
Under review as a conference paper at ICLR 2021

TOPOTER: UNSUPERVISED LEARNING OF TOPOLOGY
TRANSFORMATION EQUIVARIANT REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the Topology Transformation Equivariant Representation (TopoTER)
learning, a general paradigm of unsupervised learning of node representations of
graph data for the wide applicability to Graph Convolutional Neural Networks
(GCNNs). We formalize the TopoTER from an information-theoretic perspec-
tive, by maximizing the mutual information between topology transformations
and node representations before and after the transformations. We derive that
maximizing such mutual information can be relaxed to minimizing the cross en-
tropy between the applied topology transformation and its estimation from node
representations. In particular, we seek to sample a subset of node pairs from the
original graph and flip the edge connectivity between each pair to transform the
graph topology. Then, we self-train a representation encoder to learn node repre-
sentations by reconstructing the topology transformations from the feature repre-
sentations of the original and transformed graphs. In experiments, we apply the
TopoTER to the downstream node and graph classification tasks, and results show
that the TopoTER outperforms the state-of-the-art unsupervised approaches.

1 INTRODUCTION

Graphs provide a natural and efficient representation for non-Euclidean data, such as brain networks,
social networks, citation networks, and 3D point clouds. Graph Convolutional Neural Networks
(GCNNs) (Bronstein et al., 2017) have been proposed to generalize the CNNs to learn representa-
tions from non-Euclidean data, which has made significant advances in various applications such
as node classification (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019a) and graph
classification (Xu et al., 2019b). However, most existing GCNNs are trained in a supervised fash-
ion, requiring a large amount of labeled data for network training. This limits the applications of the
GCNNs since it is often costly to collect adequately labeled data, especially on large-scale graphs.
Hence, this motivates the proposed research to learn graph feature representations in an unsuper-
vised fashion, which enables the discovery of intrinsic graph structures and thus adapts to various
downstream tasks.

Auto-Encoders (AEs) and Generative Adversarial Networks (GANs) are two most representative un-
supervised learning methods. Based on the AEs and GANs, many approaches have sought to learn
transformation equivariant representations (TERs) to further improve the quality of unsupervised
representation learning. It assumes that the learned representations equivarying to transformations
are able to encode the intrinsic structures of data such that the transformations can be reconstructed
from the representations before and after transformations (Qi et al., 2019b). Learning TERs traces
back to Hinton’s seminal work on learning transformation capsules (Hinton et al., 2011), and em-
bodies a variety of methods developed for Euclidean data (Kivinen & Williams, 2011; Sohn &
Lee, 2012; Schmidt & Roth, 2012; Skibbe, 2013; Lenc & Vedaldi, 2015; Gens & Domingos, 2014;
Dieleman et al., 2015; 2016; Zhang et al., 2019; Qi et al., 2019a). Further, Gao et al. (2020) ex-
tend transformation equivariant representation learning to non-Euclidean domain, which formalizes
Graph Transformation Equivariant Representation (GraphTER) learning by auto-encoding node-
wise transformations in an unsupervised fashion. Nevertheless, only transformations on node fea-
tures are explored, while the underlying graph may vary implicitly. The graph topology has not been
fully explored yet, which however is crucial in unsupervised graph representation learning.

To this end, we propose the Topology Transformation Equivariant Representation (TopoTER) learn-
ing to infer unsupervised graph feature representations by estimating topology transformations. In-
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stead of transforming node features as in the GraphTER, the proposed TopoTER studies the trans-
formation equivariant representation learning by transforming the graph topology, i.e., adding or
removing edges to perturb the graph structure. Then the same input signals are attached to the re-
sultant graph topologies, resulting in different graph representations. This provides an insight into
how the same input signals associated with different graph topologies would lead to equivariant
representations enabling the fusion of node feature and graph topology in GCNNs. Formally, we
propose the TopoTER from an information-theoretic perspective, aiming to maximize the mutual in-
formation between topology transformations and feature representations with respect to the original
and transformed graphs. We derive that maximizing such mutual information can be relaxed to the
cross entropy minimization between the applied topology transformations and the estimation from
the learned representations of graph data under the topological transformations.

Specifically, given an input graph and its associated node features, we first sample a subset of node
pairs from the graph and flip the edge connectivity between each pair at a perturbation rate, lead-
ing to a transformed graph with attached node features. Then, we design a graph-convolutional
auto-encoder architecture, where the encoder learns the node-wise representations over the origi-
nal and transformed graphs respectively, and the decoder predicts the topology transformations of
edge connectivity from both representations by minimizing the cross entropy between the applied
and estimated transformations. Experimental results demonstrate that the proposed TopoTER model
outperforms the state-of-the-art unsupervised models, and even achieves comparable results to the
(semi-)supervised approaches in node classification and graph classification tasks at times.

