

Example E.5. We show some examples of ρ-weakly convex functions satisfying the (local)
quadratic growth condition with ρ < µ.

(i) Let f(x) = log(1 + x2). f attains the minimum f∗ = 0 at x∗ = 0. The function f
is 1/4-weakly convex because f ′′(x) = − 2(1−x2)

(1+x2)2 and its minimum is −1/4. Moreover,
(x − x∗)2 = x2 ≤ 2

µ log(1 + x2) = 2
µ (f(x) − f

∗) holds for any x ∈ [f ≤ ζ]. Letting
µ = 1/3, we have 6 log(1+x2)−x2 ≥ 0 for any x ∈ [f ≤ 16]. Note that ζ = 16 is not an
exact value. In this case, we have 1/4 = ρ < µ = 1/3. Through simple calculations and
visualization, we can obtain a larger value of µ than 1/3. This function is used for image
restoration (Boţ et al., 2016; Stella et al., 2017).

(ii) Let f(x) = 1
2x

2 + 2(1− e−x2

). f attains the minimum f∗ = 0 at x∗ = 0. The function f
is (8e−3/2 − 1)-weakly convex because f ′′(x) = 1 + 4e−x

2

(1− 2x2) and its minimum is
1−8e−3/2 ≃ −0.785. Moreover, (x−x∗) = x2 ≤ 2

µ (f(x)−f
∗) holds for any x ∈ [f ≤ ζ].

Letting µ = 1, we have 2
µ (f(x)−f

∗)−x2 = 4(1−e−x2

) ≥ 0 for any x ∈ R. The function
f satisfies the global quadratic growth condition with 8e−3/2 − 1 = ρ < µ = 1.

(iii) Let f be the function defined in Example E.4. We set µ = µ0 for some µ0 ∈ (2, 6] because
µ can be from (0, 6]. It holds that 2 = ρ < µ.

Because Algorithm 2 is well-defined (see also Remark 3.2), the convergence result of the FW algo-
rithm with Algorithm 2 is the same as Theorem 5.3.

Proof of Theorem 5.3. Let ht := f(xt)− f∗. Using Lemma B.8, we have

ht − ht+1 = f(xt)− f(xt+1) ≥
ν

1 + ν
⟨∇f(xt), xt − vt⟩γt,

where γt = min

{
1,
(

⟨∇f(xt),xt−vt⟩
L(1+ν)Dϕ(vt,xt)

) 1
ν

}
. We consider two cases: (i) γt < 1 and (ii) γt = 1.

(i) γt < 1: We have

ht − ht+1 ≥
ν⟨∇f(xt), xt − vt⟩

1 + ν
min

{
1,

(
⟨∇f(xt), xt − vt⟩
L(1 + ν)Dϕ(vt, xt)

)1/ν
}

≥ ν

1 + ν

⟨∇f(xt), xt − vt⟩1+1/ν

(L(1 + ν)Dϕ(vt, xt))1/ν

≥ ν

1 + ν

r1+1/ν∥∇f(xt)∥1+1/ν

(L(1 + ν))1/νD2/ν
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≥ ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν
h

1+ν
2ν
t ,

where the third inequality holds due to Proposition C.8 and the definition ofD and the last inequality
holds due to the local PL inequality from Remark C.6 with c =

√
2µ

µ−ρ and M := (L(1 + ν))1/ν .

(ii) In the case where γt = 1, i.e.,
(

⟨∇f(xt),xt−vt⟩
L(1+ν)Dϕ(vt,xt)

) 1
ν ≥ 1, this implies

⟨∇f(xt), xt − vt⟩ ≥ L(1 + ν)Dϕ(vt, xt), (E.6)

because of 1/ν > 1. Using Lemma B.7 and Equation E.6, we have

ht+1 − ht ≤ LDϕ(vt, xt)− ⟨∇f(xt), xt − vt⟩

≤ − ν

1 + ν
⟨∇f(xt), xt − vt⟩

≤ − ν

1 + ν

(
ht −

ρ

2
∥xt − x∗∥2

)
≤ − ν

1 + ν

(
1− ρ

µ

)
ht,

where the third inequality holds because of Equation C.1 in Lemma C.2, and the last inequality
holds because of the local quadratic growth condition of f with µ > 0. Therefore, we have

ht+1 ≤
1

1 + ν

(
1 +

ρν

µ

)
ht.

From (i) and (ii), we have

ht − ht+1 ≥ min

{
ν

1 + ν

(
1− ρ

µ

)
ht,

ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν
h

1+ν
2ν
t

}
.

