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ABSTRACT

Graph anomaly detection (GAD) is critical in domains such as fraud detection,
cybersecurity, and social network monitoring. However, existing approaches face
two major challenges: the inherent scarcity of labeled anomalies in practical sce-
narios, and the widespread reliance on graph augmentation, which often distorts
anomaly semantics and undermines model robustness. To address these issues,
we propose FewGAD, a framework that leverages limited anomaly labels to en-
hance contrastive discrimination through high-order subgraph sampling without
augmentation. By avoiding augmentation-induced distortion, this design funda-
mentally improves the robustness and semantic validity of learned representations,
thereby enabling clearer separation between normal and anomalous nodes. Fur-
thermore, a kernel density estimation mechanism expands the utility of scarce
labels, enhancing data efficiency and strengthening anomaly discrimination under
few-shot settings. Extensive experiments on five benchmark datasets demonstrate
that FewGAD consistently surpasses state-of-the-art unsupervised and few-shot
GAD methods, achieving an average AUC gain of 6.2%.

1 INTRODUCTION

In recent years, graph neural networks (GNNs) have made breakthrough progress in graph learn-
ing tasks such as node classification, connection prediction, and recommendation systems (Scarselli
et al., 2008; Wu et al., 2020; Kipf & Welling, 2016; Veličković et al., 2017). With its collaborative
modeling ability of structural relationships and node attributes, it has gradually become the core
method of graph data mining. One of the tasks that has received wide attention is Graph Anomaly
Detection (GAD). Its goal is to identify abnormal individuals that significantly deviate from most
nodes in attribute characteristics or connection patterns (Noble & Cook, 2003; Akoglu et al., 2015).
Such nodes often correspond to key risk targets in multiple real-world scenarios, such as fake ac-
counts with abnormal connection relationships or abnormal behavior in social networks (Jia et al.,
2017; Li et al., 2022), fraudulent accounts with suspicious fund flow characteristics in financial
transaction networks (Pourhabibi et al., 2020; Hilal et al., 2022; Motie & Raahemi, 2024), and user
nodes with abnormal scoring behavior in e-commerce platforms (Ma et al., 2021; Gao et al., 2023).

Recent research in GAD has largely shifted toward unsupervised approaches, such as DOMI-
NANT (Ding et al., 2019) and AnomalyDAE (Fan et al., 2020). These methods leverage graph
autoencoders or reconstruction-based mechanisms to model the structural and attribute patterns of
nodes, enabling the identification of potential anomalies without requiring labels. Among these ap-
proaches, contrastive learning (He et al., 2020; Zheng et al., 2022a; Li et al., 2023) has emerged
as a prevailing paradigm in unsupervised graph anomaly detection, as datasets typically contain a
substantial number of normal graph instances. By constructing positive and negative sample pairs,
contrastive methods enable the model to learn discriminative representations that effectively dis-
tinguish between normal and anomalous nodes. This paradigm has demonstrated strong potential
in improving anomaly detection performance and has inspired the development of numerous con-
trastive frameworks tailored for graph data (Liu et al., 2021; Duan et al., 2023; Lu et al., 2024).

It has been acknowledged by domain experts that acquiring a limited set of labeled anomalies is
practical in real-world scenarios (Akoglu et al., 2015; Liu et al., 2024; Qiao et al., 2025). Such
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Figure 1: Comparison of RWR and High-order Neighborhood Sampling. The left shows an RWR
subgraph with weak semantic relevance and low contrastive signal. The right illustrates our high-
order subgraph capturing semantically coherent neighbors. Guided by few-shot anomaly labels, our
method enhances negative sampling, enlarges contrastive margins, and improves anomaly detection.

labels can be utilized as valuable prior knowledge to guide the training process, thereby holding
great promise for improving the effectiveness of graph anomaly detection models (Zhang et al.,
2022b; Ding et al., 2021; Satorras & Estrach, 2018; Chen et al., 2023). However, to develop a
few-shot detection framework, we identify the following main challenges:

1. Shallow Neighborhood Bias: Existing methods (Ding et al., 2019; Zheng et al., 2021; Jin et al.,
2021; Zhang et al., 2022a) commonly rely on random walk with restart (Tong et al., 2006) or graph
augmentation–based sampling to extract subgraphs. These approaches often fail to capture the most
discriminative structural patterns around anomalous nodes, especially when nodes exhibit sparse
connectivity or irregular local structures. Additionally, augmentation-based sampling may inadver-
tently alter node features or local structures, resulting in semantic distortion. As illustrated in Fig. 1,
many anomalies are located beyond the immediate (first-order) neighborhood, emphasizing the need
for subgraph sampling strategies that cover higher-order structures and preserve semantic coherence.

2. Weak Contrastive Boundaries: Unsupervised contrastive objectives frequently yield weak deci-
sion boundaries, as positive and negative pairs in latent space are insufficiently separated. This issue
arises because the absence of anomaly labels leads to negative samples that partially overlap with
positives, limiting discriminability (Qiao et al., 2024; Zhou et al., 2024). In the few-shot setting,
although labeled anomalies are scarce, we find they can serve as crucial anchors to guide contrastive
learning. By leveraging these labels, we selectively construct negatives that are maximally dissimi-
lar to positives, thereby enlarging the contrastive margin. This alleviates the intrinsic limitations of
unsupervised contrastive learning and improves representation separability for anomaly detection.

To address these challenges, we propose FewGAD, a novel framework for few-shot anomaly de-
tection. FewGAD leverages scarce anomaly labels to enhance contrastive discrimination while pre-
serving semantic fidelity. To overcome the shallow neighborhood bias, we introduce a high-order
neighborhood sampling module that constructs informative node-centric subgraph pairs without re-
lying on graph augmentation, thereby avoiding anomaly distortion and capturing richer contextual
structures. In addition, a kernel density estimation (KDE)-based module is employed under a local
consistency constraint to expand the representation of labeled anomalies and mitigate the effects of
data scarcity. This design strengthens the model’s discriminative power, improves generalization
to unseen anomaly types, and enables the selection of informative negative samples for contrastive
learning. Extensive experiments on five benchmark datasets demonstrate that FewGAD consistently
outperforms state-of-the-art unsupervised and few-shot graph anomaly detection methods. To sum-
marize, the main contributions are as follows:

• We study the practical problem of few-shot graph anomaly detection, addressing the scarcity of
labeled anomalies in real-world graphs.

• We propose FewGAD, a novel framework that leverages limited labels to enhance contrastive
discrimination, incorporating high-order subgraph sampling to capture richer structural context
without graph augmentation.

