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Abstract

LLM-based agents can autonomously accomplish complex tasks across various
domains. However, to further cultivate capabilities such as adaptive behavior
and long-term decision-making, training on static datasets built from human-level
knowledge is insufficient. These datasets are costly to construct and lack both
dynamism and realism. A growing consensus is that agents should instead interact
directly with environments and learn from experience through reinforcement learn-
ing. We formalize this iterative process as the Generation-Execution-Feedback
(GEF) loop, where environments generate tasks to challenge agents, return obser-
vations in response to agents’ actions during task execution, and provide evaluative
feedback on rollouts for subsequent learning. Under this paradigm, environments
function as indispensable producers of experiential data, highlighting the need to
scale them toward greater complexity, realism, and interactivity. In this survey, we
first systematically review representative methods for environment scaling from
a pioneering environment-centric perspective and organize them along the stages
of the GEF loop. We further analyze benchmarks, implementation frameworks,
and applications, consolidating fragmented advances and outlining future research
directions for agent intelligence. '

1 Introduction

The rapid progress of large language models (LLMs) has catalyzed a transformative shift in artificial
intelligence, precipitating a surge of research on LLM-based agents [Luo et al., 2025a, Xi et al., 2025].
Such agents inherit strong reasoning and task-decomposition capabilities from their base models
and, when augmented with modules for tool use and memory, can execute actions, interact with real
or simulated environments, accumulate experience over time, and progressively improve their own
behavior. This design has achieved remarkable progress across diverse domains, including automated
coding [Qwen Team, 2025, Anthropic, 2025], interactive web navigation [OpenAl, 2025a, He et al.,
2025], tool use [Zhang et al., 2025a, Anthropic, 2024], and deep research [Tongyi DeepResearch
Team, 2025, OpenAl, 2025b, Google DeepMind, 2024].

However, as agent capabilities continue to evolve, it is infeasible to attain intelligence beyond the
human-level merely by supervised fine-tuning (SFT) pretrained models on static datasets [Huang
etal., 2025a, Su et al., 2025a, Zhao et al., 2025]. Such datasets are typically manually annotated or
curated under human oversight, which makes them costly and labor-intensive to produce at scale,
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(A) Workflow of Learning from Experience (B) An Overview of Scaling Environments for LLM Agents
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Figure 1: (A) Experience arises from the Generation-Execution-Feedback (GEF) loop, where environ-
ments generate tasks, agents execute them, and environments evaluate and filter useful experience for
RL training. (B) Overview of environment scaling: a GEF-aligned taxonomy of environment-scaling
methods, alongside implementation, applications, and the unique challenge of Generator-Verifier
asymmetry.

intrinsically bounded by human-level knowledge, and lacking realism and adaptability. By contrast,
reinforcement learning provides a more aligned training paradigm [Tao et al., 2024, Zhang et al.,
2025b], where agents can explore in the environment, accumulate experiences, and finally acquire
new knowledge or skills. We formalize this interactive process as the Generation-Execution-Feedback
(GEF) loop, illustrated in Figure 1 (A). In each iteration, the environment first generates diverse
tasks, then the agent executes them within the environment, producing action-observation trajectories.
The environment subsequently evaluates these rollouts and retains useful experience for subsequent
training. Repeated iterations progressively refine the policy and expand the agent’s capabilities.
Notably, unlike prior work [Gao et al., 2025], we adopt a broad view of the environment: everything
external to the current agent, including the state space, the executable action space, the design of
feedback for interaction and evaluation, and the activities of users and other agents, is considered part
of it. In this setting, the environment is no longer a mere container for agents’ activities; it has become
an active producer of experiential data, underscoring the growing need for scaling environments to
create a more complex, realistic, and richly interactive world [CAMEL-AI, 2025].

Recent research has embraced this trend of scaling the environment from different perspectives. For
instance, systems like AgentGen [Hu et al., 2025a], AgentGym [Xi et al., 2024], and GEM [Liu
et al., 2025a] devise heterogeneous environments to increase the diversity of the generated tasks.
R-Zero [Huang et al., 2025a] proposes a challenger-solver framework that autonomously generates
increasingly difficult tasks. RandomWorld [Sullivan et al., 2025] scales up the interactivity by
procedural generation of diverse tools for agents to access. ARE [Andrews et al., 2025] develops
an event-driven environment that supports asynchronous interactions between the environment
and agents, scaling up the environmental dynamics that conform to realistic settings. However, a
systematic analysis that connects these research directions remains absent.