Our main contributions are summarized as follows.
• We propose the Topology Transformation Equivariant Representation (TopoTER) learning to in-

fer expressive node feature representations in an unsupervised fashion, which can characterize the
intrinsic structures of graphs and the associated features by exploring the graph transformations
of connectivity topology.
• We formulate the TopoTER from an information-theoretic perspective, by maximizing the mutual

information between feature representations and topology transformations, which can be relaxed
to the cross entropy minimization between the applied transformations and the prediction in an
end-to-end graph-convolutional auto-encoder architecture.
• Experiments demonstrate that the proposed TopoTER model outperforms the state-of-the-art un-

supervised methods in both node classification and graph classification.

2 RELATED WORK

Graph Auto-Encoders. Graph Auto-Encoders (GAEs) are the most representative unsupervised
methods. GAEs encode graph data into feature space via an encoder and reconstruct the input
graph data from the encoded feature representations via a decoder. GAEs are often used to learn
network embeddings and graph generative distributions (Wu et al., 2020). For network embedding
learning, GAEs learn the feature representations of each node by reconstructing graph structural
information, such as the graph adjacency matrix (Kipf & Welling, 2016) and the positive pointwise
mutual information (PPMI) matrix (Cao et al., 2016; Wang et al., 2016). For graph generation, some
methods generate nodes and edges of a graph alternately (You et al., 2018), while other methods
output an entire graph (Simonovsky & Komodakis, 2018; Ma et al., 2018; De Cao & Kipf, 2018).

Graph Contrastive Learning. An important paradigm called contrastive learning aims to train
an encoder to be contrastive between the representations of positive samples and negative sam-
ples. Recent contrastive learning frameworks can be divided into two categories (Liu et al., 2020):
context-instance contrast and context-context contrast. Context-instance contrast focuses on mod-
eling the relationships between the local feature of a sample and its global context representation.
Deep InfoMax (DIM) (Hjelm et al., 2018) first proposes to maximize the mutual information be-
tween a local patch and its global context through a contrastive learning task. Deep Graph InfoMax
(DGI) (Velickovic et al., 2019) proposes to learn node-level feature representation by extending
DIM to graph-structured data, while InfoGraph (Sun et al., 2020a) aims to use mutual information
maximization for unsupervised representation learning on entire graphs. Peng et al. (2020) pro-
pose a Graphical Mutual Information (GMI) approach to maximize the mutual information of both
features and edges between inputs and outputs. In contrast to context-instance methods, context-
context contrast studies the relationships between the global representations of different samples.
M3S (Sun et al., 2020b) adopts a self-supervised pre-training paradigm as in DeepCluster (Caron
et al., 2018) for better semi-supervised prediction in GCNNs. Graph Contrastive Coding (GCC)
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Figure 1: An example of graphs before and after topology transformations.

(Qiu et al., 2020) designs the pre-training task as subgraph instance discrimination in and across
networks to empower graph neural networks to learn the intrinsic structural representations.

Transformation Equivariant Representation Learning. Many approaches have sought to learn
transformation equivariant representations. Learning transformation equivariant representations has
been advocated in Hinton’s seminal work on learning transformation capsules. Following this, a
variety of approaches have been proposed to learn transformation equivariant representations (Gens
& Domingos, 2014; Dieleman et al., 2015; 2016; Cohen & Welling, 2016; Lenssen et al., 2018).
To generalize to generic transformations, Zhang et al. (2019) propose to learn unsupervised feature
representations via Auto-Encoding Transformations (AET) by estimating transformations from the
learned feature representations of both the original and transformed images, while Qi et al. (2019a)
extend AET from an information-theoretic perspective by maximizing the lower bound of mutual in-
formation between transformations and representations. Wang et al. (2020) extend the AET to Gen-
erative Adversarial Networks (GANs) for unsupervised image synthesis and representation learning.
Gao et al. (2020) introduce the GraphTER model that extends AET to graph-structured data, which
is formalized by auto-encoding node-wise transformations in an unsupervised manner. de Haan
et al. (2020) propose Gauge Equivariant Mesh CNNs which generalize GCNNs to apply anisotropic
gauge equivariant kernels. Fuchs et al. (2020) introduce a self-attention mechanism specifically for
3D point cloud data, which adheres to equivariance constraints, improving robustness to nuisance
transformations.