• We introduce a KDE-based module under local consistency to expand labeled information, gen-
erate discriminative negative samples, and improve generalization and robustness, with extensive
experiments demonstrating superior performance over state-of-the-art methods.
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2 RELATED WORK

Contrastive learning-based GAD. Contrastive learning (He et al., 2020; Zheng et al., 2022a; Li
et al., 2023), a self-supervised approach that derives meaningful representations from unlabeled
data, has gained considerable traction in graph anomaly detection due to its ability to reduce re-
liance on manual labeling and associated costs. CoLA (Liu et al., 2021) is the first method to intro-
duce contrastive learning into this domain, capturing anomaly-aware representations by contrasting
nodes with their local subgraph constructed through a random walk procedure. Building on this
idea, ANEMONE (Jin et al., 2021) estimates node anomalous scores through the contrast of node &
node and node & ego-net multi-scale instance pairs, for more comprehensive anomaly estimation.
Another approach is presented by SAMCL (Hu et al., 2023), which detects anomalous nodes via
the subgraph-aligned contrastive learning across multiple views of the graph to enhance detection
robustness. Sub-CR (Zhang et al., 2022a) is a self-supervised framework that combines multi-view
contrastive learning with attribute reconstruction to detect anomalies in attributed networks. It lever-
ages local-global contrastive views to encode structural and attribute information, and uses a masked
autoencoder to highlight nodes with high reconstruction errors as anomalies. Most recently, GRA-
DATE (Duan et al., 2023) calculates the anomaly scores of nodes via contrastive learning among
node-node,node-subgraph, and subgraph-subgraph multi-scale instance pairs between the original
view and the augmentation view, enabling richer multi-scale anomaly characterization. However,
all of the above methods operate in a fully unsupervised manner, often suffering from limited guid-
ance and poor generalization.

Few-shot Graph Learning. The scarcity of labeled data in graph-based anomaly detection, due to
costly manual annotation of rare events, is a major hurdle. Few-shot graph learning (Satorras & Es-
trach, 2018; Chen et al., 2023) and cross-network meta-learning (Ding et al., 2021; Long et al., 2024)
are innovative paradigms that tackle this issue by leveraging minimal supervision for robust gener-
alization. For instance, SemiGNN (Wang et al., 2019) is a semi-supervised graph neural network
designed for fraud detection. It expands labeled data using social relations to generate additional un-
labeled data. The model employs a hierarchical attention mechanism to capture correlations between
different neighbors and views. GDN (Ding et al., 2021) introduces a meta-learning framework that
uses a few labeled anomalies to capture transferable patterns across networks, enhancing the sta-
tistical separability between normal and abnormal nodes. In a similar vein, Meta-PN (Ding et al.,
2022) adopts a meta-learning-driven label propagation strategy, which enables the generation of re-
liable pseudo-labels for unlabeled nodes and facilitates large receptive field learning during training.
These approaches, however, typically depend on auxiliary domains or cross-network information,
which may not always be available in practice. One such method is ANEMONE-FS (Zheng et al.,
2022b), which constructs two multi-scale comparison networks to learn robust node-context rela-
tionships. By maximizing consistency for unlabeled nodes and minimizing it for labeled anomalies
within each mini-batch.

3 METHODOLOGY

3.1 PRELIMINARIES

Notations. In this paper, we first define an attributed graph as G = (V,E,A,X), where V is
the node set, E ⊂ V × V is the edge set, A ∈ Rn×n denotes the adjacency matrix, and X ∈
Rn×m represents the m-dimensional node attributes, with n = |V | denotes the number of nodes.
High-order Neighborhood Sampling. Let’s S = [s(1), s(2), .., s(k)] ∈ Rn×k denote the multi-hop
structural influence matrix, where each s(k) ∈ Rn captures the structural signal strength of the k-hop
neighborhood. Specifically, s(1)i =

∑
j Aij , and recursively s(k) = A ·s(k−1). For each node vi, we

identify its most structurally influential k-hop neighbor v̂i = argmaxj∈Nvi
s
(k)
j , where v̂i serves as

a pivotal component in forming the k-order subgraph.

Problem Statement: Few-shot GAD. Given an attributed graph G = (V,E,A,X) with nodes
v1, . . . , vn, we assume access to a few-shot set of labeled anomalous nodes VL ⊂ V , where |VL| ≪
|V |. The objective is to learn an anomaly scoring function f that leverages both the few-shot labeled
anomalies and the abundant unlabeled nodes to assign each node vi an anomaly score ki = f(vi).

3
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Figure 2: Overview of the FewGAD framework. The model consists of three components: (1) High-
order Neighborhood Sampling constructs informative subgraphs by selecting high-order neighbors
with strong influence, reducing structural bias. (2) Generative Enhanced Few-shot Learning lever-
ages both labeled and unlabeled data to simulate diverse anomalies and improve generalization. (3)
Anomaly Scoring computes the final anomaly score for each node based on the learned model.

The score ki quantifies the likelihood of vi being anomalous, and nodes are ranked accordingly, with
those receiving higher scores identified as potential anomalies.

In few-shot settings, the limited connectivity of immediate neighborhoods often results in insuffi-
cient or noisy structural cues for anomaly detection. To mitigate this, we employ high-order neigh-
borhood sampling to construct subgraphs that capture richer structural and semantic information.
After embedding these subgraphs, the resulting positive and negative pairs exhibit a larger separa-
tion in the representation space, which effectively enlarges the contrastive margin. This enhanced
discrimination enables contrastive learning to extract more expressive and robust anomaly represen-
tations, even under scarce supervision.

3.2 NODE-SUBGRAPH PAIRWISE CONTRAST

To enhance contrastive learning efficiency, we leverage the previously introduced high-order neigh-
borhood sampling strategy to preprocess the graph and construct candidate contrastive subgraph
pairs. Specifically, we extract the most influential and least influential k-order neighbor subgraphs
from the graph structure. For each node vi, we define a positive instance pair E+

i = (vi,G+
i ), where

G+
i is the k-order subgraph with the highest cumulative neighborhood influence connected to vi.

A corresponding negative pair E−
i = (vi,G−

j ) is generated by randomly selecting another node vj
(j ̸= i) and using its least influential k-order subgraph G−

j .

Similarly, for labeled anomaly nodes vl ∈ VL, we construct the labeled contrastive pair El =
(vl,G+

l ), where G+
l denotes the most influential k-order subgraph centered at vl. All nodes and

their corresponding subgraphs are embedded into a shared representation space during training to
facilitate effective comparison and alignment between node-level and subgraph-level semantics.

Subgraph Embedding. To encode both the structure and node features within the high-order neigh-
bor subgraphs, we adopt a Graph Convolutional Network (GCN) encoder (Kipf & Welling, 2016).
For each subgraph Gi induced by the high-order neighborhood of node vi, we denote its adjacency
matrix and feature matrix as AGi and XGi , respectively. The GCN propagation is defined as:

H
(ℓ)
Gi

= σ
(
D̂

−1/2
Gi

ÂGiD̂
−1/2
Gi

H
(ℓ−1)
Gi

W(ℓ−1)
)

(1)

where ÂGi
= AGi

+I, and D̂Gi
is the degree matrix. The initial input is H(0)

Gi
= XGi

. The activation
function σ(·) (e.g., ReLU) is applied after each layer, and W(ℓ−1) is a trainable weight matrix.