Therefore, we comprehensively investigate current environment scaling methods and propose a
unified taxonomy aligned with the stages of the GEF loop, adopting a pioneering environment-centric
perspective. In the task generation stage, we categorize scaling methods into complexity scaling,
dynamic scaling, and diversity scaling, which together characterize an environment’s ability to
generate challenging, adaptive, and diverse tasks continuously. In the task execution stage, we
highlight interactivity and realism, since these properties determine the richness and fidelity of
the interaction data from which agents learn. In the feedback stage, we categorize the scaling of
evaluative signals along density, granularity, automation, objectivity, and robustness. Beyond this
taxonomy, we also analyze current evaluation benchmarks, implementation frameworks, applications,
and future research directions. Figure 1 (B) shows a high-level overview of environment scaling, and
representative works are listed in Figure 2.
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Figure 2: GEF-aligned taxonomy of environment scaling with dimensions for Task Generation, Task
Execution, and Feedback. Representative works are illustrated as leaves on the branches.

The survey is organized as follows. We first introduce the background and conceptual framework
in §2 and §A. We then categorize representative environment scaling methods along the three-stage
taxonomy: task generation (§3), task execution (§4), and feedback (§5). Next, we discuss evaluation
benchmarks in §B, implementation frameworks in §6, and applications in §C. Finally, we outline
future research directions (§7).

2 Background

Scaling Laws for LLM Agents Just as large language models exhibit predictable performance
scaling with increases in the number of parameters, the volume of training data, and the compute
budget, agent systems likewise display scaling regularities along three axes: (i) expanding the
agent population and identifying properties that emerge as interactions increase; (ii) increasing
environmental complexity and assessing how realistic, dynamic settings shape learning and adaptation;
and (iii) extending the horizons of evolution and memory to study how agents generalize and improve
through accumulated experience [CAMEL-AI, 2025]. While most existing surveys on LLM agents
adopt an agent-centric view [Luo et al., 2025a, Xi et al., 2025, Yehudai et al., 2025, Gao et al.,
2025], covering topics from multi-agent interaction [Qian et al., 2024, Tran et al., 2025] to self-
evolution [Gao et al., 2025, Tao et al., 2024], environment scaling remains underexplored and has not
been systematically organized. In this work, we take an environment-centric perspective on scaling
environments and examine how dynamic, richly interactive, high-fidelity worlds can accelerate agent
development and evolution.

Generator-Verifier Asymmetry Challenge A fundamental characteristic in many real-world
tasks is the inherent Generator-Verifier Asymmetry [Wei, 2025], namely the mismatch between the
intelligence required for generator, which generates (§3) or executes (§4) tasks, and that required
for verifier, which provides feedback (§5). These two kinds of intelligence naturally form two axes
critical to next-generation Agentic Al, as illustrated in Figure 1 (B). From this perspective, scaling up
environments essentially corresponds to scaling intelligence along the x-axis and the y-axis. Current
progress in RL largely exploits the regime on the easy-to-verify side of this asymmetry. These Easy-
to-Verify, Hard-to-Generate Domains include fields such as mathematics and programming [Wei
et al., 2025, Jimenez et al., 2023, Phan et al., 2025]. For these domains, generating and solving a
continual stream of high-quality, non-trivial tasks is challenging. In contrast, verification is objective
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Figure 3: Illustration of environment scaling in the task generation and task execution stages, using
the example of conference scheduling. Given a user intent, the environment produces a set of tasks
for the agent to complete. Scaling in the task generation stage covers complexity scaling, dynamic
scaling, and diversity scaling, while in the task execution stage scaling encompasses interactivity
scaling and realism scaling.

“meeting”: ..
“party” ..

and computationally inexpensive (e.g., via unit tests or exact match on mathematical results). This
enables weak-to-strong supervision, where a simple verifier can provide accurate feedback to train a
much stronger agent for solving hard tasks. On the contrary, the Hard-to-Verify, Easy-to-Generate
Domains include areas such as creative writing, policy-making, or healthcare [Lin et al., 2024b,
Arora et al., 2025]. For these easy-to-propose, open-ended tasks, verification is subjective, requires
substantial expert judgment, or unfolds over long horizons, making high-quality feedback scarce
and expensive. This bottleneck, corresponding to the upper-left region of coordinate system, poses
more difficulty in modeling the environment, and rendering environment scaling more challenging
yet offering greater potential for advancing agent capabilities. Notably, the asymmetry also presents
an opportunity: if the generator’s stronger intelligence can be systematically leveraged to strengthen
the verifier, so that it can supervise an even stronger generator, then such asymmetric property can
be exploited to drive agents’ self-evolution [Huang et al., 2025a, Hong et al., 2025, Lu et al., 2025a,
Chen et al., 2025¢c, Wang et al., 2025b].

3 Stage 1: Task Generation

In the task generation stage, the environment is required to propose challenging tasks that push the
agent toward its capability boundary. Scaling at this stage targets three aspects of the task design:
increasing difficulty (complexity scaling § 3.1), introducing dynamics (dynamic scaling § 3.2), and
expanding diversity (diversity scaling § 3.3). An illustrative example is shown in Figure 3. For clarity,
in complexity scaling, we only consider the intrinsic difficulty of a task (i.e., static complexity). We
group the temporal evolution of task difficulty (dynamic complexity) together with changes in the
environment itself under the dynamic scaling subsection.