When ν = 1, we have ht − ht+1 ≥ min
{

1
2

(
1− ρ

µ

)
, r2

2Mc2D2

}
· ht. This inequality and the initial

bound f(x1)− f∗ ≤ LD2 due to Lemma B.4 imply

ht ≤ max

{
1

2

(
1 +

ρ

µ

)
, 1− r2

2Mc2D2

}t−1

LD2.

On the other hand, when ν ∈ (0, 1),

ht − ht+1 ≥ min

{
ν

1 + ν

(
1− ρ

µ

)
,

ν

1 + ν

r1+1/ν

Mc1+1/νD2/ν
h

1−ν
2ν
t

}
· ht.

Using f(x1) − f∗ ≤ LD2 and Lemma C.11 with c0 = LD2, c1 = ν
1+ν

(
1− ρ

µ

)
, c2 =

ν
1+ν

r1+1/ν

Mc1+1/νD2/ν , and θ0 = 1−ν
2ν > 0, we have the claim.

When ϕ = 1
2∥ · ∥

2 and ν = 1, we have local linear convergence with γt = min
{

⟨∇f(xt),xt−vt⟩
L∥vt−xt∥2 , 1

}
from Theorem 5.3. When ϕ = 1

2∥ · ∥, i.e., Dϕ(x, y) =
1
2∥x− y∥

2, DEuc =
√
2D provides

f(xt)− f∗ ≤ max

{
1

2

(
1 +

ρ

µ

)
, 1− r2

2Lc2D2
Euc

}t−1
LD2

Euc

2
.

E.4 PROOF OF THEOREM 5.4

In the same way as Theorem 4.4, the pyramidal width is the minimal δ > 0 satisfying Lemma C.9
(see also (Braun et al., 2025, Lemma 2.26) or (Lacoste-Julien & Jaggi, 2015, Theorem 3)). An upper
bound exists on the primal gap for weakly convex functions.
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Lemma E.6 (Upper bound on primal gap for weakly convex functions). Suppose that Assump-
tions 3.1 and 5.1 hold. Let P be a polytope with the pyramidal width δ > 0. Let S denote any set
of vertices of P with x ∈ conv S . Let ψ be any vector, so that we define vFW = argminv∈P ⟨ψ, v⟩
and vA = argmaxv∈S⟨ψ, v⟩. If ρ/µ < 1, then it holds that, for all x ∈ [f ≤ f∗ + ζ] ∩ P ,

f(x)− f∗ ≤ 2µ

(µ− ρ)2δ2
⟨∇f(x), vA − vFW⟩2.

Proof. Using the weak convexity and the local quadratic growth condition of f , it holds that, for all
x ∈ [f ≤ f∗ + ζ] ∩ P ,

f(x)− f(x∗) ≤ ⟨∇f(x), x− x∗⟩+ ρ

2
∥x− x∗∥2

≤ ⟨∇f(x), x− x∗⟩+ ρ

µ
(f(x)− f(x∗)),

which implies

0 ≤
(
1− ρ

µ

)
(f(x)− f(x∗)) ≤ ⟨∇f(x), x− x∗⟩,

where the first inequality follows from 1 − ρ/µ > 0. Using Equation C.8 with ψ = ∇f(x) and
y = x∗ and the above inequality, we obtain

⟨∇f(x), vA − vFW⟩2

δ2
≥ ⟨∇f(x), x− x

∗⟩2

∥x− x∗∥2

≥
(
1− ρ

µ

)2
(f(x)− f(x∗))2

∥x− x∗∥2

≥ µ

2

(
1− ρ

µ

)2
(f(x)− f(x∗))2

f(x)− f(x∗)

=
µ

2

(
1− ρ

µ

)2

(f(x)− f(x∗)),

where the third inequality holds because of the local quadratic growth condition.

Proof of Theorem 5.4. By letting ht = f(xt)− f∗ and using Lemma E.6, we have

ht ≤
2µ

(µ− ρ)2δ2
⟨∇f(xt), vA − vFW⟩2 ≤ 8µ⟨∇f(xt), dt⟩2

(µ− ρ)2δ2
=
⟨∇f(xt), dt⟩2

ωδ2
, (E.7)

where the second inequality holds because dt is either xt − vFW
t or vA

t − xt with ⟨∇f(xt), dt⟩ ≥
⟨∇f(x), vA − vFW⟩/2 in Lines 4 and 7 of Algorithm 3. From Lemma B.8 with γt,max = 1 (Frank–

Wolfe steps) and γt,max =
λ
vA
t ,t

1−λ
vA
t ,t

(away steps), we obtain

ht − ht+1 ≥
ν

1 + ν
⟨∇f(xt), dt⟩min

{
γt,max,

(
⟨∇f(xt), dt⟩

L(1 + ν)Dϕ(vt, xt)