After propagating through the GCN layers, we apply a readout function to obtain the subgraph-level
representation. We use mean pooling over all node embeddings within Gi: zGi = Readout(HGi) =
1

|Gi|
∑|Gi|

j=1 HGi
(j), where HGi

(j) denotes the embedding of the j-th node in subgraph Gi.
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Node Embedding. For the node-level representation, we employ a multi-layer perceptron (MLP) to
project node features into a latent embedding space. Unlike GCNs, this module does not incorpo-
rate structural information, enabling the model to focus purely on node attributes. The embedding
process follows a layer-wise propagation scheme:

h(ℓ)
vi = σ

(
h(ℓ−1)
vi W(ℓ−1)

)
, ℓ = 1, . . . , T (2)

where h(0)
vi = xvi is the input feature of node vi, W(l−1) denotes the weight matrix at the (l− 1)-th

layer, and σ(·) is a nonlinear activation function (e.g., ReLU). The final node embedding zvi
= h

(T )
vi

is obtained after T layers of transformation.

Generative Enhanced Few-shot Learning. To improve the discriminative capability in the few-
shot setting, we introduce a Generative-Enhanced Few-shot Learning mechanism. For each labeled
anomaly node vl, we encode its high-order subgraph with GCN and apply a readout to obtain sub-
graph embeddings zGl

. Each embedding, denoted as zGl
∈ Rd, represents a labeled anomaly node’s

subgraph and may be sparse or noisy. To enrich these representations, we apply KDE to estimate
their distribution and sample synthetic embeddings accordingly.

f̂(x) =
1

mτ

m∑
i=1

K
(
x− zGl

τ

)
, K(x, xi) = exp

(
−2|x− xi|22

)
(3)

We then sample m′ synthetic embeddings from the estimated density: z̃1, z̃2, . . . , z̃m′ ∼ f̂(x).
Finally, we form the augmented negative embedding set as: ẑ = {zG1

, . . . , zGm
}∪

{
z̃G1

, . . . , z̃Gm′

}
.

where ĥ denotes the combined set of original and synthetic anomaly subgraph embeddings.

Loss of Contrastive Learning.We adopt a bilinear function to measure the relation between node
embeddings zvi and high-order neighbor-subgraph embeddings zGi . The similarity scores for posi-
tive and negative pairs are given by:

x
(+)
i = Bilinear(zvi , zGi), x

(−)
i = Bilinear(zvi , zGj), x̂

(−)
i = Bilinear(zvi , ẑl), i ̸= j, ẑl ∈ ĥ.

(4)
For each node vi, we compute multiple negative scores x̂(−)

i by evaluating the similarity between its
embedding zvi and the augmented negative subgraph embeddings ẑl ∈ ẑ using a bilinear function.
Since some augmented subgraphs may still carry normal characteristics, we refine the final negative
score by combining the hardest negative with a clear reference score. The final score is:

x
(−)
i = α min

j∈{1,...,m̃}
x̃
(−)
ij + (1− α) · x(−)

i (5)

where α balances the hardest negative and reliable normal subgraph. The contrastive learning loss
uses Binary Cross-Entropy with a Sigmoid layer, as shown in Equation (6):

Lcon = −
nB∑
i=1

(yi log(σ(xi)) + (1− yi) log(1− σ(xi))) (6)

where nB is the batch size, σ() denotes the Sigmoid function. The label yi indicates whether a
sample pair is positive or negative: yi = 1 if vi ∈ E+

i , and yi = 0 if vi ∈ E−
i .

To preserve the semantic consistency between input features and learned representations, we recon-
struct node features via a one-layer GCN decoder and define a reconstruction loss based on Mean
Squared Error:

Lrec =
1

n

n∑
i=1

∥x̂i − xi∥22 (7)

where x̂i is the reconstructed feature of node vi. To optimize training, we combine the few-shot
contrastive and reconstruction learning modules, defining the total training loss function as follows:

L = βLcon + λLrec (8)

where the parameters β and λ control the relative importance of the two modules.
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Anomaly Scoring. To quantify node-level abnormality, we employ both contrastive and
reconstruction-based indicators. The contrastive signal is derived from the similarity gap between
positive and negative pairs. Specifically, Let x(+)

i and x
(−)
i denote the similarity scores of node vi

with its positive and negative counterparts, respectively. Normal nodes typically yield x
(+)
i ≈ 1 and

x
(−)
i ≈ 0, whereas anomalies deviate from this pattern. We thus define ϖcon

i = x
(−)
i − x

(+)
i . In ad-

dition, we assess reconstruction deviation to capture irregularities in attribute recovery. Specifically,
the reconstruction error is given by ϖrec

i = ∥xi − x̂i∥22. We then integrate the two scores into a
unified anomaly indicator ϖi = ϖcon

i +λ ·ϖrec
i . To improve robustness against stochastic sampling

and training noise, we conduct R evaluation rounds and compute the final anomaly score as the sum
of the mean and standard deviation of scores across rounds. Specially, let µi =

1
R

∑R
k=1 ϖ

(k)
i and

σi =

√
1
R

∑R
k=1

(
ϖ

(k)
i − µi

)2

, then the final anomaly score is given by:

Score(vi) = µi + σi (9)

3.3 THEORETICAL ANALYSIS

We analyze FewGAD from two key perspectives. A Subgraph Coverage Bound shows that our high-
order sampling captures broader structures. A Controllability Analysis of embedding discrepancy
explains how contrastive learning stabilizes representations in few-shot settings.

Theorem 3.1 (Subgraph Coverage Bound for Max-Influence Sampling) Let G = (V,E) be an
undirected graph with |V | = n, adjacency matrix A ∈ {0, 1}n×n, and a set of m ≪ n anomalous
nodes S = {v1, . . . , vm}. Define the structural influence score of node vj as s(k)j =

∑n
i=1[A

k]ji,
and its k-hop neighborhood as N (k)(vj) = {vl | [Ak]jl > 0}∪{vj}. For each vi ∈ S, the proposed
high-order sampling strategy selects v̂HI

i = argmaxj∈N (k)(vi) s
(k)
j . Define the total coverage as:

CHI =

∣∣∣∣∣
m⋃
i=1

N (k)
(
v̂HI
i

)∣∣∣∣∣
where ṽRWi ∈ N (k)(vi) is sampled uniformly at random. Then the following inequality holds:

CHI ≥ max
i=1,...,m

∣∣∣N (k)
(
v̂HI
i

)∣∣∣− α

(
m

2

)
N̄ (k)

where α ∈ (0, 1) denotes the average pairwise neighborhood overlap, and N̄ (k) =
1
m

∑m
i=1

∣∣N (k)
(
v̂HI
i

)∣∣ is the mean size of the selected neighborhoods. Equality holds when the
variance of s(k) approaches zero, i.e., Var(s(k)) → 0, or m → n, in which case max-influence
selection becomes equivalent to random choice or full-graph coverage. See Appendix C.1 for the
proof of the theorem.

