
Scaling Environments for LLM Agents in the Era of
Learning from Interaction: A Survey

Yuchen Huang♡ Sijia Li♡ Minghao Liu♡ Wei Liu♠ Zhiyuan Fan♡

Yi R. (May) Fung♡
♡Hong Kong University of Science and Technology

♠King’s College London
{yhuanggn, yrfung}@cse.ust.hk

Abstract

LLM-based agents can autonomously accomplish complex tasks across various
domains. However, to further cultivate capabilities such as adaptive behavior
and long-term decision-making, training on static datasets built from human-level
knowledge is insufficient. These datasets are costly to construct and lack both
dynamism and realism. A growing consensus is that agents should instead interact
directly with environments and learn from experience through reinforcement learn-
ing. We formalize this iterative process as the Generation–Execution–Feedback
(GEF) loop, where environments generate tasks to challenge agents, return obser-
vations in response to agents’ actions during task execution, and provide evaluative
feedback on rollouts for subsequent learning. Under this paradigm, environments
function as indispensable producers of experiential data, highlighting the need
to scale them toward greater complexity, realism, and interactivity. In this sur-
vey, we systematically review representative methods for environment scaling
from a pioneering environment-centric perspective and organize them along the
stages of the GEF loop, namely task generation, task execution, and feedback. We
further analyze benchmarks, implementation strategies, and applications, consol-
idating fragmented advances and outlining future research directions for agent
intelligence.1

1 Introduction

The rapid progress of large language models (LLMs) has catalyzed a transformative shift in artificial
intelligence, precipitating a surge of research on LLM-based agents [Luo et al., 2025a, Xi et al., 2025].
Such agents inherit strong reasoning and task-decomposition capabilities from their base models
and, when augmented with modules for tool use and memory, can execute actions, interact with real
or simulated environments, accumulate experience over time, and progressively improve their own
behavior. This design has achieved remarkable progress across diverse domains, including automated
coding [Qwen Team, 2025, Anthropic, 2025], interactive web navigation [OpenAI, 2025a, He et al.,
2025], tool use [Zhang et al., 2025a, Anthropic, 2024], and deep research [Tongyi DeepResearch
Team, 2025, OpenAI, 2025b, Google DeepMind, 2024].

However, as agent capabilities continue to evolve, it is infeasible to attain intelligence beyond the
human-level merely by supervised fine-tuning (SFT) pretrained models on static datasets [Huang
et al., 2025a, Su et al., 2025a, Zhao et al., 2025]. Such datasets are typically manually annotated or

1We provide a GitHub repository with real-time updates on this topic: https://github.com/lukahhcm/
Awesome_Scaling_Environments.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments
for Agents (SEA).

https://github.com/lukahhcm/Awesome_Scaling_Environments
https://github.com/lukahhcm/Awesome_Scaling_Environments
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Figure 1: (A) Experience arises from the Generation–Execution–Feedback (GEF) loop, where
environments generate tasks, agents execute them, and environments evaluate and filter useful
experience for RL training. (B) Overview of environment scaling: a GEF-aligned taxonomy of
environment-scaling methods, alongside implementation, applications, and the unique challenge of
Generator–Verifier asymmetry.

extracted under human oversight; they are intrinsically limited to human-level knowledge, costly and
labor-intensive to produce at scale, and often lack realism and adaptability. By contrast, reinforcement
learning provides a more aligned training paradigm [Tao et al., 2024, Zhang et al., 2025b]: agents
explore and interact with the environment, accumulate experience, and acquire new knowledge
and skills. We formalize this interactive process as the Generation–Execution–Feedback (GEF)
loop, illustrated in Figure 1 (A). In each iteration, the environment first generates diverse tasks,
then the agent executes them within the environment, producing action–observation trajectories.
The environment subsequently evaluates these rollouts and retains useful experience for subsequent
training. Repeated iterations progressively refine the policy and expand the agent’s capabilities.
Notably, unlike prior work [Gao et al., 2025], we adopt a broad view of the environment: everything
external to the current agent, including the state space, the executable action space, the design of
feedback for interaction and evaluation, and the activities of users and other agents, is considered part
of it. In this setting, the environment is no longer a mere container for agents’ activities; it has become
an active producer of experiential data, underscoring the growing need for scaling environments to
create a more complex, realistic, and richly interactive world [CAMEL-AI, 2025].