3 METHOD
3.1 PRELIMINARY

We consider an undirected graph G = {V, E ,A} composed of a node set V of cardinality |V| = N ,
an edge set E connecting nodes of cardinality |E| = M . A is a real symmetric N × N matrix that
encodes the graph structure, where ai,j = 1 if there exists an edge (i, j) between nodes i and j, and
ai,j = 0 otherwise. Graph signal refers to data that reside on the nodes of a graph G, denoted by
X ∈ RN×C with the i-th row representing the C-dimensional graph signal on the i-th node of V .

3.2 TOPOLOGY TRANSFORMATION

We define the topology transformation t as adding or removing edges from the original edge set E in
graph G. This can be done by sampling, i.i.d., a switch parameter σi,j as in (Velickovic et al., 2019),
which determines whether to modify edge (i, j) in the adjacency matrix. Assuming a Bernoulli
distribution B(p), where p denotes the probability of each edge being modified, we draw a random
matrix Σ = {σi,j}N×N from B(p), i.e., Σ ∼ B(p). We then acquire the perturbed adjacency matrix
as

Ã = A⊕ Σ, (1)
where ⊕ is the exclusive OR (XOR) operation. This strategy produces a transformed graph through
the topology transformation t, i.e., Ã = t(A). Here, the edge perturbation probability of p = 0
corresponds to a non-transformed adjacency matrix, which is a special case of an identity transfor-
mation to A.

The transformed adjacency matrix Ã can also be written as the sum of the original adjacency matrix
A and a topology perturbation matrix ∆A:

Ã = A + ∆A, (2)
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where ∆A = {δai,j}N×N encodes the perturbation of edges, with δai,j ∈ {−1, 0, 1}. As shown
in Fig. 1, when δai,j = 0, the edge between node i and node j keeps unchanged (i.e., black solid
lines); when δai,j = −1 or 1, it means removing (i.e., orange dotted lines) or adding (i.e., blue solid
lines) the edge between node i and node j, respectively.

3.3 THE FORMULATION OF TOPOTER

Definition 1 Given a pair of graph signal and adjacency matrix (X,A), and a pair of graph signal
and transformed adjacency matrix (X, Ã) by a topology transformation t(·), a function E(·) is
transformation equivariant if it satisfies

E(X, Ã) = E (X, t(A)) = ρ(t) [E(X,A)] , (3)

where ρ(t)[·] is a homomorphism of transformation t in the representation space.

Let us denote H = E(X,A), and H̃ = E(X, Ã). We seek to learn an encoder E : (X,A) 7→
H; (X, Ã) 7→ H̃ that maps both the original and transformed sample to representations {H, H̃}
equivariant to the sampled transformation t, whose information can thus be inferred from the rep-
resentations via a decoder D : (H̃,H) 7→ ∆̂A as much as possible. From an information-theoretic
perspective, this requires (H,∆A) should jointly contain all necessary information about H̃.

Then a natural choice to formalize the topology transformation equivariance is the mutual infor-
mation I(H,∆A; H̃) between (H,∆A) and H̃. The larger the mutual information is, the more
knowledge about ∆A can be inferred from the representations {H, H̃}. Hence, we propose to max-
imize the mutual information to learn the topology transformation equivariant representations as
follows:

max
θ

I(H,∆A; H̃), (4)

where θ denotes the parameters of the auto-encoder network.

Nevertheless, it is difficult to compute the mutual information directly. Instead, we derive that
maximizing the mutual information can be relaxed to minimizing the cross entropy, as described in
the following theorem.

Theorem 1 The maximization of the mutual information I(H,∆A; H̃) can be relaxed to the min-
imization of the cross entropy H(p ‖ q) between the probability distributions p(∆A, H̃,H) and
q(∆̂A|H̃,H):

min
θ

H
(
p(∆A, H̃,H) ‖ q(∆̂A|H̃,H)

)
, − E

p(∆A,H̃,H)
log q(∆̂A|H̃,H). (5)

Proof By using the chain rule of mutual information, we have

I(H,∆A; H̃) = I(∆A; H̃|H) + I(H; H̃) ≥ I(∆A; H̃|H).

Thus the mutual information I(∆A; H̃|H) is the lower bound of the mutual information
I(H,∆A; H̃) that attains its minimum value when I(H; H̃) = 0.