Theorem 3.2 (Controllability of Cumulative Embedding Discrepancy) Let f : Rk → R be a
Lipschitz continuous model with constant L, operating on subgraph embeddings z ∈ Rk derived
from anomalous nodes in a graph G = (V,E) with adjacency matrix A. Given m anomalous nodes
S = {v1, . . . , vm}, their subgraph embeddings {z1, . . . , zm} are obtained via high-order sampling.
Let z̃j , j = 1, . . . ,m′, be new embeddings generated via KDE with bandwidth h. The expected
cumulative discrepancy satisfies:

E[∆ =

m′∑
j=1

min
i=1,...,m

|f(zi)− f(z̃j)|] ≤ m′L
√
Ch

whereL is a Lipschitz continuity constant, which measures the rate of change of f’s output with re-
spect to its input, reflecting the smoothness of the model, C > 0 is a constant related to the embed-
ding dimension k, and the expectation is taken over the joint distribution of {z̃j}m

′

j=1. This ensures
that the total discrepancy between generated and original embeddings is controllably bounded, fa-
cilitating stable training in graph anomaly detection. See Appendix C.2 for the proof of the theorem.
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Table 1: Comparison of AUC-ROC and AUC-PR Results Across Unsupervised and Few-Shot Meth-
ods ( best in bold, second best underlined).

Model Cora Citeseer BlogCatalog Flickr ACM

AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

DOMINANT 0.8124 0.3246 0.8267 0.3227 0.6465 0.0816 0.7454 0.1305 0.7986 0.1134
AnomalyDAE 0.8706 0.4373 0.8435 0.2765 0.7303 0.4348 0.7532 0.1548 0.8181 0.2573

CoLA 0.8942 0.4836 0.8786 0.4000 0.7800 0.2747 0.7468 0.2479 0.8322 0.3263
ANEMONE 0.8975 0.5223 0.9137 0.5148 0.6417 0.1056 0.6620 0.1242 0.8398 0.3409

SL-GAD 0.9030 0.5581 0.8135 0.3189 0.7691 0.4028 0.7803 0.4208 0.8186 0.2710
GRADATE 0.8421 0.4459 0.8231 0.2219 0.6058 0.1068 0.7181 0.1920 0.8231 0.2661
AS-GAE 0.6786 0.1288 0.6730 0.1482 0.4947 0.0545 0.5021 0.0554 0.5019 0.0336

GDN 0.7638 0.1763 0,7909 0.2470 0.5295 0.0651 0.5400 0.0673 0.7475 0.2353
ANEMONE-FS 0.9156 0.5206 0.9308 0.5238 0.7297 0.1780 0.7521 0.2550 0.8493 0.3608

ASD-HC-FS 0.9574 0.6093 0.9492 0.5639 0.8042 0.5430 0.8270 0.4219 0.8867 0.3552

4 EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency of our proposed method by addressing
the following questions: Q1: Can our method perform well in extreme few-shot or limited-label
scenarios? Q2: How do different components contribute to overall performance? Q3: How sensitive
and robust is our method to key hyperparameter changes?

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our proposed method and baselines on five widely used benchmark datasets,
categorized into citation networks (Cora (McCallum et al., 2000), Citeseer (Lawrence et al., 1999),
ACM (Sen et al., 2008)) and social networks (BlogCatalog, Flickr (Tang & Liu, 2009)). In citation
networks, nodes represent documents and edges indicate citation links, with node features extracted
from text content. In social networks, nodes denote users and edges represent relationships, with
features derived from associated tags. We follow established strategies (Ding et al., 2019; Liu et al.,
2021) to inject structural and attribute anomalies, as the datasets lack ground-truth labels. Details of
the injection process and anomaly statistics are provided in App.D.1.

Baselines. We compare our proposed method with several representative baselines, including unsu-
pervised approaches DOMINANT (Ding et al., 2019), AnomalyDAE (Fan et al., 2020), CoLA (Liu
et al., 2021), ANEMONE (Jin et al., 2021), SL-GAD (Zheng et al., 2021), and GRADATE (Duan
et al., 2023), as well as few-shot anomaly detection methods GDN (Ding et al., 2021) and
ANEMONE-FS (Jin et al., 2021). These methods cover a wide range of modeling paradigms, such
as graph autoencoders, contrastive learning, and generative strategies. Detailed descriptions of each
baseline can be found in App. D.2.

Implementations. We adopt AUC-ROC and AUC-PR as evaluation metrics, where AUC-ROC
evaluates overall discriminative capability, and AUC-PR is more indicative under class imbalance.
For implementation, we employ a single-layer GCN as the encoder with a hidden size of 64, and
train the model using the Adam optimizer (Kingma & Ba, 2014). The training schedule, learning
rates, number of epochs, and neighborhood sampling parameters are adapted for each dataset to
ensure stable performance. In all experiments, we set the number of labeled anomaly nodes to 10,
and apply KDE-based sampling to augment anomaly representation. Further implementation details
and hyperparameter settings are provided in the App. D.4.

4.2 PERFORMANCE ANALYSIS (RQ1)

In this section, we evaluate the performance of our proposed method for anomalous node detection
in comparison with unsupervised methods and few-shot approaches. To ensure a consistent few-shot
setting, all few-shot methods are provided with 10 labeled anomalous nodes as supervision.

Advantage over Unsupervised GAD Methods. We first compare our proposed FewGAD with
unsupervised graph anomaly detection methods. As shown in Table 1, FewGAD consistently out-
performs the baselines across multiple benchmark datasets, achieving superior results in both AUC-
ROC and AUC-PR scores. For instance, on the Cora dataset, FewGAD achieves a 9.7% improve-
ment over the best-performing unsupervised method, while on BlogCatalog and Flickr, the relative
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Table 2: Ablation Study Results of FewGAD on
Benchmark Datasets. We evaluate the contribu-
tion of three components: Contrastive learning
(Con), Reconstruction objective (Rec), and Few-
shot (Few).

Con Rec Few Cora Citeseer BlogCatalog Flickr ACM
✓ ✓ ✓ 0.9574 0.9492 0.8042 0.8270 0.8867

✓ ✓ 0.7778 0.7710 0.7435 0.7439 0.7472
-18.8% -18.8% -7.5% -10.0% -15.7%

✓ ✓
0.8687 0.7998 0.7575 0.8077 0.8361
-9.3% -15.7% -5.8% -2.3% -5.7%

✓ ✓
0.8936 0.9013 0.7661 0.8147 0.7896
-6.7% -5.0% -4.7% -1.5% -10.9%

Table 3: Comparison of AUC-ROC scores across
varying few-shot label numbers m. Bold values
indicate the highest results obtained under each
setting.