Recent research has embraced this trend of scaling the environment from different perspectives. For
instance, systems like AgentGen [Hu et al., 2025a], AgentGym [Xi et al., 2024], and GEM [Liu
et al., 2025a] devise heterogeneous environments to increase the diversity of the generated tasks.
R-Zero [Huang et al., 2025a] proposes a challenger–solver framework that autonomously generates
increasingly difficult tasks. RandomWorld [Sullivan et al., 2025] scales up the interactivity by
procedural generation of diverse tools for agents to access. ARE [Andrews et al., 2025] develops
an event-driven environment that supports asynchronous interactions between the environment
and agents, scaling up the environmental dynamics that conform to realistic settings. However, a
systematic analysis that connects these research directions remains absent.

Therefore, we first comprehensively investigate current environment scaling methods and propose a
unified taxonomy aligned with the stages of the GEF loop, adopting a pioneering environment-centric
perspective. In the task generation stage, we categorize scaling methods into static complexity,
dynamic complexity, and diversity scaling, which together characterize an environment’s ability to
generate challenging, adaptive, and diverse tasks continuously. In the task execution stage, we
highlight interactivity and realism, since these properties determine the richness and fidelity of
the interaction data from which agents learn. In the feedback stage, we categorize the scaling of
evaluative signals along five aspects: density, granularity, automation, objectivity, and robustness,
clarifying how environments evaluate and guide agent behavior. Beyond these three stages, we also
analyze the evaluation benchmarks for environments and their implementation frameworks, highlight
key applications, and outline future research directions. Figure 1 (B) presents a high-level overview
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Figure 2: GEF-aligned taxonomy of environment scaling with dimensions for Task Generation, Task
Execution, and Feedback. Representative works are illustrated as leaves on the branches.

of the taxonomy and its supporting branches, and Figure 2 summarizes representative works across
the three stages. Building on these perspectives, our survey provides an organized framework for
systematically understanding environment scaling and underscores its central role in the pursuit of
agent intelligence.

The survey is organized as follows. We first introduce the background and conceptual framework
in §2. We then categorize representative environment-scaling methods along the three stages of the
GEF loop: task generation (§3), task execution (§4), and feedback (§5). Next, we discuss evaluation
benchmarks(§A) and implementation frameworks (§6), as well as key applications (§B). Finally, we
outline emerging research directions (§7).

2 Overview

In this section, we will discuss the background of environment scaling and the conceptual framework
of the proposed paradigm.

2.1 Background

Scaling Laws for LLM Agents Just as large language models exhibit predictable performance
scaling with increases in the number of parameters, the volume of training data, and the compute
budget, agent systems likewise display scaling regularities along three axes: (i) expanding the
agent population and identifying properties that emerge as interactions increase; (ii) increasing
environmental complexity and assessing how realistic, dynamic settings shape learning and adaptation;
and (iii) extending the horizons of evolution and memory to study how agents generalize and improve
through accumulated experience [CAMEL-AI, 2025]. While most existing surveys on LLM agents
adopt an agent-centric view [Luo et al., 2025a, Xi et al., 2025, Yehudai et al., 2025, Gao et al.,
2025], covering topics from multi-agent interaction [Qian et al., 2024, Tran et al., 2025] to self-
evolution [Gao et al., 2025, Tao et al., 2024], environment scaling remains underexplored and
has not been systematically organized, despite its central role in experience formation through
the Generation–Execution–Feedback (GEF) loop. In this work, we take an environment-centric
perspective on scaling environments and examine how dynamic, richly interactive, high-fidelity
worlds can accelerate agent development and evolution.
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Generator-Verifier Asymmetry A fundamental characteristic in many real-world tasks is the
inherent Generator–Verifier Asymmetry [Wei, 2025], namely the mismatch between the intelligence
required for generator, which generates (§3) or executes (§4) tasks, and that required for verifier,
which provides feedback (§5). These two kinds of intelligence naturally form two axes critical to next-
generation Agentic AI, as illustrated in Figure 1(B). From this perspective, scaling up environments
essentially corresponds to scaling intelligence along the x-axis and the y-axis. Current progress in
RL largely exploits the regime on the easy-to-verify side of this asymmetry. These Easy-to-Verify,
Hard-to-Generate Domains include fields such as mathematics and programming [Wei et al., 2025,
Jimenez et al., 2023, Phan et al., 2025]. For these domains, generating and solving a continual
stream of high-quality, non-trivial tasks is challenging. In contrast, verification is objective and
computationally inexpensive (e.g., via unit tests or exact match on mathematical results). This
enables weak-to-strong supervision, where a simple verifier can provide accurate feedback to train a
much stronger agent for solving hard tasks. On the contrary, the Hard-to-Verify, Easy-to-Generate
Domains include areas such as creative writing, policy-making, or healthcare [Lin et al., 2024a,
Arora et al., 2025]. For these easy-to-propose, open-ended tasks, verification is subjective, requires
substantial expert judgment, or unfolds over long horizons, making high-quality feedback scarce
and expensive. This bottleneck, corresponding to the upper-left region of coordinate system, poses
more difficulty in modeling the environment, and rendering environment scaling more challenging
yet offering greater potential for advancing agent capabilities. Notably, the asymmetry also presents
an opportunity: if the generator’s stronger intelligence can be systematically leveraged to strengthen
the verifier, so that it can supervise an even stronger generator, then such asymmetric property can
be exploited to drive agents’ self-evolution [Huang et al., 2025a, Hong et al., 2025, Lu et al., 2025a,
Chen et al., 2025c, Wang et al., 2025b].