3.1 Complexity Scaling

Static complexity increases a task’s inherent structural intricacy, moving beyond single-step com-
mands to challenges defined by dependencies, logical flows, and hierarchical relationships. A typical
example is LLM tool use, from early single-step tasks to multi-turn, multi-step scenarios, where
complexity scales up as the number of turns and steps increases [Qin et al., 2023, Patil et al., 2024,
Yao et al., 2024, Yu et al., 2025a]. More sophisticated tasks exhibit hierarchical or compositional



structure, decomposing high-level objectives into nested sub-goals and thereby testing compositional
generalization, namely an agent’s ability to solve novel problems by recombining known skills [Shao
et al., 2023]. TaskCraft [Shi et al., 2025] operationalizes this by expanding tasks both in depth (longer
sequences of tool executions) and in width (multiple sub-goals per objective), enhancing hierarchical
reasoning. At the highest level, conditional and graph-based tasks involve non-linear structures with
branching logic, where planning must adapt dynamically to intermediate outcomes. Recent efforts in
information-seeking agents extend linear sequences to complex graph-based information chains [Wu
et al., 2025a, Tao et al., 2025, Li et al., 2025a, Wu et al., 2025b], and multi-agent settings further
amplify this complexity, as optimal plans become contingent on the actions of other agents, producing
intrinsically interdependent, graph-structured challenges.

3.2 Dynamic Scaling

Task Difficulty Dynamics Scaling the task’s difficulty dynamically helps agents generalize, which
makes the targets non-stationary and changes the actions and states, and we can tune this ei-
ther on a predetermined schedule or based on how the agent performs. A common strategy is
performance-driven scheduling, where the task difficulty is regulated by the success rate (SR), as
in Eurekaverse [Liang et al., 2024]. Other approaches target newly acquired or weaker skills, as in
EvoCurr [Cheng et al., 2025] and EnvGen [Zala et al., 2024]. AgentGen’s BI-EVAL mechanism [Hu
et al., 2025a] introduces a bidirectional variation, which adjusts complexity upward or downward to
match agent capability, in contrast to earlier methods that mostly increased difficulty [Xu et al., 2025,
Luo et al., 2025c]. Beyond these, WebRL [Qi et al., 2025] implements self-adjusting curricula across
complex web settings, and AgentGym [Xi et al., 2024] generalizes performance-adaptive scheduling
to diverse benchmarks. R-Zero [Huang et al., 2025a] formalizes a challenger-solver paradigm in
which a challenger proposes near-boundary tasks based on the solver’s uncertainty, and the solver
improves by training on filtered task sets, yielding iterative and targeted curricula.

Environmental Dynamics Environmental dynamics provide more realistic scenarios for agents.
For example, the Meta Agents Research Environments (ARE) platform [Andrews et al., 2025] pushes
this paradigm further by introducing a more realistic and dynamic environment. In most setups, if
the agent is not interacting, the environment typically remains frozen. By contrast, ARE allows the
environment to change dynamically through random or scheduled events at all times, allowing it
to evolve asynchronously and independently of the agent. As shown in ARE’s Mobile and Gaia2
benchmarks [Andrews et al., 2025], agents in such dynamic settings need to balance cognitive depth
and temporal responsiveness to manage interaction latency and uncertainty as the environment’s state
continually changes. This design shifts the focus from static interaction to more continuous and
proactive engagement.

3.3 Diversity Scaling

Scaling the diversity of data is key to building more robust and generalizable agents. Managing
diversity at the task level (e.g., task difficulty, task objectives) helps agents acquire broader skills
rather than overfitting to specific patterns [Hu et al., 2025a, Huang et al., 2025a]. At the environment
level, exposing agents to a wide range of scenarios (e.g., different domains or tool suites) can further
enhance their adaptability to novel situations. For example, representative works like AgentGen [Hu
et al., 2025a] and AgentGym [Xi et al., 2024] synthesize a wide range of heterogeneous settings that
broaden the training signals agents receive. Beyond these, AgentSense [Leng et al., 2025] generates
diverse virtual sensor data by simulating different human personas and routines, and AgentBank
[Song et al., 2024] shows that training on tens of thousands of heterogeneous interaction trajectories
will substantially improves generalization. Collectively, these approaches demonstrate that diversity
across tasks and environments is foundational for training capable, adaptable agents.

4 Stage 2: Task Execution

In the task execution stage, after the agent takes an action, it receives an observation from the
environment. Consequently, whether the agent can interact with the environment in real time
(interactivity § 4.1) and whether the returned observations are consistent with real-world scenarios
(realism § 4.2) are both critical to the quality of the resulting experience. Accordingly, we organize



environment scaling in this stage into two directions: interactivity scaling and realism scaling, as
shown next to the action space in Figure 3.