Methods Cora Citeseer BlogCatalog Flickr ACM
1-shot 0.9526 0.8257 0.7883 0.7342 0.8086
3-shot 0.9441 0.9328 0.7949 0.8050 0.8337
5-shot 0.9517 0.9220 0.7927 0.8111 0.8462
10-shot 0.9574 0.9492 0.7990 0.8223 0.8867
15-shot 0.9605 0.9503 0.8042 0.8349 0.8996

gains reach 11.3% and 8.5%, respectively. This performance gain demonstrates the effectiveness of
integrating limited supervision into the contrastive framework, enabling FewGAD to better capture
subtle anomalous patterns that are often overlooked by purely unsupervised approaches. The inferior
performance of many unsupervised baselines can be attributed to several limitations. First, methods
like DOMINANT and AnomalyDAE rely heavily on reconstruction-based objectives, which tend
to underperform when anomalies are structurally similar to normal nodes or when graph sparsity is
high. Additionally, although CoLA and GRADATE employ contrastive learning, their positive and
negative sampling strategies are fixed or heuristic-based, lacking the adaptability needed to distin-
guish hard-to-detect anomalies. Furthermore, these methods are typically sensitive to the quality of
graph structure or node attributes, making them less robust in real-world heterogeneous settings.

Effectiveness in Few-Shot Anomaly Detection. To further validate FewGAD’s applicability in
few-shot scenarios, we conduct experiments where only a few labeled anomalies are provided dur-
ing training, as shown in Table 1. Compared with few-shot baselines like ANEMONE-FS and
GDN, our method achieves notable improvements. This improvement can be attributed to the princi-
pled sampling of high-order substructures and the KDE-based negative instance generation strategy,
which collectively enhance the model’s generalization capacity under limited supervision. Few-
GAD’s advantage in few-shot settings stems from two key designs. First, its principled sampling
of high-order subgraphs captures more informative and context-aware representations. Second, the
KDE-based negative sampling adaptively generates harder contrastive pairs, enhancing learning un-
der sparse supervision. In contrast, ANEMONE-FS relies on fixed sampling strategies, and GDN’s
meta-learning approach struggles with transferability in sparse or heterogeneous graphs.

4.3 ABLATION STUDY (RQ2)

To verify the effectiveness of each key component in FewGAD, we conduct an ablation study by
introducing several model variants. Specifically, NoCon disables the contrastive learning module by
setting β = 0.0, NoRec removes the reconstruction module by setting λ = 0.0, and NoFew excludes
the few-shot labeled sample learning module. These variants allow us to systematically assess the
contribution of each individual component to the overall performance, as shown in Table 2.

The ablation results demonstrate that all components of FewGAD contribute meaningfully to its
overall effectiveness. Notably, removing the contrastive learning module (NoCon) leads to the most
significant performance degradation, with an average AUC-ROC drop of 14.1%, including severe
declines on Cora and Citeseer (18.8% and 18.8%, respectively), highlighting its critical role in en-
hancing the discriminative power of node representations. The reconstruction module (NoRec) also
proves important, with an average drop of 6.6%, especially on Citeseer, indicating the value of struc-
tural reconstruction for anomaly identification. While the few-shot learning module (NoFew) results
in a smaller average decrease of 3.7%, its contribution remains meaningful, validating its utility in
effectively leveraging limited labeled anomalies to further improve detection performance.

4.4 SENSITIVITY ROBUSTNESS ANALYSIS (RQ3)

Effect of the Size of Neighbor-Subgraph. As shown in Fig. 3(a), with k = 3, increasing the sub-
graph size t generally improves AUC, peaking around t ∈ [15, 20] before declining. An exception
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Figure 3: Parameter sensitivity of FewGAD on five benchmark datasets. (a) AUC performance under
varying subgraph size t. (b) performance with different neighborhood orders k. And (c) examines
the impact of the balance coefficient α on contrastive negative sampling.
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Figure 4: AUC of ASD-HC-FS on Cora, BlogCatalog, and Flickr with varying β (contrastive) and
λ (reconstruction) weights.

is BlogCatalog, where AUC continues to rise until t > 35, likely due to its high edge-node ratio and
dense structure, making larger subgraphs more effective for capturing meaningful features.

Effect of the High-Order of Neighbors. Taking the Cora dataset as an example, while varying
the neighborhood order k from 1 to 4, the AUC value reaches its peak when k = 3. This trend
is consistent across most datasets, where performance improves up to k = 3 but remains stable or
slightly declines at k = 4, as shown in Fig. 3(b).

Effect of the Balancing Factors. We investigate the impact of balancing factors α, β, λ. As shown
in Fig. 4, increasing the contrastive loss weight β improves AUC scores, with optimal performance
when β ∈ [0.3, 0.7]. Conversely, a higher reconstruction loss weight λ tends to degrade perfor-
mance, with 0.1 being optimal. This highlights the importance of emphasizing contrastive signals
over reconstruction for anomaly detection. Fig. 3(c) shows the effect of α under fixed β and λ. On
Cora, Citeseer, and ACM, increasing α enhances performance, with best results in α ∈ [0.7, 0.9].
However, on noisier graphs like BlogCatalog and Flickr, performance is less sensitive or even de-
clines, suggesting that strong auxiliary signals may hinder learning in complex networks.

Effectiveness and Robustness under Few-shot Settings We evaluate our model with varying num-
bers of labeled anomalies m ∈ {1, 3, 5, 10, 15} across five datasets. As shown in Table 3, our
method performs well even with very few labels, e.g., achieving 0.9526 AUC on Cora with only one
labeled node. Performance steadily improves with more labels and tends to stabilize after m = 10,
demonstrating both effectiveness and robustness. On complex graphs like BlogCatalog and Flickr,
the model also shows consistent gains, confirming its adaptability across different structures.

4.5 CONCLUSIONS

In this paper, we propose FewGAD, a novel framework for few-shot graph anomaly detection.
FewGAD integrates structural and attribute information through generative contrastive learning, en-
abling effective use of both labeled and unlabeled data. To mitigate local structural bias, we design a
high-order neighborhood sampling module that constructs informative subgraph pairs, while a KDE-
based module with local consistency enhances scarce anomaly representations and alleviates data
sparsity. Experiments on five benchmark datasets show that FewGAD consistently surpasses state-
of-the-art unsupervised and few-shot methods, demonstrating strong robustness and generalization
across diverse graph scenarios.
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A APPENDIX

B DERIVATION OF EQUATION 3.

The Gaussian kernel function is a widely used kernel in density estimation and machine learning
due to its smoothness and locality properties. It measures the similarity between a point x and a
sample point xi based on their Euclidean distance. The general form of the Gaussian kernel is given
by:

K(x, xi) = exp

(
−∥x− xi∥22

2τ2

)
(10)

where τ is the bandwidth parameter. In our case, we fix the bandwidth as h = 0.5. Substituting this
value into the Gaussian kernel formula, we obtain:

K(x, xi) = exp

(
−∥x− xi∥22

2 · (0.5)2

)
= exp

(
−∥x− xi∥22

0.5

)
= exp

(
−2∥x− xi∥22

) (11)

C PROOFS

C.1 THE PROOF OF THEOREM 1

Lemma C.1 (Graph Heterogeneity) The graph G is heterogeneous: Var(s(k)) =

1
n

∑n
i=1

(
s
(k)
i − s̄(k)

)2

≥ σ2, where s
(k)
i =

∑n
j=1[A

k]ij , s̄(k) = 1
n

∑
i s

(k)
i , and σ2 > 0.
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Proof C.1 In real-world graphs (e.g., social networks), nodes have diverse roles, leading to varied
k-hop influence s

(k)
i . The variance Var(s(k)) ≥ σ2 holds as s

(k)
i = [Ak · 1]i reflects structural

differences, with σ2 bounded away from zero for non-uniform graphs.