2.2 Conceptual Framework

Following the formalization by Gao et al. [2025], we model the environment E as a partially
observable Markov decision process (POMDP). At the beginning of each episode, the environment
generates a task T = (E, I), where I ∈ I represents user intention drawn from intention space
I. The agent π interacts with the environment over horizon T ∈ N, producing an interleaved
observation–action trajectory τ = (o0, a0, o1, a1, . . . , oT ) ∈ (O ×A)T+1, where O and A denote
the observation and action spaces respectively. The environment then evaluates performance and
provides feedback r ∈ Rk, which may take the form of step-level signals r(t)step = Rstep(st, at, T ) ∈ R
for t ∈ {0, . . . , T}, where st ∈ S denotes the state of the environment at step t, trajectory-level
signals rtraj = Rtraj(τ, T ) ∈ Rm, or a combination of both r = f(r

(0:T )
step , rtraj) where f : RT+1 ×

Rm → Rk. These signals need not be limited to sparse scalar rewards but can encode structured or
adaptive assessments reflecting correctness, efficiency, reasoning depth, or long-term outcomes. This
Generation-Execution-Feedback (GEF) Loop L = (Tgen,Exec,Eval) : I → T × (O ×A)∗ × Rk,
which encompasses task generation, task execution, and feedback, defines the essential mechanics of
environments. Repeated iterations drive the accumulation of experience and the progressive evolution
of the agent π.

3 Stage 1: Task Generation

In the task generation stage, the environment is required to propose challenging tasks to push the
agent’s capabilities forward. Scaling at this stage therefore targets three facets of the task supply:
increasing difficulty, introducing dynamics, and expanding diversity. Accordingly, we organize
representative approaches into three directions—complexity scaling, dynamic scaling, and diversity
scaling—and illustrate them with a case study in Figure 3. For clarity, in complexity scaling, we only
consider the intrinsic difficulty of a task (i.e., static complexity). We group the temporal evolution
of task difficulty (dynamic complexity) together with changes in the environment itself under the
dynamic scaling subsection.

3.1 Complexity Scaling

Static complexity increases a task’s inherent structural intricacy, moving beyond single-step com-
mands to challenges defined by dependencies, logical flows, and hierarchical relationships. A typical
example is LLM tool use, from early single-step tasks to multi-turn, multi-step scenarios, where
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scaling, and diversity scaling, while in the task execution stage scaling encompasses interactivity
scaling and realism scaling.

complexity scales up as the number of turns and steps increases [Qin et al., 2023, Patil et al., 2024,
Yao et al., 2024, Yu et al., 2025a]. More sophisticated tasks exhibit hierarchical or compositional
structure, decomposing high-level objectives into nested sub-goals and thereby testing compositional
generalization, namely an agent’s ability to solve novel problems by recombining known skills [Shao
et al., 2023]. TaskCraft [Shi et al., 2025] operationalizes this by expanding tasks both in depth (longer
sequences of tool executions) and in width (multiple sub-goals per objective), enhancing hierarchical
reasoning. At the highest level, conditional and graph-based tasks involve non-linear structures with
branching logic, where planning must adapt dynamically to intermediate outcomes. Recent efforts in
information-seeking agents extend linear sequences to complex graph-based information chains [Wu
et al., 2025a, Tao et al., 2025, Li et al., 2025a, Wu et al., 2025b], and multi-agent settings further
amplify this complexity, as optimal plans become contingent on the actions of other agents, producing
intrinsically interdependent, graph-structured challenges.