Therefore, we relax the objective to maximizing the lower bound mutual information I(∆A; H̃|H)

between the transformed representation H̃ and the topology transformation ∆A:

I(∆A; H̃|H) = H(∆A|H)−H(∆A|H̃,H),

where H(·) denotes the conditional entropy. Since ∆A and H are independent, we have
H(∆A|H) = H(∆A). Hence, maximizing I(∆A; H̃|H) becomes

min
θ

H(∆A|H̃,H). (6)

According to the chain rule of conditional entropy, we have

H(∆A|H̃,H) = H(∆A, H̃,H)−H(H̃,H) ≤ H(∆A, H̃,H),
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Figure 2: The architecture of the proposed TopoTER.

where the conditional entropy H(∆A|H̃,H) is upper bounded by the joint entropy H(∆A, H̃,H).
Thus, the minimization problem in Eq. (6) becomes

min
θ

H(∆A, H̃,H). (7)

We next introduce a conditional probability distribution q(∆̂A|H̃,H) to approximate the intractable
posterior q̃(∆A|H̃,H) with an estimated ∆̂A. According to the definition of the Kullback-Leibler
divergence, we have

H(∆A, H̃,H) = H(p) = H(p ‖ q)−DKL(p ‖ q) ≤ H(p ‖ q),
where DKL(p ‖ q) denotes the Kullback-Leibler divergence of p and q that is non-negative, and
H(p ‖ q) is the cross entropy between p and q. Thus, Eq. (6) is converted to minimizing the cross
entropy as the upper bound:

min
θ

H
(
p(∆A, H̃,H) ‖ q(∆̂A|H̃,H)

)
, − E

p(∆A,H̃,H)
log q(∆̂A|H̃,H).

Hence, we relax the maximization problem in Eq. (4) to the optimization in Eq. (5). �

Based on Theorem 1, we train the decoder D to learn the distribution q(∆̂A|H̃,H) so as to esti-
mate the topology transformation ∆̂A from the encoded {H̃,H}, where the input pairs of original
and transformed graph representations {H̃,H} as well as the ground truth target ∆A can be sam-
pled tractably from the factorization of p(∆A, H̃,H) , p(∆A)p(H)p(H̃|∆A,H). This allows us
to minimize the cross entropy between p(∆A, H̃,H) and q(∆̂A|H̃,H) as in (5) with the training
triplets (H̃,H; ∆A) drawn from the tractable factorization of p(∆A, H̃,H). Hence, we formu-
late the TopoTER as the joint optimization of the representation encoder E and the transformation
decoder D.

3.4 THE ALGORITHM

We design a graph-convolutional auto-encoder network for the TopoTER learning, as illustrated
in Fig. 2. Given a graph signal X associated with a graph G = {V, E ,A}, the proposed unsuper-
vised learning algorithm for the TopoTER consists of three steps: 1) topology transformation, which
samples and perturbs some edges from E to acquire a transformed adjacency matrix Ã; 2) repre-
sentation encoding, which extracts the feature representations of graph signals before and after the
topology transformation; 3) transformation decoding, which estimates the topology transformation
parameters from the learned feature representations. We elaborate on the three steps as follows.

Topology Transformation. We randomly sample a subset of edges from E for topology
perturbation—adding or removing edges, which not only enables to characterize local graph struc-
tures at various scales, but also reduces the number of edge transformation parameters to estimate
for computational efficiency. In practice, in each iteration of training, we sample all the node pairs
with connected edges S1, and randomly sample a subset of disconnected node pairs S0, i.e.,

S0 =
{

(i, j)
∣∣ai,j = 0

}
,S1 =

{
(i, j)

∣∣ai,j = 1
}
, (8)

where |S0| = |S1| = M . Next, we randomly split S0 and S1 into two disjoint sets, respectively, i.e.,

Si =
{
S

(1)
i ,S

(2)
i

∣∣ S(1)
i ∩ S

(2)
i = ∅,S(1)

i ∪ S
(2)
i = Si, |S(1)

i | = r · |Si|
}
, i ∈ {0, 1}, (9)
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where r is the edge perturbation rate. Then, for each node pair (i, j) in S
(1)
0 and S

(1)
1 , we flip

the corresponding entry in the original graph adjacency matrix. That is, if ai,j = 0, then we set
ãi,j = 1; otherwise, we set ãi,j = 0. For each node pair (i, j) in S

(2)
0 and S

(2)
1 , we keep the original

connectivities unchanged, i.e., ãi,j = ai,j .