Var(s(k)) =
1

n

n∑
i=1

(
ski − s̄(k)

)2

≥ σ2.

Lemma C.2 (Anomalous Node Characteristics) Anomalous nodes have low influence: s
(k)
i ≤

τ < s̄(k), ∀vi ∈ S, where S is the set of anomalous nodes.

Proof C.2 Anomalies (e.g., fraudsters) are often peripheral in graphs, with fewer k-hop connec-
tions. Thus, s(k)i =

∑n
j=1[A

k]ij ≤ τ < s̄(k), as their paths to other nodes are limited compared to
the average.

s
(k)
i =

n∑
j=1

[Ak]ij ≤ τ, τ <
1

n

n∑
l=1

s
(k)
l .

Lemma C.3 (Bounded Neighborhood Size) The k-hop neighborhood size is bounded:
|N (k)(vi)| ≤ ∆k ≤ n, ∀vi ∈ V .

Proof C.3 The k-hop neighborhood N (k)(vi) = {vj | [Ak]ij > 0}∪{vi} contains nodes reachable
in k-hops. Since G has n nodes, |N (k)(vi)| ≤ ∆k ≤ n, where ∆k depends on graph connectivity.

|N (k)(vi)| = |{j | [Ak]ij > 0} ∪ {i}| ≤ ∆k ≤ n.

Lemma C.4 (Few-Shot Sparsity) The number of anomalous nodes is sparse: m ≤
√
n.

Proof C.4 In few-shot anomaly detection, labeled anomalies are scarce relative to graph size. Thus,
m ≪ n, and m ≤

√
n ensures sparsity, limiting overlap in sampled subgraphs.

m ≤
√
n.

Proof. For each anomalous node vi ∈ S, high-influence sampling identifies the node with the
maximum k-hop influence in its k-hop neighborhood:

v̂HI
i = arg max

j∈N(k)(vi)
s
(k)
j , s

(k)
j =

n∑
l=1

[Ak]jl.

By Lemma C.2, s(k)i ≤ τ < s̄(k), indicating low influence for anomalous nodes. However, Lemma
C.1 guarantees that the k-hop neighborhood N (k)(vi) contains nodes with diverse influences due to
graph heterogeneity (Var(s(k)) ≥ σ2 > 0). Consequently, the selected v̂HI

i satisfies:

s
(k)

v̂HI
i

≥ s̄(k).

Since the k-hop influence s
(k)
j correlates with the neighborhood size |N (k)(vj)|, it follows that:

|N (k)(v̂HI
i )| ≥ N̄ (k).

The term maxi=1,...,m

∣∣N (k)(v̂HI
i )

∣∣ denotes the largest k-hop neighborhood among the high-
influence neighbors of anomalous nodes. By Lemma C.3, this size is bounded:

max
i=1,...,m

∣∣∣N (k)(v̂HI
i )

∣∣∣ ≤ ∆k ≤ n.

Nevertheless, Lemma C.1 implies that heterogeneity amplifies the neighborhood sizes of high-
influence nodes, ensuring that the maximum is significantly larger than the average N̄ (k).

The adjustment term α
(
m
2

)
N̄ (k) represents the expected connectivity contribution from all pairs of

the m anomalous nodes under a null model, where:

13
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• N̄ (k) = 1
n

∑n
i=1 |N (k)(vi)| is the average k-hop neighborhood size,

•
(
m
2

)
= m(m−1)

2 counts all pairs among m nodes,

• α ∈ (0, 1) is a significance parameter controlling the threshold for non-anomalous connec-
tivity.

By Lemma C.4, the number of anomalous nodes is sparse (m ≤
√
n), which limits the total ex-

pected connectivity and validates the use of α
(
m
2

)
N̄ (k) as a reasonable adjustment for typical graph

behavior.

The Higher Criticism statistic CHI is designed to detect anomalous subgraphs by identifying extreme
deviations in neighborhood sizes. Specifically, CHI evaluates the significance of the largest observed
neighborhood sizes relative to their expected values under a null hypothesis. For each vi ∈ S, the
neighborhood size |N (k)(v̂HI

i )| is a test statistic, and CHI emphasizes the most extreme deviation:

CHI ≥ max
i=1,...,m

(∣∣∣N (k)(v̂HI
i )

∣∣∣− E[|N (k)|]
)
,

where E[|N (k)|] is the expected neighborhood size under the null model. In the context of pairwise
interactions among m nodes, we approximate:

E[|N (k)|] ≈ α

(
m

2

)
N̄ (k),

since
(
m
2

)
N̄ (k) estimates the total expected connectivity across all pairs, and α adjusts for the sig-

nificance level. Thus:

CHI ≥ max
i=1,...,m

∣∣∣N (k)(v̂HI
i )

∣∣∣− α

(
m

2

)
N̄ (k).

By Lemma C.1, graph heterogeneity ensures that some high-influence neighbors v̂HI
i have large

neighborhood sizes. By Lemma C.4, the sparsity of anomalous nodes (m ≤
√
n) supports the

appropriateness of the adjustment term. Therefore, CHI, as a statistic capturing the most significant
neighborhood deviation, satisfies the inequality:

CHI ≥ max
i=1,...,m

∣∣∣N (k)(v̂HI
i )

∣∣∣− α

(
m

2

)
N̄ (k).

C.2 THE PROOF OF THEOREM 2

Assumption C.1 (Lipschitz Continuity) The model f : Rk → R is Lipschitz continuous with
constant L, i.e., for all z, z̃ ∈ Rk:

|f(z)− f(z̃)| ≤ L∥z − z̃∥2.

Assumption C.2 (Bounded Embeddings) The subgraph embeddings zi and generated embed-
dings z̃j lie in a bounded subset of Rk, i.e., there exists B > 0 such that ∥zi∥2, ∥z̃j∥2 ≤ B.

Proof. We establish the bound on the expected cumulative discrepancy E[∆] in several steps, lever-
aging the Lipschitz continuity of f , the KDE-based generation process, and the high-order sampling
mechanism.

Lemma C.5 (Lipschitz Bound on Individual Discrepancy) For any generated embedding z̃j , the
discrepancy ∆(z̃j) = mini=1,...,m |f(zi)− f(z̃j)| is bounded by:

∆(z̃j) ≤ L min
i=1,...,m

∥zi − z̃j∥2.

