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Abstract

Data heterogeneity among Federated Learning (FL) users poses a significant chal-1

lenge, resulting in reduced global model performance. The community has de-2

signed various techniques to tackle this issue, among which Knowledge Distillation3

(KD)-based techniques are common. While these techniques effectively improve4

performance under high heterogeneity, they inadvertently cause higher accuracy5

degradation under model poisoning attacks (known as attack amplification). This6

paper presents a case study to reveal this critical vulnerability in KD-based FL7

systems. We show why KD causes this issue through empirical evidence and use it8

as motivation to design a hybrid distillation technique. We introduce a novel algo-9

rithm, Hybrid Knowledge Distillation for Robust and Accurate FL (HYDRA-FL),10
1, which reduces the impact of attacks in attack scenarios by offloading some of11

the KD loss to a shallow layer via an auxiliary classifier. We model HYDRA-FL12

as a generic framework and adapt it to two KD-based FL algorithms, FedNTD13

and MOON. Using these two as case studies, we demonstrate that our technique14

outperforms baselines in attack settings while maintaining comparable performance15

in benign settings.16

1 Introduction17

Federated Learning (FL) [32] is an emerging machine learning paradigm enabling multiple users’18

collaborative model training without data sharing. Each user, termed a client, only shares their local19

model with a server, which aggregates all local models into a single global model and redistributes20

it to the clients. Due to its decentralized, privacy-preserving, and highly-scalable nature, FL has21

been adopted by Google’s Gboard [2] for next-word prediction, Apple’s Siri [1] for automatic speech22

recognition, and WeBank [43] for credit risk prediction.23

Despite its benefits, FL faces challenges with data heterogeneity [28, 51, 13, 24]. FL performs well24

when client data is independent and identically distributed (IID) and achieves similar convergence25

as a single model trained on all the clients’ data but struggles when clients have diverse data (non-26

IID). In this case, the client’s local data is not a good representation of the overall data distribution27

(unlike an ideal IID case), causing local models to drift away from each other. This drift results28

in a global model with significant accuracy degradation compared to the IID scenario. Numerous29

solutions [25, 20, 22, 53, 23, 46, 15, 27] address data heterogeneity, including Knowledge Distillation30

(KD) [12] to reduce the drift between local models.31

Besides data heterogeneity, FL also faces the issue of Byzantine robustness [14], where untrusted32

clients can inject poisoned models into the aggregator by altering client data (data poisoning [35])33

or client models (model poisoning [11, 4, 33, 45, 5, 3, 41]). Research by [40] shows that model34

1We will release the open source code with the final version of this paper.
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Figure 1: Overview of attack amplification through knowledge distillation. a) In the benign setting,
KD reduces drift and brings benign local models closer to the benign global model. b) In the malicious
setting, KD unknowingly reduces drift between benign local models and the poisoned global model.

poisoning attacks are more potent as they directly manipulate local models. To counteract poisoning35

in FL, various defenses have been developed [6, 47, 50, 7, 26, 9, 8].36

In this work, we identify a critical vulnerability in KD-based FL techniques under model poisoning37

attacks. These techniques unknowingly align benign client models with a poisoned server model38

(Figure 1). We study two such classes of KD-based solutions: FedNTD [20], which reduces the39

loss between not-true logits of the server and client models, and MOON [25], which reduces the40

contrastive loss between the representation vector of the server and client models. While these41

techniques improve global model accuracy in benign settings compared to FedAvg [32] (standard FL42

aggregator), they reduce performance below FedAvg under attack, a phenomenon we term attack43

amplification, especially noticeable at higher heterogeneity levels.44

Motivated by our findings, we propose a Hybrid Knowledge Distillation for Robust and Accurate FL45

(HYDRA-FL) framework for KD-based techniques that restricts attack amplification under poisoning46

attacks while retaining performance in the benign setting. Unlike traditional KD methods that apply47

KD-loss only at the final layer, HYDRA-FL introduces KD-loss at a shallow layer via an auxiliary48

classifier and reduces the KD-loss impact at the final layer. This approach draws inspiration from49

Self-Distillation (SD) [49] and Skeptical Students (SS) [18], but with a distinct focus on enhancing50

robustness against heterogeneity and model poisoning attacks in FL. SD improves model accuracy51

by self-distillation, while SS distills from "nasty teachers" [30] to shallow layers. In contrast, our52

approach uses auxiliary classifiers to enhance FL client robustness against heterogeneity and model53

poisoning attacks. We design a generic loss function adaptable to specific KD-based algorithms.54

Extensive experiments show that HYDRA-FL significantly boosts accuracy over FedNTD and MOON55

in attack settings while maintaining performance in benign settings.56

Contributions. This work addresses the critical issue of attack amplification in KD-based FL57

techniques to counter data heterogeneity. In doing so we make the following contributions:58

• Proving KD amplifies model poisoning: our motivational case study (§3) on two KD-based59

techniques, FedNTD and MOON, shows that KD improves accuracy in benign settings but60

helps the malicious clients propagate poisoning through the KD-loss in adversarial settings.61

We empirically and theoretically show that this attack amplification issue is inherent to any62

technique aligning client outputs/representations with the server.63

• Designing HYDRA-FL: Using our observations as a guideline, we design HYDRA-FL (§4)64

to prevent attack amplification while retaining performance in the benign setting. HYDRA-65

FL is formulated as a general loss function adaptable to any FL algorithm to use as its local66

model training objective.67

• Implementation and Evaluation: we adapt HYDRA-FL to FedNTD and MOON and68

modify their local training objectives (§5). Our qualitative and quantitative analysis (§6)69

shows HYDRA-FL achieves higher accuracy in attack settings and maintains accuracy in70

benign settings.71
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2 Background and Related Work72

2.1 Federated Learning (FL)73

In FL [14, 32], a service provider, called server, trains a global model, θg, on the private data from74

multiple collaborating clients, all without directly collecting their data. The server selects n out of75

total N clients in every FL round and shares the most recent global model (θtg) with them, where t is76

the round number. Then, a client k uses their local data Dk to compute an update∇t
k and shares it77

with the server. The server aggregates these updates using some aggregation rule, like FedAvg [32]78

algorithm. In FedAvg, a client k fine-tunes θtg on their local data using stochastic gradient descent79

(SGD) for a fixed number of local epochs E, resulting in an updated local model θtk. The client then80

computes their update as the difference∇t
k = θtk− θtg and shares∇t

k with the server. Next, the server81

computes an aggregate of client updates, fagg using mean, i.e.,82

∇t
agg = fmean(∇t

{k∈[n]}). (1)

The server then updates the global model of the (t+ 1)th round using SGD and server learning η as:83

θt+1
g ← θtg + η∇t

agg (2)