This leads to the transformed adjacency matrix Ã, as well as the sampled transformation parameters
by accessing ∆A at position (i, j) from S0 and S1. Also, we can category the sampled topology
transformation parameters into four types:

1. add an edge to a disconnected node pair, i.e., {t : ai,j = 0 7→ ãi,j = 1, (i, j) ∈ S
(1)
0 };

2. delete the edge between a connected node pair, i.e., {t : ai,j = 1 7→ ãi,j = 0, (i, j) ∈ S
(1)
1 };

3. keep the disconnection between node pairs in S
(2)
0 , i.e., {t : ai,j = 0 7→ ãi,j = 0, (i, j) ∈ S

(2)
0 };

4. keep the connection between node pairs in S
(2)
1 , i.e., {t : ai,j = 1 7→ ãi,j = 1, (i, j) ∈ S

(2)
1 }.

Thus, we cast the problem of estimating transformation parameters in ∆A from (H̃,H) as the
classification problem of the transformation parameter types. The percentage of these four types is
r : r : (1− r) : (1− r).

Representation Encoder. We train an encoder E : (X,A) 7→ E(X,A) to encode the feature
representations of each node in the graph. As demonstrated in Fig. 2, we leverage GCNNs with
shared weights to extract feature representations of each node in the graph signal. Taking the GCN
(Kipf & Welling, 2017) as an example, the graph convolution in the GCN is defined as

H = E(X,A) = D−
1
2 (A + I)D−

1
2XW, (10)

where D is the degree matrix of A + I, W ∈ RC×F is a learnable parameter matrix, and H =
[h1, ...,hN ]> ∈ RN×F denotes the node-wise feature matrix with F output channels. Similarly, the
node feature of the transformed counterpart is as follows with the shared weights W.

H̃ = E(X, Ã) = D̃−
1
2 (Ã + I)D̃−

1
2XW

= D̃−
1
2 (A + I)D̃−

1
2XW + D̃−

1
2 ∆AD̃−

1
2XW.

(11)

We thus acquire the feature representations H and H̃ of graph signals before and after topology
transformations.

Transformation Decoder. Comparing Eq. (10) and Eq. (11), the prominent difference between
H̃ and H lies in the second term of Eq. (11) featuring ∆A. This enables us to train a decoder
D : (H̃,H) 7→ ∆̂A to estimate the topology transformation from the joint representations before
and after transformation. We first take the difference between the extracted feature representations
before and after transformations along the feature channel,

∆H = H̃−H = [δh1, ..., δhN ]> ∈ RN×F . (12)
Thus, we can predict the topology transformation between node i and node j through the node-wise
feature difference ∆H by constructing the edge representation as

ei,j =
exp{−(δhi − δhj)� (δhi − δhj)}
‖ exp{−(δhi − δhj)� (δhi − δhj)}‖1

∈ RF , ∀(i, j) ∈ S0 ∪ S1, (13)

where � denotes the Hadamard product of two vectors to capture the feature representation, and
‖ · ‖1 is the `1-norm of a vector for normalization. The edge representation ei,j of node i and j is
then fed into several linear layers for the prediction of the topology transformation,

ŷi,j = softmax (linear(ei,j)) , ∀(i, j) ∈ S0 ∪ S1, (14)
where softmax(·) is an activation function.

According to Eq. (5), the entire auto-encoder network is trained by minimizing the cross entropy

L = − E
(i,j)∈S0∪S1

3∑
f=0

y
(f)
i,j log ŷ

(f)
i,j , (15)

where f denotes the transformation type (f ∈ {0, 1, 2, 3}), and y is the ground-truth binary indicator
(0 or 1) for each transformation parameter type.
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Table 1: Node classification accuracies (with standard deviation) in percentage on three datasets.
X,A,Y denote the input data, adjacency matrix and labels respectively.

Method Training Data Cora Citeseer Pubmed
Semi-Supervised Methods

GCN (Kipf & Welling, 2017) X,A,Y 81.5 70.3 79.0
MoNet (Monti et al., 2017) X,A,Y 81.7± 0.5 - 78.8± 0.3
GAT (Veličković et al., 2018) X,A,Y 83.0± 0.7 72.5± 0.7 79.0± 0.3
SGC (Wu et al., 2019) X,A,Y 81.0± 0.0 71.9± 0.1 78.9± 0.0
GWNN (Xu et al., 2019a) X,A,Y 82.8 71.7 79.1
MixHop (Abu-El-Haija et al., 2019) X,A,Y 81.9± 0.4 71.4± 0.8 80.8± 0.6
DFNet (Wijesinghe & Wang, 2019) X,A,Y 85.2± 0.5 74.2± 0.3 84.3± 0.4