Proof C.5 By Assumption C.1, the model f satisfies:

|f(zi)− f(z̃j)| ≤ L∥zi − z̃j∥2,
for all i = 1, . . . ,m. Taking the minimum over all original embeddings:

∆(z̃j) = min
i=1,...,m

|f(zi)− f(z̃j)| ≤ min
i=1,...,m

L∥zi − z̃j∥2 = L min
i=1,...,m

∥zi − z̃j∥2.

14
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Lemma C.6 (KDE Perturbation Distance) For a generated embedding z̃j = zij + hϵj , where
ij ∼ Uniform{1, . . . ,m} and ϵj ∼ N (0, Ik), the minimum distance to the original embeddings
satisfies:

min
i=1,...,m

∥zi − z̃j∥2 ≤ h∥ϵj∥2.

Proof C.6 Per Equation 3, the generated embedding is:

z̃j = zij + hϵj ,

where zij is one of the original embeddings {z1, . . . , zm}. The distance to any original embedding
zi is:

∥zi − z̃j∥2 = ∥zi − (zij + hϵj)∥2.
Since zij ∈ {z1, . . . , zm}, we evaluate the distance to zij :

∥zij − z̃j∥2 = ∥zij − (zij + hϵj)∥2 = h∥ϵj∥2.

Thus, the minimum distance is:

min
i=1,...,m

∥zi − z̃j∥2 ≤ ∥zij − z̃j∥2 = h∥ϵj∥2.

Lemma C.7 (Expected Minimum Distance) The expected minimum distance between a generated
embedding z̃j and the original embeddings satisfies:

E
[

min
i=1,...,m

∥zi − z̃j∥2
]
≤ h

√
k.

Proof C.7 From Lemma C.6, we have:

min
i=1,...,m

∥zi − z̃j∥2 ≤ h∥ϵj∥2.

Taking expectations over the distribution of z̃j , which includes the randomness of ij and ϵj:

E
[

min
i=1,...,m

∥zi − z̃j∥2
]
≤ E[h∥ϵj∥2] = hE[∥ϵj∥2].

Since ϵj ∼ N (0, Ik), the squared norm ∥ϵj∥2 =
∑k

l=1 ϵ
2
j,l follows a chi-squared distribution χ2(k):

E[∥ϵj∥2] = k, Var(∥ϵj∥2) = 2k.

By Jensen’s inequality:

E[∥ϵj∥2] = E[
√
∥ϵj∥2] ≤

√
E[∥ϵj∥2] =

√
k.

For large k, E[∥ϵj∥2] ≈
√
k. Thus:

E
[

min
i=1,...,m

∥zi − z̃j∥2
]
≤ h

√
k.

Lemma C.8 (Cumulative Discrepancy Aggregation) The expected cumulative discrepancy satis-
fies:

E[∆] ≤ m′Lh
√
k.

Proof C.8 The cumulative discrepancy is:

∆ =

m′∑
j=1

min
i=1,...,m

|f(zi)− f(z̃j)| =
m′∑
j=1

∆(z̃j).

Taking expectations:

E[∆] = E

 m′∑
j=1

∆(z̃j)

 =

m′∑
j=1

E[∆(z̃j)].
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Since the z̃j are independently and identically distributed, we focus on E[∆(z̃j)]. By Lemma C.5:

∆(z̃j) ≤ L min
i=1,...,m

∥zi − z̃j∥2.

Taking expectations:

E[∆(z̃j)] ≤ LE
[

min
i=1,...,m

∥zi − z̃j∥2
]
.

By Lemma C.7:

E
[

min
i=1,...,m

∥zi − z̃j∥2
]
≤ h

√
k.

Thus:
E[∆(z̃j)] ≤ Lh

√
k.

Summing over m′ generated embeddings:

E[∆] =

m′∑
j=1

E[∆(z̃j)] ≤
m′∑
j=1

Lh
√
k = m′Lh

√
k.

With these lemmas established, we complete the proof of the theorem. From Lemma C.8, we have:

E[∆] ≤ m′Lh
√
k.

Set
√
C =

√
k, where C = k is the dimension-related constant:

E[∆] ≤ m′L
√
Ch.

D IMPLEMENTATION DETAILS

D.1 DETAILED DATASET DESCRIPTION

Table 4: The statistics of the datasets.

Dataset Nodes Edges Attributes Anomalies Ratio
Cora 2,708 5,429 1,433 150 5.5%

Citeseer 3,327 4,723 3,703 150 4.5%
BlogCatalog 5,196 171,743 8,189 300 5.8%

Flickr 7,575 239,738 12,407 450 5.9%
ACM 16,484 71,980 8,337 600 3.6%

To evaluate the detection ability of our algorithm, anomaly ground truth in datasets is essential.
However, since all experimental datasets lack ground-truth anomaly labels, we follow the anomaly
injection strategies adopted in Ding et al. (2019); Liu et al. (2021), including structural anomaly
injection and attribute anomaly injection. We randomly select q nodes and induce q connected
subgraphs using a random walk approach and then transform them into q fully connected subgraphs.
Similarly, we randomly sample q connected subgraphs with the same number of nodes as Set T ,
and select k nodes as Set C. The attribute of each node in T is perturbed based on the Euclidean
distance between it and the randomly selected node in C. The number of anomalies in each dataset
can be found in Table 4. A detailed introduction of these datasets is given as follows:

• Cora: The Cora dataset is a citation network where each node represents a scientific pub-
lication and edges denote citation relationships. Each paper is assigned a topic label and
described by a bag-of-words feature vector.

• Citeseer: Citeseer is another citation network similar to Cora, where nodes represent re-
search papers and edges indicate citations. Each paper is associated with a single label
from a set of scientific categories and described using word-frequency features.
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• BlogCatalog: BlogCatalog is a social network dataset where nodes correspond to blog-
gers and edges indicate social connections between them. Each user may have multiple
associated interest labels, making this a multi-label classification scenario.

• Flickr: The Flickr dataset is collected from a photo-sharing social media platform, where
nodes represent users and edges denote their social connections. Users are annotated with
multiple interest categories based on the tags of the images they share.

• ACM: The ACM dataset is derived from the DBLP bibliographic database, forming a het-
erogeneous graph with nodes representing papers, authors, and research fields. Paper nodes
are characterized by keyword-based features and are assigned to academic subject cate-
gories.

D.2 MORE ABOUT THE BASELINES

• DOMINANT Ding et al. (2019) employs a deep graph autoencoder method and utilizes
graph structure and features for detecting anomalous nodes in a graph.

• AnomalyDAE Fan et al. (2020) AnomalyDAE detects anomalies by measuring reconstruc-
tion errors through the complex interaction of network structure and node properties with
dual autoencoders.

• CoLA Liu et al. (2021) is an anomaly detection algorithm targeting nodes, using GNN-
based contrastive learning at node-subgraph level. It computes anomaly scores by evaluat-
ing representations from nodes and subgraphs in positive and negative instance pairs.