2.1.1 Data Heterogeneity in FL84

Data heterogeneity is a well-explored problem [28, 51, 13, 24] in FL. Each client in FL generates85

its data, leading to local data distributions that vary across clients and do not accurately represent86

the global data distribution. By extension, a global model learned by aggregating local models87

using FedAvg may not be the best representation of all the client’s local data. Studies have shown88

that this data heterogeneity degrades performance and have proposed various methods to address89

this issue [25, 20, 22, 53, 23, 46, 15, 27]. This degradation is more prominent in the presence of90

poisoning attacks. Research on poisoning attacks in FL has demonstrated that such attacks become91

more successful under high heterogeneity [11, 41]. This increased risk is because the malicious92

clients can more easily hide between drifted benign client models, making it difficult for the server93

to differentiate between heterogeneous benign clients and malicious ones. [16] highlights that94

overlooking this heterogeneity is a critical oversight in FL defense evaluations.95

2.1.2 Poisoning in FL96

FL is vulnerable to poisoning attacks [6, 4, 5, 3, 33, 11, 31, 45, 35, 41], where malicious clients aim97

to compromise the training process by degrading the global model’s performance. These attacks98

come in various forms: In data poisoning [3], malicious clients poison their local data to introduce a99

backdoor in the local model. This backdoor then propagates to the global model upon aggregation.100

In model poisoning [11, 4, 33, 45, 5, 3, 41], malicious clients perturb their local models so that,101

when aggregated, the global model is poisoned. Poisoning attacks can be further classified based on102

their targets: If the performance degradation is on specific inputs, the attack is termed as targeted103

poisoning [5, 3], and if it is on all inputs, then it is termed as untargeted poisoning [11, 4, 33, 31, 45].104

We explain the attacks used in this paper in §C.2.105

2.2 Knowledge Distillation (KD)106

Knowledge Distillation (KD) [12] transfers knowledge from a large, complex model (teacher) to107

a smaller, more computationally efficient model (student). This process involves distilling the108

teacher’s rich and intricate information into the student by aligning their predictions. Formally,109

if the teacher and student models produce the output probabilities yit and yis respectively for the110

ith input (xi, yi), KD aims to match these probabilities by applying the Kullback-Leibler (KL)111

divergence between them. The KL-divergence between their softened probabilities is given by:112

KL(softmax(yit/τ)||softmax(yis/τ), where τ is the temperature parameter that softens the proba-113

bilities. The overall KD loss function combines this KL-divergence with the usual loss function such114

as cross-entropy (CE) loss with β (balances the importance of the KL-divergence and CE loss) as:115

L = (1− β) · LCE(y
i
s, y

i) + β · LKL(softmax(yis/τ)||softmax(yit/τ)) (3)
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KD in FL is becoming essential as it addresses critical challenges such as non-IID data distributions,116

enhances model performance, accelerates convergence, reduces communication overhead, and im-117

proves robustness by making the global model learn from an ensemble of local models [10, 22, 29, 52].118

In FL, data is often non-IID across clients, leading to significant discrepancies in local models. KD119

mitigates these discrepancies by aligning the local models with the global model, ensuring that120

the global model captures a more generalized representation of the data. The general approach is121

to reduce the local model drift by improving the aggregation through distillation using unlabeled122

auxiliary data. However, the auxiliary data may not always be available, and methods have also been123

developed to enable KD without such data [48, 53].124

3 Attack Amplification through Knowledge Distillation125

Hypothesis. KD-based techniques in FL improve accuracy in non-adversarial settings but result126

in more significant accuracy degradation under model poisoning attacks compared to the baseline127

techniques such as FedAvg.128

Motivational case study. In this case study, we compare FedAvg against two distinct KD-based129

solutions addressing the local model drift from non-IID. MOON [25] uses model-contrastive learning130

to align local and global model representations, while FedNTD [20] uses KL-divergence to align131

not-true logits of client models with those of the server. FedNTD penalizes prediction divergence132

measured through distillation loss, improving knowledge transfer and stability, while MOON pe-133

nalizes representation divergence measured through contrastive loss, enhancing robustness and134

generalization. This comparison will help us understand the trade-offs of using KD in FL, especially135

under adversarial conditions. Throughout this paper, benign conditions mean that no attacks are136

present, while adversarial conditions mean that model poisoning attacks are present. We implement137

the same settings and hyperparameters for FedAvg as for MOON and FedNTD to ensure a fair138

comparison, so FedAvg results may vary between these techniques. This is not an inconsistency. We139

do not directly compare FedNTD to MOON unless stated otherwise, as the original FedNTD work140

already did so. Our goal is to test how adversarial settings affect these two fundamentally different141

techniques similarly, demonstrating that attack amplification is inherent to KD and not specific to a142

particular technique.143
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Figure 2: Impact of increasing KL-divergence loss for Fed-
NTD and contrastive loss for MOON on accuracy.

Adversarial conditions. We simulate144

untargeted model poisoning attacks145

using techniques from [41, 11]. To146

observe their effects on accuracy in147

both benign and adversarial settings,148

we vary key hyperparameters — LD-149

divergence loss coefficient β for Fed-150

NTD and contrastive loss coefficient151

µ for MOON. The baseline for com-152

parison is FedAvg with β = 0 and153

µ = 0. To ensure high heterogeneity154

in both settings, the Dirichlet distribu-155

tion [34] parameter α is fixed at 0.1.156

Findings. In Figures 2(a) and 2(b), we present three key results: benign accuracy (blue), post-157

attack accuracy (orange), and the accuracy drop (green). We make the following observations from158

increasing β and µ are as follows: (1) the global model accuracy improves in benign settings; (2)159

post-attack accuracy decreases; and (3) accuracy drop increases. Our analysis shows a significant160

trade-off: the very mechanisms that improve performance in benign conditions (increasing β and µ)161

also make the models more vulnerable to adversarial attacks.162

What causes attack amplification? The fundamental nature of KD-based FL methods aims to align163

local models with the global model. In benign scenarios, these methods significantly outperform164

FedAvg [25, 20]. However, in the presence of model poisoning attacks, this model alignment process165

inadvertently forces local models to align its representation/predictions to the poisoned global model,166

amplifying the attack’s impact. This is illustrated in Figure 1, where clients unknowingly distill167

knowledge from a poisioned server model.168
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Formally: Consider a set of n clients c1, c2, . . . , cn with m being malicious. Using an aggregation169

rule such as FedAvg, the server aggregates updates from both benign (∇i∈[m+1,n]) and malicious170

(∇m
i∈[m]) clients:171

∇g = fagr(∇m
i∈[m] ∪∇i∈[m+1,n]) (4)

When m = 0, the server model∇b
g is benign. For m ̸= 0, the server model∇′

g is poisoned, deviating172

from the ideal unpoisoned global model due to the nature of these attacks [41, 11, 40]. Aligning local173

models with a poisoned global model reduces gradient diversity, making local models more similar174

to the poisoned global model [20] through KL-divergence or contrastive loss. We rewrite Equation 3175

to formalize the loss function for an FL client, using KD, where the client is the student with output176

ŷc, and the server is the teacher with output ys:177

L = LCE(ŷc, y) + βLKL(ŷc, ys) (5)