4.1 Interactivity Scaling

Despite the advent of standard protocols such as the Model Context Protocol (MCP) [Anthropic,
2024, Luo et al., 2025b, Wang et al., 2025a, Fan et al., 2025] integrates heterogeneous data sources
and tools into a unified form of context and thus greatly improves the efficiency and controllability of
tool use, many datasets [Fan et al., 2025, Liu et al., 2024b, Qin et al., 2023] still consist of predefined,
carefully curated sequences of tool calls, even some of them include real API or MCP calls. Under
this non-interactive settings, each task has a single predefined solution path. Agents are blind to
intermediate tool outputs and cannot adapt subsequent tool selection based on the returned results.
Consequently, agents trained on this static supervision exhibit poor generalization to novel tasks
and limited diversity in solution paths [Sullivan et al., 2025]. Recent methods [Pang et al., 2025,
Wang et al., 2024, Yao et al., 2023, Trivedi et al., 2024, Sullivan et al., 2025] start to allow agents
to interactively invoke real world APIs or leverage tools via function calling or code generation,
where they can adjust subsequent tool selections based on current output. Among these approaches,
BrowseMaster [Pang et al., 2025] further supports parallel tool calling, expanding the typical one-
tool-call-per-invocation pattern to an average of 12.11 calls per invocation, which further increases
interactivity. Another promising direction uses an offline real database as the interaction environment
[Tongyi DeepResearch Team, 2025, Fang et al., 2025, Ye et al., 2025a, Yao et al., 2024, Barres et al.,
2025, Prabhakar et al., 2025, Ye et al., 2025b], where the agent interactively calls functions to read
and write the state database. This approach strikes a practical balance between interactivity and
realism and helps agents accumulate meaningful experience efficiently.

4.2 Realism Scaling

To ensure that large language model (LLM) agents can generalize effectively to complex, real-world
scenarios, the training data derived from these environments should maintain real-world consistency.
In tool-use environments, earlier works [Qin et al., 2023, Lu et al., 2025b, Sun et al., 2025] utilize
LLMs to generate the results of tool calls as simulations, avoiding monetary cost and unexpected
implementation errors. However, to better ensure real-world consistency, more recent approaches
start to use real APIs [Song et al., 2023, Wu et al., 2025b, Mastouri et al., 2025] or execute tasks
in simulated environments backed by offline, real-world databases [Tongyi DeepResearch Team,
2025, Fang et al., 2025, Ye et al., 2025a, Yao et al., 2024, Barres et al., 2025, Prabhakar et al., 2025,
Ye et al., 2025b]. Specifically, Tongyi DeepResearch Team [2025] builds a custom tool suite and
a simulated environment based on an offline Wikipedia database, where agents execute actual tool
calls to directly read and write to the database, achieving lower cost and higher efficiency. Beyond
tool-use scenarios, where interactions are mainly text-based, the emerging paradigm of thinking with
images [Su et al., 2025b] advocates using visual information as a dynamic, manipulable workspace
for intermediate reasoning. Genie 3 [Parker-Holder and Fruchter, 2025] further extends realism
scaling to 3D scenarios by implementing a physically grounded, real-time interactive 3D world. It
preserves realistic physical properties while improving long-horizon consistency, offering a practical
framework and motivating the development of more realistic environments for agents to explore.

Another path to improving realism of environments is the simulation of multi-agent settings. In such
contexts, agents may coordinate or compete with each other [Tran et al., 2025, Qian et al., 2024, Li
et al., 2024, Zhang et al., 2024, Kim et al., 2024], therefore each agent’s behavior naturally becomes
part of the environment for the others. As the number of agents scales, these interactions can produce
emergent social and economic phenomena such as information diffusion, opinion polarization, and
herding effects [ Yang et al., 2025, Zhang et al., 2025c]. To reproduce such societal dynamics and
improve data fidelity, multi-agent frameworks like Oasis [Yang et al., 2025] leverage real world social
media data stored in a relational database to simulate interactive environments, enabling more realistic
modeling of social processes. Meanwhile, Zhang et al. [2025¢] move beyond earlier frameworks [Li
et al., 2023, Gao et al., 2024b] that enforce execution order via message passing SOPs by adopting the
MQTT communication protocol to support asynchronous decision making among autonomous agents,
more closely simulating real-world workflows. Similarly, ARE [Andrews et al., 2025] decouples
agent and environment clocks so that world state evolves asynchronously, and it simulates other
agents’ activities by treating them as independent events in the environment’s event stream. Such
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Figure 4: Illustration of environment scaling in the feedback stage using a conference-scheduling ex-
ample. The agent first executes tasks in the environment and produces action-observation trajectories.
The environment then evaluates these trajectories and returns feedback, yielding the experience used
to train the agent. Scaling in the feedback stage covers density, granularity, automation, objectivity,
and robustness.

environments enable the simulation of real-world societal processes and support the collection of
more realistic experiential data.