• ANEMONE Jin et al. (2021) is an anomalous node detection method based on Graph
Neural Networks (GNN), aiming to identify graph anomalies using multi-scale patch and
context-level contrastive learning. ANEMONE-FS builds on ANEMONE and extends it
to few-shot scenarios with limited labeled anomalies.

• SL-GAD Zheng et al. (2021) is a self-supervised method that incorporates two compo-
nents: generative attribute regression and multi-view contrastive learning. Generative at-
tribute regression detect nodes that behave differently in the attribute space from the neigh-
bors. In contrast, multi-view contrastive learning highlights the structural differences be-
tween a node and its neighbors.

• GRADATE Duan et al. (2023) is an anomalous node detection approach based on node-
node, node-subgraph, and subgraph-subgraph multi-view contrastive learning.

• GDN Ding et al. (2021) is a GNN-based model for few-shot anomaly detection that iden-
tifies anomalous nodes, edges, or subgraphs using limited labeled data. It introduces de-
viation loss for training, and leverages cross-network meta-learning to enhance detection
across various domains.

D.3 COMPLEXITY ANALYSIS

Time Complexity Analysis. We analyze the computational complexity of each component in
our framework as follows: We first compute the multi-hop structural influence matrix S =
[s(1), . . . , s(k)], where each s(k) is obtained recursively via s(k) = A · s(k−1). This step requires
O(kηN) time, where η denotes the average node degree and N is the total number of nodes.

Following this, we perform greedy high-order path sampling for each node based on the structural
influence vector. This involves a local neighborhood search of path length l and has time complexity
O(Nη(k + t)), where t denotes the final subgraph size used for representation learning.

For the contrastive learning module, the main cost lies in computing the similarity between positive
and negative pairs in each batch. For a subgraph of size t, the per-node complexity is O(t2), and thus
for all training nodes, the overall complexity is O(Nt2). During the inference phase, we perform R
evaluation rounds, the total time complexity becomes O(RNt2).

D.4 EXPERIMENTAL CONFIGURATION AND HYPERPARAMETER TUNING

We conduct all experiments on a powerful GPU setup featuring an RTX 4090 (24GB), which pro-
vides the necessary computational resources for handling graph data.
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Implementations. We employed a single-layer GCN as the encoder, with the hidden dimension
fixed at 64. We adopt the Adam optimizer Kingma & Ba (2014) to streamline and optimize the
model’s training process. During training, the batch size is set to 200. The model is trained for 100
epochs on Cora, Citeseer, and Books, and for 200 epochs on BlogCatalog, Fickr, and ACM. The
learning rate is 0.001 for Cora, Citeseer, Flickr, and Books, 0.003 for BlogCatalog, and 0.0005 for
ACM. The evaluation phase consisted of 256 rounds. Additionally, the size of the k-order neighbors
and the configuration of the neighbor subgraphs very depending on the dataset used. For Cora,
Citeseer and ACM, the parameter t is set to 15; for Flickr, it is set to 20; for BlogCatalog, it is set
to 35. We keep the value of k fixed at 3rd order. For each dataset, the number of labeled anomaly
nodes is set to 10, and the number of samples generated by KDE is 100 for all datasets except for
Blog, which generates 15 samples. Table lists all the hyperparameters used in our model along with
their corresponding search spaces. During training, we conduct a grid search to identify the model
configuration that achieves the highest AUROC score on the validation set.

Table 5: FewGAD Hyperparameter Tuning Ranges

Hyperparameter Distribution

learning rate 5e−4-1e−1

epochs 100-200
the order of neighbors [1,2,3,4]

high-order neighbor subgraph size 10-40
KDE sample size 10-100

α [0.1, 0.3, 0.5, 0.7, 0.9]
β [0.1, 0.3, 0.5, 0.7, 0.9]
γ [0.1, 0.3, 0.5, 0.7, 0.9]

D.5 MORE ABOUT RESULTS

To further validate the robustness of our method, we report Precision-Recall Area Under Curve
(AUC-PR) scores across all benchmark datasets in Table 6. Compared with both unsupervised and
few-shot baselines, FewGAD consistently achieves superior performance, with the highest AUC-PR
scores in most cases. This demonstrates the method’s ability to maintain high precision and recall,
particularly under imbalanced anomaly detection settings where AUC-PR is a more informative
metric than AUC-ROC.

Table 6: Comparison of AUC-PR Results Across Unsupervised and Few-Shot Methods (best in
bold, second best underlined).

Model Cora Citeseer BlogCatalog Flickr ACM

DOMINANT 0.3246 0.3227 0.0816 0.1305 0.1134
AnomalyDAE 0.4373 0.2765 0.4348 0.1548 0.2573

CoLA 0.4836 0.4000 0.2747 0.2479 0.3263
ANEMONE 0.5223 0.5148 0.1056 0.1242 0.3409

SL-GAD 0.5581 0.3189 0.4028 0.4208 0.2710
GRADATE 0.4459 0.2219 0.1068 0.1920 0.2661

GDN 0.1763 0.2470 0.0651 0.0673 0.2353
ANEMONE-FS 0.5206 0.5238 0.1780 0.2550 0.3608

ASD-HC-FS 0.6093 0.5639 0.5430 0.4219 0.3552

From the box plots (5)comparing anomaly scores of normal and anomalous nodes, we observe that
FewGAD not only achieves clearer separation between the two classes but also yields a more con-
centrated score distribution for normal nodes, as indicated by the shorter box length. This reduced
variance in normal node scores suggests that FewGAD provides more stable and consistent anomaly
scoring, reducing false positives and enhancing overall detection reliability compared to CoLA,
which shows greater score variability among normal nodes.
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(a) Score Distribution of Normal and Anomalous
Nodes by CoLA

(b) Score Distribution of Normal and Anomalous
Nodes by FewGAD

Figure 5: AUC-ROC performance under different settings.

E SOCIETAL IMPACT

This paper proposes a novel framework for graph anomaly detection under the few-shot setting. Our
goal is to effectively detect anomalies with only a limited number of labeled abnormal samples,
making the approach well-suited for scenarios with scarce annotated data. This enhances anomaly
detection capabilities across various graph-structured domains such as social networks, industrial
control systems, and transportation networks. Regarding ethical considerations, we do not currently
anticipate any significant ethical concerns or potential for adverse societal impacts.

F LIMITATION

While FewGAD achieves strong performance and efficient inference, it has two notable limitations.
First, the training phase involves multi-hop structural influence computation and KDE-based neg-
ative sampling, which introduce additional time and memory costs compared to simpler sampling
strategies. Although manageable on moderate-scale graphs, this overhead may become a bottleneck
on large or dynamic graphs. Second, the model relies on a small number of labeled anomalies to
guide the contrastive view construction. While the few-shot assumption is realistic in many real-
world applications, the method’s effectiveness may degrade if the labeled samples are scarce, noisy,
or poorly distributed in the anomaly space.
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