) 1
ν

}

= min

{
γt,max

ν

1 + ν
⟨∇f(xt), dt⟩,

ν

1 + ν

⟨∇f(xt), dt⟩1+1/ν

(L(1 + ν)Dϕ(vt, xt))1/ν

}
≥ min

{
νγt,max

1 + ν

(
1− ρ

µ

)
ht,

ν

1 + ν

(htωδ
2)

1+ν
2ν

(L(1 + ν)D2)1/ν

}

= min

{
νγt,max

1 + ν

(
1− ρ

µ

)
ht,

ν

1 + ν

(ωδ2)
1+ν
2ν

(L(1 + ν)D2)1/ν
h

1+ν
2ν
t

}
,

where the second inequality holds because of ⟨∇f(xt), dt⟩ ≥ ⟨∇f(xt), xt − vt⟩ ≥ ht − ρ
2∥xt −

vt∥2 ≥
(
1− ρ

µ

)
ht (from Lemma C.2 and the quadratic growth condition of f ) and Equation E.7.
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In ν = 1, for Frank–Wolfe steps, we have γt,max

(
1− ρ

µ

)
=

(
1− ρ

µ

)
≥ 1

8

(
1− ρ

µ

)2
δ2

D2 =

ωδ2

µD2 ≥ ωδ2

2LD2 by 0 < ρ < µ ≤ L and δ ≤ D. For away steps, it seems that we only obtain
a monotone progress ht+1 < ht because it is difficult to estimate γt,max below. However, γt,max

cannot be small too often. Let us consider γt = γt,max in an away step. In that case, vA
t is removed

from the active set St+1 in line 14. Moreover, the active set can only grow in Frank–Wolfe steps
(line 11). It is impossible to remove more vertices from St+1 than have been added in Frank–
Wolfe steps. Therefore, at most half of iterations until t iterations are in away steps, i.e., in all
other steps, we have γt = ⟨∇f(xt),dt⟩

2LDϕ(vt,xt)
< γt,max and then ht+1 ≤

(
1− ωδ2

4LD2

)
ht. Because we

have ht+1 ≤
(
1− ωδ2

4LD2

)
ht for at least half of the iterations and ht+1 ≤ ht for the rest, using

h1 ≤ 2LD2 from Equation E.5 and ρ < L, we obtain

f(xt)− f∗ ≤ 2

(
1− ω

4L

δ2

D2

)⌈(t−1)/2⌉

LD2.

In ν ∈ (0, 1), we have ht − ht+1 ≥ min

{
ν

1+ν

(
1− ρ

µ

)
, ν
1+ν

(ωδ2)
1+ν
2ν

(L(1+ν)D2)1/ν
h

1−ν
2ν
t

}
· ht for at least

half of the iterations and ht+1 ≤ ht for the rest. The initial bound f(x1)−f∗ ≤ (ρ+L)D2 ≤ 2LD2

holds from Equation E.5 and ρ < L. We use Lemma C.11 with c0 = 2LD2, c1 = ν
1+ν

(
1− ρ

µ

)
,

c2 = ν
1+ν

(ωδ2)
1+ν
2ν

(L(1+ν)D2)1/ν
, and θ0 = 1−ν

2ν and obtain the claim.

When ϕ = 1
2∥ · ∥

2 and ν = 1, the local linear convergence of Algorithm 3 is equivalent to

f(xt)− f(x∗) ≤
(
1− ω

2L

δ2

D2
Euc

)⌈(t−1)/2⌉

LD2
Euc.

E.5 LOCAL LINEAR CONVERGENCE OVER UNIFORMLY CONVEX SETS

In the convex optimization case, Canon & Cullum (1968) established an early lower bound on the
convergence rate of the FW algorithm. However, in the special case of P being strongly convex, Gar-
ber & Hazan (2015) showed that one can improve upon that lower bound. Kerdreux et al. (2021b)
establish it in the case of P being uniformly convex. We will now carry over this result to establish
local linear convergence for the case where f is weakly convex and L-smad on P .

To this end, we recall the definition of uniformly convex sets.

Definition E.7 ((α, p)-uniformly convex set (Braun et al., 2025, Definition 2.18), (Kerdreux et al.,
2021b, Definition 1.1)). Let α and p be positive numbers. The set P ⊂ Rn is (α, p)-uniformly
convex with respect to the norm ∥ · ∥ if for any x, y ∈ P , any γ ∈ [0, 1], and any z ∈ Rn with
∥z∥ ≤ 1 the following holds:

y + γ(x− y) + γ(1− γ) · α∥x− y∥pz ∈ P.

