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Abstract

Geocoding is the task of converting location001
mentions in text into structured geospatial data.002
We propose a new prompt-based paradigm for003
geocoding, where the machine learning algo-004
rithm encodes only the location mention and005
its context. We design a transformer network006
for predicting the country, state, and feature007
class of a location mention, and a determinis-008
tic algorithm that leverages the country, state,009
and feature class predictions as constraints in010
a search for compatible entries in the ontol-011
ogy. Our proposed architecture, GeoPLACE,012
achieves new state-of-the-art performance on013
multiple datasets. Code and models are avail-014
able at https://<anonymized>.015

1 Introduction016

Geocoding is the task of matching locations in017

text to geospatial coordinates or entries in a ge-018

ographical database. Geocoding systems support019

document categorization and retrieval (Bhargava020

et al., 2017), historical event analysis (Tateosian021

et al., 2017), monitoring the spread of infectious022

diseases (Hay et al., 2013), and disaster response023

mechanisms (Ashktorab et al., 2014; de Bruijn024

et al., 2018). Geocoding is challenging because025

identical place names may refer to different geo-026

graphical locations (e.g., San Jose in Costa Rica vs.027

San Jose in California, USA), while distinct names028

can represent the same geographical location (e.g.,029

Leeuwarden and Ljouwert in the Netherlands).030

The traditional paradigm for geocoding systems031

is to train machine learning algorithms that en-032

code the location mention, its context, and the033

geographical ontology entries together when pre-034

dicting a label for the mention. CamCoder (Gritta035

et al., 2018), ReFinED (Ayoola et al., 2022), and036

GeoNorm (Zhang and Bethard, 2023) all take this037

approach, with the latter showing that explicit coun-038

tries and states in the context are especially helpful039

in this paradigm. However, these approaches are040

not able to take advantage of implicit context, such 041

as countries and states that are not mentioned in 042

the text but are inferrable from it. 043

We propose an novel prompt-based approach to 044

geocoding that automatically identifies the implicit 045

geographic information necessary to resolve loca- 046

tion mentions. In this new paradigm for geocoding, 047

we first apply a text classification approach that 048

takes a prompt containing the location mention and 049

some document context as input and predicts ontol- 050

ogy attributes such as the location’s enclosing coun- 051

try and state. For example, our approach would 052

predict that Paris in a document about Texas would 053

have the attributes “a Populated Place located in 054

Texas in the United States.” The constraints im- 055

plied by these predictions are used to determinis- 056

tically filter the ontology entries. Our novel archi- 057

tecture, GEOgraphical normalization by Predicting 058

Location Attributes to Constrain ontology Entries 059

(GeoPLACE) is illustrated in Figure 1. 060

Our work makes the following contributions: 061

• We introduce a new paradigm for geocoding, 062

predicting implicit geographic information to 063

enable deterministic filtering of the ontology. 064

• We design a transformer network for predict- 065

ing the country, state, and feature class of a lo- 066

cation mention, combining a novel prompt for 067

geographic text classification with a masked lan- 068

guage modeling objective. 069

• We introduce a novel deterministic algorithm 070

that leverages the country, state, and feature class 071

predictions as constraints in a search for compat- 072

ible entries in the ontology. 073

• Our proposed approach achieves new state-of- 074

the-art performance on multiple datasets. 075

2 Related Work 076

Prior work in geocoding included models based 077

on hand-crafted rules and heuristics (Grover et al., 078

2010; Tobin et al., 2010; Lieberman et al., 2010; 079
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Figure 1: The architecture of our model: GEOgraphical normalization by Predicting Attributes to Constrain
Ontology Entries (GeoPLACE). The figure shows how GeoPLACE normalizes a mention of Paris.