Note that for the sake of derivation here, we are using ŷc, which represents the generic client model178

output. In the case of FedNTD, it can be replaced by ỹc that represents the not-true logits of the client179

model, and in the case of MOON, it can be replaced by zc that represents the client model’s high180

dimensional representation.181

In benign scenarios, this loss function (L = F(β)) decreases monotonically with β because KD182

brings local models closer to an unpoisoned global model. Conversely, in adversarial scenarios, it183

increases with β because KD brings local models to the poisoned global model. We can write the184

relation of this loss function with β as:185

L(β) is
{

monotonically decreasing, m = 0

monotonically increasing, m ̸= 0
(6)

Then, the derivative of the loss function is:186

dL
dβ

=

{
< 0, m = 0

> 0, m ̸= 0
(7)

Our derivation shows that while the distillation process decreases loss in the absence of malicious187

clients, it increases loss in their presence, thereby leading to reduced global model accuracy. This188

formal analysis highlights the need for a solution that mitigates the accuracy degradation under189

adversarial conditions while retaining the benefits of KD under benign conditions.190

Impact of Heterogeneity.191
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Figure 3: Impact of the heterogeneity parameter, α in benign and
adversarial settings. We use the Dirichlet distribution where a
higher α means lower heterogeneity.

Now, we explore the effect of het-192

erogeneity on the performance193

of FedNTD, MOON, and Fe-194

dAvg in both benign and adver-195

sarial conditions to gain deeper196

insights into the role of hetero-197

geneity in the KD performance198

gain vs. vulnerability tradeoff.199

As shown in Figure 3(a), several200

interesting observations emerge.201

First, both FedNTD and FedAvg202

achieve higher accuracy at lower203

heterogeneity levels (indicated204

by higher α). In benign settings,205

FedNTD consistently outperforms FedAvg. However, the trend reverses in adversarial settings:206

FedAvg achieves higher accuracy than FedNTD, except at α = 0.5. A similar pattern is observed207

with MOON in Figure 3(b), where FedAvg outperforms MOON across all heterogeneity levels in208

adversarial settings. In the benign setting, as expected, MOON slightly outperforms FedAvg at high209

heterogeneity. This comparison highlights again how the alignment mechanisms in FedNTD and210

MOON with higher heterogeneity exacerbate the vulnerability of KD methods to attacks.211
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KD-loss and incorporating shallow KD-loss at an earlier shallow layer via an auxiliary classifier.

4 HYDRA-FL: Hybrid Knowledge Distillation for Robust and Accurate FL212

4.1 Generic Formulation213

In this section, we propose Hybrid Knowledge Distillation for Robust and Accurate FL (HYDRA-FL),214

a technique to mitigate the attack amplification caused by KD in FL. We take a hybrid distillation215

approach, applying KD-loss at both the final and a shallow layer of the client model (Figure 4).216

This method incorporates shallow distillation, which applies KD-loss at an intermediate layer and217

helps reduce the impact of poisoning by preventing over-reliance on final layer alignment. Shallow218

distillation previously used to handle nasty teachers trained adversarially [18], to reduce the impact of219

poisoning. In summary, shallow layers capture basic features, and shallow distillation ensures these220

features are robustly learned, protecting the model from adversarial influences that could corrupt221

deeper layers and final outputs. We first formulate the generic loss function of an FL client using KD222

in HYDRA-FL as:223

L = LCE(yc, y) +
β

b
LKD(yc, ys) + γLKD(yaux, ys) (8)

This loss function has three key components:224

1. Cross-entropy loss (LCE(yc, y)) is the loss between the client’s prediction yc and the target225

y, drives the client model to learn from its own data, ensuring it captures in-distribution226

knowledge such as features and patterns specific to its data.227

2. Diminished KD loss (βbLKD(yc, ys)) is the loss between the client’s output/representation228

yc and the server’s output/representation ys
2. It is a strategic reduction of the KD loss to229

ensure that the local model benefits from the global model’s knowledge while remaining230

robust against adversarial attacks. This approach helps balance the trade-offs between231

learning efficiency and model integrity. In practice, this is achieved by introducing a232

diminishing factor b to the KD loss at the client model’s output layer to diminish the233

poisoning effect. The KD loss coefficient β is divided by b, effectively reducing its weight234

in the total loss calculation, thus reducing its influence on the local model’s training. This235

diminishing factor is essential, as shown later in §6.2 and Figure 7, where reducing the β236

yields better results.237

3. Shallow distillation loss (γLKD(yaux, ys)) is applied at a shallow layer of the local model,238

enhancing robustness without heavily relying on the final layer alignment. This loss, between239

the auxiliary classifier’s output/representation yaux at the client model’s shallow layer and240

the server’s output/representation ys, is scaled by γ to control the amount of distillation.241

This approach reduces the impact of poisoning on the client model. Simply reducing the242

KD-loss in FedNTD or MOON improves post-attack accuracy but reduces benign setting243

accuracy, as shown in Figure 2. Our shallow distillation loss helps maintain the balance244

between accuracy in benign settings and lowering the impact of poisoning on the client245

model in adversarial settings.246

Differences with previous works.The key difference between our work and [18] lies in our approach247

to shallow distillation. [18] aims to distill from models that are designed to be undistillable, a.k.a248

2yc and ys in generic LKD loss can be either outputs or representations, because the method can involve
either type of comparison (e.g., MOON uses representation-based loss while FedNTD has output-based loss.)
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nasty teachers [30]. While both use hybrid shallow distillation, [18] completely removes the KD-loss249

from the model’s output layer and uses self-distillation to compensate for performance loss due to250

shallow distillation. In contrast, we retain a scaled-down KD-loss at the output layer. We found that251

completely removing the KD-loss at the output layer may cause a more negative impact than keeping252

it in a reduced form. Additionally, the untargeted poisoning is different from the poisoning in the253

"nasty teacher" paper [30]. The "nasty teacher" performs near-perfect under normal conditions unless254

a malicious model distills from it. In untargeted FL poisoning, the global model is poisoned and255

performs poorly regardless of its use for distillation.256

In HYDRA-FL, we use both final layer and shallow layer distillation to enhance robustness. Final257

layer distillation aligns client outputs with server outputs for consistent predictions, whereas the258

shallow layer distillation aligns intermediate representations to improve robustness against attacks.259

This dual approach reduces vulnerability to poisoning attacks, enhances learning by leveraging260

knowledge transfer from multiple layers, and maintains high accuracy in benign settings while being261

resilient under attack conditions.262

4.2 Adapting HYDRA-FL to State-of-Art Techniques263

In this section, we will adapt our generic HYDRA-FL to two state-of-the-art KD techniques for FL.264

FedNTD with shallow distillation and auxiliary classifiers. We modify the FedNTD base model265

by introducing auxiliary classifiers. The base model includes two convolutional layers, a linear layer,266

and a classification layer. Auxiliary classifiers, each consisting of a linear layer (hidden dimension267

512) followed by a classification layer, are added after each convolutional layer. We update the loss268

function to include a shallow-distillation term, representing the KL-divergence loss between the269

not-true logits of an auxiliary classifier and the global model. The final loss function is a weighted270

sum of the standard cross-entropy loss, KL-divergence loss between the not-true logits of the global271

model and the client model, and the KL-divergence loss between the not-true logits of the global272

model and the auxiliary classifier. The revised loss function in Equation 8 for FedNTD is:273