Moreover, P is said to be strongly convex if P is (α, 2)-uniformly convex.

We will use the scaling condition for uniformly convex sets to establish linear convergence.

Proposition E.8 (Scaling inequality (Braun et al., 2025, Proposition 2.19), (Kerdreux et al., 2021b,
Lemma 2.1)). Let P be a full dimensional compact (α, p)-uniformly convex set, u any non-zero
vector, and v = argminy∈P ⟨u, y⟩. Then for all x ∈ P

⟨u, x− v⟩
∥x− v∥p

≥ α∥u∥.

Now we establish local linear convergence for weakly convex optimization on uniformly convex
sets.
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Theorem E.9 (Local linear convergence over uniformly convex sets). Suppose that Assumptions 3.1
and 5.1 with ϕ = 1

2∥ · ∥
2 and int domϕ = Rn hold and that P is (α, p)-uniformly convex set. Let

∇f be bounded away from 0, i.e., ∥∇f(x)∥ ≥ c > 0 for all x ∈ P . Let DEuc := supx,y∈P ∥x− y∥
be the diameter of P . Consider the iterates of Algorithm 1 with γt = min

{
⟨∇f(xt),xt−vt⟩
L∥xt−vt∥2 , 1

}
.

Then, if ρ < µ and ρ ≤ L, it holds that

f(xt)− f∗ ≤


max

{
1
2

(
1 + ρ

µ

)
, 1−

(
1− ρ

µ

)
αc
2L

}t−1

LD2
Euc if p = 2,(

1
2 + ρ

2µ

)t−1

LD2
Euc if 1 ≤ t ≤ t0, p ≥ 2,

L((1−ρ/µ)1−p/2L/αc)
2/(p−2)

(1+(1−ρ/µ)(1/2−1/p)(t−t0))p/(p−2) = O(1/tp/(p−2)) if t ≥ t0, p ≥ 2,

for all t ≥ 1 where

t0 := max


log 1

2 (1+
ρ
µ )

L
(
(1− ρ/µ)1−p/2 L/αc

)2/(p−2)

LD2
Euc

+ 2, 1

 .

Proof. Let gt := ⟨∇f(xt), xt − vt⟩ and ht := f(xt)− f∗. Lemma B.8 with ϕ = 1
2∥ · ∥

2 and ν = 1
is followed by f(xt)− f(xt+1) ≥ gt

2 γt. Using Proposition E.8, we have

ht − ht+1 ≥
gt
2
min

{
gt

L∥xt − vt∥2
, 1

}
≥ gt

2
min

{
g
1−2/p
t α2/p∥∇f(xt)∥2/p

L
, 1

}

≥ 1

2

(
ht −

ρ

2
∥x− x∗∥2

)
min

{(
ht −

ρ

2
∥x− x∗∥2

)1−2/p (αc)2/p

L
, 1

}
≥ 1

2

(
1− ρ

µ

)
min

{(
1− ρ

µ

)1−2/p
(αc)2/p

L
h
1−2/p
t , 1

}
· ht,

where the third inequality holds from Lemma C.2 and ∥∇f(x)∥ ≥ c, and the last inequality holds
because of the local quadratic growth property of f . The initial bound h1 ≤ LD2

Euc = 2LD2 holds

from ρ ≤ L and Equation E.5. For q = 2, we have ht−ht+1 ≥ 1
2

(
1− ρ

µ

)
min

{
αc
L , 1

}
·ht, which

implies

ht+1 ≤ max

{
1

2

(
1 +

ρ

µ

)
, 1−

(
1− ρ

µ

)
αc

2L

}
· ht.

Thus, we have the claim. For p > 2, we use Lemma C.11 with c0 = LD2
Euc, c1 = 1

2

(
1− ρ

µ

)
,

c2 = c1 ·
(
1− ρ

µ

)1−2/p
(αc)2/p

L , and θ0 = 1− 2/p and obtain the claim.