Unsupervised Methods
Raw Features (Velickovic et al., 2019) X 47.9± 0.4 49.3± 0.2 69.1± 0.3
DeepWalk (Perozzi et al., 2014) A 67.2 43.2 65.3
DeepWalk + Features (Velickovic et al., 2019) X,A 70.7± 0.6 51.4± 0.5 74.3± 0.9
GAE (Kipf & Welling, 2016) X,A 80.9± 0.4 66.7± 0.4 77.1± 0.7
VGAE (Kipf & Welling, 2016) X,A 80.0± 0.2 64.1± 0.2 76.9± 0.1
DGI (Velickovic et al., 2019) X,A 81.1± 0.1 71.4± 0.2 77.0± 0.2
GMI (Peng et al., 2020) X,A 82.2± 0.2 71.4± 0.5 78.5± 0.1
TopoTER X,A 83.7± 0.3 71.7± 0.5 79.1± 0.1

Table 2: Model size comparison of DGI, GMI, and the proposed TopoTER.
Model DGI GMI TopoTER

No. of Parameters 996, 354 1, 730, 052 736, 260

4 EXPERIMENTS

4.1 NODE CLASSIFICATION

Datasets. We adopt three citation networks to evaluate our model: Cora, Citeseer, and Pubmed (Sen
et al., 2008), where nodes correspond to documents and edges represent citations. We follow the
standard train/test split in (Kipf & Welling, 2017) to conduct the experiments.

Implementation Details. In this task, the auto-encoder network is trained via Adam optimizer, and
the learning rate is set to 10−4. We use the same early stopping strategy as DGI (Velickovic et al.,
2019) on the observed training loss, with a patience of 20 epochs. We deploy one Simple Graph
Convolution (SGC) layer (Wu et al., 2019) as our encoder, and the order of the adjacency matrix
is set to 2, while we will study the order of the adjacency matrix in Appendix A. The LeakyReLU
activation function with a negative slope of 0.1 is employed after the SGC layer. Similar to DGI
(Velickovic et al., 2019), we set the output channel F = 512 for Cora and Citeseer dataset, and 256
for Pubmed dataset due to memory limitations. After the encoder, we use one linear layer to classify
the transformation types. We set the edge perturbation rate in Eq. (9) as r = {0.7, 0.4, 0.7} for Cora,
Citeseer, and Pubmed, respectively. The analysis of the edge perturbation rate will be presented in
Appendix B.

During the training procedure of the classifier, the SGC layer in the encoder is used to extract graph
feature representations with the weights frozen. After the SGC layer, we apply one linear layer to
map the features to the classification scores.

Experimental Results. We compare the proposed method with five unsupervised methods, includ-
ing one node embedding method DeepWalk, two graph auto-encoders GAE and VGAE (Kipf &
Welling, 2016), and two contrastive learning methods DGI (Velickovic et al., 2019) and GMI (Peng
et al., 2020). Additionally, we report the results of Raw Features and DeepWalk+Features (Perozzi
et al., 2014) under the same settings. For fair comparison, the results of all other unsupervised meth-
ods are reproduced by using the same encoder architecture of the TopoTER except DeepWalk and
Raw Features. We report the mean classification accuracy (with standard deviation) on the test nodes
for all methods after 50 runs of training. As reported in Tab. 1, the TopoTER outperforms all other
competing unsupervised methods on three datasets. Further, the proposed unsupervised method also
achieves comparable performance with semi-supervised results. This significantly closes the gap
between unsupervised approaches and the semi-supervised methods.

Moreover, we compare the proposed TopoTER with two contrastive learning methods DGI and GMI
in terms of the model complexity, as reported in Tab. 2. The number of parameters in our model
is less than that of DGI and even less than half of that of GMI, which further shows the TopoTER
model is lightweight.
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Table 3: Graph classification accuracies (with standard deviation) in percentage on 6 datasets. “>1
Day” represents that the computation exceeds 24 hours. “OOM” is out of memory error.

Dataset MUTAG PTC-MR RDT-B RDT-M5K IMDB-B IMDB-M
(No. Graphs) 188 344 2000 4999 1000 1500
(No. Classes) 2 2 2 5 2 3

Graph Kernel Methods
RW 83.72± 1.50 57.85± 1.30 OOM OOM 50.68± 0.26 34.65± 0.19
SP 85.22± 2.43 58.24± 2.44 64.11± 0.14 39.55± 0.22 55.60± 0.22 37.99± 0.30
GK 81.66± 2.11 57.26± 1.41 77.34± 0.18 41.01± 0.17 65.87± 0.98 43.89± 0.38
WL 80.72± 3.00 57.97± 0.49 68.82± 0.41 46.06± 0.21 72.30± 3.44 46.95± 0.46
DGK 87.44± 2.72 60.08± 2.55 78.04± 0.39 41.27± 0.18 66.96± 0.56 44.55± 0.52
MLG 87.94± 1.61 63.26± 1.48 >1 Day >1 Day 66.55± 0.25 41.17± 0.03