5 Stage 3: Feedback

In the feedback stage, the environment assesses the trajectories collected during task execution and
generates feedback signals for subsequent RL training. Scaling at this stage focuses on how feedback
is provided, including its frequency and richness (density § 5.1 and granularity § 5.2), its level of
automation (automation § 5.3), as well as how objectively and reliably it is delivered (objectivity
§ 5.4 and robustness § 5.5). Accordingly, we categorize representative scaling approaches along five
dimensions: density, granularity, automation, objectivity, and robustness, as shown in Figure 4.

5.1 Density Scaling

The density of feedback refers to how frequently the environment provides evaluative feedback
signals. Early environments typically provided trajectory-level rewards based on the final outcome
(success or failure) [Jiang et al., 2025, Da et al., 2025, Qian et al., 2025, Wang et al., 2025c]. Despite
such sparse signals leading to more stable training, especially in tasks like mathematics or code
generation [DeepSeek-Al et al., 2025], they are insufficient for more complex multi-step tasks. In
these tasks, it is challenging to verify whether an intermediate step contributes to or hinders task
completion. To address this issue and scale feedback density, more recent studies [Khalifa et al., 2025,
Chae et al., 2025, Gao et al., 2024a, Ma et al., 2025a, Park et al., 2025] have introduced step-level
process-based rewards, often combined with traditional trajectory-level outcome-based rewards, thus
providing denser supervision and more detailed guidance for agent improvement. However, the
mechanism behind such reward designs remains underexplored, though some interesting phenomena
have been observed in existing experiments. For instance, Ma et al. [2025a] shows that step-level
reward models can perform well in logical-coherent tasks such as mathematical reasoning, but they
are not suitable for some natural language tasks (e.g., creative writing, policy making). Gao et al.



[2024a] shows that naively combining step-level rewards with trajectory-level rewards can lead
to reward hacking. That is, trivial actions may get high rewards, resulting in repetitive reasoning
behavior that ultimately harms the agent’s training process. They further use reward differences
between adjacent steps as rewards and clip them if they exceed a predefined threshold to mitigate
this problem. Apart from these, Park et al. [2025] finds that even state-of-the-art reward models can
be poorly calibrated, assigning overly optimistic scores to some intermediate steps. These studies
collectively showcase both the potential and bottlenecks of current dense reward designs. In the future,
designing reward models that are more accurately calibrated, stable in training, and interpretable will
be the focus of the reward density scaling.

5.2 Granularity Scaling

Granularity scaling refers to increasing the level of detail in feedback as well as enriching the forms
of feedback provided. In earlier stages, evaluative feedback typically consisted of binary signals
[Christiano et al., 2017a, Ibarz et al., 2018] or a single scalar score [Stiennon et al., 2022, Ouyang
et al., 2022]. At finer granularities, the evaluative feedback on agents’ performances is broken
down into structured components, such as a set of scores across multiple criteria, offering more
informative guidance [Huang et al., 2025b]. Building on this idea, some works use manually designed,
multi-faceted rewards to improve correctness and format [Qian et al., 2025, Song et al., 2025]. The
Rubrics as Rewards (RaR) framework [Gunjal et al., 2025, Huang et al., 2025¢, Zhou et al., 2025,
Zhang et al., 2025e, Viswanathan et al., 2025] further decomposes task requirements into tangible,
human-interpretable criteria. By designing rewards as checklist-style, instance-specific rubrics, it
provides a middle ground between binary correctness signals and broad preference rankings.

5.3 Automation Scaling

Automation scaling refers to the process where the feedback mechanism shifts from human super-
vision to automated evaluations generated by artificial intelligence. Reinforcement Learning from
Human Feedback (RLHF) encompasses a wide range of frameworks, with the goal of aligning large
language models (LLMs) with human preferences [Sheng et al., 2025, Hu et al., 2025b, Christiano
et al., 2017b]. Although this method is effective, it heavily relies on human annotators, which results
in a slow, costly and difficult-to-scale feedback process. In order to achieve automated feedback and
reduce the reliance on labor-intensive preference annotations, an increasing number of studies have
begun to use LLMs with evaluation capabilities as automated judges to replace human evaluators,
thereby forming a new paradigm called "Reinforcement Learning from Al Feedback" (RLAIF)
[Zhang et al., 2025d, Su et al., 2025a, Chen et al., 2025a, Lee et al., 2024, Bai et al., 2022]. The pio-
neering work REWARDAGENT [Peng et al., 2025] introduced a verification agent to simultaneously
assess the factual correctness of model responses and their compliance with instructions, and combine
these assessment results with basic human feedback to effectively guide model training. In contrast,
ARMAP [Chen et al., 2025b] innovatively bypassed the need for a more powerful LLM to act as a
judge, instead using the positive and negative trajectories generated by the LLM to train the classi-
fication model, thereby constructing an automatic and efficient reward mechanism. Rubric-based
methods [Gunjal et al., 2025, Huang et al., 2025c], on the other hand, decompose open-ended tasks
into multi-dimensional, interpretable criteria, improving the quality of rewards generated by LLMs.
By integrating this automated assessment into the training environment, agents can gradually acquire
higher-level capabilities without the need for continuous human supervision. However, this paradigm
also magnifies risks such as the propagation of LLM’s own biases in the process of adjudication,
as well as the phenomenon of rewarding hacking, which refers to the situation where intelligent
agents exploit the loopholes in the reward model to strive for high scores, thereby deviating from
the intended goals and even causing the model to crash. This reveals the crucial trade-off between
scalability and security, and emphasizes the need for research on robust risk mitigation strategies.