Note that Assumption 3.1 with ϕ = 1
2∥ · ∥

2 and int domϕ = Rn holds when f is L-smooth over
P . If ρ ≤ L does not hold, we can use the initial bound h1 ≤ ρ+L

2 D2
Euc from Equation E.5. In that

case, a local linear rate in Theorem E.9 is unchanged. Moreover, we have local linear convergence
without assuming ∥∇f(x)∥ > 0.
Theorem E.10 (Local linear convergence over uniformly convex sets without ∥∇f(x)∥ > 0). Sup-
pose that Assumptions 3.1 and 5.1 with ϕ = 1

2∥ · ∥
2 and int domϕ = Rn hold and that P is

(α, p)-uniformly convex set. Let DEuc := supx,y∈P ∥x − y∥ be the diameter of P . Consider the

iterates of Algorithm 1 with γt = min
{

⟨∇f(xt),xt−vt⟩
L∥xt−vt∥2 , 1

}
. Then, if ρ < µ and ρ ≤ L, it holds that

f(xt)− f∗ ≤


(

1
2 + ρ

2µ

)t−1

LD2
Euc if 1 ≤ t ≤ t0, p ≥ 2,

((1−ρ/µ)2−pLc2/α2)
1/(p−1)

(1+(1/2)·(1−ρ/µ)(1−1/p)(t−t0))p/(p−1) = O(1/tp/(p−1)) if t ≥ t0, p ≥ 2,
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for all t ≥ 1 where c =
√
2µ

µ−ρ and

t0 := max


log 1

2 (1+
ρ
µ )

L
(
(1− ρ/µ)2−p Lc2/α2

)1/(p−1)

LD2
Euc

+ 2, 1

 .

Proof. Using an argument similar to Theorem E.9, we obtain

ht − ht+1 ≥
gt
2
min

{
gt

L∥xt − vt∥2
, 1

}
≥ gt

2
min

{
g
1−2/p
t α2/p∥∇f(xt)∥2/p

L
, 1

}

≥ 1

2

(
ht −

ρ

2
∥x− x∗∥2

)
min

{(
ht −

ρ

2
∥x− x∗∥2

)1−2/p α2/p(ht/c
2)1/p

L
, 1

}
≥ 1

2

(
1− ρ

µ

)
min

{(
1− ρ

µ

)1−2/p
(αc−1)2/p

L
h
1−1/p
t , 1

}
· ht,

where the third inequality holds from the PL inequality Equation C.6 with c =
√
2µ

µ−ρ . Therefore,

we use Lemma C.11 with c0 = LD2
Euc, c1 = 1

2

(
1− ρ

µ

)
, c2 = c1 ·

(
1− ρ

µ

)1−2/p
(αc−1)2/p

L , and
θ0 = 1− 1/p and obtain the claim.

F EXPERIMENTS

We use the following notation:

• BregFW: the FW algorithm with the adaptive Bregman step-size strategy (Algorithm 2,
our proposed)

• BregAFW: the away-step FW algorithm with the adaptive Bregman step-size strategy (Al-
gorithm 3 using Algorithm 2, i.e., Lt, νt, γt ← step_size(f, ϕ, xt, vt, Lt−1, γt,max),
our proposed update)

• EucFW: the FW algorithm with the adaptive (Euclidean) step-size strategy (Pedregosa
et al., 2020)

• EucAFW: the away-step FW algorithm with the adaptive (Euclidean) step-size strategy (Pe-
dregosa et al., 2020)

• ShortFW: the FW algorithm with the (Euclidean) short step
• ShortAFW: the away-step FW algorithm with the (Euclidean) short step
• OpenFW: the FW algorithm with the open loop with γt = 2

2+t

• OpenAFW: the away-step FW algorithm with the open loop with γt = 2
2+t

• MD: the mirror descent (Nemirovskij & Yudin, 1983)
• ProjGD: the projected gradient descent algorithm (see, e.g., Beck (2017))

F.1 NONNEGATIVE LINEAR INVERSE PROBLEMS

Given a nonnegative matrix A ∈ Rm×n
+ and a nonnegative vector b ∈ Rm+ , the goal of nonnegative

(Poisson) linear inverse problems is to recover a signal x ∈ Rn+ such that Ax ≃ b. This class of
problems has been studied in image deblurring (Bertero et al., 2009) and positron emission tomogra-
phy (Vardi et al., 1985) as well as optimization (Bauschke et al., 2017; Takahashi & Takeda, 2025).
Since the dimension of x is often larger than the number of observations m, the system is indeter-
minate. From this point of view, we consider the constraint ∆n := {x ∈ Rn+ |

∑n
j=1 xj ≤ 1}.

Recovering x can be formulated as a minimization problem:
min
x∈∆n

f(x) := d(Ax, b), (F.1)
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Figure 5: Log-log plot of primal and FW gaps on nonnegative linear inverse problem for (m,n) =
(100, 1000).