L = LCE(yc, y) +
β

b
LKL(ỹc, ỹs) + γLKL(ỹaux, ỹs) (9)

Here y is the target label, yc is the client model’s output, ỹs, ỹc, and ỹaux are the client model’s,274

server model’s, and auxiliary classifier’s not-true logits respectively.275

MOON with shallow distillation and auxiliary classifiers. MOON base model has two convolution276

layers, two linear layers, and an output classification layer. We insert auxiliary classifiers after each277

convolution layer. Each auxiliary classifier has two linear layers, with a hidden dimension of 256 and278

an output dimension of 10. We adapt Equation 8 to MOON to compute the contrastive loss at the279

hidden representation layer of the auxiliary classifier as:280

L = LCE(yc, y) +
µ

b
Lcon(zc, zs) + γLcon(zaux, zs) (10)

Here y is the target label, yc is the client’s output, zc is the representation from the client’s final281

layer, zs is the representation from the server’s final layer, zaux is the representation from the client’s282

auxiliary classifier, and ys is the server model’s output. For simplicity, we do not write the previous283

round’s representation in the loss function here.284

5 Experimental Results285

5.1 Experimental Settings286

Datasets and Models: We conduct our experiments over three popular datasets: MNIST, CIFAR10,287

and CIFAR100. To ensure a fair comparison with previous works, MOON and FedNTD, we utilized288

the same models and hyperparameters they used. Specifically, we incorporated our algorithm as a289

simple modification into their publicly available codes [21, 37] (more details in Appendix D).290

5.2 Shallow Not-True Distillation291

Our hybrid shallow not-true distillation technique significantly improves post-attack accuracy over292

the baseline FedNTD. As shown in Table 1, we achieve higher post-attack accuracy across all293
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Table 1: Test accuracy for three techniques on three datasets. In the no-attack setting, (↑ ↓) shows
comparison to FedAvg. In the attack setting, we use bold if our technique outperforms FedNTD.

Dataset MNIST CIFAR10 CIFAR100
α = 0.05 α = 0.1 α = 0.5

Techniques no attack attack no attack attack no attack attack no attack attack no attack attack
Fedavg 92.12 74.48 44.69 31.27 54.67 35.67 70.57 48.27 26.17 12.92

FedNTD 93.03↑ 58.09 46.94↑ 21.72 56.95↑ 32.61 71.79↑ 52.51 29.1↑ 13.92
HYDRA-FL(Ours) 92.69↑ 76.67 46.92↑ 25.15 57.12↑ 34.25 71.22↑ 52.57 28.9↑ 14.33

Table 2: Test accuracy for three techniques on three datasets. In the no-attack setting, (↑ ↓) shows
comparison to FedAvg. In the attack setting, we use bold if our technique outperforms MOON.

Dataset MNIST CIFAR10 CIFAR100
α = 0.1 α = 0.5 α = 5

Methods no attack attack no attack attack no attack attack no attack attack no attack attack
Fedavg 88.02 77.55 57.76 40.9 63.14 60.2 71.19 68.38 28.36 24.21
MOON 91.13↑ 72.32 58.8↑ 39.9 63.34↑ 57.17 70.95↓ 67 29.34↑ 23.81

HYDRA-FL(Ours) 92.04↑ 76.65 60.1↑ 43.6 63.32↑ 59.93 70.55↓ 68.4 29.48↑ 25.18

heterogeneity levels. By retaining a diminished NTD loss at the output layer, we maintain similar294

accuracy to FedNTD in no-attack scenarios and, in some cases, even achieve slightly higher accuracy.295

We also compare no-attack and post-attack accuracies for FedAvg, the foundational algorithm for296

many FL aggregation methods.297

5.3 Shallow MOON298
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Figure 5: HYDRA-FL vs. MOON and FedAvg when auxiliary
classifiers are placed at different shallow layers.

Our shallow-distillation design299

effectively prevents attack ampli-300

fication in MOON while main-301

taining nearly the same no-attack302

accuracy. Table 2 shows that303

we achieve higher post-attack ac-304

curacy across all heterogeneity305

levels. Our technique also out-306

performs FedAvg, except in a307

few scenarios. Techniques like308

MOON are designed to enhance accuracy under high heterogeneity (α = 0.1). HYDRA-FL309

achieves a no-attack [attack] accuracy of 60.1[43.6], surpassing both MOON (58.8[39.9]) and FedAvg310

(57.76[40.9]).311

6 Analysis312

In this section, we provide an in-depth analysis of HYDRA-FL. We begin with a qualitative analysis313

using t-distributed stochastic neighbor embedding (t-SNE [42]) plots to visualize the representations314

of the models. Then, we explore the impact of different design choices through ablation studies,315

focusing on the choice of the shallow layer for auxiliary classifiers and the distillation coefficients.316

6.1 Qualitative Analysis317

We show the t-SNE plots of the representations (Figure 6) generated by the client model for FedAvg,318

MOON, and HYDRA-FL for both attack and no-attack scenarios. The t-SNE plots show the classes319

as clusters. In the MOON attack scenario, the deviation from the no-attack scenario is much higher320

than the deviation between HYDRA-FL with and without attack, as evident from the spread of the321

class clusters, especially along the x-axis.322

6.2 Ablation Study323

Impact of choice of the shallow layer. Figure 5 illustrates the impact of the choice of the layer at324

which we insert our auxiliary classifier. We represent these choices by HYDRAFL-S1 and HYDRAFL-325

S2, where the auxiliary classifier is inserted after the first and second convolutional layers, respectively.326
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Figure 6: T-SNE visualizations of CIFAR10 on local model’s hidden representations (α = 0.5) on
FedAvg, MOON, and HYDRA-FL (ours). The attack vs. no-attack plot shows the deviation of
the attack clusters from the no-attack clusters. Visually we can see MOON-attack has the greatest
deviation, particularly along the x-axis, compared to FedAvg and HYDRA-FL.