5.4 Objectivity Scaling

The RLVR paradigm has achieved great success in objective and easy-to-verify domains such as
mathematical reasoning and code generation [Shao et al., 2024, DeepSeek-Al et al., 2025]. However,
in many real-world scenarios such as creative writing, medical consultation, and policy making, the
objectivity is subjective, open, and hard to verify. In these real environments, the feedback collected
often contains many biases and noise. An environment for training agents should be able to extract



accurate and high-quality feedback from such kinds of objectivity, and gradually scale from simple
and verifiable tasks to difficult and hard-to-verify ones. Some recent studies have made early attempts
in this direction [Andrews et al., 2025, Ma et al., 2025b, Akter et al., 2025, Su et al., 2025a, Yu et al.,
2025b, Liu et al., 2025b, Gunjal et al., 2025, Huang et al., 2025¢]. For example, Writing-Zero [Jia
et al., 2025] uses a pairwise generative model to extract reliable and verifiable signals from subjective
evaluations. Omni-Thinker [Li et al., 2025b] combines rule-based verifiable rewards with generative
preference signals to form a unified multi-task RL training loop. ARE’s verifier [Andrews et al., 2025]
applies RLVR by using both hard checks (exact parameter matches) and soft checks (LLM-based
semantic judgments) under strict causal order. Although these works show the feasibility of structured
and verifiable rewards in open-ended environments, scaling environments to handle harder forms of
objectivity still faces many challenges.

5.5 Robustness Scaling

Feedback robustness scaling requires the environment to provide more stable and reliable reward
signals. Regarding the robustness of the reward itself, signals may be noisy, or face the challenge of
reward hacking, which refers to agents learning undesirable and tricky behavioral patterns that obtain
high reward without achieving the intended goals [Miao et al., 2024, Liu et al., 2024a, Farquhar et al.,
2025, Fu et al., 2025, Tarek and Beheshti, 2025]. For the former issue, some approaches generate
soft probabilistic rewards with generative verifiers to mitigate noise in rewards [Lin et al., 2024a,
Su et al., 2025a]. And as for the latter, frameworks such as MONA [Farquhar et al., 2025] try to
mitigate reward hacking problem by evaluating the future utility of actions through an overseer, thus
constraining unstable behaviors while preserving explainability. Huang et al. [2025¢] develops a
reward hacking defense rubric that penalizes sycophantic praise towards user prompts and overly
flattering self-assessments in responses, encouraging the model to produce more substantive content.

Apart from reward robustness, interaction robustness at environment-level is also crucial, since it is
common for environmental instabilities (e.g., delays, crashes, corrupted tool outputs) to undermine
feedback reliability and degrade the training process. To handle such failures, Trinity-RFT [Pan et al.,
2025] proposes asynchronous inference and retry mechanisms, while Tongyi DeepResearch Team
[2025] employs caching, retrying failed calls, and switching to similar providers to prevent corrupted
trajectories. Looking ahead, future reward design should prioritize both efficacy and the prevention
of hacking through tricky patterns, and greater attention should be paid to the design of more robust
system.

6 Implementation Frameworks
There exist diverse implementations of simulated environments that vary in modality and complexity.

Visual Environments For 2D scenarios, tasks in grid-based environments can be symbolic or
pixel-level, often associated with game-playing [Chevalier-Boisvert et al., 2023, Bellemare et al.,
2013]. Works such as WebArena [Zhou et al., 2023], Mind2Web [Deng et al., 2023], and Visual-
WebArena [Koh et al., 2024a] extend agent capabilities to more realistic, web-based environments.
ARE [Andrews et al., 2025] further builds upon this line by introducing a mobile-style setting that
integrates multiple apps and tools, incorporating time control and a structured verifier to support
scalable evaluation. In 3D scenarios, environments emphasize more about embodied interaction,
realistic physics and visual perception. More general simulators such as Habitat [Savva et al., 2019]
and ThreeDWorld [Gan et al., 2020] support more actions such as navigation and manipulation, while
domain-specific worlds develop the specific aspect. For example, MineRL [Guss et al., 2019] and
MineDojo [Fan et al., 2022] exploit the flexibility of Minecraft. Besides, Household benchmarks
such as ALFRED [Shridhar et al., 2020a] and EmbodiedQA [Das et al., 2018] further evaluate the
grounding function of language in photo-realistic 3D spaces, requiring agents to follow instructions,
answer questions, or perform multi-step tasks.