Table 2: Average values of the primal gap, the FW gap, and computational time (s) over 20 different instances
of nonnegative linear inverse problems for (m,n) = (100, 1000). The results are reported as mean
± standard deviation.

algorithm primal gap FW gap time (s)

BregFW 6.9637e-08 ± 2.0e-08 1.1455e-05 ± 1.4e-06 1.4577e-01 ± 4.1e-02
EucFW 3.0287e-07 ± 9.4e-08 2.9223e-05 ± 4.1e-06 1.0778e-01 ± 5.8e-03

ShortFW 4.7470e-05 ± 3.5e-06 4.6135e-04 ± 7.2e-05 6.2518e-02 ± 3.6e-03
OpenFW 4.9576e-07 ± 6.3e-08 8.5382e-05 ± 1.3e-05 6.5036e-02 ± 6.3e-03
MD 2.2494e-06 ± 3.1e-07 1.7214e-04 ± 1.9e-05 1.8885e-01 ± 6.4e-03

where d(x, y) :=
∑m
i=1

(
xi log

xi

yi
+ yi − xi

)
is the KL divergence. Problem Equation F.1 is

convex, while ∇f is not Lipschitz continuous on Rn+. The pair (f, ϕ) is L-smad on Rn+ with
ϕ(x) =

∑n
j=1 xj log xj and L ≥ max1≤j≤n

∑m
i=1 aij from (Bauschke et al., 2017, Lemma 8).

We compared BregFW with EucFW, ShortFW, OpenFW, and the mirror descent algorithm
(MD) (Nemirovskij & Yudin, 1983). The subproblem of MD can be solved in closed-form for
{x ∈ Rn+ |

∑n
j=1 xj = 1} by (Beck, 2017, Example 3.71), and this can be readily extended to

∆n. We used 1000 as maximum iteration limit and we generated Ã from an i.i.d. normal distri-
bution and set aij = |ãij |/

∑m
i=1 |ãij |. We also generated x̃ from an i.i.d. uniform distribution in

[0, 1] and set the ground truth x∗ = 0.8x̃/
∑n
j=1 x̃j so that x∗ ∈ int∆n (random seed 1234). All

components of the initial point x0 were 1/n. For (m,n) = (100, 1000), Figure 5 shows the primal
gap f(xt) − f∗ and the FW gap maxv∈P ⟨∇f(xt), xt − v⟩ per iteration (left) and the primal gap
per second (right). Table 2 shows the average values of the primal gap, the FW gap, and compu-
tational time over 20 different instances for (m,n) = (100, 1000). Here, BregFW outperformed
other algorithms, both in iterations and time.

F.2 ℓp LOSS PROBLEM

We use an ℓ2 norm ball as a constraint, i.e., P = {x ∈ Rn | ∥x∥ ≤ 1}. We compared BregFW with
EucFW, ShortFW, and OpenFW. We generatedA from an i.i.d. normal distribution and normalized
it so that ∥ai∥ = 1. We also generated x̃ from an i.i.d. normal distribution and set x∗ = 0.8x̃/∥x̃∥ to
ensure x∗ ∈ intP (random seed 1234). The initial point x0 was generated by computing an extreme
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Figure 6: Log-log plot of primal and FW gaps on the ℓp loss problem for (m,n) = (1000, 100).

Table 3: Average values of the primal gap, FW gap, and computational time (s) over 20 different instances of
ℓp loss problems for (m,n) = (1000, 100). The results are reported as mean ± standard deviation.

algorithm primal gap FW gap time (s)

BregFW 1.0589e-13 ± 8.6e-15 3.7686e-01 ± 8.6e-03 5.6037e-01 ± 1.8e-02
EucFW 6.2980e-10 ± 9.9e-11 8.5940e-01 ± 1.0e-01 3.1421e-01 ± 7.4e-03

ShortFW 2.4697e+01 ± 1.2e+00 4.7621e+01 ± 8.6e-01 9.2352e-02 ± 3.7e-03
OpenFW 1.6961e-02 ± 9.9e-04 4.0077e+00 ± 1.0e-01 8.7292e-02 ± 3.5e-03

point of P that minimizes the linear approximation of f . For (n,m) = (100, 100) and p = 1.1,
Figure 6 shows the primal gap f(xt) − f∗ and the FW gap maxv∈P ⟨∇f(xt), xt − v⟩ per iteration
and those gaps per second up to 1000 iterations. Table 3 also shows the average performance over
20 different instances. BregFW outperformed the other algorithms. Since ∇f is not Lipschitz
continuous, ShortFW did not reduce the primal and FW gaps.

F.3 PHASE RETRIEVAL

We show the average performance for the setting of Section 6.2. Tables 4 and 5 show the average
performance over 20 different instances of (m,n) = (1000, 10000) and (m,n) = (2000, 10000),
respectively.