Lieberman and Samet, 2011; Berico Technolo-080

gies, 2012; Karimzadeh et al., 2013), and tradi-081

tional machine learning models such as support082

vector machines (Martins et al., 2010; Freire et al.,083

2011; Lieberman and Samet, 2012; Speriosu and084

Baldridge, 2013; Zhang and Gelernter, 2014; De-085

Lozier et al., 2015; Kamalloo and Rafiei, 2018;086

Wang et al., 2019). However, most recent ap-087

proaches to geocoding use neural networks.088

Neural network based models have approached089

geocoding both as a ranking problem, trying to sort090

ontology entries by their appropriateness as a la-091

bel for a location mention (Hosseini et al., 2020;092

Ardanuy et al., 2020; Ayoola et al., 2022; Zhang093

and Bethard, 2023) and as a classification problem,094

trying to map a location mention directly to one of095

an N ×N grid of tiles covering the Earth’s surface096

(Gritta et al., 2018; Cardoso et al., 2019; Kulka-097

rni et al., 2021). The most successful approaches098

encode not just the mention and ontology entry099

names, but also context around the mention and100

information from the ontology such as population101

(Gritta et al., 2018; Ayoola et al., 2022; Zhang and102

Bethard, 2023). Many neural architectures have103

been considered, including convolutional (Gritta104

et al., 2018; Kulkarni et al., 2021), recurrent (Car-105

doso et al., 2019), and transformer networks (Ay-106

oola et al., 2022; Zhang and Bethard, 2023).107

In contrast to these approaches, we predict geo-108

graphical attributes (e.g., enclosing state) and use109

those to deterministically select an ontology entry.110

3 Proposed Methods111

The problem of geocoding can be formalized as112

defining a function f(m|T,M,E) = ê where T113

is the text of a document, M ⊂ T is the location114

mentions in the document, E is the set of geograph-115

ical database entries, m ∈M is the mention under 116

consideration, and ê ∈ E is the entry predicted 117

by f for m. In our paradigm for geocoding, we 118

formulate f to first predict the country, state, and 119

feature of m, next query the ontology with m to 120

find candidate entries, then select the entry that vio- 121

lates the fewest constraints implied by the predicted 122

attributes as the prediction ê. Formally: 123

Ĉm, Ŝm, F̂m = ATTRIBUTEPREDICTOR(m,M) 124

Ê = CANDIDATEGENERATOR(m,E) 125

f(m|T,M,E) = CONSTRAINER(Ê, Ĉm, Ŝm, F̂m) 126

where Cm, Sm, Fm are the lists of predicted coun- 127

tries, states, and feature classes for m. The AT- 128

TRIBUTEPREDICTOR (see section 3.1) is a novel for- 129

mulation of geographical text classification, the 130

CANDIDATEGENERATOR (see section 3.2) is the best 131

ranking system from prior work, and the CON- 132

STRAINER (see section 3.3) is a novel deterministic 133

constraint-based algorithm. 134

3.1 Attribute Predictor 135

This function predicts the country, state, and fea- 136

ture class of m. It is formulated as a text classifica- 137

tion model, based on a novel input prompt coupled 138

with a masked language modeling objective. The 139

prediction targets are defined as: 140

Feature Class is one of the nine types defined 141

by GeoNames: A, Administrative boundaries 142

(e.g., countries, states, provinces); P , Populated 143

places (e.g., cities, towns, villages); U , Undersea 144

features (e.g., oceanic ridges, trenches), etc. 145

State is the canonical name of one of the 3871 146

first-order administrative divisions in GeoNames, 147

such as states, provinces, or regions. 148

Country is the canonical name of one of the 252 149

countries in GeoNames. 150
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We implement prediction of these targets as:151