Supervised Methods
GCN 85.6± 5.8 64.2± 4.3 50.0± 0.0 20.0± 0.0 74.0± 3.0 51.9± 3.8
GraphSAGE 85.1± 7.6 63.9± 7.7 - - 72.3± 5.3 50.9± 2.2
GIN-0 89.4± 5.6 64.6± 7.0 92.4± 2.5 57.5± 1.5 75.1± 5.1 52.3± 2.8
GIN-ε 89.0± 6.0 63.7± 8.2 92.2± 2.3 57.0± 1.7 74.3± 5.1 52.1± 3.6

Unsupervised Methods
node2vec 72.63± 10.20 58.58± 8.00 - - - -
sub2vec 61.05± 15.80 59.99± 6.38 71.48± 0.41 36.68± 0.42 55.26± 1.54 36.67± 0.83
graph2vec 83.15± 9.25 60.17± 6.86 75.78± 1.03 47.86± 0.26 71.10± 0.54 50.44± 0.87
InfoGraph 89.01± 1.13 61.65± 1.43 82.50± 1.42 53.46± 1.03 73.03± 0.87 49.69± 0.53
TopoTER 89.25± 0.81 64.59± 1.26 84.93± 0.18 55.52± 0.20 73.46± 0.38 49.68± 0.31

4.2 GRAPH CLASSIFICATION

Datasets. We conduct graph classification experiments on six well-known graph benchmark
datasets (Yanardag & Vishwanathan, 2015): MUTAG, PTC, REDDIT-BINARY, REDDIT-MULTI-
5K, IMDB-BINARY, and IMDB-MULTI.

Implementation Details. In this task, the entire network is trained via Adam optimizer with a batch
size of 64, and the learning rate is set to 10−3. For the encoder architecture, we follow the same
encoder settings in the released code of InfoGraph (Sun et al., 2020a), i.e., three Graph Isomorphism
Network (GIN) layers (Xu et al., 2019b) with batch normalization. We also use one linear layer to
classify the transformation types. We set the sampling rate r = 0.5 for all datasets.

During the evaluation stage, the entire encoder will be frozen to extract node-level feature repre-
sentations, which will go through a global add pooling layer to acquire global features. We then
use LIBSVM to classify these global features to classification scores. We adopt the same procedure
of previous works (Sun et al., 2020a) to make a fair comparison and use 10-fold cross validation
accuracy to report the classification performance, and the experiments are repeated five times.

Experimental Results. We take six graph kernel approaches for comparison: Random Walk (RW)
(Gärtner et al., 2003), Shortest Path Kernel (SP) (Borgwardt & Kriegel, 2005), Graphlet Kernel
(GK) (Shervashidze et al., 2009), Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al.,
2011), Deep Graph Kernels (DGK) (Yanardag & Vishwanathan, 2015), and Multi-Scale Laplacian
Kernel (MLG) (Kondor & Pan, 2016). Aside from graph kernel methods, we also compare with
three unsupervised graph-level representation learning methods: node2vec (Grover & Leskovec,
2016), sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017), and one contrastive
learning method: InfoGraph (Sun et al., 2020a). The experimental results of unsupervised graph
classification are preseted in Tab. 3. The proposed TopoTER outperforms all unsupervised baseline
methods on the first five datasets, and achieves comparable results on the other dataset. Also, the
proposed approach reaches the performance of supervised methods at times, thus validating the
effectiveness of the TopoTER model.

5 CONCLUSION

We propose Topology Transformation Equivariant Representation (TopoTER) for learning unsu-
pervised representations on graph data. By maximizing the mutual information between topology
transformations and feature representations before and after transformations, the TopoTER enforces
the encoder to learn intrinsic graph feature representations that contain sufficient information about
structures under applied topology transformations. We apply the TopoTER model to node classifi-
cation and graph classification tasks, and results demonstrate that the TopoTER outperforms state-
of-the-art unsupervised approaches and reaches the performance of supervised methods at times.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In Proceedings of the 36th International Con-
ference on Machine Learning (ICML), pp. 21–29, 2019.