We also compared BregAFW with EucAFW, ShortAFW, and OpenAFW. In only this setting, we
generated x∗ from an i.i.d. uniform distribution in [0, 1] and did not normalize it (random seed
1234); that is, x∗ might be in the face of P . Figure 7 shows another setting’s results for (m,n) =
(200, 200) and K = 110. Table 6 shows the average performance over 20 different instances for
(m,n) = (200, 200) and K = 110. The primal gap by BregAFW is the smallest among these
algorithms, while ShortAFW has the smallest value of the FW gap.

F.4 LOW-RANK MINIMIZATION

Given a symmetric matrix M ∈ Rn×n, our goal is to find X ∈ Rn×r such that M ≃ XXT. This is
accomplished by minimizing the function

min
X∈P

f(X) :=
1

2
∥XXT −M∥2F ,
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Figure 7: Log-log plot of primal and FW gaps on phase retrieval for (m,n) = (200, 200) and K = 110 via
AFW.

Table 4: Average values of the primal gap, FW gap, and computational time (s) over 20 different instances of
phase retrieval for (m,n) = (1000, 10000) and K = 2000. The results are reported as mean ±
standard deviation.

algorithm primal gap FW gap time

BregFW 1.3107e-11 ± 1.1e-12 2.1518e-02 ± 5.9e-02 4.6990e+01 ± 1.5e+01
EucFW 1.7170e+00 ± 3.9e+00 2.4612e+02 ± 4.5e+02 4.4986e+01 ± 3.2e+01

ShortFW 3.2739e+05 ± 1.9e+04 4.2232e+04 ± 5.0e+02 1.0942e+01 ± 3.2e-01
OpenFW 5.2496e-10 ± 3.9e-11 4.3802e+00 ± 5.5e-02 6.0353e+01 ± 1.6e+00

Table 5: Average values of the primal gap, FW gap, and computational time (s) over 20 different instances of
phase retrieval for (m,n) = (2000, 10000) and K = 2000. The results are reported as mean ±
standard deviation.

algorithm primal gap FW gap time

BregFW 6.6743e-12 ± 5.5e-13 9.5656e-08 ± 7.9e-09 7.2592e+01 ± 8.8e+00
EucFW 3.2499e+00 ± 7.1e+00 3.1304e+02 ± 4.8e+02 1.4348e+02 ± 4.3e+01

ShortFW 6.0937e+04 ± 2.3e+03 2.5461e+04 ± 2.3e+02 1.2648e+01 ± 2.4e-01
OpenFW 9.3513e-11 ± 4.9e-12 2.6628e+00 ± 1.7e-02 7.1916e+01 ± 1.3e+00

Table 6: Average values of the primal gap, FW gap, and computational time (s) over 20 different instances of
phase retrieval for (m,n) = (200, 200) and K = 110 via away-step FW algorithms. The results are
reported as mean ± standard deviation.

algorithm primal gap FW gap time (s)

BregAFW 4.3430e+00 ± 1.7e+00 9.7578e-01 ± 9.1e-01 2.3336e-01 ± 6.4e-02
EucAFW 4.3968e+00 ± 1.7e+00 1.2212e+00 ± 2.3e+00 3.9421e-01 ± 1.6e-01
ShortAFW 4.4092e+00 ± 1.7e+00 2.5978e-02 ± 7.3e-03 7.3540e-02 ± 3.5e-02
OpenAFW 4.4094e+00 ± 1.7e+00 7.1992e-02 ± 4.9e-02 5.8998e-02 ± 2.4e-03

where P ⊂ Rn×r. We assume that r ≤ n. This problem is known as low-rank minimiza-
tion (Dragomir et al., 2021). In this paper, we define P = {X ∈ Rn×r | ∥X∥∗ ≤ ξ}, where
∥ · ∥∗ denotes the nuclear norm and ξ ∈ R+ for the low-rank assumption.
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Figure 8: Log-log plot of primal and FW gaps on low-rank minimization for (n, r) = (1000, 20).

Table 7: Average values of the primal gap, FW gap, and computational time (s) over 20 different instances
of low-rank minimization for (n, r) = (1000, 20). The results are reported as mean ± standard
deviation.

algorithm primal gap FW gap time (s)

BregFW 5.6519e-01 ± 4.2e-02 1.4727e+01 ± 1.0e+00 1.2602e+01 ± 4.5e-01
EucFW 5.7765e-01 ± 4.6e-02 1.7237e+01 ± 2.0e+00 1.2280e+01 ± 3.8e-01
ShortFW 2.7101e+08 ± 1.9e+06 2.1694e+09 ± 1.5e+07 4.1379e+00 ± 7.9e-02
OpenFW 1.9782e+00 ± 3.6e-01 2.1212e+03 ± 3.1e+02 4.1770e+00 ± 1.7e-01

We define

ϕ(X) =
1

4
∥X∥4F +

1

2
∥X∥2F .