Z = TRANSFORMER(TOINPUT(m,M))152

Ĉm = softmax(ZcWc)153

Ŝm = softmax(ZsWs)154

F̂m = softmax(ZfWf )155

where TOINPUT discards all of m’s context T156

except for the location mentions M and pro-157

duces text of the form [CLS] This document158

discusses these location mentions: m1,159

m2, ..., m|M| in which m is [MASK]160

located in [MASK] of [MASK] [SEP]1; f , s,161

c, are the indexes of the three [MASK] tokens;162

Wc,Ws,Wf ∈ RN×H are the learnable parame-163

ters of the three classification heads; N is the size164

of the transformer tokenizer’s vocabulary; and H is165

the size of the transformer’s contextualized repre-166

sentations. We add new tokens to the transformer’s167

tokenizer to ensure that every country, state, and168

feature class is a single token in the classifier169

output, e.g., making United States a single token.170

This single-token prediction approach compares171

favorably to a multi-token sequence-to-sequence172

prediction approach, as shown in section 4.173

The model is trained with cross-entropy loss:174

L = Cmlog(Ĉm) + Smlog(Ŝm) + Fmlog(F̂m)175

where Cm, Sm, and Fm are one-hot vectors of176

size N representing the true country, state, and177

feature class for mention m. At prediction time, we178

constrain the outputs of the softmax to the subset179

of the vocabulary appropriate for each prediction180

type. For example, when the model predicts the181

word for the country [MASK], only the 252 country182

names are allowed to be non-zero.183

We train this model on the labeled data in the184

toponym datasets. Optionally, we also pre-train185

(before the fine-tuning) on additional data that we186

synthesize directly from the GeoNames ontology187

following the prompt format of TOINPUT. See ap-188

pendix A.2 for details.189

3.2 Candidate Generator190

We adopt the candidate generator of Zhang and191

Bethard (2023), which outperformed prior candi-192

date generators and some end-to-end systems. It193

uses Lucene to index GeoNames entries by their194

canonical and alternative names, selects entries for195

1This prompt dramatically reduces the size of the input
while still providing most of the critical document-level infor-
mation for disambiguating toponyms

Algorithm 1: Constrained Entry Selection
Input: a list of candidate entries, Êm

top 3 predicted countries, Ĉm

top 3 predicted states, Ŝm

top 3 predicted feature classes, F̂m

Output: selected candidate entry ê

1 Def SCORE(x, L):
2 if x = L0 then return 2
3 else return x ∈ L
4 Def ENTRYKEY(e):
5 c← COUNTRY(e)
6 s← STATE(e)
7 f ← FEATURE(e)

8 key1 ← SCORE(c, Ĉm) · SCORE(s, Ŝm)

9 key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · SCORE(f, F̂m)
10 return (key1, key2)

11 return MAX(Êm, KEY = ENTRYKEY)

a mention by applying a series of searches includ- 196

ing exact string matching and character 3-gram 197

matching, and sorts the resulting entries to place 198

most populous countries at the top of the list. 199

3.3 Constrainer 200

Algorithm 1 defines our process for sorting the 201

output of the candidate generator (entries) using the 202

output of the attribute predictor (countries, states, 203

and feature classes). We define the SCORE of a 204

prediction as 2 if it was the top ranked prediction, 1 205

if it was the second or third ranked prediction, and 206

0 otherwise. Entries are then sorted by the product 207

of the country and state SCOREs, with the SCORE 208

of the feature class used to break ties. Intuitively, if 209

the attribute predictor predicts C and S as the most 210

probable country and state, then the constrainer 211

will rank entries from GeoNames that are within 212

country C and state S higher than other entries. We 213

use a stable sort, so candidates that are assigned the 214

same score retain their population-based sorting 215

from the candidate generator. 216

See appendix A.3 for an illustration of the algo- 217

rithm and evaluation of several variants. 218

4 Experiments 219

We conduct primary experiments on three toponym 220

resolution datasets: Local Global Lexicon (LGL; 221

Lieberman et al., 2010), a collection 588 news arti- 222

cles from local and small U.S. news sources; Geo- 223

WebNews (Gritta et al., 2019) a collection of 200 224

articles from 200 globally distributed news sites; 225

and TR-News (Kamalloo and Rafiei, 2018) a col- 226

lection 118 articles from various global and local 227

news sources. All datasets use as their ontology 228
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LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

ReFinED (Ayoola et al., 2022) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned by Zhang and Bethard, 2023) .786 - - - .782 - - - .858 - - -
Candidate Generator (Zhang and Bethard, 2023) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (Zhang and Bethard, 2023) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
GeoPLACE (ours) .863 .894 21 .084 .822 .878 57 .112 .947 .957 18 .038

GeoPLACE (-synthesized pre-training) .851 .886 24 .093 .809 .864 63 .123 .904 .922 20 .062
GeoPLACE (+seq2seq, +generative fine-tuned BART) .633 .696 111 .250 .704 .776 92 .191 .727 .812 95 .167
GeoPLACE (+seq2seq, +generative zero-shot GPT-3) .733 .795 80 .176 .719 .811 85 .171 .830 .869 63 .115

Table 1: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower is
better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based metrics
for ReFinED as it does not make predictions for all mentions. The best performance in each column is in bold.