3.2 Dynamic Scaling

Task Difficulty Dynamics Scaling dynamic complexity is critical for encouraging robust agent
generalization, as it establishes non-stationary learning targets and distinct action and state spaces,
which can be adjusted either according to predetermined schedules or in reaction to agent perfor-
mance. A common strategy is performance-driven scheduling, where difficulty is regulated by the
success rate (SR), as in Eurekaverse [Liang et al., 2024]. Other approaches target newly acquired
or weaker skills, as in EvoCurr [Cheng et al., 2025] and EnvGen [Zala et al., 2024]. AgentGen’s
BI-EVAL mechanism [Hu et al., 2025a] introduces bidirectional variation, adjusting complexity
upward or downward to match agent capability, in contrast to earlier methods that mostly increased
difficulty [Xu et al., 2025, Luo et al., 2025c]. Beyond these, WebRL [Qi et al., 2025] implements
self-adjusting curricula across complex web settings, and AgentGym [Xi et al., 2024] generalizes
performance-adaptive scheduling to diverse benchmarks. R-Zero [Huang et al., 2025a] formalizes a
challenger–solver paradigm in which a challenger proposes near-boundary tasks based on the solver’s
uncertainty, and the solver improves by training on filtered task sets, yielding iterative and targeted
curricula.
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Environmental Dynamics The Meta Agents Research Environments (ARE) platform [Andrews
et al., 2025] pushes this paradigm further by introducing a more realistic form of dynamic complexity:
an asynchronous environment that evolves independently of the agent. By decoupling the agent and
environment clocks, ARE allows the simulated world state to change continuously with random or
scheduled events, even while the agent is reasoning, shifting the challenge from solving discrete,
static tasks to maintaining continuous, proactive engagement.

3.3 Diversity Scaling

Scaling the diversity of tasks and environments is essential for developing robust and generalizable
LLM agents. While regulating task-level diversity helps maintain balanced curricula and avoid
redundancy [Hu et al., 2025a, Huang et al., 2025a], an equally critical dimension is at the environment
level, where exposing agents to a wide spectrum of scenarios mitigates overfitting and enhances
adaptability to novel situations. Frameworks such as AgentGen [Hu et al., 2025a] and AgentGym
[Xi et al., 2024] synthesize a wide range of heterogeneous settings, enriching the contextual and
structural variety of training signals. Beyond these, AgentSense [Leng et al., 2025] generates diverse
virtual sensor data by simulating varied human personas and routines, while AgentBank [Song et al.,
2024] shows that fine-tuning on tens of thousands of heterogeneous interaction trajectories markedly
improves generalization. Collectively, these approaches demonstrate that diversity across tasks and
environments is fundamental to cultivating LLM agents that are adaptive and broadly capable.

4 Stage 2: Task Execution

In the task execution stage, after the agent takes an action, it receives an observation from the
environment. Consequently, whether the agent can interact with the environment in real time
(interactivity) and whether the returned observations are consistent with real-world scenarios (realism)
are both critical to the quality of the resulting experience. Accordingly, we organize environment
scaling in this stage into two directions: interactivity scaling and realism scaling, as shown next to
the action space in Figure 3.

4.1 Interactivity Scaling

While early datasets [Liu et al., 2024a, Qin et al., 2023] primarily provided static interaction trajecto-
ries for training, recent methods [Zhang, 2025, Tang et al., 2024, Wang et al., 2024, Yao et al., 2023,
Trivedi et al., 2024, Sullivan et al., 2025] allow agents to call a diverse set of real-world APIs or
leverage auxiliary models as hierarchical tools via function calling or executable code generation.
Standardized protocols such as the Model Context Protocol (MCP) [Anthropic, 2024, Luo et al.,
2025b, Wang et al., 2025a, Fan et al., 2025] present tools, resources, and prompts through a unified
interface, further improving controllability and efficiency. Complementary to MCP, another direction
constructs offline environments from real-world data, sidestepping the high cost and brittleness of
live API calls [Tongyi DeepResearch Team, 2025, Fang et al., 2025, Ye et al., 2025a, Yao et al., 2024,
Barres et al., 2025, Prabhakar et al., 2025, Ye et al., 2025b]. This approach enables more efficient
interaction while preserving realism, as the database originates from the real world. Taken together,
these scaling methods enable agents to interact effectively with their environments and accumulate
meaningful experiences.

4.2 Realism Scaling

To ensure that large language model (LLM) agents can generalize effectively to complex, real-world
scenarios, the training data collected from these environments should reflect higher levels of realism.