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learn-
ing for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
170–182. Springer, 2018.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In IEEE Interna-
tional Conference on Data Mining (ICDM), pp. 8–pp. IEEE, 2005.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 16, pp. 1145–
1152, 2016.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 132–149, 2018.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In Proceedings of the
33rd International Conference on Machine Learning (ICML), pp. 2990–2999, 2016.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. In International Conference on Machine Learning Workshop on Theoretical Foundations
and Applications of Deep Generative Models, 2018.

Pim de Haan, Maurice Weiler, Taco Cohen, and Max Welling. Gauge equivariant mesh cnns:
Anisotropic convolutions on geometric graphs. arXiv preprint arXiv:2003.05425, 2020.

Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-invariant convolutional neural net-
works for galaxy morphology prediction. Monthly Notices of the Royal Astronomical Society, 450
(2):1441–1459, 2015.

Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry in convo-
lutional neural networks. In International Conference on Machine Learning (ICML), pp. 1889–
1898, 2016.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

Xiang Gao, Wei Hu, and Guo-Jun Qi. GraphTER: Unsupervised learning of graph transforma-
tion equivariant representations via auto-encoding node-wise transformations. In Proceedings of
IEEE/CVF Conferences on Computer Vision and Pattern Recognition (CVPR), 2020.
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A EXPERIMENTS ON DIFFERENT ORDERS OF THE ADJACENCY MATRIX

As presented in Sec. 3.2, we perturb the 1-hop neighborhoods via the proposed topology transfor-
mations, leading to possibly significant changes in the graph topology. This increases the difficulties
of predicting the topology transformations when using one-layer GCN (Kipf & Welling, 2017) by
aggregating the 1-hop neighborhood information. Therefore, we employ one Simple Graph Con-
volution (SGC) layer (Wu et al., 2019) with order k as our encoder E(·), where the output feature
representations aggregate multi-hop neighborhood information. Formally, the SGC layer is defined
as

H = E(X,A) =
(
D−

1
2 (A + I)D−

1
2

)k
XW, (16)

where D is the degree matrix of A + I, W ∈ RC×F is a learnable parameter matrix, and k is the
order of the normalized adjacency matrix.

To study the influence of different orders of the adjacency matrix, we adopt five orders from 1 to
5 to train five models on the node classification task. Fig. 3 presents the node classification ac-
curacy under different orders of the adjacency matrix for TopoTER and DGI respectively. As we
can see, the proposed TopoTER achieves best classification performance when k = {4, 2, 3} on
the three datasets respectively. When k = 1, our model still achieves reasonable results although
it is difficult to predict the topology transformations from 1-hop neighborhood information; when
k > 1, our proposed TopoTER outperforms DGI by a large margin on Cora and Pubmed dataset,
and achieves comparable results to DGI on Citeseer dataset. This is because DGI adopts feature
shuffling to generate negative samples, which is insufficient to learn contrastive feature represen-
tations when aggregating multi-hop neighborhood information, while TopoTER takes advantage of
multi-hop neighborhood information to predict the topology transformations, leading to improved
performance.
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Figure 3: Node classification accuracies under different orders of the adjacency matrix on the Cora,
Citeseer, and Pubmed datasets.
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B EXPERIMENTS ON DIFFERENT EDGE PERTURBATION RATES

Further, we evaluate the influence of the edge perturbation rate in Eq. (9) on the node classification
task. We choose 11 edge perturbation rates from 0.0 to 1.0 at an interval of 0.1 to train the proposed
TopoTER. We use one SGC layer as our encoder E(·), where the order of the adjacency matrix is
set to 1. As presented in Fig. 4, the blue solid line with error bar shows the classification accuracy
of our TopoTER under different edge perturbation rates. We also provide the classification accuracy
on feature representations of graphs from a randomly initialized encoder E(·), denoted as Random
Init., which serves as the lower bound of the performance.

As we can see, the classification performance reaches the best when the graph is perturbed under
a reasonable edge perturbation rate, e.g., r = {0.6, 0.5, 0.6} for the Cora, Citeseer, and Pubmed
dataset, respectively. When the edge perturbation rate r = 0.0, the unsupervised training task
of TopoTER becomes link prediction, which cannot take advantage of the proposed method by
predicting the topology transformations; when the edge perturbation rate r = 1.0, our TopoTER
still achieves reasonable classification results, which shows the stability of our model under high
edge perturbation rates. At the same time, we observe that the proposed TopoTER outperforms
Random Init. by a large margin, which validates the effectiveness of the proposed unsupervised
training strategy.
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Figure 4: Node classification accuracies under different edge perturbation rates on the Cora, Cite-
seer, and Pubmed datasets.
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