GeoNames, a crowdsourced database of almost229

7 million entries that contains geographic coordi-230

nates (latitude and longitude), alternative names,231

feature class (country, city, river, mountain, etc.),232

population, elevation, and positions within a polit-233

ical geographic hierarchy. See appendix A.1 for234

statistics of the datasets.235

We adopt the train, development, and test splits236

and evaluation metrics of prior work (Zhang and237

Bethard, 2023). We refer the reader to that paper for238

details, but briefly, accuracy measures how often239

the correct database entry was predicted, while240

accuracy@161km, mean error distance, and area241

under the curve all give some partial credit for242

predicting entries that are wrong but geographically243

close to the correct entry.244

We compare to the state-of-the-art geocoders:245

ReFinED is an end-to-end Wikipedia-linking246

model that matches transformer-generated em-247

beddings for tokens in the text to embeddings248

of ontology entries via dot products (Ayoola249

et al., 2022). ReFinED was originally trained250

on Wikipedia, but Zhang and Bethard (2023)251

leveraged the existing links to GeoNames IDs252

to fine-tune it for toponym resolution. It is the253

Wikipedia-linking model with the best reported254

performance on our evaluation datasets.255

GeoNorm Zhang and Bethard (2023) uses Lucene256

to index and generate candidate entries from the257

ontology, applies a transformer network jointly258

over the mention and each candidate entry to259

predict a single entry, and applies a two-stage260

process to first resolve countries and states and261

use them as context to resolve other mentions.262

GeoPLACE (+seq2seq) is a variant of our model263

that replaces our masked language modeling264

objective with a sequence-to-sequence style265

generative objective, asking the model to di- 266

rectly produce is <feature-type> located 267

in <state> of <country>. See appendix A.2 268

for prompting details. 269

Before evaluating on the test sets, we performed 270

model selection on the development sets as de- 271

scribed in appendix A.3. 272

5 Results 273

The top of table 1 compares our model to the ex- 274

isting state-of-the-art on LGL, GeoWebNews, and 275

TR-News. (See appendices A.4 to A.6 for com- 276

parisons against other models and results on other 277

datasets.) GeoPLACE outperforms prior work by 278

large margins (more than 30% error reduction) on 279

LGL and TR-News, while achieving similar perfor- 280

mance on GeoWebNews. See appendix A.7 for a 281

qualitative analysis of GeoPLACE prior work. 282

The bottom of table 1 shows an ablation of 283

our model. Pre-training on synthesized data pro- 284

vides small but consistent gains across all datasets. 285

The Seq2Seq approach yields worse performance 286

than our masked language modeling approach 287

both when fine-tuning BART-large and when using 288

GPT3 in zero-shot mode. 289

We release our model for English geocoding 290

under the Apache License v2.0, for off-the-shelf 291

use at https://<anonymized>. 292

6 Conclusion 293

We introduced a new paradigm for geocoding 294

where we predict implicit geographical attributes 295

and use those to deterministically constrain the set 296

of valid ontology entries. Our approach leads to 297

large error reduction over the current state-of-the- 298

art on the LGL and TR-News datasets. 299
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7 Limitations300

The possible space of prompts is large, and while301

our novel location-based prompt worked well with302

our masked language modeling approach, it did303

not work well for generative models like BART.304

It is possible that more intensive exploration of305

alternative prompts could bring the performance306

of these generative models up to the performance307

of our masked language modelling approach. We308

also only explored zero-shot approaches for GPT-309

3, and though full fine-tuning BART did not yield310

acceptable performance, it is possible that few-shot311

approaches or fully fine-tuning GPT-3 would.312

GeoPLACE is limited by its training and evalua-313

tion data, which covers only thousands of English314

toponyms from news articles, while there are many315

millions of toponyms across the world. It is likely316

that there are regional differences in GeoPLACE’s317

accuracy that will need to be addressed by future318

research.319

GeoPLACE is currently limited to geocoding.320

To apply this approach to other entity linking prob-321

lems, one would need to identify the attributes that322

help constrain the search from the ontology, and323

then explore a few definitions of keys as we have324

in appendix A.3. This would be an interesting area325

for future research.326
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A Appendix509