There exists a constant L such that the pair (f, ϕ) is L-smad on Rn (Dragomir et al., 2021). Addi-
tionally, f(X) is weakly convex on any compact set due to Proposition C.1, which follows from the
twice continuous differentiability of f .

We also compared BregFW with EucFW, ShortFW, and OpenFW. The parameter settings are the
same as those in the previous subsection. We generated X∗ from an i.i.d. uniform distribution in
[0, 1], normalized each column of X∗, and set M = X∗(X∗)T (random seed 42). The initial point
X0 was generated from an i.i.d. uniform distribution in [0, 1]. We set ξ = 10λmax(M) for P .
Figure 8 shows the primal and FW gaps per iteration and gaps per second for (n, r) = (1000, 20)
up to the 1000th iteration. Table 7 presents the average performance over 20 different instances for
(n, r) = (1000, 20). BregFW performed slightly better than EucFW. OpenFW also performed as
fast as BregFW and EucFW, but its performance was unstable. ShortFW did not converge due to
the lack of Lipschitz continuity of ∇f .

F.5 NONNEGATIVE MATRIX FACTORIZATION

Given a nonnegative matrix V ∈ Rm×n
+ , nonnegative matrix factorization (NMF) aims to find

nonnegative matrices W ∈ Rm×r
+ and H ∈ Rr×n+ such that V ≃ WH . NMF can be formu-

lated as a minimization problem of the loss function that measures the difference between V and
WH , i.e., min(W,H)∈P f(W,H) := 1

2∥WH − V ∥2F , where P is a compact convex subset of
Rm×r

+ × Rr×n+ . The objective function f is weakly convex over P due to Proposition C.1. The

37



Published as a conference paper at ICLR 2026

Figure 9: Log-log plot of the primal and the FW gaps
on NMF for (m,n, r) = (100, 5000, 20).

Figure 10: Log-log plot of the primal and the FW
gaps on NMF for MovieLens 100K
Dataset.

Table 8: Average values of the primal gap, FW gap, and computational time (s) over 20 different instances of
NMF for (m,n, r) = (100, 5000, 20). The results are reported as mean ± standard deviation.

algorithm primal gap FW gap time (s)

BregFW 1.2017e-04 ± 5.7e-06 1.1515e-02 ± 1.4e-02 5.0983e+01 ± 1.1e+00
EucFW 1.2819e-04 ± 4.6e-06 7.6259e-04 ± 8.0e-04 4.3592e+01 ± 1.0e+00

gradient ∇f is not Lipschitz continuous, while (f, ϕ) is smooth adaptable (Mukkamala & Ochs,
2019) with ϕ(W,H) = 1

4 (∥W∥
2
F + ∥H∥2F )2 + 1

2 (∥W∥
2
F + ∥H∥2F ).

We used a box constraint P = {(W,H) ∈ Rm×r × Rr×n | 0 ≤ Wlj ≤ 3, 0 ≤ Hlj ≤ 1}.
We compared BregFW with EucFW because ShortFW and OpenFW stopped at the 2nd iteration.
We generated W ∗ from an i.i.d. uniform distribution in [0, 1] and normalized each column of W ∗

(random seed 42). We also generated H∗ from an i.i.d. Dirichlet distribution. The initial point
(W0,H0) was generated from an i.i.d. uniform distribution in [0, 1]. Figure 9 shows the primal and
FW gaps for (m,n, r) = (100, 5000, 20) up to the 5000th iteration. Table 8 shows the average
performance over 20 different instances for (m,n, r) = (100, 5000, 20) up to the 5000th iteration.
BregFW is slightly better than EucFW in terms of the primal gap, while the FW gap for EucFW is
smaller than that for BregFW.

Furthermore, we consider real-world data using the MovieLens 100K Dataset. We set P =
{(W,H) ∈ Rm×r × Rr×n | 0 ≤ Wlj ≤ 5.0, ∥H∥∗ ≤ ξ}. For ϕ(W,H) = 3

4 (∥W∥
2
F +

∥H∥2F )2 +
∥V ∥F

2 (∥W∥2F + ∥H∥2F ) by (Mukkamala & Ochs, 2019, Proposition 2.1), (f, ϕ) is also
L-smooth adaptable. Figure 10 shows the primal and FW gaps up to the 1000th iteration with
ξ = 10

√
λmax(V V T), where λmax(·) is the largest eigenvalue. The primal gap of BregFW is

6.041269e+05, and that of EucFW is 6.041272e+05. In this setting, the primal and FW gaps of
BregFW are slightly better than those of EucFW.
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