Tool-Use Realism In tool-use environments, earlier works have utilized fine-tuned LLMs to
generate the results of tool calls [Qin et al., 2023, Lu et al., 2025b, Sun et al., 2025]. However, more
recent approaches have advanced by incorporating real-world APIs [Song et al., 2023, Wu et al., 2025b,
Mastouri et al., 2025] or executing tasks within offline real-world databases as simulations [Tongyi
DeepResearch Team, 2025, Fang et al., 2025, Ye et al., 2025a, Yao et al., 2024, Barres et al., 2025,
Prabhakar et al., 2025, Ye et al., 2025b]. These methods help mitigate hallucinations and enhance
consistency during the collection of experiential data. Specifically, Tongyi DeepResearch Team
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[2025] constructs a simulated environment using an offline Wikipedia database and a custom tool
suite, enabling the generation of knowledge-intensive tasks that provide rich, realistic learning signals
in a cost-effective and controllable manner. Beyond traditional tool-use scenarios, which typically
rely on text-based interactions, the emerging paradigm of thinking with images advocates for the use
of visual information as a dynamic, manipulable workspace for intermediate reasoning, bridging
the semantic gap between perception and symbolic thought [Su et al., 2025b]. Genie 3 [Parker-
Holder and Fruchter, 2025] further focuses on simulating physical environments in immersive 3D
scenes. It preserves realistic physical properties, ensures long-term consistency, and supports real-
time interactivity, offering a robust framework for training agents in dynamic, physically grounded
settings.

Multi-Agent Realism In multi-agent settings where agents may coordinate or compete with each
other [Tran et al., 2025, Qian et al., 2024, Li et al., 2024, Zhang et al., 2024, Kim et al., 2024],
the scalability of realism has received growing attention. In such scenarios, each agent’s behavior
naturally becomes part of the environment for others, and as the number of agents increases, these
interactions give rise to emergent social and economic phenomena such as information diffusion,
opinion polarization, and herding effects [Yang et al., 2025, Zhang et al., 2025c]. To address these
challenges, Yang et al. [2025] leverage real-world social media data stored in a relational database to
simulate interactive environments, enabling more realistic modeling of social dynamics. Meanwhile,
Zhang et al. [2025c] move beyond earlier frameworks [Li et al., 2023, Gao et al., 2024b] that enforce
execution order through message-passing SOPs by adopting the MQTT communication protocol
to enable asynchronous decision-making among autonomous agents, more closely approximating
real-world processes. Similarly, ARE [Andrews et al., 2025] decouples agent and environment clocks
so that the world state evolves asynchronously, and it supports simulating other agents’ activities by
treating them as independent events in the environment’s event stream. These environments make it
possible to simulate real-world societal processes and to collect more realistic experiential data.

5 Stage 3: Feedback

In the feedback stage, the environment assesses the trajectories collected during task execution
and generates feedback signals for subsequent RL training. Scaling at this stage focuses on how
feedback is provided, including its frequency and richness (density and granularity), its level of
automation (automation), as well as how objectively and reliably it is delivered (objectivity and
robustness). Accordingly, we categorize representative approaches along five dimensions: density
scaling, granularity scaling, automation scaling, objectivity scaling, and robustness scaling, which
are illustrated in Figure 4.

5.1 Density Scaling

The first aspect is the density of feedback, which refers to how frequently the environment provides
evaluative signals. Early environments offered sparse, outcome-based rewards that only indicated the
final success or failure of a trajectory. While such trajectory-level signals can yield stable training
dynamics in reasoning-intensive tasks such as mathematics or code generation [Jiang et al., 2025, Da
et al., 2025, Qian et al., 2025], they suffer from credit assignment challenges. The overall success
or failure cannot be easily attributed to intermediate actions. To mitigate this issue, recent studies
have investigated step-level rewards derived from intermediate actions, providing denser supervision
and detailed guidance for agents to learn. However, the effectiveness and underlying mechanisms
of such step-level feedback remain insufficiently understood. Gao et al. [2024a] shows that naively
combining step-level reward and outcome reward may degrade the agent’s performance due to reward
hacking. In this situation, trivial actions accumulate high rewards and lead to repetitive reasoning
behavior. They mitigate this problem through threshold clipping and training with reward differences
between adjacent steps. Similarly, Ma et al. [2025a] demonstrates that step-level reward models
effectively capture the logical coherence of mathematical reasoning yet are unreliable for natural
language tasks, highlighting both the promise and the limitations of denser feedback signals.
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The environment then evaluates these trajectories and returns feedback, yielding the experience used
to train the agent. Scaling in the feedback stage covers density, granularity, automation, objectivity,
and robustness.