A.1 Dataset details510

The number of toponyms and articles in each of the511

splits of each of the datasets is shown in table A1.512

A.2 Implementation details513

We adopt the candidate reranker of Zhang and514

Bethard (2023). We implement the attribute predic-515

tor with the PyTorch2 v1.7.0 APIs in Huggingface516

Transformers v2.11.0 (Wolf et al., 2020), using517

bert-base. We train with the AdamW optimizer,518

a learning rate of 5e-6, a maximum sequence length519

of 256 tokens, and a number of epochs of 40. When520

training, we use one NVIDIA A100 GPU with 40G521

memory and a batch size of 64. The total number of522

parameters in our model is 112M and the training523

time is about 0.15 hours.524

When synthesizing data from the geographical525

ontology for pre-training, we filtered all of cities,526

states and countries with less than 100 population527

and take the entries from some other special feature528

classes, such as H (stream, lake), L (parks, area)529

and T ( mountain, hill, rock). To construct the530

input for pre-training, we used the same prompt531

with finetuning and sampled a different number of532

locations within the same country as the document533

mentions. Most of the hyperparameters are same534

with finetuning just the batch size is 32 and training535

epochs is 10.536

When using a generative sequence-to-sequence537

objective instead of a masked language modeling538

objective, we utilize bart-large with the PyTorch539

v2.0.0 APIs in Huggingface Transformers v4.11.3540

(Wolf et al., 2020) and FAIRSEQ v0.12.2 (Ott541

et al., 2019). We train with the AdamW optimizer,542

a initial learning rate of 1e-5, a learning rate sched-543

uler type of polynomial, a maximum sequence544

length of 1024 tokens, and the steps of training545

of 40000. When training, we use one NVIDIA546

A100 GPU with 40G memory and a batch size of547

8. During evaluation, we use beam search with a548

beam size of 5. The total number of parameters549

in our model is 406M and the training time is550

about 1.3 hours. We use one model to generate551

only one attribute, when we generate the country552

name, we use the prompt [CLS] This document553

discusses these location mentions: m1,554

m2, ..., m|M|. Which country is START555

m END located ?, the prefix prompt for output556

2https://pytorch.org/

generation is m is located in. When we 557

generate the state name, we use the prompt [CLS] 558

This document discusses these location 559

mentions: m1, m2, ..., m|M|. Which 560

state is START m END located ?, the prefix 561

prompt for output generation is m is located 562

in. When we generate the feature class, we use 563

the prompt [CLS] This document discusses 564

these location mentions: m1, m2, ..., 565

m|M|. Which feature class does START m 566

END belong to ?, the prefix prompt for output 567

generation is m belong to 568

A.3 Model selection 569

For the attribute predictor, we explored a small 570

number of learning rates (1e-6, 2e-6, 5e-6, 1e-5) 571

and number of epochs (10, 20, 30, 40). The best 572

learning rate and number of epochs was selected 573

based on accuracy on the attribute prediction task 574

(not on the full geocoding task). 575

For the constrainer, we explored three different 576

ways to define key1 and key2. 577

alg3 defines key1 and key2 as in alg. 1. 578

alg2 allows scores to range from 0 to the length of 579

the list, rather than just from 0 to 2. It defines: 580

key1 ← RINDEX(c, Ĉm) · RINDEX(s, Ŝm) 581

key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · RINDEX(f, F̂m) 582
583

Def RINDEX(x, L) : if x ̸∈ L then 0 584

else |L| − lst.index(val) 585

alg1 prioritizes matching the first country, and also 586

allows scores to range from 0 to the length of the 587

list. It defines: 588

key1 ← (c = Ĉm0) · RINDEX(s, Ŝm) 589

key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · RINDEX(f, F̂m) 590

Table A2 shows that there were not large differ- 591

ences between these algorithms in terms of accu- 592

racy, but alg3 performed slightly better. 593

For the constrainer, we also explored four dif- 594

ferent ways to define the number of predictions to 595

consider in the constrainer. 596

top3 Only the top 3 countries, states, and feature 597

classes are considered 598

top4 Only the top 4 countries, states, and feature 599

classes are considered 600

top5 Only the top 5 countries, states, and feature 601

classes are considered 602

top553 The top 5 countries, top 5 states, and top 3 603

feature classes are considered 604
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Dataset Train Dev. Test

Toponyms Articles Toponyms Articles Toponyms Articles

LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table A1: Numbers of articles and manually annotated toponyms in the train, development, and test splits of the
toponym resolution corpora.