We compare them in both attack and no-attack settings with simple MOON and FedAvg. In Fig-327

ure 5(a), both HYDRAFL-S1 and HYDRAFL-S2 outperform other techniques at low heterogeneity328

in the absence of an attack but slightly underperform in low heterogeneity when β = 5. Figure 5(b)329

shows that both HYDRAFL-S1 and HYDRAFL-S2 achieve higher post-attack accuracy at all het-330

erogeneity levels, with HYDRAFL-S2 giving a slightly higher accuracy than HYDRAFL-S1. The331

benefit from the contrastive loss reduces as we go shallower, so an optimal balance is necessary.332
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Figure 7: Comparison of performance of
FedNTD-S with different values of β

333

Impact of distillation coefficients. We examine the im-334

pact of distillation coefficients on the performance of Fed-335

NTD and HYDRA-FL. Figure 7 shows the post-attack ac-336

curacies with two different values of the diminishing factor337

b = 1, 4, resulting in output-layer NTD-loss coefficients338

of β = 1 and β = 0.25. Diminishing the coefficient β339

leads to improved performance, with a significant increase340

in post-attack accuracy for β = 0.25 at high heterogeneity341

(α = 0.05, 0.1). As demonstrated in §3, β contributes to342

attack amplification in FedNTD. Reducing it while per-343

forming distillation at the auxiliary classifier yields the344

best performance. For example, at α = 0.05, HYDRA-FL345

achieves 25.15% accuracy at β = 1, but a much higher346

accuracy of 28.81% at β = 0.25. Similar improvements347

are observed at other heterogeneity levels.348

7 Conclusion349

In this paper, we first identified a critical issue in KD-based FL techniques that aim to tackle350

data heterogeneity: in the presence of model poisoning attacks, these techniques help the attacker351

amplify its effect, leading to reduced global model performance. We presented empirical evidence352

and theoretical reasoning to back this claim. This motivated us to propose HYDRA-FL: a hybrid353

knowledge distillation technique for robust and accurate FL technique that aims to tackle both data354

heterogeneity and model poisoning, two of the biggest problems in FL. Through extensive evaluation355

across three datasets and comparing with baseline techniques, FedNTD and MOON, we showed that356

HYDRA-FL achieves superior results.357
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Appendix488

We provide additional information for our paper, HYDRA-FL: Hybrid Knowledge Distillation for489

Robust and Accurate Federated Learning, in the following order:490

• Limitations and Future Work (Appendix A)491

• Terminology/Techniques (Appendix B492

• Adversarial Settings (Appendix C)493

• Experimental Setup (Appendix D)494

• Additional Results (Appendix E495

A Limitations and Future Work496

Federated Learning can have very diverse setups, especially FL in an adversarial setting. We can have497

many setup combinations as we can choose between different aggregation rules, attacks, defenses,498

datasets, data modalities, data distribution types, data heterogeneity levels, number of clients, etc.499

Therefore, evaluating against all combinations of these settings is well beyond the scope of one paper.500

Hence, for this paper, we chose only a few combinations of FL settings and tried our best to show that501

the problem we identified using two representative FL techniques will also exist in similar techniques.502

Similarly, we laid out our solution as a general framework to achieve good performance under high503

heterogeneity and model poisoning simultaneously. To show generalizability, we tailored it to our two504

representative techniques, but it would be interesting to see how our solution adapts to and performs505

with other FL techniques in future works. Also, we have only used unimodal, i.e., image datasets for506

our evaluations. This was done to stay consistent with the implementations of the techniques chosen507

for our case study, FedNTD and MOON. However, the language modality is becoming popular508

now, and multimodal models such as CLIP [38] are being widely used as they achieve superior509

performance by combining both image and language modalities. We hope to incorporate language510

and multimodal models in our future works.511

B Terminology/Techniques512

B.1 FedNTD513

FedNTD [20] is a KD-based technique that tackles the problem of data heterogeneity in FL. They514

first demonstrate that Data Heterogeneity causes local models to forget out-distribution knowledge,515

i.e., the data samples not part of the client’s local data. Therefore, to preserve the out-distribution516

knowledge, they introduce not-true distillation, which basically modifies the loss function for the517

client model’s local objective. FedNTD’s loss function is given by:518

L = LCE(yc, y) +
β

b
LKL(ỹc, ỹs) (11)

Here y is the target label, yc is the client model’s output, ỹs and ỹc are the client model’s and the519

server model’s not-true logits, respectively.520

B.2 MOON521

MOON [25] also aims to solve the problem of data heterogeneity in FL. They do so by reducing522

the distance between the representation learned by the local model with that of the global model.523

MOON’s loss function is given by:524

L = LCE(yc, y) +
µ

b
Lcon(zc, zs) (12)

Here y is the target label, yc is the client’s output, zc is the representation from the client’s final layer,525

zs is the representation from the server’s final layer, and ys is the server model’s output.526
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B.3 Shallow Layer and Shallow Distillation527

Shallow layer. in a neural network refers to one of the early layers close to the input, as opposed to528

deeper layers that are closer to the output. In the context of a deep learning model, shallow layers529

generally capture low-level features, such as edges in images or simple patterns in data, while deeper530

layers capture more complex, abstract representations.531

Shallow distillation. is a technique used in KD where the knowledge transfer happens at a shallow532

layer of the neural network rather than at the final output layer. In traditional KD, the student model533

tries to mimic the teacher model’s output at the final layer. In shallow distillation, an additional534

distillation loss is applied at one of the shallow layers of the student model. This helps the student535

model learn intermediate representations from the teacher, providing a more comprehensive learning536

experience. By aligning these intermediate representations, the student model gains a more robust537

understanding of the data, leading to better generalization.538

Robustness against poisoning. Shallow layers are less affected by adversarial attacks that target the539

final output of the model. Applying distillation at a shallow layer reduces the impact of a poisoned540

global model because the knowledge transferred is more fundamental and less influenced by the541

adversarial manipulations that typically affect the deeper layers.542

C Adversarial Settings543

Here we present the details of the adversarial settings of our experiments. We explain our threat544

model, which attacks we are using and why we are using them, and the defense we are using.545

C.1 Threat Model546

Goal: Our untargeted poisoning adversary controls m out of N clients to manipulate the global547

model to misclassify all the inputs it can during testing. Unless stated otherwise, we assume 20%548

malicious clients. Most defense works assume high percentages of malicious clients to demonstrate549

that their defenses work even in highly adversarial settings. Hence, although unreasonable in practical550

FL settings [40], we follow prior defense works and use 20% malicious clients.551

Knowledge: Following most of the defense works, we assume that the adversary knows the robust552

AGR that the server uses. As assumed by most works, the adversary knows the server’s AGR. To553

test the efficacy of our technique with a strong adversary, we consider the case where the adversary554

has access to not only the malicious clients’ data but also the benign clients’ data. This enables us to555

determine the upper bound of the efficacy of our technique.556

Capabilities: Our adversary is strong enough to directly manipulate model updates of the malicious557

clients it controls. While poisoning attacks come in various types and flavors, we restrict ourselves558

to only model poisoning attacks. This is because model poisoning attacks are much stronger. It has559

been shown in [40] that model poisoning attacks are much stronger because they directly perturb the560

local model parameters. In contrast, data poisoning attacks perturb the data, subsequently perturbing561

the local and global models upon aggregation. Poisoning attacks can also be classified based on their562

error specificity. If the goal is to misclassify certain classes only, then it is a targeted attack and is563

often achieved by inserting a backdoor in the model that activates only for certain inputs. On the564

other hand, an untargeted attack indiscriminately lowers the accuracy for all inputs.565

C.2 Attacks we use in our evaluation566

We use two model poisoning attacks for our evaluations. By testing which attack worked well, we567

chose the Stat-Opt attack for MOON and the Dyn-Opt attack for FedNTD. Below, we briefly explain568

how they work:569

• Stat-Opt [11]: gives an untargeted model poisoning framework and tailors it to specific570

defenes such as TrMean [47], Median [47], and Krum [6]. The adversary first calculates the571

mean of the benign updates, ∇b, and finds the static malicious direction w = −sign(∇b).572