5.2 Granularity Scaling

Granularity scaling captures how detailed the evaluative feedback of task performance is. Coarse-
grained evaluation only focuses on end-to-end success and emphasizes the final outcome [Jin et al.,
2025, Li et al., 2025c], whereas fine-grained evaluation decomposes agents’ performance into
structured components and provides richer feedback for error attribution and more targeted improve-
ment. Moving beyond a single scalar reward, fine-grained schemes are often operationalized as
multi-dimensional feedback, such as a set of scores across criteria that offers more informative
guidance [Huang et al., 2025c]. Some work employs manually designed, rule-based rewards to
improve different aspects such as correctness, format and efficiency [Qian et al., 2025, Song et al.,
2025, Wang et al., 2025c, Zhang et al., 2025e]. Based on this idea, the Rubrics as Rewards (RaR)
framework [Gunjal et al., 2025, Huang et al., 2025b] transforms checklist-based rubrics into struc-
tured, multi-criteria reward signals, thereby improving the alignment with human preferences and
ensuring more consistent performance across diverse evaluation standards.

5.3 Automation Scaling

Automation scaling refers to the transition in feedback from human-provided supervision to AI-
generated evaluation. Reinforcement Learning from Human Feedback (RLHF) encompasses a broad
class of frameworks aimed at aligning LLMs with human preferences [Sheng et al., 2025, Hu et al.,
2025b, Christiano et al., 2017]. While effective, these methods depend heavily on human annotators,
making feedback slow, costly, and difficult to scale. To automate feedback and reduce reliance
on labor-intensive preference labeling, a growing body of work replaces human evaluators with
capable LLMs acting as automated judges, forming the paradigm of Reinforcement Learning from AI
Feedback (RLAIF) [Zhang et al., 2025d, Su et al., 2025a, Chen et al., 2025a, Lee et al., 2024, Bai et al.,
2022]. Pioneer works such as REWARDAGENT [Peng et al., 2025] employ a Verification Agent to
assess both the factual correctness of responses and their adherence to instructions, integrating these
evaluations with base human feedback to effectively guide training. In contrast, ARMAP [Chen et al.,
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2025b] innovatively bypasses the need for a stronger LLM-as-judge by using LLM-generated positive
and negative trajectories to train a classification model, thereby creating an automated and effective
reward mechanism. By embedding such automated evaluation within the environment, agents are able
to acquire higher-order capabilities progressively without continuous human supervision. However,
this paradigm also amplifies risks such as propagating biases from the LLM judge and reward hacking,
where agents exploit the reward model in ways that diverge from intended goals, potentially leading
to model collapse. This presents a critical trade-off between scalability and safety, underscoring the
need for research into robust mitigation strategies.

5.4 Objectivity Scaling

Scaling objectivity is about increasing the extent to which environmental feedback is grounded in ver-
ifiable truth, moving from subjective, preference-based, or generative evaluations to strictly objective
signals. Objective feedback exemplified by Reinforcement Learning with Verifiable Rewards (RLVR)
has demonstrated efficacy and is extensively utilized in structured domains, such as mathematics
and programming, where solutions can be objectively validated [Shao et al., 2024, DeepSeek-AI
et al., 2025]. Nonetheless, numerous real-world tasks, like writing and medical consultation, are
open-ended and often lack objectively verifiable ground truth, making verification much harder. To
mitigate this deficiency, recent studies have expanded RLVR to non-verifiable domains [Andrews
et al., 2025, Ma et al., 2025b, Akter et al., 2025, Su et al., 2025a, Yu et al., 2025b, Liu et al., 2025b].
For instance, Writing-Zero [Jia et al., 2025] tackles the creative writing tasks by training a pairwise
generative reward model, therefore transforming subjective assessments into reliable, verifiable
reward signals. Li et al. [2025b] proposes Omni-Thinker, which combines rule-based verifiable
rewards with generative preference signals from an LLM-as-a-judge, forming a unified multi-task RL
training loop. ARE’s verifier [Andrews et al., 2025] instantiates RLVR by taking the minimal correct
sequence of write operations as ground truth, combining hard checks (exact parameter matches) and
soft checks (LLM-based semantic judgments) under strict causal ordering. This work demonstrates
the feasibility of structured verifiable rewards in open-ended environments.