Accuracy

Model LGL (dev) GeoWebNews (dev) TR-News (dev)

GeoPLACE (alg1 top553) .885 .811 .926
GeoPLACE (alg1 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg2 top553) .885 .815 .926
GeoPLACE (alg2 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top553) .900 .815 .926
GeoPLACE (alg3 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top555) .900 .815 .926
GeoPLACE (alg3 top555 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top444) .893 .815 .941
GeoPLACE (alg3 top444 synthesized pre-training) .912 .872 .912
GeoPLACE (alg3 top333) .893 .826 .941
GeoPLACE (alg3 top333 synthesized pre-training) .912 .868 .926

Table A2: Model selection on the development sets. The top performance on each dataset is in bold, the second best
performance is underlined.

Table A2 shows that there were not large differ-605

ences between these strategies in terms of accuracy,606

but top3 performed slightly better.607

For the constrainer, we also explored whether or608

not it helps to pre-train on synthesized data before609

fine-tuning on the toponym resolution datasets. Ta-610

ble A2 shows that pre-training on synthesized data611

consistently helped on LGL and GeoWebNews but612

led to small drops in performance on TR-News.613

Figure 2 shows an example about how the alg3614

top3 constrainer works.615

A.4 EUPEG results616

We also report results using the Extensible and Uni-617

fied Platform for Evaluating Geoparsers (EUPEG;618

Wang and Hu, 2019). This platform evaluates not619

geocoders, but geoparsers, where a model must620

both detect locations and match them to ontology621

entries. So we couple our geocoder with the best622

location detection model on EUPEG, the Stanford-623

NER system.624

This platform reports several metrics that are625

incomparable across systems. Accuracy, accu-626

racy@161km, mean error, and area under the error627

distances curve are all calculated only over loca-628

tions that were detected, so that a model that detects629

only 1% of locations but matches 100% of them630

to their correct ontology entries would get perfect631

values for these scores, while a model that detects 632

100% of locations and matches 90% of them to 633

their correct ontology entries would score lower. 634

We nonetheless report these incomparable metrics 635

as EUPEG provides no alternative. EUPEG results 636

are shown in table A3 637

A.5 Recall of Geographical Attributes 638

Prediction 639

Table A4 shows the performance of the geographi- 640

cal attribute prediction classifiers alone, i.e., as clas- 641

sifiers rather than as components in a geocoding 642

system. We report recall@3 since the constrainer 643

considers the top 3 predictions of the attribute pre- 644

dictor. Performance across all datasets and all clas- 645

sifiers is 0.84 or higher. 646

A.6 Full table of Test Performance 647

Table A5 compares GeoPLACE to other systems 648

that, due to space limitations, we could not include 649

in table 1. 650

A.7 Qualitative Analysis 651

Table A6 presents a qualitative analysis of errors en- 652

countered by GeoNorm (Zhang and Bethard, 2023) 653

and our latest state-of-the-art model, GeoPLACE. 654

The first row displays an example where 655

GeoNorm falls short while GeoNorm excels. This 656
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Figure 2: Illustration of the alg3 top3 constrainer applied to Paris in the context It’s a northeast Texas thing, not just
a Paris thing. . . Dallas media stations reported the same message as a hoax as early as Wednesday night..