It directs the benign average along the calculated direction and scales it with γ to obtain the573

final poisoned update, −γw.574
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• Dyn-Opt [41]: also gives an untargeted model poisoning framework and tailors it to specific575

defenses, similar to Stat-Opt but differs in the dynamic and data-dependent nature of576

the perturbation. The attack first computes the mean of benign updates, ∇b, and a data-577

dependent direction, w. The final poisoned update is calculated as ∇‘ = ∇b + γw, where578

the attack finds the largest γ that can bypass the AGR. They compare their attack with579

Stat-Opt and show that the dataset-tailored w and optimization-based scaling factor γ make580

their attack much stronger.581

C.3 Defense we use in our evaluation582

We use the Trimmed Mean defense in our evaluations. Trimmed Mean [47, 44] is a foundational583

defense used in advanced AGRs [7, 50, 41]. The server receives model updates from each client, sorts584

each input dimension j, discards the m largest and smallest values (where m indicates malicious585

clients), and averages the rest.586

D Experimental Setup587

Models: For MOON, we use a base encoder with two 5× 5 convolutional layers, each followed by588

a 2× 2 max pooling layer and two fully connected layers with ReLU activation. The base encoder is589

followed by a projection head with an output dimension of 256. For FedNTD, we use a model (similar590

to the one in [32]) having two convolutional layers followed by a linear layer and a classification591

layer. For FedNTD, we test with different values and settle upon a diminishing factor b = 1 and γ=2.592

For MOON, we set β = 0 and set γ = 1. We used PyTorch [36] for our implementation on an 8GB593

NVIDIA RTX 3060 Ti GPU. Each run of FedNTD and MOON took about 2-3 hours on our machine.594

FL Settings: For FedNTD, we use 100 clients with a sampling ratio of 0.1, i.e., 10 clients are595

selected every round. We use momentum SGD with an initial learning rate of 0.1, weight decay of596

1× e−5, batch size of 50, and momentum of 0.9. Each run consists of 200 rounds with 5 local epochs.597

For MOON, we use 10 clients with a sampling ratio of 1. We use SGD with an initial learning rate598

of 0.01, weight decay of 1× e−5, batch size of 64, and momentum of 0.9. Each run consists of 30599

rounds with 10 local epochs, sufficient for convergence.600

Data Partitioning: We use the widely used Dirichlet [34] distribution to generate the non-IID601

partitioning of data between clients. Dirichlet distribution works by sampling pk ∼ DirN (α) and602

assigns pk,j proportion of samples of class k to client j. A lower value of α corresponds to a higher603

level of heterogeneity since it means that most of the samples of a certain class belong to one client.604

Conversely, at a higher value of α, the class samples are more evenly distributed between the clients.605

Also, a characteristic of the Dirichlet distribution is that both local dataset size and local per-class606

distribution vary across clients.607

Datasets: The three datasets we use in our experiments are:608

• MNIST [19]: MNIST is a 10-class digit image classification dataset, which contains 70,000609

grayscale images of size 28 × 28. We divide all data among FL clients (100 for FedNTD610

and 10 for MOON) using the Dirichlet [39] distribution.611

• CIFAR10 [17]: CIFAR10 is a 10-class classification task with 60,000 total RGB images,612

each of size 32 × 32. Each class has 6000 training images and 1000 testing images. We613

divide all the data among 100 clients using the Dirichlet distribution, a popular synthetic614

strategy to generate FL datasets.615

• CIFAR100 [17]: CIFAR100 is similar to CIFAR10, except that it is a 100-class classifica-616

tion task where each class has 600 images of size 32× 32. There are 500 training images617

and 100 test images per class. Like other datasets, we also partition this dataset using the618

Dirichlet distribution.619

E Additional Results620

In this section, we present some of the additional results we have obtained.621
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Table 3: FedNTD

Dataset MNIST CIFAR10 CIFAR1000.05 0.1 0.3 0.5
Techniques no attack attack no attack attack no attack attack no attack attack no attack attack no attack attack

Fedavg 92.12 74.48 44.69 31.27 54.67 35.67 66.34 42.53 70.57 48.27 26.17 12.92
MOON 93.03 58.09 46.94 21.72 56.95 32.61 68 46.72 71.79 52.51 29.1 13.92

Ours 92.69 76.67 46.92 25.15 57.12 34.25 68.1 47.03 71.22 52.57 28.9 14.33

E.1 FedNTD622

For visual symmetry, we did not include the full table in §5, but we had also run our FedNTD623

experiments at α = 0.3. We show the full FedNTD results in Table 3. Here, we can see that at624

at α = 0.3 too, we achieve superior results FedAvg and FedNTD in both benign and adversarial625

conditions.626

E.2 MOON627

We also ran ablation with MNIST for different shallow layers and diminishing coefficients. We show628

the results in Table 4, where we can see that at a lower µ, i.e., higher diminishing factor, we achieve629

the best results. A lower µ does give us better no-attack accuracy, but we lose a lot in the attack630

scenario.631

Method µ no-attack attack
HYDRA-FL s1 1 94.41 68.68
HYDRA-FL s2 1 91.78 68.13
HYDRA-FL s1 0.3 92.03 72.35
HYDRA-FL s2 0.3 92.92 73.55
HYDRA-FL s1 0.1 92.04 76.65
HYDRA-FL s2 0.1 93.93 72.54

Table 4: Comparison of HYDRA-FL for MOON with different distillation coefficients.
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NeurIPS Paper Checklist632

1. Claims633

Question: Do the main claims made in the abstract and introduction accurately reflect the634

paper’s contributions and scope?635

Answer: [Yes]636

Justification: Yes, we have ensured that the main claims in the abstract and introduction637

accurately reflect the paper’s contributions and scope.638

Guidelines:639

• The answer NA means that the abstract and introduction do not include the claims640

made in the paper.641

• The abstract and/or introduction should clearly state the claims made, including the642

contributions made in the paper and important assumptions and limitations. A No or643

NA answer to this question will not be perceived well by the reviewers.644

• The claims made should match theoretical and experimental results, and reflect how645

much the results can be expected to generalize to other settings.646

• It is fine to include aspirational goals as motivation as long as it is clear that these goals647

are not attained by the paper.648

2. Limitations649

Question: Does the paper discuss the limitations of the work performed by the authors?650

Answer: [Yes] .651

Justification: Yes, we have discussed the limitations and future work in Appendix A.652

Guidelines:653

• The answer NA means that the paper has no limitation while the answer No means that654

the paper has limitations, but those are not discussed in the paper.655

• The authors are encouraged to create a separate "Limitations" section in their paper.656

• The paper should point out any strong assumptions and how robust the results are to657

violations of these assumptions (e.g., independence assumptions, noiseless settings,658

model well-specification, asymptotic approximations only holding locally). The authors659

should reflect on how these assumptions might be violated in practice and what the660

implications would be.661

• The authors should reflect on the scope of the claims made, e.g., if the approach was662

only tested on a few datasets or with a few runs. In general, empirical results often663

depend on implicit assumptions, which should be articulated.664

• The authors should reflect on the factors that influence the performance of the approach.665