Text-based Environments Text-based environments emphasize more on reasoning and decision-
making from natural language descriptions. TextWorld [C6té et al., 2018] proposes a framework to
generate the text games with different goal-driven challenges. Reddit-RL-simulator [He et al., 2016,
Chan and King, 2018] implements an RL environment for iteratively tracking and recommending
popular discussion threads on Reddit. ALFWorld [Shridhar et al., 2020b] adapts ALFRED tasks



into textual form, and JerichoAgentBench [Liu et al., 2023] extends the Jericho suite [Hausknecht
et al., 2020] with annotated benchmarks and concrete objectives. Such text environments stress the
agent’s ability to infer latent dynamics under partial observability, making them a natural testbed for
language-based decision-making.

7 Future Directions

Co-Evolution via Embedded External Tools As the complexity of task increases, feedback
mechanisms must scale in order to avoid sparse, noisy, or misaligned learning signals. Future
environments can achieve this by including external tools or modules to serve as verifiers, simulators,
compilers, or executable systems into the learning loop. These tools would evolve together with
the task generation, providing structured, verifiable feedback and enabling agents to interact with
increasingly sophisticated challenges. By integrating embedded tools with automated evaluators
such as LL.M-based formative signals, environments can better support multi-step, open-ended, and
creative problem solving, while also helping to mitigate the Generator-Verifier Asymmetry.

Scaling Through Generator-Verifier Synergy Future environments can encourage stronger gen-
erators to have the ability to decompose complex tasks into smaller subproblems with intermediate
solutions, making them tractable for weaker verifiers. This enables scalable supervision in domains
where holistic verification is difficult such as creative cultural production and policy-making. In
contrast, weaker generators could provide diverse candidate solutions that could be filtered, ranked, or
refined by stronger verifiers. By incorporating these co-evolving dynamics into the environment, the
asymmetry between generators and verifiers can serve as a catalyst for continuous self-improvement.

Open-Ended, Multi-Agent Environments Future environments can scale to support large-scale
multi-agent interactions, emergent social dynamics, and economic or organizational level simulations,
providing rich contexts for studying both collaborative and non-cooperative behaviors in complex
environments. In particular, scaling to massively multi-cultural and multi-lingual settings requires
scaling environment construction for agents to navigate the subtle semantics of concepts and values
that vary across different societies, not only in the textual but also in the multi-modal domain [Koh
et al., 2024b, Huang et al., 2025d]. Such open-ended and interactive scenarios environments foster
generalization and strategic planning abilities of agents, equipping LLM agents to better handle
complex, real-world challenges beyond isolated task execution.

8 Conclusion

The era of experience makes environments central to the development of LLM agents, position-
ing them as active producers of experiential data and underscoring the growing need for scaling
environments to create a more complex, realistic, and richly interactive world. From a pioneering
environment-centric perspective, our survey proposes a unified taxonomy that organizes represen-
tative work across the GEF loop (task generation, task execution, and feedback), together with
evaluation, implementation, and applications. Besides, we surface key challenges for advancing agent
intelligence, including the asymmetry between generators and verifiers and the construction of more
open, large-scale multi-agent environments, thereby providing insights for future research on agentic
systems.
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Limitations

As scaling environments remains an emerging research topic, relatively few studies have explicitly
adopted this framing. Thus, we take a broad view of environment and organize representative studies
along the GEF loop (task generation, task execution, and feedback) from a pioneering environment-
centric perspective. While this broader lens brings in some adjacent lines of work that may not
have been explicitly designed from the environment side, our taxonomy is both comprehensive and
insightful. Given the rapid pace of agentic research, some of the most recent papers may fall outside
this snapshot. We will continue to update this survey as the literature evolves.
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A Conceptual Framework