5.5 Robustness Scaling

Feedback robustness requires the environment to provide stable and reliable reward signals. However,
it is common for environmental instabilities (e.g., delays, crashes, corrupted tool outputs) to undermine
feedback reliability and degrade the training process. To scale robustness at the reward level, some
approaches mitigate the effects of noise by generating soft, probabilistic rewards with generative
verifiers [Lin et al., 2024b, Su et al., 2025a]. For the reward-hacking problem, where agents tend
to develop undesirable behaviors to maximize reward without achieving the intended goals, some
studies propose frameworks such as MONA [Farquhar et al., 2025] to evaluate the future utility
of actions via an overseer, constraining unstable behaviors while preserving explainability. At the
interaction level, in order to solve challenges related to environmental failures, Trinity-RFT [Pan
et al., 2025] proposes asynchronous inference and retry mechanisms, while Tongyi DeepResearch
Team [2025] improves robustness by constructing a fast and deterministic interaction environment,
employing caching, retrying failed calls, and switching to similar providers to prevent corrupted
trajectories. Looking ahead, future reward design should prioritize both efficacy and the prevention
of reward hacking via tricky patterns. Also, attention should also be paid to system-level robustness
maintenance.

6 Implementation Frameworks

There exist diverse implementations of simulated environments that vary in modality and complexity.
Visual environments include both two-dimensional and three-dimensional settings. In 2D, grid-
based designs offer symbolic or pixel-level tasks, exemplified by MiniGrid [Chevalier-Boisvert et al.,
2023] and the Atari-focused ALE [Bellemare et al., 2013]. Extensions such as Kinetix [Matthews
et al., 2024] add physics-based interactions, while WebArena [Zhou et al., 2023], Mind2Web [Deng
et al., 2023], and VisualWebArena [Koh et al., 2024a] bring agents into realistic web domains.
Building on this line, ARE [Andrews et al., 2025] provides a mobile-style web environment with
interconnected apps and tools, combining time control and a structured verifier for scalable evaluation.
In 3D, environments emphasize embodied interaction with realistic physics and visual perception.
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General-purpose simulators such as Habitat [Savva et al., 2019] and ThreeDWorld [Gan et al., 2020]
support navigation and manipulation, while domain-specific worlds like MineRL [Guss et al., 2019]
and MineDojo [Fan et al., 2022] exploit the flexibility of Minecraft. Household benchmarks such as
ALFRED [Shridhar et al., 2020a] and EmbodiedQA [Das et al., 2018] further evaluate grounding
of language in photo-realistic 3D spaces, requiring agents to follow instructions, answer questions,
or perform multi-step tasks. Text-based environments instead emphasize reasoning and decision-
making from natural language descriptions. TextWorld [Côté et al., 2018] provides a framework for
procedurally generating text games with goal-driven challenges. Reddit-RL-simulator [He et al., 2016,
Chan and King, 2018] implements an RL environment for iteratively tracking and recommending
popular discussion threads on Reddit. ALFWorld [Shridhar et al., 2020b] adapts ALFRED tasks
into textual form, and JerichoAgentBench [Liu et al., 2023] extends the Jericho suite [Hausknecht
et al., 2020] with annotated benchmarks and concrete objectives. Such text environments stress the
agent’s ability to infer latent dynamics under partial observability, making them a natural testbed for
language-based decision-making.

7 Future Directions

Co-Evolution via Embedded External Tools As task complexity increases, feedback mechanisms
must scale in tandem to avoid sparse, noisy, or misaligned learning signals. Future environments
can achieve this by embedding external tools such as verifiers, simulators, compilers, or executable
systems directly into the learning loop. These tools co-evolve with task generation, providing struc-
tured, verifiable feedback and enabling agents to interact with increasingly sophisticated challenges.
By integrating embedded tools with automated evaluators such as LLM-based formative signals,
environments can better support multi-step, open-ended, and creative problem solving, while also
helping to mitigate the Generator–Verifier Asymmetry.

Scaling Through Generator–Verifier Synergy Future environments can encourage strong gen-
erators to decompose solutions from complex problems into intermediate solutions from smaller
subproblems that are tractable for weak verifiers or environments with scarce feedback. This enables
scalable supervision even in domains such as creative cultural production and policy-making where
holistic verification is difficult. Conversely, weak generators can provide diverse candidate solutions
that are filtered, ranked, or refined by stronger Verifiers equipped with richer evaluative capabili-
ties. By embedding such co-evolutionary dynamics into the environment design, Generator–Verifier
asymmetry can shift into a catalyst for continuous self-improvement.

Open-Ended, Multi-Agent Environments Future environments can scale to support large-scale
multi-agent interactions, emergent social dynamics, and economic- or organizational-level simu-
lations, providing rich contexts for studying both collaborative and non-cooperative behaviors. In
particular, scaling to massively multi-cultural multi-lingual settings requires scaling environment con-
struction for agents to navigate the subtle semantics of concepts and values that vary across different
societies, not only in the textual but also in the multi-modal domain [Koh et al., 2024b, Huang et al.,
2025d]. By exposing agents to these open-ended, interactive scenarios, such environments foster
generalization and strategic planning, equipping LLM agents to better handle complex, real-world
challenges beyond isolated task execution.