LGL (test) GeoWebNews (test)

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .776 .353 .486 .775 60 .187 .787 .520 .626 .944 33 .056
StanfordNER + Pop .762 .635 .692 .592 135 .360 .866 .648 .741 .673 86 .257
StanfordNER + GeoPLACE .762 .635 .692 .888 23 .109 .866 .648 .741 .929 30 .072

TR-News (test) GeoVirus

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .752 .592 .663 .844 78 .121 .860 .559 .678 .807 44 .319
StanfordNER + Pop .906 .752 .822 .651 119 .287 .927 .903 .915 .655 79 .378
StanfordNER + GeoPLACE .906 .752 .822 .967 15 .033 .927 .903 .915 .837 23 .297

WikToR GeoCorpora

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .230 .298 .259 .591 217 .378 .832 .505 .628 .848 96 .140
StanfordNER + Pop .209 .540 .301 .184 460 .702 .899 .526 .664 .676 106 .270
StanfordNER + GeoPLACE .209 .540 .301 .629 171 .342 .899 .526 .664 .875 48 .122

Hu2014 Ju2016

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .486 .656 .559 .114 86 .607 .000 .000 .000 — – —
StanfordNER + Pop .504 .788 .615 .000 228 .758 .162 .010 .019 0.0 203 .743
StanfordNER + GeoPLACE .504 .788 .615 .071 92 .632 .162 .010 .019 .046 354 .768

Table A3: Performance on the test sets. Precision (Pre), Recall (Rec), and F1 are on the location detection task,
while the other metrics are on the geocoding task Higher is better for accuracy (Acc) and accuracy@161km (A161).
Lower is better for mean error (Err) and area under the error distances curve (AUC). The best performance on each
dataset and geocoding metric is in bold.

Model LGL (test) GeoWebNews (test) TR-News (test)

Country .992 .932 .891
State .929 .873 .849
Feature Class .996 .944 .996

Table A4: Geographical Attribute Prediction Performance of Recall@3 on the test sets.
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LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

Edinburgh (Grover et al., 2010) .611 - - - .738 - - - .750 - - -
CamCoder (Gritta et al., 2018) .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
Mordecai (Halterman, 2017) .322 .375 926 .594 .291 .333 1072 .633 .472 .553 6558 .427
DeezyMatch (Hosseini et al., 2020) .172 .182 654 .704 .262 .323 537 .601 .206 .220 741 .705
SAPBERT (Liu et al., 2021) .245 .260 566 .630 .428 .499 357 .446 .355 .362 595 .568
ReFinED (Ayoola et al., 2022) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned by Zhang and Bethard, 2023) .786 - - - .782 - - - .858 - - -
Candidate Generator (Zhang and Bethard, 2023) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (Zhang and Bethard, 2023) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
GeoPLACE (ours) .863 .894 21 .084 .822 .878 57 .112 .947 .957 18 .038

Table A5: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower
is better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based
metrics for ReFinED as this extraction+disambiguation system does not make predictions for all mentions. The best
performance on each dataset+metric is in bold.

can be attributed to GeoNorm’s superior ability to657

employ masked language models for accurately658

predicting the countries, states, and feature codes659

of toponyms in the text prior to their resolution.660

The second row portrays an instance where our661

most proficient model, GeoPLACE, experiences662

a failure. This occurs because predicting feature663

codes with the aid of a masked language model664

proves to be more challenging compared to pre-665

dicting countries and states. Thoroughly resolving666

this problem is likely to necessitate improvements667

in the prediction performance for all types of geo-668

graphical metadata.669
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Example Candidate Rank

Name Pop. Type State Country GeoNorm GeoPLACE

1 But the Mt. Pleasant
News has reviewed legal
documents......he writes,
as do my efforts to in-
sure New London is a
safe community.

New London County 274055 ADM2 Connecticut United States 1 2
New London 27179 PPL Connecticut United States 2 3
New London 7172 PPL Wisconsin United States 3 4
New London 1882 PPL Iowa United States 4 1

2 John-Paul Delaney (18),
is charged with assault,
assault causing harm and
theft of a mobile phone
at Main Street, Tipperary,
on the same date.

Tipperary 159553 ADM2 Munster Ireland 1
Tipperary 4979 PPL Munster Ireland 2
Tipperary 0 HMSD Western Australia Australia 3
Tipperary 0 HMSD New South Wales Australia 4

Table A6: Examples of predictions from GeoNorm (Zhang and Bethard, 2023) and our new SOTA model, Geo-
PLACE. Target location mentions are underlined. Human annotated ontology entries are in bold. (ADM2 represents
a county, PPL represents a city, HMSD represents a residence specific to Australia and New Zealand)
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