For example, a facial recognition algorithm may perform poorly when image resolution666

is low or images are taken in low lighting. Or a speech-to-text system might not be667

used reliably to provide closed captions for online lectures because it fails to handle668

technical jargon.669

• The authors should discuss the computational efficiency of the proposed algorithms670

and how they scale with dataset size.671

• If applicable, the authors should discuss possible limitations of their approach to672

address problems of privacy and fairness.673

• While the authors might fear that complete honesty about limitations might be used by674

reviewers as grounds for rejection, a worse outcome might be that reviewers discover675

limitations that aren’t acknowledged in the paper. The authors should use their best676

judgment and recognize that individual actions in favor of transparency play an impor-677

tant role in developing norms that preserve the integrity of the community. Reviewers678

will be specifically instructed to not penalize honesty concerning limitations.679

3. Theory Assumptions and Proofs680

Question: For each theoretical result, does the paper provide the full set of assumptions and681

a complete (and correct) proof?682

Answer: [NA] .683
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Justification: There is no theoretical result in this paper that requires a full set of assumptions684

and correct proof.685

Guidelines:686

• The answer NA means that the paper does not include theoretical results.687

• All the theorems, formulas, and proofs in the paper should be numbered and cross-688

referenced.689

• All assumptions should be clearly stated or referenced in the statement of any theorems.690

• The proofs can either appear in the main paper or the supplemental material, but if691

they appear in the supplemental material, the authors are encouraged to provide a short692

proof sketch to provide intuition.693

• Inversely, any informal proof provided in the core of the paper should be complemented694

by formal proofs provided in appendix or supplemental material.695

• Theorems and Lemmas that the proof relies upon should be properly referenced.696

4. Experimental Result Reproducibility697

Question: Does the paper fully disclose all the information needed to reproduce the main ex-698

perimental results of the paper to the extent that it affects the main claims and/or conclusions699

of the paper (regardless of whether the code and data are provided or not)?700

Answer: [Yes]701

Justification: Yes, we have fully disclosed the information needed to reproduce the main702

experimental results of the paper. They are written in Section 5 and Appendix D.703

Guidelines:704

• The answer NA means that the paper does not include experiments.705

• If the paper includes experiments, a No answer to this question will not be perceived706

well by the reviewers: Making the paper reproducible is important, regardless of707

whether the code and data are provided or not.708

• If the contribution is a dataset and/or model, the authors should describe the steps taken709

to make their results reproducible or verifiable.710

• Depending on the contribution, reproducibility can be accomplished in various ways.711

For example, if the contribution is a novel architecture, describing the architecture fully712

might suffice, or if the contribution is a specific model and empirical evaluation, it may713

be necessary to either make it possible for others to replicate the model with the same714

dataset, or provide access to the model. In general. releasing code and data is often715

one good way to accomplish this, but reproducibility can also be provided via detailed716

instructions for how to replicate the results, access to a hosted model (e.g., in the case717

of a large language model), releasing of a model checkpoint, or other means that are718

appropriate to the research performed.719

• While NeurIPS does not require releasing code, the conference does require all submis-720

sions to provide some reasonable avenue for reproducibility, which may depend on the721

nature of the contribution. For example722

(a) If the contribution is primarily a new algorithm, the paper should make it clear how723

to reproduce that algorithm.724

(b) If the contribution is primarily a new model architecture, the paper should describe725

the architecture clearly and fully.726

(c) If the contribution is a new model (e.g., a large language model), then there should727

either be a way to access this model for reproducing the results or a way to reproduce728

the model (e.g., with an open-source dataset or instructions for how to construct729

the dataset).730

(d) We recognize that reproducibility may be tricky in some cases, in which case731

authors are welcome to describe the particular way they provide for reproducibility.732

In the case of closed-source models, it may be that access to the model is limited in733

some way (e.g., to registered users), but it should be possible for other researchers734

to have some path to reproducing or verifying the results.735

5. Open access to data and code736

18



Question: Does the paper provide open access to the data and code, with sufficient instruc-737

tions to faithfully reproduce the main experimental results, as described in supplemental738

material?739

Answer: [Yes] .740

Justification: Yes, we are submitting the code for HYDRA-FL in the supplementary material.741

For now, we have given the code where HYDRA-FL is adapted to FedNTD. We provide an742

“instructions.txt" file to reproduce our results. We will publish our full code for FedNTD and743

MOON on github with the final version of this paper.744

Guidelines:745

• The answer NA means that paper does not include experiments requiring code.746

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/747

public/guides/CodeSubmissionPolicy) for more details.748

• While we encourage the release of code and data, we understand that this might not be749

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not750

including code, unless this is central to the contribution (e.g., for a new open-source751

benchmark).752

• The instructions should contain the exact command and environment needed to run to753

reproduce the results. See the NeurIPS code and data submission guidelines (https:754

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.755

• The authors should provide instructions on data access and preparation, including how756

to access the raw data, preprocessed data, intermediate data, and generated data, etc.757

• The authors should provide scripts to reproduce all experimental results for the new758

proposed method and baselines. If only a subset of experiments are reproducible, they759

should state which ones are omitted from the script and why.760

• At submission time, to preserve anonymity, the authors should release anonymized761

versions (if applicable).762

• Providing as much information as possible in supplemental material (appended to the763

paper) is recommended, but including URLs to data and code is permitted.764

6. Experimental Setting/Details765

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-766

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the767

results?768

Answer: [Yes] .769

Justification: We specify the training and test details in Appendix D.770

Guidelines:771

• The answer NA means that the paper does not include experiments.772

• The experimental setting should be presented in the core of the paper to a level of detail773

that is necessary to appreciate the results and make sense of them.774

• The full details can be provided either with the code, in appendix, or as supplemental775

material.776

7. Experiment Statistical Significance777

Question: Does the paper report error bars suitably and correctly defined or other appropriate778

information about the statistical significance of the experiments?779

Answer: [No] .780

Justification: We did not have enough compute resources to completely re-run all the781

experiments for different seeds and report error bars for different runs. We are currently re-782

running the error bar experiments, and we plan to include all the experiments with different783

seeds in the final version.784

Guidelines:785

• The answer NA means that the paper does not include experiments.786

• The authors should answer "Yes" if the results are accompanied by error bars, confi-787

dence intervals, or statistical significance tests, at least for the experiments that support788

the main claims of the paper.789
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• The factors of variability that the error bars are capturing should be clearly stated (for790

example, train/test split, initialization, random drawing of some parameter, or overall791

run with given experimental conditions).792

• The method for calculating the error bars should be explained (closed form formula,793

call to a library function, bootstrap, etc.)794

• The assumptions made should be given (e.g., Normally distributed errors).795

• It should be clear whether the error bar is the standard deviation or the standard error796

of the mean.797

• It is OK to report 1-sigma error bars, but one should state it. The authors should798