8 Conclusion

The era of experience places environments at the core of LLM agent development, positioning them as
active producers of experiential data and underscoring the growing need for scaling environments to
create a more complex, realistic, and richly interactive world. From a pioneering environment-centric
perspective, our survey proposes a unified taxonomy that organizes representative work across the
GEF loop (task generation, task execution, and feedback), together with evaluation, implementation,
and applications. We also surface key challenges for advancing agent intelligence, including the
asymmetry between generators and verifiers and the construction of more open, large-scale multi-
agent environments, thereby shedding light on future agentic work.
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A Evaluation Benchmarks

Direct evaluation of environments remains underexplored, with most research relying on indirect
metrics. For example, works such as TaskCraft [Shi et al., 2025] and AgentScaler [Fang et al.,
2025] assess environments by training agents through the resulting trajectories of environment–agent
interactions, where strong agent performance indirectly reflects environmental quality. While some
direct evaluation has emerged, it has largely been confined to symbolic or text-based settings.
Bytesized32 [Wang et al., 2023] introduces task-specific text games and evaluates them using
automated metrics on fidelity, validity, specification adherence, and winnability, bridging code
generation and cognitive modeling. Text2World [Hu et al., 2025c] further benchmarks symbolic
world model generation, employing structural similarity for overall evaluation while also using
component-wise F1 scores to capture finer-grained aspects such as action dynamics. Recent work has
begun to extend direct evaluation to video-based domains. VidOSC [Xue et al., 2024] examines open-
world dynamics, WorldScore [Duan et al., 2025] proposes a unified framework for evaluating world
generation, and WorldPrediction [Chen et al., 2025d] targets high-level visual reasoning, focusing
on long-horizon program planning and semantic-temporal abstraction. Despite these advances,
comprehensive and general-purpose evaluation protocols remain scarce, highlighting the need for
broader, domain-agnostic methodologies to rigorously and directly assess environment quality beyond
agent-centric performance metrics.

B Applications

Recent progress in agentic systems, typically built on state-of-the-art LLM families such as GPT [Ope-
nAI, 2025a], Claude [Anthropic, 2025], Gemini [Team et al., 2024], LLaMA [Touvron et al., 2023],
and Qwen [Bai et al., 2023], is increasingly driven by interactions with dynamic and multifaceted
environments. Tool-use environments expose APIs and function calls as structured action spaces,
and many LLMs now natively support function invocation, thereby extending reasoning with external
tools [OpenAI, 2023, Anthropic, 2024, Song et al., 2023, Wu et al., 2025b, Mastouri et al., 2025,
Luo et al., 2025b, Wang et al., 2025a, Fan et al., 2025]. Coding environments leverage repositories,
test frameworks, and IDE integration to support long-horizon programming. Within these settings,
systems such as Qwen3-Coder [Qwen Team, 2024] and Claude 4 [Anthropic, 2025] demonstrate
reliability in code editing and debugging, and ReTool [Feng et al., 2025] integrates code-interpreter
execution into the reasoning loop, enabling agents to exhibit code self-correction and adaptive tool
selection. Web navigation environments build on HTML/DOM structures to support tasks such as
browsing, form filling, and transactions. AutoWebGLM [Lai et al., 2024] illustrates how simplified
webpage representations can enhance navigation efficiency, while open-source agents such as Agen-
ticSeek [Fosowl, 2024] and Auto-GPT [Significant-Gravitas, 2023] showcase how browser-control
environments enable general-purpose task execution on the web. GUI agent environments extend
these capabilities to graphical user interfaces on desktops and mobile devices [Qin et al., 2025, Wang
et al., 2025d, Ye et al., 2025c, Lu et al., 2025c, Liu et al., 2024b, Sun et al., 2022, Huang et al.,
2025e]. Beyond these, more comprehensive platforms [Wang et al., 2025e, Xie et al., 2024, OpenAI,
2025] integrate terminals, operating systems, applications, and APIs to provide more interactive,
open-ended, and real-world computer-use environments. Deep research environments require both
long-context reasoning and robust retrieval. Systems such as Gemini1.5Pro [Google DeepMind,
2024] and OpenAI’s deep research agents [OpenAI, 2025b] show that extended context windows
enable sustained analysis, while effective retrieval pipelines mitigate distraction and context dilution.
Across these domains, environments transform general LLM capacities into agent skills by defining
action spaces, providing feedback, and maintaining state continuity.
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