Following the formalization by Gao et al. [2025], we model the environment E as a partially
observable Markov decision process (POMDP). At the beginning of each episode, the environment
generates a task T = (E, I), where I € 7 represents user intention drawn from intention space
Z. The agent 7 interacts with the environment over horizon T' € N, producing an interleaved
observation—action trajectory 7 = (0g, ag, 01, a1, . ..,or) € (O x A)T*! where O and A denote
the observation and action spaces respectively. The environment then evaluates performance and

provides feedback r € R¥, which may take the form of step-level signals rs([?p = Ryep(se,a,T) €R
fort € {0,...,T}, where s; € S denotes the state of the environment at step ¢, trajectory-level
signals 7y, = Rui(7,T) € R™, or a combination of both r = f (rs(g;)T), Tuaj) Where f : RTT1 x
R™ — R¥. These signals need not be limited to sparse scalar rewards but can encode structured or
adaptive assessments reflecting correctness, efficiency, reasoning depth, or long-term outcomes. This
Generation-Execution-Feedback (GEF) Loop £ = (Tyen, Exec,Eval) : T — T x (O x A)* x Rk,
which encompasses task generation, task execution, and feedback, defines the essential mechanics of
environments. Repeated iterations drive the accumulation of experience and the progressive evolution
of the agent 7.

B Evaluation Benchmarks

Previous evaluation studies have typically focused on the intelligence of the agents themselves, but
there is a lack of direct measurement indicators for aspects such as adaptability to the environment,
interactivity, realism, and robustness. Therefore, most environmental assessments are conducted
indirectly, usually by observing the performance of intelligent agents to reflect the quality of the
environment. For instance, studies such as TaskCraft [Shi et al., 2025] and AgentScaler [Fang et al.,
2025] train the agents through the trajectories generated by the interaction between the environment
and the agents, thereby evaluating the environment. The stronger performance of the agents is
regarded as an indirect indication of higher environmental quality. Initially, direct measurements of the
environment are mainly limited to symbolic or textual environments. Bytesized32 [Wang et al., 2023]
proposes specific-task text games and evaluates them using automated metrics in terms of fidelity,
validity, specification adherence, and winnability. Text2World [Hu et al., 2025¢] benchmarks the
generation of symbolic world models, using structural similarity for overall evaluation, and capturing
more granular features such as action dynamics through component-level F1 scores. Recent studies
have begun to extend the direct assessment to more modalities. VidOSC [Xue et al., 2024] explores
the dynamic characteristics of open-world environments. WorldScore [Duan et al., 2025] proposes
a unified framework for evaluating world generation. While WorldPrediction [Chen et al., 2025d]
focuses on advanced visual reasoning, emphasizing long-term procedural planning and semantic-
time abstraction capabilities. Despite these advancements, comprehensive and universal assessment
protocols are still scarce, highlighting the need for more generalized and domain-independent
methodologies to rigorously and directly evaluate environmental quality beyond the performance
metrics of intelligent agents.

C Key Applications

Recent progress in agentic systems, typically built on state-of-the-art LLM families such as GPT [Ope-
nAl, 2025a], Claude [Anthropic, 2025], Gemini [Team et al., 2024], LLaMA [Touvron et al., 2023],
and Qwen [Bai et al., 2023], is increasingly driven by interactions with dynamic and multifaceted
environments.
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Tool-use Environments Tool-use environments expose APIs and function calls as structured action
spaces, and many LLMs now natively support function invocation, thereby extending reasoning with
external tools [OpenAl, 2023, Anthropic, 2024, Wu et al., 2025b, Mastouri et al., 2025, Luo et al.,
2025b, Wang et al., 2025a, Fan et al., 2025].

Coding Environments Coding environments leverage repositories, test frameworks, and IDE
integration to support long-horizon programming. Within these settings, systems such as Qwen3-
Coder [Qwen Team, 2024] and Claude 4 [Anthropic, 2025] demonstrate reliability in code editing and
debugging. ReTool [Feng et al., 2025] further integrates code-interpreter execution into the reasoning
loop, enabling agents to exhibit code self-correction and adaptive tool selection.

GUI Environments Web navigation (browser control) environments build on HTML/DOM struc-
tures to support tasks such as browsing, form filling, and transactions [Lai et al., 2024, Fosowl, 2024,
Significant-Gravitas, 2023]. GUI environments extend these to graphical user interfaces on desktops
and mobile devices [Qin et al., 2025, Wang et al., 2025d, Ye et al., 2025¢, Lu et al., 2025c, Liu et al.,
2024c, Sun et al., 2022, Huang et al., 2025¢]. Beyond these, more comprehensive platforms [Wang
et al., 2025e, Xie et al., 2024, OpenAl, 2025] integrate terminals, operating systems, applications, and
APISs to create more interactive, open-ended, and realistic environments, fostering the development of
more advanced computer-use agents (CUAs).

Deep Research Environments To nurture the next generation of more powerful research agents,
deep research environments demand stronger long-context reasoning and more robust retrieval
capabilities. Systems such as Gemini 1.5 Pro [Google DeepMind, 2024] and OpenAl’s deep research
agents [OpenAl, 2025b] demonstrate that extended context windows enable sustained, in-depth
analysis, while effective retrieval pipelines help mitigate distraction and context dilution.
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