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis799

of Normality of errors is not verified.800

• For asymmetric distributions, the authors should be careful not to show in tables or801

figures symmetric error bars that would yield results that are out of range (e.g. negative802

error rates).803

• If error bars are reported in tables or plots, The authors should explain in the text how804

they were calculated and reference the corresponding figures or tables in the text.805

8. Experiments Compute Resources806

Question: For each experiment, does the paper provide sufficient information on the com-807

puter resources (type of compute workers, memory, time of execution) needed to reproduce808

the experiments?809

Answer: [Yes] .810

Justification: We present these details in Appendix D.811

Guidelines:812

• The answer NA means that the paper does not include experiments.813

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,814

or cloud provider, including relevant memory and storage.815

• The paper should provide the amount of compute required for each of the individual816

experimental runs as well as estimate the total compute.817

• The paper should disclose whether the full research project required more compute818

than the experiments reported in the paper (e.g., preliminary or failed experiments that819

didn’t make it into the paper).820

9. Code Of Ethics821

Question: Does the research conducted in the paper conform, in every respect, with the822

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?823

Answer: [Yes] .824

Justification: Yes, to the best of our knowledge, our paper conforms to the NeurIPS Code of825

Ethics in every aspect.826

Guidelines:827

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.828

• If the authors answer No, they should explain the special circumstances that require a829

deviation from the Code of Ethics.830

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-831

eration due to laws or regulations in their jurisdiction).832

10. Broader Impacts833

Question: Does the paper discuss both potential positive societal impacts and negative834

societal impacts of the work performed?835

Answer: [NA] .836

Justification: Or work does not have such a societal impact that requires discussion in the837

paper.838

Guidelines:839

• The answer NA means that there is no societal impact of the work performed.840
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• If the authors answer NA or No, they should explain why their work has no societal841

impact or why the paper does not address societal impact.842

• Examples of negative societal impacts include potential malicious or unintended uses843

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations844

(e.g., deployment of technologies that could make decisions that unfairly impact specific845

groups), privacy considerations, and security considerations.846

• The conference expects that many papers will be foundational research and not tied847

to particular applications, let alone deployments. However, if there is a direct path to848

any negative applications, the authors should point it out. For example, it is legitimate849

to point out that an improvement in the quality of generative models could be used to850

generate deepfakes for disinformation. On the other hand, it is not needed to point out851

that a generic algorithm for optimizing neural networks could enable people to train852

models that generate Deepfakes faster.853

• The authors should consider possible harms that could arise when the technology is854

being used as intended and functioning correctly, harms that could arise when the855

technology is being used as intended but gives incorrect results, and harms following856

from (intentional or unintentional) misuse of the technology.857

• If there are negative societal impacts, the authors could also discuss possible mitigation858

strategies (e.g., gated release of models, providing defenses in addition to attacks,859

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from860

feedback over time, improving the efficiency and accessibility of ML).861

11. Safeguards862

Question: Does the paper describe safeguards that have been put in place for responsible863

release of data or models that have a high risk for misuse (e.g., pretrained language models,864

image generators, or scraped datasets)?865

Answer: [NA] .866

Justification: To the best of our knowledge, our paper poses no such risks. We use publicly867

available code and data for our work.868

Guidelines:869

• The answer NA means that the paper poses no such risks.870

• Released models that have a high risk for misuse or dual-use should be released with871

necessary safeguards to allow for controlled use of the model, for example by requiring872

that users adhere to usage guidelines or restrictions to access the model or implementing873

safety filters.874

• Datasets that have been scraped from the Internet could pose safety risks. The authors875

should describe how they avoided releasing unsafe images.876

• We recognize that providing effective safeguards is challenging, and many papers do877

not require this, but we encourage authors to take this into account and make a best878

faith effort.879

12. Licenses for existing assets880

Question: Are the creators or original owners of assets (e.g., code, data, models), used in881

the paper, properly credited and are the license and terms of use explicitly mentioned and882

properly respected?883

Answer: [Yes] .884

Justification: We have cited all three datasets; MNIST [19], CIFAR10 [17], and CI-885

FAR100 [17]. Their licenses are not mentioned on paperswithcode.886

Guidelines:887

• The answer NA means that the paper does not use existing assets.888

• The authors should cite the original paper that produced the code package or dataset.889

• The authors should state which version of the asset is used and, if possible, include a890

URL.891

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.892
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• For scraped data from a particular source (e.g., website), the copyright and terms of893

service of that source should be provided.894

• If assets are released, the license, copyright information, and terms of use in the895

package should be provided. For popular datasets, paperswithcode.com/datasets896

has curated licenses for some datasets. Their licensing guide can help determine the897

license of a dataset.898

• For existing datasets that are re-packaged, both the original license and the license of899

the derived asset (if it has changed) should be provided.900

• If this information is not available online, the authors are encouraged to reach out to901

the asset’s creators.902

13. New Assets903

Question: Are new assets introduced in the paper well documented and is the documentation904

provided alongside the assets?905

Answer: [Yes] .906

Justification: Yes, we are submitting the code for HYDRA-FL in the supplementary material.907

For now, we have given the code where HYDRA-FL is adapted to FedNTD. We provide an908

“instructions.txt" file to reproduce our results.909

Guidelines:910

• The answer NA means that the paper does not release new assets.911

• Researchers should communicate the details of the dataset/code/model as part of their912

submissions via structured templates. This includes details about training, license,913

limitations, etc.914

• The paper should discuss whether and how consent was obtained from people whose915

asset is used.916

• At submission time, remember to anonymize your assets (if applicable). You can either917

create an anonymized URL or include an anonymized zip file.918

14. Crowdsourcing and Research with Human Subjects919

Question: For crowdsourcing experiments and research with human subjects, does the paper920

include the full text of instructions given to participants and screenshots, if applicable, as921

well as details about compensation (if any)?922

Answer: [NA] .923

Justification: Our paper does not involve any crowdsourcing experiments nor research with924

human subjects.925

Guidelines:926

• The answer NA means that the paper does not involve crowdsourcing nor research with927

human subjects.928

• Including this information in the supplemental material is fine, but if the main contribu-929

tion of the paper involves human subjects, then as much detail as possible should be930

included in the main paper.931

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,932

or other labor should be paid at least the minimum wage in the country of the data933

collector.934

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human935

Subjects936

Question: Does the paper describe potential risks incurred by study participants, whether937

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)938

approvals (or an equivalent approval/review based on the requirements of your country or939

institution) were obtained?940

Answer: [NA] .941

Justification: Our paper does not involve crowdsourcing nor research with human subjects.942

Guidelines:943
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• The answer NA means that the paper does not involve crowdsourcing nor research with944

human subjects.945

• Depending on the country in which research is conducted, IRB approval (or equivalent)946

may be required for any human subjects research. If you obtained IRB approval, you947

should clearly state this in the paper.948

• We recognize that the procedures for this may vary significantly between institutions949

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the950

guidelines for their institution.951

• For initial submissions, do not include any information that would break anonymity (if952

applicable), such as the institution conducting the review.953
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